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Uso de Atributos Śısmicos em Técnicas de SSL para a Segmentação

Semântica de Fáceis Śısmicas

Gabriel A. T. Mendes Carlos. A. Astudillo∗

Resumo

As limitações inerentes ao processo manual de interpretação śısmica demandam especialis-
tas altamente treinados e frequentemente produzem segmentações com viéses e inconsistências.
Aprendizado profundo é utilizado para lidar com esses problemas, automatizando esse processo.
No entanto, o treinamento desses modelos tipicamente precisa de uma quantidade grande de da-
dos rotulados, que, no contexto de dados śısmicos, essa rotulagem tem um alt́ıssimo custo. Assim,
a falta de dados rotulados ainda é um obstáculo significativo para a utilização de métodos de
aprendizado de máquina supervisionado para processamento de dados śısmicos.

Técnicas de self-supervised learning (SSL) têm surgido como uma ferramenta para lidar com
a escassez de dados rotulados, porém a maioria das técnicas SSL foi projetada no contexto de
imagem natural ou em domı́nios espećıficos como dados médicos. Por outro lado, os atributos
śısmicos desempenham um papel essencial na caracterização de padrões geológicos como falhas,
horizontes e fácies śısmicas, mas não se exploram ainda em técnica SSL.

Este trabalho discute como técnicas de SSL podem ser empregadas para mitigar a escassez de
rótulos e como o uso de diferentes atributos śısmicos impacta o desempenho desses métodos em
tarefas de segmentação semântica de dados śısmicos. À luz de resultados anteriores envolvendo
segmentação baseada em atributos, detecção de falhas e métodos não supervisionados, conjectura-
mos que a integração sistemática entre atributos śısmicos e pré-treinos auto-supervisionados pode
oferecer avanços relevantes em diversas aplicações de interpretação śısmica, ao produzir repre-
sentações capazes de generalizar melhor para regiões não vistas pelo modelo e de lidar com classes
minoritárias.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas
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e da nossa famı́lia. E agradeço a Deus por todas essas pessoas.

Agradeço ao meu orientador, Carlos A. Astudillo, pelas horas em que conversamos até tarde sobre
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que a vida é sobre pessoas.



4 Mendes, Astudillo

Sumário

1 Introdução 5

2 Objetivos e Escopo do Projeto 5

2.1 Objetivo Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1 Introdução

A interpretação de dados śısmicos desempenha um papel central em diversas áreas da geologia e da
geof́ısica, permitindo a caracterização de estruturas na subsuperf́ıcie, como falhas, dobras, domos sali-
nos e a identificação de recursos naturais, como minérios, gás natural e petróleo. Uma das abordagens
mais utilizadas para esse tipo de análise é o uso de atributos śısmicos [1], os quais são transformações
matemáticas aplicadas sobre o dado para realçar propriedades espećıficas como amplitude, frequência,
continuidade e geometria dos refletores. Estas caracteŕısticas são importantes na interpretação, por
destacarem padrões geológicos que facilitam a anotação das fácies śısmicas [2].

No entanto, com o aumento no número de aquisições e, por consequência, no volume de dados, o
processo de interpretação manual desses volumes tornou-se cada vez mais desafiador, exigindo um
número maior de profissionais altamente especializados e também gerando segmentações com viéses
e inconsistências ao longo dos volumes.

Por conta desses problemas, nos últimos anos técnicas de machine learning e deep learning têm
sido aplicadas, e diversos estudos sobre quais são os melhores atributos para a segmentação de fáceis
śısmicas manualmente podem ser encontrados na literatura [3, 4], assim como o uso desses atributos
para detecção de falhas em treinamentos não supervisionados [5], detecção de horizontes [6], treina-
mento supervisionado para segmentação [7, 8] e técnicas de few-shot para segmentação [9, 10] devido
à grande falta de dados rotulados nessa área.

Apesar desses avanços, essa área sofre com a falta de dados anotados, pois o processo de anotação
desses datasets é extremamente custoso, demorado e impreciso, como citado anteriormente. Além
disso, as caracteŕısticas do dado śısmico tornam tarefas como segmentação e detecção de falhas
especialmente dif́ıceis, e por conta disso os modelos apresentados nos trabalhos mencionados possuem
grande dificuldade em generalizar para regiões não vistas durante o treinamento, errando nas interfaces
entre duas classes e sofrendo com uma baixa precisão em regiões com classes minoritárias.

Nesse sentido, trabalhos que abordem caracteŕısticas como a qualidade das representações que
podem ser obtidas a partir do pré-treino com técnicas de aprendizado autosupervisionado (SSL, Self
Supervised Learning) [11] ou diferentes abordagens de treinamento ao integrar o uso desses atributos
tornam-se relevantes pelo potencial que possuem de favorecer diversos outros métodos que já são
utilizados e que sofrem pela ausência de dados anotados.

2 Objetivos e Escopo do Projeto

Durante a elaboração da proposta inicial, o objetivo central deste projeto era avaliar o impacto do
uso de atributos śısmicos em técnicas de Self-Supervised Learning (SSL), com a hipótese de que
esses atributos, ao substituir transformações aleatórias comumente utilizadas nesses métodos, pudes-
sem produzir representações mais robustas, estáveis e capazes de generalizar melhor para tarefas de
downstream. A proposta previa ainda a investigação sobre como essas representações influenciariam
a construção do espaço latente e o desempenho final em segmentação śısmica.

Entretanto, ao longo do desenvolvimento do trabalho, o escopo metodológico foi refinado para
uma direção mais espećıfica e compat́ıvel com o tempo e os recursos dispońıveis. Dessa forma, o
projeto passou a se concentrar na incorporação de diferentes atributos śısmicos durante o
processo de pré-treino e treinamento supervisionado, utilizando exclusivamente o Bootstrap
Your Own Latent (BYOL) [12] como técnica de SSL, analisando o comportamento dessa técnica no
domı́nio śısmico e também como esses atributos podem funcionar como novas views tanto no pré-
treino quanto no refino (downstream) para melhorarem o desempenho dos modelos de segmentação
no dataset Parihaka / SEAM AI [13].
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2.1 Objetivo Geral

O objetivo deste trabalho é investigar o impacto da incorporação de atributos śısmicos no
processo de pré-treino e treinamento supervisionado de modelos de machine learning
para segmentação semântica, avaliando como essas diferentes views influenciam a qualidade das
representações aprendidas e o desempenho em tarefas de segmentação.

2.2 Objetivos Espećıficos

• Aplicar o método BYOL como técnica de pré-treino, analisando o comportamento dessa técnica
no domı́nio śısmico.

• Incorporar atributos śısmicos como novas views (aumentações) durante o pré-treino com BYOL.

• Avaliar o impacto do uso de atributos śısmicos como forma de aumentação de dados no refino.

• Comparar o comportamento do modelo pré-treinado com modelos from scratch e com pesos
treinados de forma supervisionada com ImageNet, realizando o finetuning com diferentes regimes
de dados.

3 Metodologia

3.1 Ferramental

3.1.1 Dataset

Para a análise de dados śısmicos, utilizou-se o dataset SEAM AI Parihaka, que consiste em imagens
śısmicas 3D de alta resolução com anotações de fácies geológicas. O conjunto de dados foi desenvolvido
para avançar o estado da arte em interpretação automática de estruturas subterrâneas, contendo
informações essenciais para exploração de petróleo e gás, além do monitoramento de sequestro de
carbono.

A interpretação de fácies śısmicas é uma tarefa complexa que requer conhecimento especializado.
Para aplicações em exploração de recursos naturais, é crucial que essa análise seja precisa e eficiente.
No dataset selecionado, são identificados vários tipos de fácies, sendo posśıvel observar seis principais,
como mostrado na Figura 1.

A escolha desse dataset se justifica pela sua representatividade de cenários geológicos complexos e
pela qualidade das anotações especializadas, que permitem treinar modelos robustos para segmentação
semântica. Além disso, a diversidade de padrões śısmicos presentes no SEAM AI o torna ideal para
aplicações de aprendizado de máquina em geof́ısica.

Para a organização experimental, o volume foi dividido em três regiões distintas: a primeira parte
do volume foi utilizada para o treino, contendo 200 crosslines; em seguida, a região intermediária foi
destinada à validação, composta por 51 crosslines; por fim, todo o restante do volume, imediatamente
após a região de validação, foi reservado para teste, totalizando 1121 crosslines. Essa divisão permite
avaliar de forma mais realista a capacidade de generalização dos modelos ao longo do volume śısmico.
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Figura 1: Exemplo de fácies śısmicas presentes no dataset SEAM AI

3.1.2 Atributos śısmicos

Para o cálculo dos atributos śısmicos, foi utilizada a biblioteca DASF [14], que otimiza a computação
desses atributos em GPU.

Para os treinamentos, foram utilizados os atributos Envelope, Instantaneous Phase, Coherence,
GLCM Dissimilarity, LBP3D e GST3D-dip [15, 16, 17, 18, 19, 20], todos normalizados por meio de
z-score.

3.1.3 Backbone

Para a realização da tarefa, a arquitetura escolhida foi a DeepLabV3, um modelo avançado de re-
des neurais convolucionais para segmentação semântica, que emprega tipicamente o ResNet-50 como
backbone para extração de caracteŕısticas hierárquicas. Este modelo combina as vantagens das con-
voluções atrósas (dilated convolutions) e do pooling espacial piramidal (ASPP) com a capacidade do
ResNet-50 de aprender representações profundas através de suas conexões residuais [21, 22].

No contexto śısmico, o SEAMAI–DeepLabV3 aproveita a estrutura do ResNet-50 para processar
inicialmente os dados śısmicos, onde as camadas convolucionais iniciais capturam padrões locais
(como reflexões e descontinuidades), enquanto as camadas mais profundas identificam estruturas
em escala maior (como sistemas deposicionais ou falhas regionais). O módulo ASPP opera sobre
essas caracteŕısticas multiescala, permitindo a integração de contextos espaciais variados sem perda
de resolução.

A combinação entre o backbone ResNet-50 e os mecanismos do DeepLabV3 oferece três vanta- gens
principais para aplicações śısmicas:

• Robustez a variações de escala em estruturas geológicas
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• Preservação de bordas e detalhes finos durante a segmentação

• Eficiência computacional no processamento de volumes śısmicos 3D

Esta arquitetura tem se mostrado particularmente eficaz em tarefas de interpretação automática
de dados śısmicos, como a delimitação de corpos arenosos em reservatórios ou a identificação de zonas
de fraturamento, onde a precisão na localização espacial é tão cŕıtica quanto a classificação semântica.

3.1.4 Técnica de SSL

A técnica de SSL escolhida foi o Bootstrap Your Own Latent (BYOL), um método de aprendizado
auto-supervisionado que aprende representações úteis sem utilizar pares negativos, diferentemente de
abordagens contrastivas tradicionais [12]. O BYOL opera por meio de duas redes neurais idênticas
(chamadas de online e target), onde a rede online é treinada para prever as representações da rede
target a partir de uma vista aumentada da mesma entrada, ambas representadas na Figura 2.

Figura 2: Arquitetura BYOL

Esta técnica foi selecionada para a tarefa de segmentação semântica dados śısmicos devido à sua
capacidade única de aprender representações ricas sem a necessidade de dados rotulados durante o
pré-treino.

Sua independência de pares negativos a torna particularmente robusto em cenários com distri-
buições de dados desbalanceadas, comuns em aplicações śısmicas onde algumas fáceis como água,
aparecem muito mais do que outras fáceis śısmicas. Além disso, a natureza auto-supervisionada do
método permite aproveitar grandes volumes de dados não rotulados, seguido por um fine-tuning efi-
ciente com conjuntos reduzidos de anotações, sendo essa uma estratégia ideal para domı́nios onde a
aquisição de rótulos especializados é custosa.

3.2 Estratégias de Pré-Treino e Downstream

A metodologia de pré-treino foi organizada em três etapas principais. A primeira etapa consistiu em
caracterizar o comportamento da técnica BYOL no domı́nio śısmico, enquanto a segunda concentrou-
se na adição dos atributos śısmicos de forma estruturada para a criação dos backbones e modelos
finais. Por fim, a terceira etapa focou na análise das representações aprendidas pelos backbones para
entender o impacto causado pelo uso desses atributos na tarefa de pré-treino e no refino.

Para determinar a melhor forma de empregar a técnica, foi realizado um estudo em artigos de
SSL e, principalmente, no próprio artigo do BYOL. A partir dessa análise, observou-se que um dos
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principais fatores que impactam o desempenho de modelos auto-supervisionados é o tamanho do batch
utilizado durante o pré-treino. Embora o artigo do BYOL ressalte que a técnica é mais resistente a
batches menores quando comparada a métodos como o SimCLR [23], conforme ilustrado na Figura 3,
os próprios apêndices do trabalho evidenciam que o desempenho degrada em batches muito pequenos.
Esse efeito pode ser visto na tabela da Figura 4, onde há uma queda de aproximadamente 10% quando
o batch size é reduzido para 64.

Figura 3: Tabela com o impacto detalhado do batch size no BYOL

Figura 4: Impacto do batch size no BYOL

Com base nessas observações, foram conduzidos experimentos variando o batch size no pré-treino,
utilizando somente o dado śısmico. Além disso, avaliou-se o impacto de estratégias de congelamento
(freeze) e não-congelamento (full fine-tuning) do backbone, bem como a comparação com modelos
inicializados a partir da ImageNet. Essas análises permitiram compreender melhor a estabilidade do
BYOL em diferentes condições de treinamento no domı́nio śısmico.
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Na segunda etapa, um treino inicial foi realizado com atributos śısmicos para uma análise de com-
portamento geral, e após isso os hiperparâmetros mais promissores identificados nas análises anteriores
foram utilizados para realizar novos pré-treinos de forma mais estruturada, agora incorporando dife-
rentes atributos śısmicos. Esses modelos foram posteriormente comparados com modelos treinados
do zero (from scratch) e com modelos que herdaram os pesos da ImageNet [24], permitindo avaliar
a contribuição dos atributos e do pré-treino auto-supervisionado no desempenho final da tarefa de
segmentação.

A terceira etapa concentrou-se em examinar as representações aprendidas pelos modelos pré-
treinados e após o downstream. Para isso, foram geradas projeções UMAP dos conjuntos de treino,
validação e teste, a fim de visualizar a organização das features no espaço latente do dado. Além
disso, foram avaliadas as projeções de patches de diferentes classes da partição de treino, permitindo
investigar a separabilidade entre elas tanto nos backbones quanto nos modelos ajustados para a tarefa
de downstream.

4 Resultados

4.1 Pré-treino com BYOL

Foram feitos diversos treinamentos com a técnica BYOL, variando o batch size entre os tamanhos
de 128, 200, 256 e 512 amostras. Além disso, como conjunto de transformações, foram utilizadas
RandomFlip com probabilidade de 50%, RandomRotation de 25 graus com probabilidade de 50% e
RandomCrops variados entre 128×128 e 256×256. Outra alteração feita foi utilizar o parâmetro Sync-
BatchNorm em alguns treinamentos para forçar uma mesma normalização no treinamento distribúıdo
entre as GPUs, pois um dos problemas mencionados no artigo do BYOL foi a queda de desempenho
do modelo causada por essa camada de normalização 3.

Figura 5: Citação do problema de batches pequenos no paper do BYOL

Todos os treinamentos foram realizados com 500 ou 1000 épocas, a fim de garantir que o modelo
aprendesse a representação necessária.

Para o downstream, foram realizados treinos com 50 épocas e batches de 8, utilizando amostras
no formato 1008x592. Além disso, foram realizados downstreams com os backbones congelados e
descongelados para entender o efeito de manter as features aprendidas durante o pré-treino. Por
fim, foi feita uma avaliação dos modelos finais e dos modelos com melhor loss de validação, como
apresentado na Figura 6.
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Figura 6: Comparação dos modelos com backbone congelado (frozen) e descongelado (unfrozen),
último checkpoint vs checkpoint com melhor loss de validação

Os modelos unfrozen performaram melhor que os modelos frozen, mostrando que uma maior flexi-
bilidade para a adaptação do modelo à tarefa de segmentação no downstream se mostrou favorável.

Além disso, também foi observado que tanto o último checkpoint dos modelos quanto os modelos
com melhores losses de validação não apresentaram grande diferença.

Por fim, para entender melhor o comportamento do batch size, foram gerados mais dois gráficos,
separando o desempenho dos modelos frozen e unfrozen, apresentados nas Figuras 7 e 8. A partir
delas, podemos observar que, para os modelos com o backbone congelado, não houve um impacto
notório causado pela variação do batch size, com todos os valores escolhidos apresentando intervalos
de confiança similares.

Já para os modelos com o backbone descongelado, notamos que o melhor desempenho foi obtido
pelo modelo com um tamanho de batch de 128 amostras, havendo uma degradação do desempenho
conforme esse valor aumentava.

A um primeiro momento, isso parece ir contra o que foi reportado no artigo original do BYOL e
também ao que é conhecido pela literatura de modelos de SSL, segundo a qual tamanhos de batch
maiores tendem a melhorar o desempenho dessas técnicas. No entanto, ao analisar mais profunda-
mente, notamos que esse comportamento de tamanhos de batch maiores degradarem a performance,
mas trazerem maior estabilidade ao treinamento, é algo já conhecido em metodologias clássicas de
Machine Learning [25], justamente por não fornecerem a variabilidade que batches menores oferecem
ao longo do treinamento.

O problema citado no artigo para batches pequenos se refere à normalização na camada Batch Norm
[26] se comportar de forma instável ao longo do treinamento. Diante dos resultados encontrados,
teorizamos que isso ocorre quando o tamanho do batch leva a uma normalização pouco representativa
para as demais amostras do dataset, como no caso de treinamentos realizados em datasets como a
ImageNet. No caso de dados śısmicos, a variabilidade é consideravelmente menor, pois o dado tende
a seguir uma distribuição semelhante ao longo do volume. Por conta disso, a instabilidade causada
na normalização desses batches tende a ser reduzida. Sendo assim, batches menores fornecem uma
maior variabilidade ao longo do pré-treino sem sofrer com a instabilidade mencionada.
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Figura 7: Impacto do batch size para modelos com backbone congelado

Figura 8: Impacto do batch size para modelos com backbone descongelado

4.2 Incorporação dos atributos śısmicos

Para a incorporação dos atributos nos modelos, foram utilizadas 3 abordagens diferentes:

• dado x atributo: Pré-treinado com a view da rede online sendo o dado śısmico e a view da rede
target um atributo śısmico dessa região. Downstream feito com dado e atributo.

• dado/atributo x dado/atributo: Pré-treinado com as views das redes online e target podendo
ser tanto um atributo śısmico quanto o próprio dado. Downstream feito com dado e atributo.
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• channels: Pré-treinado com amostras compostas por 3 canais (dado, atributo 1, atributo 2).
Downstream utilizando o mesmo formato de amostras.

Todos os pré-treinos foram feitos por 500 épocas com batch size de 128 e utilizaram as mesmas
transformações apresentadas na Seção 4.1, mantendo o tamanho dos crops em 128×128.

Para a avaliação dos modelos, foram calculadas as métricas de mIoU para os cenários dado ×
atributo e dado/atributo × dado/atributo utilizando a repartição de teste do dado śısmico,
apresentadas nas Tabelas 1 e 2 e Figuras 9 e 10. Além disso, também foi calculada a métrica utilizando
a repartição de teste dos respectivos atributos śısmicos, resultados apresentados nas Tabelas 3 e 4 e
Figuras 11 e 12.

A partir disso, foi posśıvel observar que todos os modelos testados nos atributos śısmicos obtiveram
um desempenho muito inferior quando comparados às baselines apresentadas (from scratch, ImageNet
e BYOL). No entanto, para os modelos testados no dado śısmico, nota-se que quase todos superaram
as baselines from scratch e BYOL no regime de 128 amostras, e alguns superaram todas as baselines
nesse regime. Já para o regime com todas as amostras, em ambos os formatos de treinamento, obteve-
se pelo menos um modelo que superou as baselines com o uso de atributos, sendo o melhor o modelo
BYOL data-instantaneous-phase, com mIoU de 0.7123.

Por fim, o experimento utilizando os atributos em diferentes canais não apresentou nenhum modelo
que superasse as baselines no regime de poucos dados. Somente no downstream com todas as amostras,
o modeloBYOL data-coherence-instantaneous-phase superou as baselines, com mIoU de 0.7131,
como apresentado na Tabela 5 e Figura 13.

Figura 9: mIoU dos modelos dado × atributo testados no dado śısmico
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Tabela 1: mIoU dos modelos dado × atributo testados no dado śısmico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259 0.7082
from scratch baseline 0.5946 0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071

BYOL data-coherence 0.4363 0.6470 0.6680 0.6739
BYOL data-envelope 0.4136 0.5893 0.6371 0.6659
BYOL data-glcmdissimilarity 0.4152 0.6010 0.6168 0.6275
BYOL data-gst3D-dip 0.4623 0.6364 0.6908 0.7080
BYOL data-instantaneous-phase 0.4442 0.6590 0.6868 0.7094
BYOL data-lbp3d 0.3997 0.6462 0.6779 0.6764

Figura 10: mIoU dos modelos dado/atributo × dado/atributo testados no dado śısmico
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Tabela 2: mIoU dos modelos dado/atributo × dado/atributo testados no dado śısmico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259 0.7082
from scratch baseline 0.5946 0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071

BYOL data-coherence 0.4477 0.6643 0.7042 0.7106
BYOL data-envelope 0.4457 0.5999 0.6229 0.6615
BYOL data-glcmdissimilarity 0.4341 0.5731 0.6272 0.6384
BYOL data-gst3D-dip 0.4592 0.6274 0.6766 0.7031
BYOL data-instantaneous-phase 0.4356 0.6555 0.6959 0.7123
BYOL data-lbp3d 0.4201 0.6383 0.6868 0.6956

Figura 11: mIoU dos modelos dado × atributo testados no atributo śısmico
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Tabela 3: mIoU dos modelos dado × atributo testados no atributo śısmico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259 0.7082
from scratch baseline 0.5946 0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071

BYOL data-coherence 0.4411 0.5648 0.5983 0.5779
BYOL data-envelope 0.4290 0.5779 0.6208 0.6497
BYOL data-glcmdissimilarity 0.4031 0.4686 0.4926 0.5205
BYOL data-gst3D-dip 0.3689 0.5780 0.5887 0.6053
BYOL data-instantaneous-phase 0.2941 0.5333 0.5950 0.6470
BYOL data-lbp3d 0.3674 0.5448 0.5865 0.6298

Figura 12: mIoU dos modelos dado/atributo × dado/atributo testados no atributo śısmico
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Tabela 4: mIoU dos modelos dado/atributo × dado/atributo testados no atributo śısmico

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259 0.7082
from scratch baseline 0.5946 0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071

BYOL data-coherence 0.4479 0.5802 0.5986 0.6106
BYOL data-envelope 0.4463 0.5847 0.6129 0.6502
BYOL data-glcmdissimilarity 0.4091 0.4285 0.5164 0.4944
BYOL data-gst3D-dip 0.3584 0.5803 0.6093 0.6364
BYOL data-instantaneous-phase 0.2961 0.5482 0.6055 0.6325
BYOL data-lbp3d 0.3456 0.5503 0.5706 0.6380

Figura 13: mIoU dos modelos com 3 canais, (dado, atributo 1, atributo 2)
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Tabela 5: mIoU dos modelos com 3 canais, (dado, atributo 1, atributo 2)

Model/Attribute Set 16 64 128 Full

BYOL baseline 0.5675 0.6538 0.6259 0.7082
from scratch baseline 0.5946 0.6601 0.6334 0.6940
imagenet baseline 0.6810 0.6889 0.6815 0.7071

BYOL data-coherence-gst3D-dip 0.5634 0.6490 0.6675 0.7021
BYOL data-coherence-instantaneous-phase 0.4450 0.5312 0.6620 0.7131
BYOL data-envelope-glcmdissimilarity 0.4041 0.5222 0.6111 0.6688
BYOL data-envelope-instantaneous-phase 0.4259 0.5463 0.6194 0.6793
BYOL data-glcmdissimilarity-lbp3d 0.3910 0.4951 0.5421 0.6365
BYOL data-lbp3d-gst3D-dip 0.4642 0.5758 0.6090 0.6912

4.3 Análise do espaço latente com UMAP

Para entender melhor o comportamento do BYOL na construção de um espaço latente, foi realizado
um plot bidimensional utilizando a técnica UMAP [27]. Esse plot foi gerado a partir dos patches
do dado de treino, em que regiões de 64×64 foram caracterizadas por cores de acordo com as classes
presentes em cada patch. Para regiões contendo somente uma classe, foi atribúıda uma cor espećıfica;
para regiões com duas classes, uma nova cor foi utilizada; e, para regiões com três classes, outra cor
distinta foi empregada. Esses plots foram produzidos para os backbones from scratch, pré-treinados
e com pesos da ImageNet, bem como para os modelos após o downstream, permitindo visualizar o
comportamento de cada modelo nas duas etapas e compreender melhor o impacto do pré-treino.

4.3.1 UMAP dos backbones

Nessa etapa, foram gerados UMAPs para backbones com pesos aleatórios, pesos herdados da Ima-
geNet, BYOL pré-treinado com o dado normal, e o melhor modelo obtido, sendo este o BYOL
data-coherence-instantaneous-phase. Ao analisarmos o UMAP do modelo com pesos aleatórios,
apresentado na Figura 14, percebemos que todas as cores estão espalhadas ao longo do gráfico de
forma desordenada, tendo somente uma concentração dos patches da classe 0 no topo do gráfico. Já
para o modelo com pesos da imagenet, apresentado na Figura 15, notamos que existe uma separação
um pouco maior entre a classe 0 e a classe 3, representadas em extremos opostos do gráfico. Já para
os modelos pré-treinados com BYOL, apresentados nas Figuras 16 e 17, vemos que todos os patches
foram agrupados de uma forma mais compacta, independentemente da classe.
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Figura 14: Features dos patches com pesos aleatórios no backbone

Figura 15: Features dos patches com pesos da ImageNet no backbone
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Figura 16: Features dos patches com backbone pré-treinado com BYOL

Figura 17: Features dos patches com backbone pré-treinado com BYOL, utilizando dado śısmico e
os atributos coherence e instantaneous-phase em 3 canais
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4.3.2 UMAP dos modelos downstream

Nessa etapa, foram gerados UMAPs para os modelos após o downstream dos modelos já citados. Para
os modelos from scratch, ImageNet e BYOL, apresentados nas Figuras 18, 19 e 20, ainda podemos
ver uma aglutinação de vários patches, mas as regiões das classes 0 e classe 3 foram segregadas em
regiões opostas do gráfico.

Já para o modelo 21, isso também ocorreu, mas podemos notar que patches com as classes 1, 3 e
5, representados pela cor laranja, foram melhor separados, dominando uma região própria no gráfico.
Isso parece indicar que o modelo conseguiu separar melhor essas regiões durante a segmentação.

Figura 18: Features dos patches após downstream from scratch
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Figura 19: Features dos patches após downstream com backbone com pesos da ImageNet

Figura 20: Features dos patches após downstream com backbone pré-treinado com BYOL
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Figura 21: Features dos patches após downstream com backbone pré-treinado com BYOL, utilizando
dado śısmico e os atributos coherence e instantaneous-phase em 3 canais

4.4 Segmentações

Analisando a segmentação gerada por cada um dos modelos, podemos ver que o modelo from scratch
possui uma tendência de segmentar o dado śısmico mantendo sempre as classes amarela e verde
próximas, mesmo quando isso não deveria ocorrer, como apresentado na região mais à direita da
segmentação da Figura 22. Já para o modelo treinado com os pesos da ImageNet, podemos ver que
ele tende a manter o formato da segmentação para a classe amarela, mas tem dificuldade em separar
a classe verde da azul e também em segmentar a classe laranja, como apresentado na região central
da Figura 22.

Por fim, para os modelos pré-treinados com o BYOL, podemos ver que ambos apresentam uma
grande mistura das classes verde e amarela. Apesar disso, podemos notar que o modelo pré-treinado
com BYOL e atributos fez uma separação melhor da região amarela no topo da crossline do que os
demais, mantendo a faixa azul existente naquela região, como podemos ver na Figura 23.
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Figura 22: Segmentação da décima crossline (xl 10) do conjunto de teste, segmentação feita pelo
modelo from scratch e segmentação feita pelo modelo treinado com pesos da imagenet

Figura 23: Segmentação da décima crossline (xl 10) do conjunto de teste, segmentação feita pelo
modelo pré-treinado com BYOL e segmentação feita pelo modelo com melhor mIoU (BYOL data-
coherence-instantaneous-phase)

4.4.1 Generalização

Em volumes de dado śısmico, crosslines mais próximas tendem a apresentar uma similaridade muito
alta e, por conta disso, as segmentações de crosslines imediatamente vizinhas costumam ser muito
parecidas, como mostrado na Figura 24. Nela, podemos ver a similaridade entre a segmentação da
última crossline do particionamento de teste e as demais (a crossline mais próxima do conjunto de
treino).

Devido a essa estrutura, uma boa forma de medir a generalização para esse problema é analisar
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como as segmentações geradas pelos modelos tendem a se degradar ao longo das crosslines do par-
ticionamento de teste, de acordo com a distância destas em relação ao particionamento de treino.
Como podemos observar nas Figuras 25, 26, 27 e 28, todos os modelos são afetados por esse problema
mencionado.

Figura 24: mIoU da última crossline da partição de teste com as demais

Figura 25: mIoU das predições do modelo from scratch para as crosslines no particionamento de teste
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Figura 26: mIoU das predições do modelo from scratch para as crosslines no particionamento de teste

Figura 27: mIoU das predições do modelo from scratch para as crosslines no particionamento de teste
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Figura 28: mIoU das predições do modelo from scratch para as crosslines no particionamento de teste

4.5 Conclusão

No geral, notamos uma melhora no desempenho dos modelos pré-treinados com o uso de alguns
atributos śısmicos, principalmente no regime de 128 amostras. Isso indica que o uso de atributos tem
o potencial de evidenciar caracteŕısticas do dado tanto na etapa de pré-treino quanto no downstream,
sendo os principais atributos que beneficiaram o modelo o instantaneous-phase, coherence e gst3d-dip.
Apesar disso, ainda é necessário um estudo mais aprofundado para determinar quais são os melhores
atributos, o que cada um ajuda o modelo a destacar para a segmentação e qual é a combinação ótima
de atributos para esse processo.

Além disso, por meio da análise das imagens, notamos que, apesar de apresentar maior mIoU, o
modelo pré-treinado com BYOL parece performar pior nas regiões de interseção entre as classes do
que o modelo pré-treinado com a ImageNet em algumas dessas regiões. Para conclusões mais robustas,
mais experimentos precisam ser feitos devido aos fatores estocásticos presentes nos treinamentos, de
forma a permitir a geração de um intervalo de confiança entre os resultados de cada modelo.

Trabalhos futuros podem explorar essa tendência de detecção de interseções entre as regiões, de-
senvolver modelos que caracterizem com mais precisão cada classe nas regiões centrais e, por fim,
investigar otimizações no uso desses atributos.
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