
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Um Dataset de Aplicações de
Microserviços em Produção

Pedro Henrique Rodrigues de Araújo
Breno Bernard Nicolau de França

Relatório Técnico - IC-PFG-25-46

Projeto Final de Graduação

2025 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Um Dataset de Aplicações de Microserviços em Produção

Pedro Henrique Rodrigues de Araújo Breno Bernard Nicolau de França

Resumo

Atualmente, a arquitetura de microserviços está amplamente presente em aplicações
do mercado, consolidando-se como um dos principais padrões para sistemas distribúıdos
em nuvem, devido à modularidade, escalabilidade e independência de seus componentes.
Em razão dessa popularidade crescente, diversas pesquisas acadêmicas dependem de
aplicações baseadas em microserviços para servir de benchmarks em seus estudos.

Segundo (D’ARAGONA et al., 2024), grande parte desses trabalhos fundamenta
suas análises em aplicações desenvolvidas especificamente para fins experimentais, o
que pode introduzir vieses relevantes nos resultados. Com o objetivo de mitigar esse
problema, os autores propuseram a criação e a disponibilização de um dataset composto
por aplicações open source desenvolvidas segundo a arquitetura de microserviços.

Este estudo também tem como objetivo disponibilizar um dataset público de aplicações
baseadas em microserviços. Diferentemente de (D’ARAGONA et al., 2024), contudo,
este trabalho se restringe a aplicações reais, excluindo provas de conceito e repositórios
de caráter experimental ou simplificado. O intuito é reduzir vieses e representar de
forma mais fidedigna o ecossistema real de aplicações que adotam essa arquitetura.

Para atingir esse objetivo, realizou-se um estudo de Mineração de Repositórios de
Software (MSR), no qual foi desenvolvido um notebook em Python que consultou a API
do GitHub. Inicialmente, foram identificados 1.969 repositórios; após uma seleção crite-
riosa, 126 foram selecionados para análise manual. Ao final desse processo, obtiveram-se
9 repositórios que atendiam aos critérios estabelecidos, compondo assim o dataset final
de aplicações reais baseadas em microserviços.

1 Introdução

A arquitetura de microserviços tem se consolidado como uma das abordagens mais relevan-
tes para o desenvolvimento de sistemas distribúıdos e aplicações em nuvem, impulsionada
pela necessidade de maior escalabilidade, modularidade e agilidade na entrega de software
(LEWIS; FOWLER, 2014). Segundo Fowler e Lewis, essa arquitetura consiste na decom-
posição de uma aplicação em pequenos serviços independentes, cada um responsável por
uma funcionalidade espećıfica, executando em seu próprio processo e comunicando-se por
mecanismos leves, o que possibilita ciclos de desenvolvimento autônomos, a adoção de dife-
rentes tecnologias e a escalabilidade seletiva (LEWIS; FOWLER, 2014).

Apesar de seus benef́ıcios, a adoção de microserviços introduz desafios significativos,
como a coordenação entre serviços e o maior investimento em automação e processos de
DevOps, elementos também destacados por (LEWIS; FOWLER, 2014). Tais desafios têm
motivado a intensificação de estudos emṕıricos sobre microserviços, porém, grande parte

1



2 Araújo, França

dessas pesquisas ainda se baseia em aplicações feitas sob medida, como provas de conceito
e repositórios simplificados, o que pode introduzir vieses e limitar a validade externa dos
resultados (D’ARAGONA et al., 2024).

Diante dessa limitação, (D’ARAGONA et al., 2024) argumenta que pesquisas sobre mi-
croserviços frequentemente se baseiam em repositórios desenvolvidos exclusivamente para
o estudo. A partir disso, (D’ARAGONA et al., 2024) realizou um estudo em larga escala
para identificar e catalogar projetos open-source baseados na arquitetura de microserviços.
Os pesquisadores partiram de uma base com 389.559 repositórios que, após a aplicação de
filtros, foi reduzida para um conjunto de 3.804 repositórios. Após uma etapa de rotulagem
manual, o dataset resultante apresentou 378 aplicações com mais de 100 commits e com pelo
menos três microserviços, que incluem aplicações acadêmicas, industriais e exemplos. Para
cada repositório, foi documentado o tamanho do projeto, número de contribuidores, objetivo
e fundação de apoio. Esse dataset proposto por (D’ARAGONA et al., 2024) permite que a
comunidade escolha um repositório mais alinhado com o objetivo de cada pesquisa. Apesar
de (D’ARAGONA et al., 2024) identificar corretamente o problema dos vieses decorrentes
do uso de aplicações não representativas, o dataset proposto ainda inclui uma diversidade de
aplicações que abrangem exemplos, provas de conceito e projetos didáticos, o que pode não
eliminar completamente o viés em estudos que buscam representar a realidade de sistemas
em produção. Em contraste, este estudo tem como objetivo construir e disponibilizar um
dataset público formado exclusivamente por aplicações reais desenvolvidas segundo a arqui-
tetura de microserviços, excluindo projetos experimentais ou de caráter didático. Para isso,
realizou-se um estudo de Mineração de Repositórios de Software (MSR) utilizando a API do
GitHub, combinando filtragem automatizada e análise manual na seleção de repositórios.
O resultado obtido é um conjunto de aplicações reais que pode servir de base para estudos
futuros, contribuindo para a redução de vieses nas pesquisas sobre a arquitetura de micro-
serviços. O restante deste trabalho está organizado da seguinte forma. A Seção 2 apresenta
o contexto para microserviços, Docker em microserviços e o processo de Mineração de Re-
positórios de Software. A Seção 3 descreve o processo de seleção dos repositórios. A Seção
4 apresenta o dataset resultante do processo de seleção. A Seção 5 discute as ameaças à
validade do dataset constrúıdo e, por fim, a Seção 6 apresenta as considerações finais deste
trabalho.

2 Background

A arquitetura de microserviços tem sido fortemente discutida tanto na academia como na
indústria por se tratar de uma alternativa à arquitetura monoĺıtica (LEWIS; FOWLER,
2014). Nesse contexto, a forma como o código é organizado em repositórios, bem como a
estratégia de conteinerização adotada, influencia diretamente a forma como os microserviços
são desenvolvidos, implantados e estudados empiricamente.

2.1 Arquitetura de Microserviços

A arquitetura de microserviços, descrita por Lewis e Fowler em (LEWIS; FOWLER, 2014),
propõe o desenvolvimento de sistemas como um conjunto de pequenos serviços de respon-



Dataset de Microserviços 3

sabilidade bem definida, que executam em processos isolados e se comunicam por mecanis-
mos leves, como APIs HTTP ou soluções de mensageria. Cada serviço pode ser desenvol-
vido, implantado e escalado de forma independente, permitindo ciclos de desenvolvimento
autônomos e a adoção de diferentes tecnologias por equipe ou por serviço. Entre as ca-
racteŕısticas recorrentes destacam-se a organização do sistema em torno de capacidades de
negócio, a automatização de pipelines de implantação, a observabilidade distribúıda e o
forte alinhamento com práticas de DevOps (FRANCESCO; LAGO; MALAVOLTA, 2019).
Em contrapartida, o aumento do número de serviços introduz complexidade operacional,
exigindo mecanismos apropriados de orquestração, descoberta de serviços, monitoramento
e tratamento de falhas.

2.2 Mono-repositório e Multi-repositórios

No contexto de microserviços, a organização de repositórios tende a seguir dois princi-
pais padrões: mono-repo e multi-repo. No primeiro padrão, todo o código da aplicação é
concentrado em único repositório, enquanto no segundo ele é dividido em múltiplos repo-
sitórios independentes. Segundo (REISINGER et al., 2019), o modelo mono-repo facilita
a visibilidade do sistema como um todo, permitindo maior padronização de práticas de
desenvolvimento e facilitando refatorações que afetem diferentes partes da aplicação. Por
outro lado, a organização em multi-repo oferece maior isolamento e modularidade entre os
microserviços da aplicação, permitindo mais autonomia em todo o ciclo de desenvolvimento,
incluindo versionamento e pipelines de DevOps separados.

2.3 Docker na arquitetura de microserviços

Segundo (JARAMILLO; NGUYEN; SMART, 2016), a ferramenta Docker tornou-se uma
tecnologia disruptiva ao transformar a forma como aplicações são empacotadas, distribúıdas
e executadas, oferecendo contêineres leves, portáteis e facilmente replicáveis (JARAMILLO;
NGUYEN; SMART, 2016). Cada contêiner fornece um ambiente isolado que encapsula
exatamente as dependências necessárias para a execução de um serviço, o que se alinha
diretamente ao prinćıpio de independência e autonomia dos microserviços.

Como destacado por (JARAMILLO; NGUYEN; SMART, 2016), o uso de contêineres
facilita a automação ao longo de todo o ciclo de vida do software, favorecendo pipelines de
integração e entrega cont́ınua, além de reduzir o acoplamento entre equipes, que passam
a construir, testar e implantar seus serviços de forma mais isolada. Em projetos mono-
repo, múltiplos serviços podem compartilhar o mesmo repositório, mas possuir Dockerfiles
distintos e pipelines de CI/CD espećıficos. Em projetos multi-repo, é comum que cada
repositório esteja diretamente associado a uma imagem de contêiner ou a um conjunto
pequeno de serviços relacionados.

2.4 Mineração de Repositórios de Software

O método de Mineração de Repositórios de Software (MSR) dedica-se à extração e análise
de dados provenientes de repositórios de software. Esses dados permitem investigar práticas



4 Araújo, França

de desenvolvimento, evolução de sistemas e fenômenos relacionados à engenharia de software
emṕırica (VIDONI, 2022)

Segundo (VIDONI, 2022), estudos MSR geralmente envolvem três etapas: i) seleção de
repositórios, ii) extração de dados relevantes e iii) análise sistemática desses dados para
responder às questões de pesquisa. O autor ressalta que a condução inadequada dessas
etapas, especialmente a ausência de critérios de seleção transparentes e a falta de discussão
de ameaças à validade, pode comprometer a confiabilidade dos resultados e dificultar sua
replicação (VIDONI, 2022). O método de MSR pode ser aplicado em diversos contextos,
como no estudo da evolução de software (SAHA et al., 2013) (RAY et al., 2012) e na
predição de defeitos (KIM et al., 2014) (NAGAPPAN; BALL; ZELLER, 2014). Exemplos
de estudos MSR incluem a investigação da evolução de clones de código em sistemas open
source (SAHA et al., 2013), análises em larga escala relacionando linguagens de programação
e qualidade de código em projetos do GitHub (RAY et al., 2012) e estudos de predição de
defeitos baseados em histórico de mudanças e métricas extráıdas de repositórios (KIM et
al., 2014; NAGAPPAN; BALL; ZELLER, 2014). Esses trabalhos ilustram como diferentes
tipos de dados provenientes de repositórios podem ser explorados para responder questões
sobre desenvolvimento de software.

3 Métodos

A fim de responder à seguinte questão de pesquisa, descrevemos o método de pesquisa nessa
seção.

RQ Quais são alguns dos repositórios open-source que representam aplicações reais em
produção desenvolvidas na arquitetura de microserviços?

3.1 Critérios de Seleção

A seguir, detalham-se cada um dos critérios utilizados para determinar se um repositório
poderia ser inclúıdo neste estudo. Tais critérios foram definidos para identificar aplicações
reais baseadas na arquitetura de microserviços, com documentação suficiente e atividade
recente que permitisse sua avaliação.

• Disponibilidade na plataforma GitHub: Somente foram considerados repositórios hos-
pedados no GitHub. Essa decisão se justifica pelo fato da plataforma ser amplamente
adotada pela comunidade open-source, oferecendo uma API unificada que permite
a extração estruturada de metadados de forma reprodut́ıvel. A utilização de uma
única fonte reduz a variabilidade, padroniza a coleta e está em linha com estudos de
mineração de repositórios de software.

• Mı́nimo de 100 estrelas: Repositórios inclúıdos deveriam possuir pelo menos 100 es-
trelas. Esse critério funciona como um indicador indireto de relevância, visibilidade
e adoção do projeto, reduzindo a chance de que aplicações pouco utilizadas ou sem



Dataset de Microserviços 5

tração comunitária fossem incorporadas ao dataset. Projetos amplamente reconhe-
cidos tendem a refletir práticas mais próximas das adotadas em contextos reais de
produção.

• Mı́nimo de três contribuidores: A exigência de ao menos três contribuidores distin-
tos buscou evitar repositórios mantidos exclusivamente por uma única pessoa, cuja
representatividade como aplicação real poderia ser limitada. Projetos com múltiplos
contribuidores tendem a apresentar maior maturidade organizacional, diversidade de
decisões arquiteturais e maior probabilidade de estarem inseridos em processos cola-
borativos t́ıpicos de sistemas distribúıdos.

• Atividade recente: Apenas repositórios que apresentaram algum commit no peŕıodo
de até um ano anterior à mineração foram inclúıdos. Esse critério garante que as
aplicações selecionadas estejam em uso ou manutenção ativa, alinhadas ao objetivo de
identificar sistemas reais e contemporâneos. Projetos abandonados poderiam compro-
meter a representatividade do dataset e distorcer conclusões sobre ecossistemas atuais
de microserviços.

• Aceitação de monorepos, microserviços isolados e plataformas baseadas em micro-
serviços: Além dos requisitos estruturais e de atividade, este estudo também conside-
rou diferentes formas de organização arquitetural que aparecem em aplicações reais
baseadas em microserviços. Foram inclúıdos repositórios estruturados como mono-
repos, nos quais diversos serviços coexistem em um único código-fonte, bem como
microserviços isolados pertencentes a aplicações multirepo. Essa flexibilidade busca
refletir a variedade de práticas de versionamento adotadas na indústria, evitando que
o dataset final fique restrito a um único modelo de organização.

• Documentação predominantemente em inglês: Somente foram inclúıdos repositórios
cujo README e código estivessem predominantemente em inglês. Esse critério teve
caráter prático: a análise manual e a interpretação arquitetural tornam-se mais con-
sistentes quando realizadas em um idioma compartilhado pelos pesquisadores. Além
disso, o inglês constitui o padrão de comunicação da maior parte dos projetos open-
source.

Também foram inclúıdos repositórios que representam plataformas operacionais ou sis-
temas de suporte cujo funcionamento interno depende de múltiplos serviços independentes.
Embora tais plataformas não se configurem como uma aplicação tradicional única, são
compostas por componentes distribúıdos que interagem entre si, implementando, de fato,
prinćıpios fundamentais da arquitetura de microserviços. Assim, mesmo quando sua fi-
nalidade é habilitar, gerenciar ou coordenar outras aplicações, a estrutura interna dessas
plataformas atende aos critérios estabelecidos para este estudo.

3.2 Critérios de Exclusão

Após a aplicação dos critérios de inclusão, um segundo conjunto de critérios foi utilizado
para identificar repositórios que, embora inicialmente eleǵıveis, não atendiam ao objetivo



6 Araújo, França

de identificar aplicações reais estruturadas como microserviços.

• Ausência de README: Repositórios sem README foram exclúıdos imediatamente,
pois a falta de documentação mı́nima impede a identificação do objetivo, escopo e
arquitetura do projeto. A ausência desse arquivo compromete significativamente qual-
quer tentativa de análise e caracterização.

• Ausência de Dockerfile ou artefatos equivalentes: Foram exclúıdos repositórios que
não apresentavam Dockerfile ou arquivos equivalentes de definição de contêineres. A
conteinerização é hoje um elemento fundamental na implantação e operação de micro-
serviços; portanto, a ausência desse artefato sugere que o repositório não representa
um serviço executável de forma independente ou alinhado às práticas contemporâneas.

• Projetos experimentais ou didáticos: Repositórios classificados como experimentais —
incluindo provas de conceito, exemplos de cursos, materiais didáticos e demonstrações
— foram exclúıdos. Embora esses projetos frequentemente mencionem microserviços,
sua finalidade pedagógica ou exploratória não reflete cenários reais de produção. A
exclusão foi definida por meio de palavras-chave no README e análise manual.

• Ferramentas e bibliotecas que não implementam microserviços: Por fim, foram ex-
clúıdos repositórios que, embora mencionassem microserviços em sua descrição, não
implementavam essa arquitetura. Projetos como ferramentas, bibliotecas, frameworks
ou soluções auxiliares — por exemplo, sistemas de tracing, gateways ou mecanismos
de observabilidade — não configuram aplicações compostas por múltiplos serviços
independentes e, portanto, não atendem ao foco deste estudo.

3.3 Fonte da Busca

O GitHub foi selecionado como fonte primária devido à sua ampla adoção na comunidade
open source e ao grande volume de projetos ativos. Além disso, a plataforma fornece uma
API que permite realizar buscas complexas, facilitando a aplicação de técnicas de MSR.
Como controle para validação dos critérios, utilizou-se o Spinnaker, um sistema reconhecido
na literatura como exemplo de aplicação real composta por diversos microserviços.

A busca pelos repositórios foi conduzida por meio do endpoint de Search Repositories
da API oficial do GitHub, que permite criar consultas estruturadas utilizando operadores
espećıficos. Segundo a documentação da GitHub REST API, uma query pode ser cons-
trúıda combinando palavras-chave, filtros por campos, operadores relacionais e parâmetros
de ordenação.

3.4 Procedimento de Busca

A consulta final utilizada é composta pelos seguintes elementos, conforme descrito na do-
cumentação oficial:

• Search keywords: termos livres que descrevem o conteúdo desejado no repositório.

1 query = "microservices distributed"

https://github.com/spinnaker


Dataset de Microserviços 7

• in: especifica onde os termos devem ser procurados (t́ıtulo, descrição ou README).

1 query = "microservices in:description"

• sort: define o atributo usado para ordenar resultados (e.g., stars, updated).

1 query = "microservices sort:stars"

• stars: filtra repositórios pelo número de estrelas utilizando operadores relacionais (=,
≥, ≤, >, <).

1 query = "microservices stars :>100"

• pushed: filtra por data de último commit, permitindo garantir que apenas projetos
ativos sejam retornados.

1 query = "microservices pushed : >=2020 -01 -01"

Com isso, temos a seguinte query final:

1 query = "microservice OR service OR micro -service in:description sort:

stars stars : >=100 pushed :>={ QUERY_DATE_THRESHOLD}"

Onde QUERY DATE THRESHOLD é definido como a data de 12 meses atrás, no
formato YYYY-MM-DD:

1 QUERY_DATE_THRESHOLD = (datetime.now() - relativedelta(months =12)).

strftime("%Y-%m-%d")

3.4.1 Limitações da API do GitHub

A API restringe os resultados a, no máximo, 1.000 repositórios por consulta. Mesmo que a
busca retorne mais resultados, apenas os primeiros 1.000 podem ser paginados e consultados
pela API. Essa restrição influenciou a quantidade de repositórios encontrados, visto que,
para aumentar o número de repositórios alcançados pela pesquisa, seria necessário ajustar
os parâmetros da query de busca.

Ainda, o Github restringe a quantidade de requisições que podem ser realizadas por
minuto e, portanto, foram necessárias duas estratégias para contornar esse problema:

• Salvamento local de resultado de requisições: Uma estratégia adotada para
reduzir o número de requisições foi salvar localmente os resultados das fases de pro-
cessamento que necessitavam que chamadas fossem feitas para a API. Com isso, foi
posśıvel reutilizar os dados de chamadas anteriores, assim como consultar a evolução
dos repositórios durante o processamento.

1 def save_json(data , filename=FILENAME , folder=INITIAL_DATA_FOLDER ,

timestamp=False , total_count=None):

2 """

3 Save a Python object (list/dict) as JSON .

4 If timestamp=True , appends a date/time string to the filename.

5 Includes total_count if provided.



8 Araújo, França

6 """

7 if timestamp:

8 ts = time.strftime("%Y-%m-%d_%H-%M-%S")

9 name , ext = filename.rsplit(’.’, 1)

10 filename = f"{name}_{ts}.{ext}"

11 path = f"{folder.rstrip(’/’)}/{ filename}"

12

13 # Ensure the directory exists before saving

14 os.makedirs(os.path.dirname(path), exist_ok=True)

15

16 data_to_save = {

17 "repos": data ,

18 "total_count": total_count

19 }

20

21 with open(path , ’w’) as f:

22 json.dump(data_to_save , f, indent =2)

23

24 print(f"Saved JSON to: {path}")

25 return path

Listing 1: Função para salvar o resultado das requisições

1 def load_json(filename=FILENAME , folder=INITIAL_DATA_FOLDER , newest

=True):

2 """

3 Load a JSON file.

4 If newest=True , automatically loads the most recently modified

file

5 matching the base filename (e.g., repos_ *.json).

6 Returns the data and total_count if available.

7 """

8 folder = folder.rstrip(’/’)

9 base , ext = os.path.splitext(filename)

10

11 # Ensure the folder exists before trying to list its contents

12 if not os.path.exists(folder):

13 raise FileNotFoundError(f"Folder ’{folder}’ not found.

Please ensure data is mined or placed in the correct location.")

14

15 if newest:

16 candidates = [

17 os.path.join(folder , f)

18 for f in os.listdir(folder)

19 if f.startswith(base) and f.endswith(ext)

20 ]

21

22 if not candidates:

23 raise FileNotFoundError(f"No files matching ’{base }*{

ext}’ found in {folder}")

24 path = max(candidates , key=os.path.getmtime)

25 print(f"Newest file detected: {os.path.basename(path)}")

26 else:

27 path = f"{folder }/{ filename}"



Dataset de Microserviços 9

28

29 with open(path , ’r’) as f:

30 data_loaded = json.load(f)

31

32 print(f"Loaded JSON from: {path}")

33

34 if type(data_loaded) is dict and "repos" in data_loaded:

35 return data_loaded.get("repos"), data_loaded.get("total_count

")

36

37 return data_loaded , None

Listing 2: Função para carregar um arquivo salvo anteriormente

• Função de sleep: A outra estratégia adotada foi adicionar uma função para detectar
quando a resposta da API indicava que o limite de requisições havia sido atingido e,
a partir disso, aguardar para que o restante das requisições pudesse ser completado.

1 # A shared lock to ensure only one thread prints the rate limit

warning and runs the tqdm progress bar

2 RATE_LIMIT_LOCK = threading.Lock()

3

4 def sleep_if_needed(response , fallback_delay =5):

5 """

6 Waits if the response indicates rate limit exceeded.

7 """

8 remaining = response.headers.get("X-RateLimit -Remaining")

9 reset_time = response.headers.get("X-RateLimit -Reset")

10

11 wait_seconds = 0

12 desc = ""

13

14 if remaining is not None and remaining == "0":

15 reset_timestamp = int(reset_time) if reset_time else None

16 wait_seconds = max(0, reset_timestamp - int(time.time()))

if reset_timestamp else fallback_delay

17 desc = f"Rate limit hit. Waiting {wait_seconds} seconds ..."

18 elif response.status_code == 403:

19 wait_seconds = fallback_delay

20 desc = f"Received 403 (possible rate limit). Waiting {

fallback_delay} seconds ..."

21

22 if wait_seconds > 0:

23 # Try to acquire the lock without blocking. Only the thread

that gets the lock proceeds to print.

24 if RATE_LIMIT_LOCK.acquire(blocking=False):

25 try:

26 # The first thread prints the message and runs the

visual countdown.

27 print(desc , flush=True)

28 for _ in trange(wait_seconds , desc="Waiting", unit=

"sec"):

29 time.sleep (1)

30 finally:



10 Araújo, França

31 # Release the lock after waiting.

32 RATE_LIMIT_LOCK.release ()

33 else:

34 # Other threads that couldn ’t acquire the lock will

wait silently to respect the rate limit.

35 time.sleep(wait_seconds)

Listing 3: Função para aguardar em caso de limite de requisições da API

3.4.2 Ordenação por Estrelas

Nessa primeira versão da string de busca (Seção 3.4), está ausente o parâmetro sort e, por
isso, os resultados retornados estarão ordenados por best match. A primeira execução
completa do notebook foi realizada com essa query, que apresentou resultados satisfatórios,
com repositórios presentes nos resultados finais. No entanto, essa string de busca não retorna
nenhum dos repositórios da aplicação de controle Spinnaker, o que torna necessária a sua
atualização com o parâmetro sort, presente na string final.

3.4.3 Processamento Paralelo

Para melhorar o desempenho do notebook Python, foram implementadas estratégias de
processamento paralelo utilizando múltiplos workers, reduzindo o tempo de execução entre
as iterações do processo de mineração.

3.5 Seleção Automatizada dos Repositórios

A seleção automatizada de repositórios foi dividida em cinco etapas distintas, cada uma
com o objetivo de selecionar repositórios que atendam a algum dos requisitos propostos.

A primeira etapa ocorre logo após a coleta dos 1.000 repositórios retornados pela API
do Github e consiste na extração das informações necessárias de cada repositório, além de
solicitar à API o número de contribuidores de cada um. Na segunda etapa, os repositórios
são filtrados pelo número mı́nimo de contribuidores. Em seguida, na terceira etapa, todos
os repositórios que contiverem alguma palavra da lista de filtros de About e Topics são
eliminados. De forma semelhante, a quarta etapa também filtra repositórios por meio de
uma lista de palavras, mas agora esse filtro é aplicado no README do repositório. Essas
duas etapas foram separadas porque a lista de palavras a serem buscadas no README
precisa ser mais restrita, devido à maior probabilidade de encontrar falsos negativos ao
aplicar o filtro no README. Por fim, a última etapa automática consiste em verificar a
existência de arquivos Docker nos repositórios analisados.

3.5.1 Extração de Informações Necessárias

Nesta etapa, nenhum repositório é exclúıdo, visto que o objetivo é apenas selecionar as
informações necessárias para o estudo, além de requisitar à API a informação sobre o número
de contribuidores.



Dataset de Microserviços 11

1 def get_contributor_count(session: requests.Session , owner: str , repo:

str , anon: bool = True , max_retries: int = 3):

2 url = f"{GITHUB_BASE_URL }/ repos/{ owner }/{ repo}/ contributors?per_page

=1& anon={’true’ if anon else ’false ’}"

3

4 for _ in range(max_retries):

5 r = session.get(url)

6 if r.status_code == 200:

7 if ’Link’ in r.headers:

8 for part in r.headers[’Link’]. split(’,’):

9 if ’rel="last"’ in part:

10 last_url = part[part.find(’<’) + 1:part.find(’>’

)]

11 if ’page=’ in last_url:

12 page_num = last_url.split(’page=’)[-1]. split

(’&’)[0]

13 try:

14 return int(page_num)

15 except ValueError:

16 pass

17 try:

18 return len(r.json())

19 except Exception:

20 return 0

21

22 if r.status_code in (403, 502, 503, 504):

23 sleep_if_needed(r)

24 continue

25 else:

26 return 0

27 return 0

Listing 4: Função para recuperar o número de contribuidores de um repositório

1 def worker(item):

2 owner = item[’owner’][’login’]

3 repo = item[’name’]

4 contribs = get_contributor_count(session , owner , repo)

5 pushed_at = item.get(’pushed_at ’)

6

7 return {

8 ’name’: repo ,

9 ’full_name ’: item[’full_name ’],

10 ’repo_url ’: item[’html_url ’],

11 ’owner_name ’: owner ,

12 ’owner_url ’: item[’owner ’][’html_url ’],

13 ’description ’: item.get(’description ’),

14 ’fork’: item.get(’fork’),

15 ’stars ’: item.get(’stargazers_count ’, 0),

16 ’language ’: item.get(’language ’),

17 ’license_name ’: item[’license ’][’name’] if item.get(’license ’)

els ’No license ’,

18 ’topics ’: item.get(’topics ’, []),

19 ’forks ’: item.get(’forks ’, 0),



12 Araújo, França

20 ’open_issues ’: item.get(’open_issues ’, 0),

21 ’default_branch ’: item.get(’default_branch ’),

22 ’score ’: item.get(’score ’),

23 ’contributors ’: contribs ,

24 ’pushed_at ’: pushed_at ,

25 }

Listing 5: Função para selecionar apenas as informações necessárias dos repositórios

3.5.2 Filtrar Número de Contribuidores

Neste passo, são selecionados apenas repositórios cujo número de contribuidores, retor-
nados pelo endpoint GITHUB BASE URL/repos/{owner}/{repo}/contributors,
seja maior do que 2, em que owner e repo são variáveis correspondentes ao repositório
desejado. A seguir, descrevemos a função que seleciona as informações necessárias e imple-
menta o filtro.

1 def process_repositories(session: requests.Session , items: list ,

min_contributors: int = 3):

2 print (40 * "=","Processing repositories ...", 40 * "=", "\n")

3 if PROCESS_INITIAL_REPOS:

4 results = []

5 total_items = len(items)

6 max_workers = min(32, max(1, total_items))

7 print(f"Using {max_workers} threads to process {total_items}

repositories")

8

9 # Increase connection pool size to avoid warnings

10 adapter = requests.adapters.HTTPAdapter(pool_connections=

max_workers , pool_maxsize=max_workers)

11 session.mount(’http ://’, adapter)

12 session.mount(’https ://’, adapter)

13

14 def worker(item):

15 owner = item[’owner’][’login’]

16 repo = item[’name’]

17 contribs = get_contributor_count(session , owner , repo)

18 pushed_at = item.get(’pushed_at ’)

19

20 return {

21 ’name’: repo ,

22 ’full_name ’: item[’full_name ’],

23 ’repo_url ’: item[’html_url ’],

24 ’owner_name ’: owner ,

25 ’owner_url ’: item[’owner ’][’html_url ’],

26 ’description ’: item.get(’description ’),

27 ’fork’: item.get(’fork’),

28 ’stars’: item.get(’stargazers_count ’, 0),

29 ’language ’: item.get(’language ’),

30 ’license_name ’: item[’license ’][’name’] if item.get(’

license ’) else ’No license ’,

31 ’topics ’: item.get(’topics ’, []),

32 ’forks’: item.get(’forks ’, 0),



Dataset de Microserviços 13

33 ’open_issues ’: item.get(’open_issues ’, 0),

34 ’default_branch ’: item.get(’default_branch ’),

35 ’score’: item.get(’score ’),

36 ’contributors ’: contribs ,

37 ’pushed_at ’: pushed_at ,

38 }

39

40 # Executor with manual counter

41 with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers

) as executor:

42 futures = [executor.submit(worker , it) for it in items]

43

44 for fut in tqdm(concurrent.futures.as_completed(futures),

total=total_items , desc="Processing repos"):

45 try:

46 res = fut.result ()

47 if res[’contributors ’] >= min_contributors:

48 results.append(res)

49 except Exception as e:

50 print(f"Error processing repository: {e}", flush=True)

51

52 print(f"Processing complete! {len(results)} repositories added.",

flush=True) # Clear the counter line

53

54 save_json(results , timestamp=USE_TIMESTAMP , folder=

PROCESSED_INITIAL_DATA_FOLDER , total_count=len(results))

55

56 print(f"Repositories that passed the filter (>=3 contributors): {

len(results)}", flush=True)

57 print("Data saved and ready for analysis!", flush=True)

58

59 return results

60 else:

61 results , total = load_json(newest=True , folder=

PROCESSED_INITIAL_DATA_FOLDER)

62 count = total if total is not None else len(results)

63

64 print(f"Repositories that passed the filter (>=3 contributors): {

len(results)}", flush=True)

65 print("Data saved and ready for analysis !\n", flush=True)

66

67

68 return results

Listing 6: Função que seleciona informações necessárias e filtra por número de contribuidores

3.5.3 Filtrar About e Topics

Para encontrar a lista de palavras que seria utilizada neste passo e no seguinte, foi reali-
zado um processo iterativo no qual, a cada palavra adicionada, eram analisados quantos
repositórios eram removidos por essa palavra. Caso fosse um número relevante, a palavra
era mantida no filtro. A lista de palavras não poderia remover todos os repositórios da



14 Araújo, França

aplicação de controle Spinnaker, e ror isso, essa verificação também foi realizada. As pala-
vras adicionadas visam identificar repositórios que não se encaixam na definição proposta
de aplicação real em microserviços.

A lista final de palavras para o About e Topics foi:

1 DESC_AND_TOPICS_FILTER_WORDS = ["sample", "demo", "example", "sample -app

",

2 "demo -app", "example -app", "workshop",

3 "hackathon", "course", "guide", "papers",

4 "paper", "CRUD", "template", "masterclass",

5 "setup", "toolkit", "framework", "library",

6 "boilerplate", "starter"]

1 def filter_repos_by_description_and_topics(repos):

2 """

3 Filters a list of repositories based on keywords in their

description and topics.

4

5 Args:

6 repos: List of repositories (dictionaries).

7

8 Returns:

9 A tuple containing:

10 - final_repositories: List of repositories that do not

contain filter words.

11 - wrong_repositories: List of repositories that contain

filter words.

12 """

13 wrong_repositories = []

14 final_repositories = []

15

16 print (40 * "=","Applying description and topics filter ...", 40 * "="

, "\n")

17

18 for repo in tqdm(repos , desc="Filtering descriptions"):

19 is_wrong = False

20 description = repo.get("description", "").lower ()

21 topics = repo.get("topics", [])

22

23 for word in DESC_AND_TOPICS_FILTER_WORDS:

24 if word in description or any(word in topic for topic in

topics):

25 wrong_repositories.append(repo)

26 is_wrong = True

27 break

28 if not is_wrong:

29 final_repositories.append(repo)

30

31 print(f"Description and topics filter applied.")

32 print(f"Repositories that passed the filter: {len(final_repositories

)}")

33 print(f"Repositories that were filtered out: {len(wrong_repositories

)}\n")

34



Dataset de Microserviços 15

35 return final_repositories , wrong_repositories

Listing 7: Função para filtrar repositórios por palavras no About e nos Topics

3.5.4 Filtrar pelo README

Semelhante ao passo anterior, o mesmo processo iterativo para a escolha de palavras foi
aplicado neste passo. No entanto, a lista de palavras acabou sendo menor, pois muitas
das palavras utilizadas anteriormente removeriam repositórios da aplicação de controle,
como, por exemplo, a palavra ”example”, presente em READMEs que apresentam trechos
de código de exemplo. Além disso, devido a os arquivos README serem escritos em
Markdown, muitas palavras acabam ocorrendo dentro de hyperlinks. Para resolver esse
problema, foi necessário remover todos os hiperlinks dos arquivos README antes de aplicar
a função de filtro.

1 def _readme_worker(session: requests.Session , repo: dict):

2 full_name = repo[’full_name ’]

3 url = f"https :// api.github.com/repos/{ full_name }/ readme"

4

5 try:

6 response = session.get(url , headers=GITHUB_HEADERS)

7 sleep_if_needed(response)

8

9 readme_content = ""

10 if response.status_code == 200:

11 content = response.json().get(’content ’)

12 if content:

13 readme_content = base64.b64decode(content).decode(’utf -8’).lower ()

14 readme_without_links = re.sub(r’\([^() ]*\)’, ’()’, readme_content)

15 elif response.status_code == 404:

16 pass

17 else:

18 print(f"\nWarning: Could not decode README content for {full_name

}. Status code: {response.status_code}")

19 is_wrong = any(w in readme_without_links for w in

README_FILTER_WORDS)

20 return repo , is_wrong

21 except Exception as e:

22 print(f"\nError processing README for {full_name }: {e}")

23 return repo , False

Listing 8: Função auxiliar para carregar e limpar o conteúdo do README

1 def filter_repos_by_readme(session: requests.Session , repos , folder_final=

README_DATA_FOLDER , folder_wrong=README_REMOVED_DATA_FOLDER , timestamp=

USE_TIMESTAMP):

2 """

3 Filters a list of repositories based on keywords in their README content

.

4

5 Args:

6 session: The requests session to use for API calls.



16 Araújo, França

7 repos: List of repositories (dictionaries).

8 folder_final: The folder to save the final results.

9 folder_wrong: The folder to save the filtered out results.

10 timestamp: Boolean to append a timestamp to the filename.

11

12 Returns:

13 A tuple containing:

14 - final_repositories: List of repositories that do not contain

filter words.

15 - wrong_repositories: List of repositories that contain filter

words.

16 """

17 wrong_repositories = []

18 final_repositories = []

19 total_repos = len(repos)

20

21 print (40 * "=","Applying README filter ...", 40 * "=", "\n")

22

23 if not FILTER_README: # If FILTER_README is False , load data

24 try:

25 # Load both final and wrong repositories

26 final_repositories , _ = load_json(newest=True , folder=

folder_final)

27 wrong_repositories , _ = load_json(newest=True , folder=

folder_wrong)

28

29 print("Loaded filtered data.")

30 print(f"Repositories that passed the filter: {len(

final_repositories)}")

31 print(f"Repositories that were filtered out: {len(

wrong_repositories)}\n")

32 return final_repositories , wrong_repositories

33 except FileNotFoundError:

34 print("Filtered data not found. Please set FILTER_README to True

to run the filter.")

35 return [], [] # Return empty lists if file not found and not

filtering

36 print("Applying README filter ...")

37 max_workers = min(32, max(1, total_repos))

38

39 with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as

executor:

40 futures = [executor.submit(_readme_worker , session , repo) for repo

in repos]

41

42 for fut in tqdm(concurrent.futures.as_completed(futures), total=

total_repos , desc="Filtering READMEs"):

43 try:

44 repo , is_wrong = fut.result ()

45 if is_wrong:

46 wrong_repositories.append(repo)

47 else:

48 final_repositories.append(repo)

49 except Exception as e:



Dataset de Microserviços 17

50 print(f"Error processing repository: {e}", flush=True)

51

52 print(f"README filter applied.")

53 print(f"Repositories that passed the filter: {len(final_repositories)}")

54 print(f"Repositories that were filtered out: {len(wrong_repositories)}\n

")

55

56 if SAVE_JSON:

57 save_json(final_repositories , folder=folder_final , filename="

repos_readme_filter.json", timestamp=timestamp)

58 save_json(wrong_repositories , folder=folder_wrong , filename="

repos_readme_removed_filter.json", timestamp=timestamp)

59

60 return final_repositories , wrong_repositories

Listing 9: Função para filtrar repositórios com base no conteúdo do README

3.5.5 Filtrar por Dockerfile

Por fim, o último passo da seleção automatizada foi a filtragem de repositórios que não
possúıam Dockerfile. Para isso, foram feitas novas requisições à API do GitHub, com o
intuito de obter todas as linguagens presentes em cada repositório. Como descrito na
Seção 2.3, Docker se alinha diretamente com prinćıpios da arquitetura de microserviços e,
por conta disso, decidiu-se selecionar apenas repositórios que apresentem algum Dockerfile,
de forma semelhante ao que foi feito em (D’ARAGONA et al., 2024). É muito pouco
provável que um repositório que implemente um microsserviço real não tenha sua definição
em contêineres.

1 def _language_worker(session: requests.Session , repo: dict):

2 full_name = repo[’full_name ’]

3 url = f"{GITHUB_BASE_URL }/ repos/{ full_name }/ languages"

4

5 try:

6 response = session.get(url , headers=GITHUB_HEADERS)

7 sleep_if_needed(response)

8

9 languages = {}

10 if response.status_code == 200:

11 languages = response.json()

12 else:

13 print(f"\nWarning: Could not fetch language data for {full_name }.

Status code: {response.status_code}")

14

15 if "Dockerfile" in languages:

16 return repo

17 return None

18

19 except Exception as e:

20 print(f"\nError processing language data for {full_name }: {e}")

21 return None

Listing 10: Função para recuperar linguagens do repositório e filtrar aqueles sem Dockerfile



18 Araújo, França

1 def filter_repos_by_language(session: requests.Session , repos ,folder=

LANGUAGES_DATA_FOLDER , timestamp=USE_TIMESTAMP):

2 """

3 Filters a list of repositories to keep only those that have Dockerfile

as a language.

4

5 Args:

6 session: The requests session to use for API calls.

7 repos: List of repositories (dictionaries).

8 folder: The folder to save the results.

9 timestamp: Boolean to append a timestamp to the filename.

10

11 Returns:

12 A list of repositories that have Dockerfile as a language.

13 """

14 filtered_repos = []

15 total_repos = len(repos)

16

17 print (40 * "=","Applying language filter ...", 40 * "=", "\n")

18

19 if not FILTER_LANG: # If FILTER_LANG is False , load data

20 try:

21 filtered_repos , _ = load_json(newest=True , folder=folder ,

filename="repos_lang_filter.json")

22 print(Loaded filtered data.")

23 print(f"Repositories that passed the filter: {len(filtered_repos

)}")

24 return filtered_repos

25 except FileNotFoundError:

26 print("Filtered data not found. Please set FILTER_LANG to True

to run the filter.")

27 return [] # Return empty list if file not found and not

filtering

28

29

30 # If FILTER_LANG is True , proceed with filtering

31 print("Applying language filter ...")

32 max_workers = min(32, max(1, total_repos))

33

34 with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as

executor:

35 futures = [executor.submit(_language_worker , session , repo) for repo

in repos]

36

37 for fut in tqdm(concurrent.futures.as_completed(futures), total=

total_repos , desc="Filtering languages"):

38 try:

39 repo = fut.result ()

40 if repo:

41 filtered_repos.append(repo)

42 except Exception as e:

43 print(f"Error processing repository: {e}", flush=True)

44

45 print(f"Language filter applied.")



Dataset de Microserviços 19

46 print(f"Repositories that passed the filter: {len(filtered_repos)}")

47

48 if SAVE_JSON:

49 save_json(filtered_repos , folder=folder , filename="repos_lang_filter

.json", timestamp=timestamp)

50

51 return filtered_repos

Listing 11: Função para filtrar repositórios que possuam Dockerfile entre suas linguagens

3.6 Seleção Manual dos Repositórios

Após a etapa de seleção automatizada, os repositórios restantes passaram por três novas
etapas de seleção, agora manuais. A primeira etapa consistiu em uma filtragem por idioma.
A segunda etapa consistiu em uma checagem manual do objetivo da aplicação. Por fim,
a terceira etapa consistiu em uma análise arquitetural da aplicação. A seguir, resumimos
essas etapas:

1. Remover repositórios com idiomas diferentes do inglês Nesta etapa, foram
removidos todos os repositórios que apresentavam algum idioma diferente do inglês
no README. Neste passo, não foi feita nenhuma investigação sobre o objetivo da
aplicação ou sua arquitetura.

2. Seleção de aplicações reais Esta etapa serve como uma validação adicional dos
filtros automatizados aplicados no README, nos Topics e no About. Nela, foram
procuradas evidências sobre o objetivo da aplicação e sobre se o repositório poderia
ser considerado uma aplicação real.

3. Análise arquitetural do repositório Esta etapa constitui uma análise mais apro-
fundada do repositório, buscando entender como sua arquitetura está estruturada e se
ela pode ser considerada uma aplicação de microserviços. Para reduzir vieses, todos
os repositórios que chegaram a essa etapa foram verificados por outros dois pesquisa-
dores e, apenas se houvesse concordância entre os três, o repositório seria considerado
para o dataset.

3.7 Extração de Metadados

Com os repositórios finais selecionados, foi necessária a extração de alguns metadados,
tais como: existência de CI/CD, número de releases, data da última atualização, número
de contribuidores, quantidade de microserviços, linguagem principal e se o projeto utiliza
mono-repo ou multi-repo.

4 Resultados

A Tabela 1 apresenta o dataset de aplicações baseadas na arquitetura de microserviços,
acompanhado de metadados extráıdos para auxiliar pesquisadores na seleção das aplicações



20 Araújo, França

mais adequadas para seus estudos. A primeira coluna mostra o repositório analisado, que
corresponde ao repositório encontrado e selecionado pela mineração e não necessariamente
a toda a aplicação.

É importante destacar que aplicações compostas por múltiplos repositórios, como é o
caso do OpenStack, tiveram mais de um repositório identificado durante a etapa de MSR.
Contudo, para evitar duplicidade e garantir que cada aplicação seja representada apenas
uma vez no dataset, selecionou-se um único repositório por aplicação. Nesse sentido, a
segunda coluna inclui a organização ou o projeto agregador dos demais repositórios.

Além do nome do repositório, a tabela apresenta informações sobre CI/CD, indicando
se o repositório possui pipelines configurados para integração e entrega cont́ınuas. A coluna
Releases apresenta o número de versões publicadas, estimando a evolução do software ao
longo do tempo. Já a coluna Última Atualização registra a data do commit mais recente,
permitindo avaliar o ńıvel de atividade atual do projeto.

O número de Contribuidores fornece uma métrica aproximada do engajamento da comu-
nidade, enquanto a coluna microserviços representa a quantidade de serviços identificados na
arquitetura observada, o que auxilia na seleção de projetos com graus variados de complexi-
dade arquitetural. A coluna Linguagem informa a linguagem predominante no repositório,
possibilitando que pesquisadores filtrem projetos de acordo com seus interesses. Por fim, a
coluna Mono-repo/Multi-repo descreve a estratégia de organização adotada pela aplicação.



D
a
ta
set

d
e
M
icroserv

iços
21

Tabela 1: Repositórios de microserviços

Repositório
Org or
Core

CI/CD Releases
Última

Atualização
Contribuidores Microserviços Linguagem

Mono-repo
Multi-repo

blockscout-rs blockscout Sim 157 03/12/2025 37 11 Rust Mono-repo

bbox bbox Sim 16 11/10/2025 6 6 Rust Mono-repo

convox convox Sim 169 08/12/2025 38 3 Go Multi-repo

linkerd2-proxy linkerd2 Sim 293 09/12/2025 58 5 Rust Multi-repo

metaflow-service metaflow Sim 47 04/11/2025 23 3 Python Mono-repo

trove openstack Sim 32 05/12/2025 247 6 Python Multi-repo

paasta Yelp Sim 379 08/12/2025 189 N/A Python Mono-repo

corrosion superfly Sim 4 09/12/2025 18 8 Rust Multi-repo

kayenta spinnaker Sim 140 08/04/2025 74 11 Java Multi-repo

https://github.com/blockscout/blockscout-rs
http://github.com/blockscout/blockscout?utm_source=chatgpt.com
https://github.com/bbox-services/bbox
https://github.com/bbox-services/bbox
https://github.com/convox/convox
https://github.com/convox
https://github.com/linkerd/linkerd2-proxy
https://github.com/linkerd/linkerd2
https://github.com/Netflix/metaflow-service
https://github.com/Netflix/metaflow
https://github.com/openstack/trove
https://github.com/openstack/openstack
https://github.com/Yelp/paasta
https://github.com/Yelp
https://github.com/superfly/corrosion
https://github.com/superfly
https://github.com/spinnaker/kayenta
https://github.com/spinnaker/spinnaker


22 Araújo, França

4.1 Visão Geral dos Repositórios

A seguir, apresentamos uma breve descrição de cada repositório que compõe o dataset final,
destacando sua finalidade e papel no contexto das aplicações analisadas.

blockscout-rs: Repositório escrito em Rust que reúne os principais serviços do Blocks-
cout, um explorador de blockchains compat́ıveis com EVM. Inclui componentes responsáveis
pela indexação, consulta e exposição de dados on-chain.

bbox: Aplicação modular desenvolvida em Rust para processamento, análise e disponi-
bilização de dados geoespaciais. O repositório agrupa diversos módulos que, em conjunto,
formam o BBOX Server.

convox: Plataforma PaaS de código aberto voltada ao deploy e gerenciamento de
aplicações conteinerizadas. O repositório concentra o runtime, a CLI e automações de
infraestrutura necessárias ao funcionamento do Convox.

linkerd2-proxy: Proxy de alto desempenho escrito em Rust e utilizado como plano de
dados do service mesh Linkerd. Atua como sidecar responsável por roteamento de tráfego,
observabilidade e aplicação de poĺıticas.

metaflow-service: Serviço de backend do Metaflow utilizado para rastreamento de
metadata, controle de execuções e exposição de informações sobre pipelines de machine
learning. Complementa a ferramenta principal mantida pela Netflix.

trove: Serviço Database-as-a-Service (DBaaS) do ecossistema OpenStack. Permite o
provisionamento, gerenciamento e operação automatizada de bancos de dados em ambientes
OpenStack.

paasta: Plataforma de deploy e operação de serviços conteinerizados desenvolvida pelo
Yelp. Centraliza orquestração, CI/CD e definições de infraestrutura utilizadas em larga
escala pela organização.

corrosion: Sistema distribúıdo escrito em Rust e desenvolvido pela Fly.io, oferecendo
primitivas para construção de aplicações globais, incluindo replicação, coordenação e rote-
amento inteligente.

kayenta: Serviço integrante do Spinnaker dedicado à análise automatizada de canary
releases. Implementa métricas, comparações estat́ısticas e mecanismos de tomada de decisão
para implantações progressivas mais seguras.

4.2 Repositórios Conhecidos Não Retornados

Durante a execução deste estudo, observou-se que diversos repositórios amplamente reconhe-
cidos na literatura sobre microserviços não foram recuperados pelo processo de mineração,
apesar de sua importância histórica e de sua recorrência em trabalhos acadêmicos. Essa
ausência está diretamente relacionada aos critérios definidos para a busca, em especial a
exigência de atividade recente e a presença de artefatos compat́ıveis com práticas modernas
de conteinerização.

Entre os repositórios não capturados destacam-se projetos da Netflix que influenciaram
significativamente a adoção de microserviços na indústria, tais como Conductor, Eureka
e Hystrix. Esses projetos, embora extremamente relevantes do ponto de vista histórico,
apresentam baixa atividade recente, com contribuições majoritariamente antigas ou desen-

https://github.com/Netflix/conductor
https://github.com/Netflix/eureka
https://github.com/Netflix/hystrix


Dataset de Microserviços 23

volvimento descontinuado. Como a query aplicada restringia os resultados a repositórios
com atualizações dentro de um intervalo temporal espećıfico, tais projetos não foram retor-
nados pela API do GitHub.

Um caso semelhante ocorre com o Choerodon, uma plataforma empresarial que integra
diversas ferramentas relacionadas à arquitetura de microserviços. Apesar de sua relevância
e adoção em ambientes corporativos, o repositório principal não se enquadrou nos critérios
de atualização recente exigidos pela consulta e, portanto, também não foi capturado.

Além disso, a filtragem pelo uso de conteinerização introduziu outras exclusões impor-
tantes. O Zuul, gateway desenvolvido pela Netflix e frequentemente citado em trabalhos
sobre arquiteturas distribúıdas, não foi selecionado por não apresentar um Dockerfile

expĺıcito em seu repositório. Considerando que a definição de contêineres é hoje um arte-
fato amplamente consolidado em aplicações reais de microserviços, a ausência desse arquivo
levou à remoção automática do Zuul durante a etapa de filtragem.

5 Ameaças à Validade

Tendo como base o estudo de (PETERSEN; GENCEL, 2013), foram elencadas posśıveis
ameaças à validade considerando uma visão pragmática.

Validade Externa. A capacidade de generalização do estudo está limitada ao con-
texto de repositórios de software livre. Nesse cenário, buscamos o tanto quanto posśıvel,
dadas as limitações da API do GitHub, recuperar o máximo de repositórios para um con-
junto de análises automatizadas e manuais. O dataset de microserviços não abrange todas
as posśıveis implementações dessa arquitetura. No entanto, na tentativa de mitigar essa
ameaça, não foi aplicado nenhum filtro relacionado a plataformas tecnológicas, exceto o
Dockerfile, que é, de fato, o padrão para a conteinerização de microsserviços.

Validade de Constructo. Parte da análise dos repositórios possui caráter subjetivo,
uma vez que envolve a análise manual da composição arquitetural desses repositórios. Como
forma de mitigar essa ameaça, a escolha dos repositórios que compõem o dataset foi revisada
por três pesquisadores, o que aumenta a confiabilidade do processo de seleção e acurácia na
aplicação dos critérios pré-estabelecidos.

Validade Interna. Ao filtrar os repositórios a partir de parâmetros como número de es-
trelas, número de contribuidores e presença de arquivos Dockerfile no projeto, introduzimos
uma ameaça à validade interna do estudo, pois passamos a estabelecer uma relação entre
esses parâmetros e a relevância dos repositórios selecionados. Para mitigar essa ameaça,
os parâmetros da query e das etapas de filtragem foram definidos de forma incremental,
utilizando o Spinnaker como aplicação de controle e verificando se alterações nos filtros
mantinham, até o final da execução do estudo, repositórios já reconhecidos como aplicações
reais em microserviços.

Confiabilidade. A capacidade de reproduzir o estudo está limitada tanto às alterações
naturais dos repositórios ao longo do tempo quanto ao caráter subjetivo da análise manual
realizada por cada pesquisador. Para mitigar esse problema e aumentar a confiabilidade, a
maior parte dos filtros aplicados aos repositórios retornados foi automatizada, garantindo
que diferentes execuções do notebook em Python produzam resultados consistentes entre

https://github.com/open-hand/choerodon
https://github.com/Netflix/zuul


24 Araújo, França

si, ainda que haja variabilidade inerente aos repositórios analisados.

6 Considerações Finais

A partir do método de Mineração de Repositórios de Software, foi posśıvel construir um
dataset composto exclusivamente por aplicações reais baseadas na arquitetura de micro-
serviços. Utilizando requisições à API do GitHub, processos de filtragem automatizados e
etapas de análise e seleção manual, partimos de um total de 1.969 repositórios para chegar
a um conjunto final de 9 aplicações que atendem aos critérios definidos, incluindo atividade
recente, presença de conteinerização e evidências de uso em contextos reais. O dataset
resultante está acompanhado de metadados que descrevem caracteŕısticas relevantes para
outros estudos, como o número de contribuidores, a quantidade de microserviços, a pre-
sença de CI/CD, a linguagem predominante e a organização em mono-repo ou multi-repo.
Com base nessas informações, pesquisadores podem selecionar as aplicações que mais se
alinham aos objetivos de seus estudos, semelhantemente ao estudo de (D’ARAGONA et
al., 2024), porém com foco espećıfico em aplicações com evidências de uso em produção.
Como trabalhos futuros, é posśıvel ampliar o dataset variando a query de busca e a fonte dos
repositórios analisados, bem como extrair novos metadados que representem aspectos ainda
não explorados neste estudo, como métricas de evolução, caracteŕısticas de observabilidade
ou informações mais detalhadas sobre o ambiente de execução das aplicações.

Referências

D’ARAGONA, D. A. et al. A dataset of microservices-based open-source projects. In:
Proceedings of the 21st International Conference on Mining Software Repositories. [S.l.:
s.n.], 2024. p. 504–509.

FRANCESCO, P. D.; LAGO, P.; MALAVOLTA, I. Architecting with microservices: A
systematic mapping study. Journal of Systems and Software, v. 150, p. 77–97, 2019.
Dispońıvel em: ⟨https://doi.org/10.1016/j.jss.2019.01.001⟩.

JARAMILLO, D.; NGUYEN, D. V.; SMART, R. Leveraging microservices architecture by
using docker technology. In: IEEE SoutheastCon 2016. Norfolk, VA, USA: IEEE, 2016.
p. 1–5. Dispońıvel em: ⟨https://ieeexplore.ieee.org/document/7506647⟩.

KIM, S. et al. An empirical study of just-in-time defect prediction in open source software.
In: Proceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014). [S.l.]: ACM, 2014. p. 182–191. ISBN 978-1-4503-2883-8.

LEWIS, J.; FOWLER, M. Microservices. 2014. Dispońıvel em: ⟨https://martinfowler.
com/articles/microservices.html⟩.

NAGAPPAN, N.; BALL, T.; ZELLER, A. Using history to improve software fault
prediction models. In: Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014). [S.l.]: ACM, 2014. p. 88–97. ISBN 978-1-4503-2883-8.

https://doi.org/10.1016/j.jss.2019.01.001
https://ieeexplore.ieee.org/document/7506647
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


Dataset de Microserviços 25

PETERSEN, K.; GENCEL, C. Worldviews, research methods, and their relationship to
validity in empirical software engineering research. In: 2013 Joint Conference of the 23rd
International Workshop on Software Measurement (IWSM) and the Eighth International
Conference on Software Process and Product Measurement (Mensura). [S.l.: s.n.], 2013.
Kai Petersen: School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden;
Cigdem Gencel: Facult of Computer Science, Free University of Bolzano/Bozen, Italy.

RAY, B. et al. A large-scale study of programming languages and code quality in github.
In: Proceedings of the 9th Working Conference on Mining Software Repositories (MSR
2012). [S.l.]: IEEE, 2012. p. 90–99. ISBN 978-1-4673-1761-0.

REISINGER, M. et al. The issue of monorepo and polyrepo in large enterprises. In:
International Conference on Software Engineering Advances. [S.l.: s.n.], 2019.

SAHA, R. K. et al. Understanding the evolution of type-3 clones: An exploratory study.
In: Proceedings of the 10th Working Conference on Mining Software Repositories (MSR
2013). [S.l.]: IEEE Computer Society, 2013. p. 139–148. ISBN 978-1-4673-2936-1.

VIDONI, M. A systematic process for mining software repositories: Results from a
systematic literature review. Information and Software Technology, Elsevier, v. 144, p.
106791, 2022. Dispońıvel em: ⟨https://doi.org/10.1016/j.infsof.2021.106791⟩.

https://doi.org/10.1016/j.infsof.2021.106791

	Introdução
	Background
	Arquitetura de Microserviços
	Mono-repositório e Multi-repositórios
	Docker na arquitetura de microserviços
	Mineração de Repositórios de Software

	Métodos
	Critérios de Seleção
	Critérios de Exclusão
	Fonte da Busca
	Procedimento de Busca
	Limitações da API do GitHub
	Ordenação por Estrelas
	Processamento Paralelo

	Seleção Automatizada dos Repositórios
	Extração de Informações Necessárias
	Filtrar Número de Contribuidores
	Filtrar About e Topics
	Filtrar pelo README
	Filtrar por Dockerfile

	Seleção Manual dos Repositórios
	Extração de Metadados

	Resultados
	Visão Geral dos Repositórios
	Repositórios Conhecidos Não Retornados

	Ameaças à Validade
	Considerações Finais

