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Resumo

As limitacoes inerentes ao processo manual de interpretacdo sismica demandam especialis-
tas altamente treinados e frequentemente produzem segmentacOes com viéses e inconsisténcias.
Aprendizado profundo é utilizado para lidar com esses problemas, automatizando esse processo.
No entanto, o treinamento desses modelos tipicamente precisa de uma quantidade grande de da-
dos rotulados, que, no contexto de dados sismicos, essa rotulagem tem um altissimo custo. Assim,
a falta de dados rotulados ainda é um obstéculo significativo para a utilizacao de métodos de
aprendizado de méaquina supervisionado para processamento de dados sismicos.

Técnicas de self-supervised learning (SSL) tém surgido como uma ferramenta para lidar com
a escassez de dados rotulados, porém a maioria das técnicas SSL foi projetada no contexto de
imagem natural ou em dominios especificos como dados médicos. Por outro lado, os atributos
sismicos desempenham um papel essencial na caracterizacao de padroes geolégicos como falhas,
horizontes e facies sismicas, mas nao se exploram ainda em técnica SSL.

Este trabalho discute como técnicas de SSL podem ser empregadas para mitigar a escassez de
rétulos e como o uso de diferentes atributos sismicos impacta o desempenho desses métodos em
tarefas de segmentagao seméantica de dados sismicos. A luz de resultados anteriores envolvendo
segmentagao baseada em atributos, detecgao de falhas e métodos nao supervisionados, conjectura-
mos que a integracao sistematica entre atributos sismicos e pré-treinos auto-supervisionados pode
oferecer avancos relevantes em diversas aplicagoes de interpretacdo sismica, ao produzir repre-
sentagoes capazes de generalizar melhor para regides nao vistas pelo modelo e de lidar com classes
minoritarias.

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas
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1 Introducao

A interpretagdo de dados sismicos desempenha um papel central em diversas areas da geologia e da
geofisica, permitindo a caracterizacao de estruturas na subsuperficie, como falhas, dobras, domos sali-
nos e a identificagao de recursos naturais, como minérios, gas natural e petréleo. Uma das abordagens
mais utilizadas para esse tipo de anédlise é o uso de atributos sismicos [1], os quais sao transformagoes
matematicas aplicadas sobre o dado para realgar propriedades especificas como amplitude, frequéncia,
continuidade e geometria dos refletores. Estas caracteristicas sdo importantes na interpretacdo, por
destacarem padroes geoldgicos que facilitam a anotagao das facies sismicas [2].

No entanto, com o aumento no nimero de aquisi¢coes e, por consequéncia, no volume de dados, o
processo de interpretagdo manual desses volumes tornou-se cada vez mais desafiador, exigindo um
nimero maior de profissionais altamente especializados e também gerando segmentagoes com viéses
e inconsisténcias ao longo dos volumes.

Por conta desses problemas, nos ultimos anos técnicas de machine learning e deep learning tém
sido aplicadas, e diversos estudos sobre quais sao os melhores atributos para a segmentacao de faceis
sismicas manualmente podem ser encontrados na literatura [3, 4], assim como o uso desses atributos
para deteccao de falhas em treinamentos nao supervisionados [5], deteccao de horizontes [6], treina-
mento supervisionado para segmentagao [7, 8] e técnicas de few-shot para segmentacao [9, 10] devido
a grande falta de dados rotulados nessa area.

Apesar desses avangos, essa area sofre com a falta de dados anotados, pois o processo de anotagao
desses datasets é extremamente custoso, demorado e impreciso, como citado anteriormente. Além
disso, as caracteristicas do dado sismico tornam tarefas como segmentacdo e deteccao de falhas
especialmente dificeis, e por conta disso os modelos apresentados nos trabalhos mencionados possuem
grande dificuldade em generalizar para regioes nao vistas durante o treinamento, errando nas interfaces
entre duas classes e sofrendo com uma baixa precisao em regides com classes minoritarias.

Nesse sentido, trabalhos que abordem caracteristicas como a qualidade das representagoes que
podem ser obtidas a partir do pré-treino com técnicas de aprendizado autosupervisionado (SSL, Self
Supervised Learning) [11] ou diferentes abordagens de treinamento ao integrar o uso desses atributos
tornam-se relevantes pelo potencial que possuem de favorecer diversos outros métodos que ja sao
utilizados e que sofrem pela auséncia de dados anotados.

2 Objetivos e Escopo do Projeto

Durante a elaboracao da proposta inicial, o objetivo central deste projeto era avaliar o impacto do
uso de atributos sismicos em técnicas de Self-Supervised Learning (SSL), com a hipdtese de que
esses atributos, ao substituir transformagcoes aleatérias comumente utilizadas nesses métodos, pudes-
sem produzir representagoes mais robustas, estaveis e capazes de generalizar melhor para tarefas de
downstream. A proposta previa ainda a investigacdo sobre como essas representacoes influenciariam
a construgao do espaco latente e o desempenho final em segmentagao sismica.

Entretanto, ao longo do desenvolvimento do trabalho, o escopo metodolégico foi refinado para
uma direcao mais especifica e compativel com o tempo e os recursos disponiveis. Dessa forma, o
projeto passou a se concentrar na incorporagao de diferentes atributos sismicos durante o
processo de pré-treino e treinamento supervisionado, utilizando exclusivamente o Bootstrap
Your Own Latent (BYOL) [12] como técnica de SSL, analisando o comportamento dessa técnica no
dominio sismico e também como esses atributos podem funcionar como novas views tanto no pré-
treino quanto no refino (downstream) para melhorarem o desempenho dos modelos de segmentacao
no dataset Parihaka / SEAM AI [13].
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2.1 Objetivo Geral

O objetivo deste trabalho é investigar o impacto da incorporacao de atributos sismicos no
processo de pré-treino e treinamento supervisionado de modelos de machine learning
para segmentagao seméantica, avaliando como essas diferentes views influenciam a qualidade das
representagoes aprendidas e o desempenho em tarefas de segmentacao.

2.2 Objetivos Especificos

e Aplicar o método BY OL como técnica de pré-treino, analisando o comportamento dessa técnica
no dominio sismico.

e Incorporar atributos sismicos como novas views (aumentagoes) durante o pré-treino com BYOL.
e Avaliar o impacto do uso de atributos sismicos como forma de aumentacao de dados no refino.

e Comparar o comportamento do modelo pré-treinado com modelos from scratch e com pesos
treinados de forma supervisionada com ImageNet, realizando o finetuning com diferentes regimes
de dados.

3 Metodologia

3.1 Ferramental
3.1.1 Dataset

Para a andlise de dados sismicos, utilizou-se o dataset SEAM AI Parihaka, que consiste em imagens
sismicas 3D de alta resolucao com anotagoes de facies geoldgicas. O conjunto de dados foi desenvolvido
para avancar o estado da arte em interpretagao automatica de estruturas subterraneas, contendo
informagdes essenciais para exploracao de petrdleo e gés, além do monitoramento de sequestro de
carbono.

A interpretacdo de ficies sismicas é uma tarefa complexa que requer conhecimento especializado.
Para aplicacoes em exploracao de recursos naturais, é crucial que essa analise seja precisa e eficiente.
No dataset selecionado, sao identificados varios tipos de facies, sendo possivel observar seis principais,
como mostrado na Figura 1.

A escolha desse dataset se justifica pela sua representatividade de cendrios geoldgicos complexos e
pela qualidade das anotagoes especializadas, que permitem treinar modelos robustos para segmentacao
semantica. Além disso, a diversidade de padroes sismicos presentes no SEAM Al o torna ideal para
aplicacoes de aprendizado de méquina em geofisica.

Para a organizagdo experimental, o volume foi dividido em trés regides distintas: a primeira parte
do volume foi utilizada para o treino, contendo 200 crosslines; em seguida, a regiao intermediaria foi
destinada a validag@o, composta por 51 crosslines; por fim, todo o restante do volume, imediatamente
apés a regiao de validacao, foi reservado para teste, totalizando 1121 crosslines. Essa divisao permite
avaliar de forma mais realista a capacidade de generalizacao dos modelos ao longo do volume sismico.
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Figura 1: Exemplo de facies sismicas presentes no dataset SEAM Al

3.1.2 Atributos sismicos

Para o cdlculo dos atributos sismicos, foi utilizada a biblioteca DASF [14], que otimiza a computagao
desses atributos em GPU.

Para os treinamentos, foram utilizados os atributos Envelope, Instantaneous Phase, Coherence,
GLCM Dissimilarity, LBP3D e GST3D-dip [15, 16, 17, 18, 19, 20], todos normalizados por meio de
z-score.

3.1.3 Backbone

Para a realizacao da tarefa, a arquitetura escolhida foi a DeepLabV3, um modelo avancado de re-
des neurais convolucionais para segmentacao semantica, que emprega tipicamente o ResNet-50 como
backbone para extracao de caracteristicas hierdarquicas. Este modelo combina as vantagens das con-
volugoes atrésas (dilated convolutions) e do pooling espacial piramidal (ASPP) com a capacidade do
ResNet-50 de aprender representacoes profundas através de suas conexoes residuais [21, 22].

No contexto sismico, o SEAMAI-DeepLabV3 aproveita a estrutura do ResNet-50 para processar
inicialmente os dados sismicos, onde as camadas convolucionais iniciais capturam padroes locais
(como reflexdes e descontinuidades), enquanto as camadas mais profundas identificam estruturas
em escala maior (como sistemas deposicionais ou falhas regionais). O mdédulo ASPP opera sobre
essas caracteristicas multiescala, permitindo a integragao de contextos espaciais variados sem perda
de resolucao.

A combinagao entre o backbone ResNet-50 e os mecanismos do DeepLabV3 oferece trés vanta- gens
principais para aplicagoes sismicas:

e Robustez a variacoes de escala em estruturas geoldgicas
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e Preservacao de bordas e detalhes finos durante a segmentacao
e Eficiéncia computacional no processamento de volumes sismicos 3D

Esta arquitetura tem se mostrado particularmente eficaz em tarefas de interpretacao automatica
de dados sismicos, como a delimitagao de corpos arenosos em reservatérios ou a identificacdo de zonas
de fraturamento, onde a precisao na localizacao espacial é tao critica quanto a classificagao semantica.

3.1.4 Técnica de SSL

A técnica de SSL escolhida foi o Bootstrap Your Own Latent (BYOL), um método de aprendizado
auto-supervisionado que aprende representacoes Uteis sem utilizar pares negativos, diferentemente de
abordagens contrastivas tradicionais [12]. O BYOL opera por meio de duas redes neurais idénticas
(chamadas de online e target), onde a rede online é treinada para prever as representagoes da rede
target a partir de uma vista aumentada da mesma entrada, ambas representadas na Figura 2.
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Figura 2: Arquitetura BYOL

Esta técnica foi selecionada para a tarefa de segmentacao semantica dados sismicos devido a sua
capacidade unica de aprender representacoes ricas sem a necessidade de dados rotulados durante o
pré-treino.

Sua independéncia de pares negativos a torna particularmente robusto em cendrios com distri-
buicoes de dados desbalanceadas, comuns em aplicagoes sismicas onde algumas faceis como agua,
aparecem muito mais do que outras faceis sismicas. Além disso, a natureza auto-supervisionada do
método permite aproveitar grandes volumes de dados nao rotulados, seguido por um fine-tuning efi-
ciente com conjuntos reduzidos de anotacoes, sendo essa uma estratégia ideal para dominios onde a
aquisicao de rétulos especializados é custosa.

3.2 Estratégias de Pré-Treino e Downstream

A metodologia de pré-treino foi organizada em trés etapas principais. A primeira etapa consistiu em
caracterizar o comportamento da técnica BYOL no dominio sismico, enquanto a segunda concentrou-
se na adicao dos atributos sismicos de forma estruturada para a criacdo dos backbones e modelos
finais. Por fim, a terceira etapa focou na andlise das representacoes aprendidas pelos backbones para
entender o impacto causado pelo uso desses atributos na tarefa de pré-treino e no refino.

Para determinar a melhor forma de empregar a técnica, foi realizado um estudo em artigos de
SSL e, principalmente, no préprio artigo do BYOL. A partir dessa andlise, observou-se que um dos
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principais fatores que impactam o desempenho de modelos auto-supervisionados é o tamanho do batch
utilizado durante o pré-treino. Embora o artigo do BYOL ressalte que a técnica é mais resistente a
batches menores quando comparada a métodos como o SimCLR [23], conforme ilustrado na Figura 3,
os préprios apéndices do trabalho evidenciam que o desempenho degrada em batches muito pequenos.
Esse efeito pode ser visto na tabela da Figura 4, onde hd uma queda de aproximadamente 10% quando
o batch size é reduzido para 64.
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Figura 3: Tabela com o impacto detalhado do batch size no BYOL

Batch Top-1 Top-5

size BYOL (ours) SimCLR (repro) BYOL (ours) SimCLR (repro)
4096 72.5 67.9 90.8 88.5
2048 72.4 67.8 90.7 88.5
1024 72.2 67.4 90.7 88.1
512 72.2 66.5 90.8 87.6
256 71.8 64.3+2.1 90.7 86.3+1.0
128 69.6+0.5 63.6 89.6 85.9
64 59.7+1.5 59.2+2.9 83.2+1.2 83.0+1.9

Figura 4: Impacto do batch size no BYOL

Com base nessas observagoes, foram conduzidos experimentos variando o batch size no pré-treino,
utilizando somente o dado sismico. Além disso, avaliou-se o impacto de estratégias de congelamento
(freeze) e nao-congelamento (full fine-tuning) do backbone, bem como a comparagdo com modelos
inicializados a partir da ImageNet. Essas andlises permitiram compreender melhor a estabilidade do
BYOL em diferentes condigoes de treinamento no dominio sismico.
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Na segunda etapa, um treino inicial foi realizado com atributos sismicos para uma analise de com-
portamento geral, e apds isso os hiperparametros mais promissores identificados nas andalises anteriores
foram utilizados para realizar novos pré-treinos de forma mais estruturada, agora incorporando dife-
rentes atributos sismicos. Esses modelos foram posteriormente comparados com modelos treinados
do zero (from scratch) e com modelos que herdaram os pesos da ImageNet [24], permitindo avaliar
a contribuicao dos atributos e do pré-treino auto-supervisionado no desempenho final da tarefa de
segmentagao.

A terceira etapa concentrou-se em examinar as representacoes aprendidas pelos modelos pré-
treinados e apés o downstream. Para isso, foram geradas projecoes UMAP dos conjuntos de treino,
validacao e teste, a fim de visualizar a organizagao das features no espago latente do dado. Além
disso, foram avaliadas as projecoes de patches de diferentes classes da particao de treino, permitindo
investigar a separabilidade entre elas tanto nos backbones quanto nos modelos ajustados para a tarefa
de downstream.

4 Resultados

4.1 Pré-treino com BYOL

Foram feitos diversos treinamentos com a técnica BYOL, variando o batch size entre os tamanhos
de 128, 200, 256 e 512 amostras. Além disso, como conjunto de transformacoes, foram utilizadas
RandomFlip com probabilidade de 50%, RandomRotation de 25 graus com probabilidade de 50% e
RandomCrops variados entre 128 x128 e 256 x256. Outra alteragao feita foi utilizar o parametro Sync-
BatchNorm em alguns treinamentos para forgar uma mesma normalizacao no treinamento distribuido
entre as GPUs, pois um dos problemas mencionados no artigo do BYOL foi a queda de desempenho
do modelo causada por essa camada de normalizagao 3.

F.2 Batch size

We run a sweep over the batch size for both BYOL and our reproduction of SimCLR. As explained in Section 5, when
reducing the batch size by a factor [NV, we average gradients over N consecutive steps and update the target network
once every IV steps. We report in Table 16, the performance of both our reproduction of SimCLR and BYOL for
batch sizes between 4096 (BYOL and SimCLR default) down to 64. We observe that the performance of SimCLR
deteriorates faster than the one of BYOL which stays mostly constant for batch sizes larger than 256. We believe that
the performance at batch size 256 could match the performance of the large 4096 batch size with proper parameter
tuning when accumulating the gradient. We think that the drop in performance at batch size 64 in table 16 is mainly
related to the ill behaviour of batch normalization at low batch sizes [100].

Figura 5: Citagao do problema de batches pequenos no paper do BYOL

Todos os treinamentos foram realizados com 500 ou 1000 épocas, a fim de garantir que o modelo
aprendesse a representacao necessaria.

Para o downstream, foram realizados treinos com 50 épocas e batches de 8, utilizando amostras
no formato 1008x592. Além disso, foram realizados downstreams com os backbones congelados e
descongelados para entender o efeito de manter as features aprendidas durante o pré-treino. Por
fim, foi feita uma avaliagdo dos modelos finais e dos modelos com melhor loss de validagao, como
apresentado na Figura 6.
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Figura 6: Comparacao dos modelos com backbone congelado (frozen) e descongelado (unfrozen),
ultimo checkpoint vs checkpoint com melhor loss de validacao

Os modelos unfrozen performaram melhor que os modelos frozen, mostrando que uma maior flexi-
bilidade para a adaptacao do modelo a tarefa de segmentacao no downstream se mostrou favoravel.

Além disso, também foi observado que tanto o 1iltimo checkpoint dos modelos quanto os modelos
com melhores losses de validagao nao apresentaram grande diferenca.

Por fim, para entender melhor o comportamento do batch size, foram gerados mais dois graficos,
separando o desempenho dos modelos frozen e unfrozen, apresentados nas Figuras 7 e 8. A partir
delas, podemos observar que, para os modelos com o backbone congelado, nao houve um impacto
notorio causado pela variacao do batch size, com todos os valores escolhidos apresentando intervalos
de confianca similares.

Ja para os modelos com o backbone descongelado, notamos que o melhor desempenho foi obtido
pelo modelo com um tamanho de batch de 128 amostras, havendo uma degradacao do desempenho
conforme esse valor aumentava.

A um primeiro momento, isso parece ir contra o que foi reportado no artigo original do BYOL e
também ao que é conhecido pela literatura de modelos de SSL, segundo a qual tamanhos de batch
maiores tendem a melhorar o desempenho dessas técnicas. No entanto, ao analisar mais profunda-
mente, notamos que esse comportamento de tamanhos de batch maiores degradarem a performance,
mas trazerem maior estabilidade ao treinamento, é algo ja conhecido em metodologias classicas de
Machine Learning [25], justamente por nao fornecerem a variabilidade que batches menores oferecem
ao longo do treinamento.

O problema citado no artigo para batches pequenos se refere a normalizagao na camada Batch Norm
[26] se comportar de forma instdvel ao longo do treinamento. Diante dos resultados encontrados,
teorizamos que isso ocorre quando o tamanho do batch leva a uma normalizagao pouco representativa
para as demais amostras do dataset, como no caso de treinamentos realizados em datasets como a
ImageNet. No caso de dados sismicos, a variabilidade é consideravelmente menor, pois o dado tende
a seguir uma distribuicao semelhante ao longo do volume. Por conta disso, a instabilidade causada
na normalizacao desses batches tende a ser reduzida. Sendo assim, batches menores fornecem uma
maior variabilidade ao longo do pré-treino sem sofrer com a instabilidade mencionada.
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Figura 7: Impacto do batch_size para modelos com backbone congelado

MIOU: Batch Size Comparison (Unfrozen Models Only)
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Figura 8: Impacto do batch_size para modelos com backbone descongelado

4.2 Incorporacao dos atributos sismicos

Para a incorporacao dos atributos nos modelos, foram utilizadas 3 abordagens diferentes:

e dado x atributo: Pré-treinado com a view da rede online sendo o dado sismico e a view da rede
target um atributo sismico dessa regiao. Downstream feito com dado e atributo.

e dado/atributo x dado/atributo: Pré-treinado com as views das redes online e target podendo
ser tanto um atributo sismico quanto o préprio dado. Downstream feito com dado e atributo.
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e channels: Pré-treinado com amostras compostas por 3 canais (dado, atributo_1, atributo_2).
Downstream utilizando o mesmo formato de amostras.

Todos os pré-treinos foram feitos por 500 épocas com batch_size de 128 e utilizaram as mesmas
transformagoes apresentadas na Segao 4.1, mantendo o tamanho dos crops em 128x128.

Para a avaliacao dos modelos, foram calculadas as métricas de mloU para os cendrios dado X
atributo e dado/atributo x dado/atributo utilizando a reparticao de teste do dado sismico,
apresentadas nas Tabelas 1 e 2 e Figuras 9 e 10. Além disso, também foi calculada a métrica utilizando
a reparticao de teste dos respectivos atributos sismicos, resultados apresentados nas Tabelas 3 e 4 ¢
Figuras 11 e 12.

A partir disso, foi possivel observar que todos os modelos testados nos atributos sismicos obtiveram
um desempenho muito inferior quando comparados as baselines apresentadas (from_scratch, ImageNet
e BYOL). No entanto, para os modelos testados no dado sismico, nota-se que quase todos superaram
as baselines from_scratch e BYOL no regime de 128 amostras, e alguns superaram todas as baselines
nesse regime. Ja para o regime com todas as amostras, em ambos os formatos de treinamento, obteve-
se pelo menos um modelo que superou as baselines com o uso de atributos, sendo o melhor o modelo
BYOL data-instantaneous-phase, com mloU de 0.7123.

Por fim, o experimento utilizando os atributos em diferentes canais nao apresentou nenhum modelo
que superasse as baselines no regime de poucos dados. Somente no downstream com todas as amostras,
o modelo BYOL data-coherence-instantaneous-phase superou as baselines, com mloU de 0.7131,
como apresentado na Tabela 5 e Figura 13.
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Figura 9: mIoU dos modelos dado x atributo testados no dado sismico
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Tabela 1: mIoU dos modelos dado x atributo testados no dado sismico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675  0.6538  0.6259 0.7082
from scratch baseline 0.5946 0.6601  0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071
BYOL data-coherence 0.4363 0.6470  0.6680 0.6739
BYOL data-envelope 0.4136  0.5893  0.6371 0.6659
BYOL data-glecmdissimilarity 0.4152 0.6010  0.6168 0.6275
BYOL data-gst3D-dip 0.4623 0.6364 0.6908 0.7080
BYOL data-instantaneous-phase | 0.4442 0.6590 0.6868 0.7094
BYOL data-lbp3d 0.3997 0.6462  0.6779 0.6764
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Figura 10: mIoU dos modelos dado/atributo x dado/atributo testados no dado sismico
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Tabela 2: mIoU dos modelos dado/atributo x dado/atributo testados no dado sismico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675  0.6538  0.6259 0.7082
from scratch baseline 0.5946  0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889  0.6815 0.7071
BYOL data-coherence 0.4477 0.6643 0.7042 0.7106
BYOL data-envelope 0.4457  0.5999  0.6229 0.6615
BYOL data-glecmdissimilarity 0.4341 0.5731  0.6272 0.6384
BYOL data-gst3D-dip 0.4592 0.6274  0.6766 0.7031
BYOL data-instantaneous-phase | 0.4356 0.6555 0.6959  0.7123
BYOL data-lbp3d 0.4201 0.6383 0.6868 0.6956

0.7

0.6

0.5 A

mioU

0.4

—8— BYOL baseline

—®— from_scratch baseline

—8— imagenet baseline

—&— data-coherence
data-envelope

—8— data-glcmdissimilarity
data-gst3D-dip

—8— data-instantaneous-phase
data-lbp3d

0.3

0.2 T T T T
16 64 128 full

Figura 11: mlIoU dos modelos dado x atributo testados no atributo sismico
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Tabela 3: mIoU dos modelos dado x atributo testados no atributo sismico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259  0.7082
from scratch baseline 0.5946 0.6601 0.6334  0.6940
imagenet baseline 0.6810 0.6889  0.6815 0.7071
BYOL data-coherence 0.4411 0.5648 0.5983  0.5779
BYOL data-envelope 0.4290 0.5779  0.6208  0.6497
BYOL data-glemdissimilarity 0.4031 0.4686 0.4926  0.5205
BYOL data-gst3D-dip 0.3689  0.5780  0.5887  0.6053
BYOL data-instantaneous-phase | 0.2941 0.5333  0.5950  0.6470
BYOL data-lbp3d 0.3674  0.5448 0.5865  0.6298
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Figura 12: mIoU dos modelos dado/atributo x dado/atributo testados no atributo sismico
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Tabela 4: mloU dos modelos dado/atributo x dado/atributo testados no atributo sismico

Model/Attribute Set 16 64 128 Full
BYOL baseline 0.5675 0.6538  0.6259  0.7082
from scratch baseline 0.5946 0.6601 0.6334  0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071
BYOL data-coherence 0.4479  0.5802 0.5986 0.6106
BYOL data-envelope 0.4463 0.5847 0.6129 0.6502
BYOL data-glemdissimilarity 0.4091 0.4285 0.5164 0.4944
BYOL data-gst3D-dip 0.3584 0.5803 0.6093 0.6364
BYOL data-instantaneous-phase | 0.2961  0.5482  0.6055  0.6325
BYOL data-lbp3d 0.3456  0.5503 0.5706 0.6380
£
o cmvatopegeminy
+
o2 16 64 128 full

Figura 13: mIoU dos modelos com 3 canais, (dado, atributo_1, atributo_2)
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Tabela 5: mloU dos modelos com 3 canais, (dado, atributo_1, atributo_2)

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259  0.7082
from scratch baseline 0.5946 0.6601 0.6334  0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071
BYOL data-coherence-gst3D-dip 0.5634 0.6490 0.6675  0.7021
BYOL data-coherence-instantaneous-phase | 0.4450 0.5312 0.6620 0.7131
BYOL data-envelope-glecmdissimilarity 0.4041 0.5222 0.6111  0.6688
BYOL data-envelope-instantaneous-phase 0.4259 0.5463 0.6194  0.6793
BYOL data-glecmdissimilarity-1bp3d 0.3910 0.4951 0.5421  0.6365
BYOL data-lbp3d-gst3D-dip 0.4642  0.5758 0.6090  0.6912

4.3 Anadlise do espaco latente com UMAP

Para entender melhor o comportamento do BYOL na construcao de um espaco latente, foi realizado
um plot bidimensional utilizando a técnica UMAP [27]. Esse plot foi gerado a partir dos patches
do dado de treino, em que regioes de 64x64 foram caracterizadas por cores de acordo com as classes
presentes em cada patch. Para regioes contendo somente uma classe, foi atribuida uma cor especifica;
para regides com duas classes, uma nova cor foi utilizada; e, para regioes com trés classes, outra cor
distinta foi empregada. Esses plots foram produzidos para os backbones from_scratch, pré-treinados
e com pesos da ImageNet, bem como para os modelos apds o downstream, permitindo visualizar o
comportamento de cada modelo nas duas etapas e compreender melhor o impacto do pré-treino.

4.3.1 UMAP dos backbones

Nessa etapa, foram gerados UMAPs para backbones com pesos aleatérios, pesos herdados da Ima-
geNet, BYOL pré-treinado com o dado normal, e o melhor modelo obtido, sendo este o BYOL
data-coherence-instantaneous-phase. Ao analisarmos o UMAP do modelo com pesos aleatérios,
apresentado na Figura 14, percebemos que todas as cores estao espalhadas ao longo do gréfico de
forma desordenada, tendo somente uma concentracao dos patches da classe 0 no topo do grafico. Ja
para o modelo com pesos da imagenet, apresentado na Figura 15, notamos que existe uma separacao
um pouco maior entre a classe 0 e a classe 3, representadas em extremos opostos do grafico. J& para
os modelos pré-treinados com BYOL, apresentados nas Figuras 16 e 17, vemos que todos os patches
foram agrupados de uma forma mais compacta, independentemente da classe.
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Figura 14: Features dos patches com pesos aleatorios no backbone
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Features dos patches com pesos da ImageNet no backbone
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Figura 16: Features dos patches com backbone pré-treinado com BYOL
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Figura 17: Features dos patches com backbone pré-treinado com BYOL, utilizando dado sismico e
os atributos coherence e instantaneous-phase em 3 canais
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4.3.2 UMAP dos modelos downstream

Nessa etapa, foram gerados UMAPSs para os modelos apés o downstream dos modelos ja citados. Para
os modelos from_scratch, ImageNet e BYOL, apresentados nas Figuras 18, 19 e 20, ainda podemos
ver uma aglutinacao de varios patches, mas as regioes das classes 0 e classe 3 foram segregadas em
regides opostas do grafico.

Ja para o modelo 21, isso também ocorreu, mas podemos notar que patches com as classes 1, 3 e
5, representados pela cor laranja, foram melhor separados, dominando uma regiao prépria no grafico.
Isso parece indicar que o modelo conseguiu separar melhor essas regides durante a segmentagao.

Classes [1, 3] © Classes[1,2,3]
Classes [1, 4] © Classes[1,2, 5]
Classes [1, 5] Classes [1, 3, 4]
Classes [0, 1, 2] © Classes[1, 3, 5]
Classes [0, 1, 3] o Classes[1, 4, 5]
Classes [0, 1, 5] e Background/Unlabeled

e Class0
¢ Class1
Class 2
Class 3
Class 5
Classes [0, 1]
® Classes[1,2]

UMAP Dimension 2

=25 0.0 25 5.0 75 10.0 125 15.0
UMAP Dimension 1

Figura 18: Features dos patches apds downstream from_scratch
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Figura 19: Features dos patches apds downstream com backbone
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Figura 20: Features dos patches apds downstream com backbone pré-treinado com BYOL
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Figura 21: Features dos patches ap6s downstream com backbone pré-treinado com BYOL, utilizando
dado sismico e os atributos coherence e instantaneous-phase em 3 canais

4.4 Segmentagoes

Analisando a segmentacao gerada por cada um dos modelos, podemos ver que o modelo from_scratch
possui uma tendéncia de segmentar o dado sismico mantendo sempre as classes amarela e verde
préximas, mesmo quando isso nao deveria ocorrer, como apresentado na regiao mais a direita da
segmentagao da Figura 22. Ja para o modelo treinado com os pesos da ImageNet, podemos ver que
ele tende a manter o formato da segmentacao para a classe amarela, mas tem dificuldade em separar
a classe verde da azul e também em segmentar a classe laranja, como apresentado na regiao central
da Figura 22.

Por fim, para os modelos pré-treinados com o BYOL, podemos ver que ambos apresentam uma
grande mistura das classes verde e amarela. Apesar disso, podemos notar que o modelo pré-treinado
com BYOL e atributos fez uma separacao melhor da regiao amarela no topo da crossline do que os
demais, mantendo a faixa azul existente naquela regido, como podemos ver na Figura 23.
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IMAGENET SCRATCH

Figura 22: Segmentagao da décima crossline (x1-10) do conjunto de teste, segmentagao feita pelo
modelo from_scratch e segmentacao feita pelo modelo treinado com pesos da imagenet

Figura 23: Segmentagao da décima crossline (x1-10) do conjunto de teste, segmentagao feita pelo
modelo pré-treinado com BYOL e segmentacao feita pelo modelo com melhor mloU (BYOL data-
coherence-instantaneous-phase)

4.4.1 Generalizagao

Em volumes de dado sismico, crosslines mais proximas tendem a apresentar uma similaridade muito
alta e, por conta disso, as segmentacoes de crosslines imediatamente vizinhas costumam ser muito
parecidas, como mostrado na Figura 24. Nela, podemos ver a similaridade entre a segmentacao da
ultima crossline do particionamento de teste e as demais (a crossline mais préxima do conjunto de
treino).

Devido a essa estrutura, uma boa forma de medir a generalizacdo para esse problema é analisar
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como as segmentacoes geradas pelos modelos tendem a se degradar ao longo das crosslines do par-
ticionamento de teste, de acordo com a distancia destas em relagao ao particionamento de treino.
Como podemos observar nas Figuras 25, 26, 27 e 28, todos os modelos sao afetados por esse problema

mencionado.
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Figura 24: mloU da tultima crossline da particao de teste com as demais
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Figura 25: mloU das predig¢oes do modelo from_scratch para as crosslines no particionamento de teste
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Figura 27: mloU das predigoes do modelo from_scratch para as
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Figura 28: mloU das predicoes do modelo from_scratch para as crosslines no particionamento de teste

4.5 Conclusao

No geral, notamos uma melhora no desempenho dos modelos pré-treinados com o uso de alguns
atributos sismicos, principalmente no regime de 128 amostras. Isso indica que o uso de atributos tem
o potencial de evidenciar caracteristicas do dado tanto na etapa de pré-treino quanto no downstream,
sendo os principais atributos que beneficiaram o modelo o instantaneous-phase, coherence e gst3d-dip.
Apesar disso, ainda é necessario um estudo mais aprofundado para determinar quais sdo os melhores
atributos, o que cada um ajuda o modelo a destacar para a segmentacao e qual é a combinagao 6tima
de atributos para esse processo.

Além disso, por meio da andlise das imagens, notamos que, apesar de apresentar maior mloU, o
modelo pré-treinado com BYOL parece performar pior nas regides de intersecao entre as classes do
que o modelo pré-treinado com a ImageNet em algumas dessas regioes. Para conclusoes mais robustas,
mais experimentos precisam ser feitos devido aos fatores estocdsticos presentes nos treinamentos, de
forma a permitir a geragdo de um intervalo de confianga entre os resultados de cada modelo.

Trabalhos futuros podem explorar essa tendéncia de deteccdo de intersegoes entre as regioes, de-
senvolver modelos que caracterizem com mais precisao cada classe nas regides centrais e, por fim,
investigar otimizacoes no uso desses atributos.
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