2

4

4

Um Dataset de Aplicacoes de
Microservicos em Producao

Pedro Henrique Rodrigues de Araijo
Breno Bernard Nicolau de Franga

Relatério Técnico - 1C-PFG-25-46
Projeto Final de Graduagdo
2025 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de tnica responsabilidade dos autores.




Um Dataset de Aplicacoes de Microservigos em Producao

Pedro Henrique Rodrigues de Aratjo Breno Bernard Nicolau de Franga

Resumo

Atualmente, a arquitetura de microservigos estd amplamente presente em aplicacoes
do mercado, consolidando-se como um dos principais padroes para sistemas distribuidos
em nuvem, devido a modularidade, escalabilidade e independéncia de seus componentes.
Em razao dessa popularidade crescente, diversas pesquisas académicas dependem de
aplicagoes baseadas em microservigos para servir de benchmarks em seus estudos.

Segundo (D’ARAGONA et al., 2024), grande parte desses trabalhos fundamenta
suas andlises em aplicagoes desenvolvidas especificamente para fins experimentais, o
que pode introduzir vieses relevantes nos resultados. Com o objetivo de mitigar esse
problema, os autores propuseram a criagao e a disponibilizagao de um dataset composto
por aplicacoes open source desenvolvidas segundo a arquitetura de microservigos.

Este estudo também tem como objetivo disponibilizar um dataset ptiblico de aplicagoes
baseadas em microservigos. Diferentemente de (D’ARAGONA et al., 2024), contudo,
este trabalho se restringe a aplicacoes reais, excluindo provas de conceito e repositorios
de carédter experimental ou simplificado. O intuito é reduzir vieses e representar de
forma mais fidedigna o ecossistema real de aplicagoes que adotam essa arquitetura.

Para atingir esse objetivo, realizou-se um estudo de Mineracao de Repositérios de
Software (MSR), no qual foi desenvolvido um notebook em Python que consultou a API
do GitHub. Inicialmente, foram identificados 1.969 repositérios; apds uma selegao crite-
riosa, 126 foram selecionados para anélise manual. Ao final desse processo, obtiveram-se
9 repositorios que atendiam aos critérios estabelecidos, compondo assim o dataset final
de aplicagoes reais baseadas em microservicos.

1 Introducao

A arquitetura de microservicos tem se consolidado como uma das abordagens mais relevan-
tes para o desenvolvimento de sistemas distribuidos e aplicacbes em nuvem, impulsionada
pela necessidade de maior escalabilidade, modularidade e agilidade na entrega de software
(LEWIS; FOWLER, 2014). Segundo Fowler e Lewis, essa arquitetura consiste na decom-
posicao de uma aplicagdo em pequenos servicos independentes, cada um responsavel por
uma, funcionalidade especifica, executando em seu préprio processo e comunicando-se por
mecanismos leves, o que possibilita ciclos de desenvolvimento auténomos, a adocao de dife-
rentes tecnologias e a escalabilidade seletiva (LEWIS; FOWLER, 2014).

Apesar de seus beneficios, a adocao de microservigos introduz desafios significativos,
como a coordenac¢ao entre servigcos e o maior investimento em automacao e processos de
DevOps, elementos também destacados por (LEWIS; FOWLER, 2014). Tais desafios tém
motivado a intensificacdo de estudos empiricos sobre microservigos, porém, grande parte



2 Aratijo, Franca

dessas pesquisas ainda se baseia em aplicacoes feitas sob medida, como provas de conceito
e repositérios simplificados, o que pode introduzir vieses e limitar a validade externa dos
resultados (D’ARAGONA et al., 2024).

Diante dessa limitacao, (D’ARAGONA et al., 2024) argumenta que pesquisas sobre mi-
croservigos frequentemente se baseiam em repositérios desenvolvidos exclusivamente para
o estudo. A partir disso, (D’ARAGONA et al., 2024) realizou um estudo em larga escala
para identificar e catalogar projetos open-source baseados na arquitetura de microservigos.
Os pesquisadores partiram de uma base com 389.559 repositérios que, apds a aplicacao de
filtros, foi reduzida para um conjunto de 3.804 repositérios. Apds uma etapa de rotulagem
manual, o dataset resultante apresentou 378 aplicacoes com mais de 100 commits e com pelo
menos trés microservicos, que incluem aplicagoes académicas, industriais e exemplos. Para
cada repositorio, foi documentado o tamanho do projeto, nimero de contribuidores, objetivo
e fundagao de apoio. Esse dataset proposto por (D’ARAGONA et al., 2024) permite que a
comunidade escolha um repositorio mais alinhado com o objetivo de cada pesquisa. Apesar
de (D’ARAGONA et al., 2024) identificar corretamente o problema dos vieses decorrentes
do uso de aplicacoes nao representativas, o dataset proposto ainda inclui uma diversidade de
aplicacoes que abrangem exemplos, provas de conceito e projetos didaticos, o que pode nao
eliminar completamente o viés em estudos que buscam representar a realidade de sistemas
em producao. Em contraste, este estudo tem como objetivo construir e disponibilizar um
dataset publico formado exclusivamente por aplicacoes reais desenvolvidas segundo a arqui-
tetura de microservicos, excluindo projetos experimentais ou de carater didatico. Para isso,
realizou-se um estudo de Mineracao de Repositérios de Software (MSR) utilizando a API do
GitHub, combinando filtragem automatizada e andlise manual na selecdo de repositorios.
O resultado obtido é um conjunto de aplicacoes reais que pode servir de base para estudos
futuros, contribuindo para a reducao de vieses nas pesquisas sobre a arquitetura de micro-
servigos. O restante deste trabalho estd organizado da seguinte forma. A Segdo 2 apresenta
o contexto para microservigos, Docker em microservicos e o processo de Mineragao de Re-
positérios de Software. A Segao 3 descreve o processo de selegao dos repositérios. A Segao
4 apresenta o dataset resultante do processo de selecao. A Secao 5 discute as ameagas a
validade do dataset construido e, por fim, a Se¢cdo 6 apresenta as consideracoes finais deste
trabalho.

2 Background

A arquitetura de microservicos tem sido fortemente discutida tanto na academia como na
induistria por se tratar de uma alternativa a arquitetura monolitica (LEWIS; FOWLER,
2014). Nesse contexto, a forma como o c6digo é organizado em repositérios, bem como a
estratégia de conteinerizacao adotada, influencia diretamente a forma como os microservicos
sao desenvolvidos, implantados e estudados empiricamente.

2.1 Arquitetura de Microservigos

A arquitetura de microservigos, descrita por Lewis e Fowler em (LEWIS; FOWLER, 2014),
propoe o desenvolvimento de sistemas como um conjunto de pequenos servigos de respon-



Dataset de Microservigos 3

sabilidade bem definida, que executam em processos isolados e se comunicam por mecanis-
mos leves, como APIs HTTP ou solugoes de mensageria. Cada servigo pode ser desenvol-
vido, implantado e escalado de forma independente, permitindo ciclos de desenvolvimento
autonomos e a adocao de diferentes tecnologias por equipe ou por servico. Entre as ca-
racteristicas recorrentes destacam-se a organizacao do sistema em torno de capacidades de
negbcio, a automatizacao de pipelines de implantagao, a observabilidade distribuida e o
forte alinhamento com préticas de DevOps (FRANCESCO; LAGO; MALAVOLTA, 2019).
Em contrapartida, o aumento do nimero de servigos introduz complexidade operacional,
exigindo mecanismos apropriados de orquestracao, descoberta de servigos, monitoramento
e tratamento de falhas.

2.2 Mono-repositorio e Multi-repositérios

No contexto de microservigos, a organizagao de repositérios tende a seguir dois princi-
pais padroes: mono-repo e multi-repo. No primeiro padrao, todo o cédigo da aplicacao é
concentrado em tnico repositério, enquanto no segundo ele é dividido em multiplos repo-
sitérios independentes. Segundo (REISINGER et al., 2019), o modelo mono-repo facilita
a visibilidade do sistema como um todo, permitindo maior padronizacao de praticas de
desenvolvimento e facilitando refatoracoes que afetem diferentes partes da aplicagdo. Por
outro lado, a organizacao em multi-repo oferece maior isolamento e modularidade entre os
microservigos da aplicagao, permitindo mais autonomia em todo o ciclo de desenvolvimento,
incluindo versionamento e pipelines de DevOps separados.

2.3 Docker na arquitetura de microservigos

Segundo (JARAMILLO; NGUYEN; SMART, 2016), a ferramenta Docker tornou-se uma
tecnologia disruptiva ao transformar a forma como aplicagoes sao empacotadas, distribuidas
e executadas, oferecendo contéineres leves, portéteis e facilmente replicaveis (JARAMILLO;
NGUYEN; SMART, 2016). Cada contéiner fornece um ambiente isolado que encapsula
exatamente as dependéncias necessarias para a execucao de um servigo, o que se alinha
diretamente ao principio de independéncia e autonomia dos microservicos.

Como destacado por (JARAMILLO; NGUYEN; SMART, 2016), o uso de contéineres
facilita a automacao ao longo de todo o ciclo de vida do software, favorecendo pipelines de
integragao e entrega continua, além de reduzir o acoplamento entre equipes, que passam
a construir, testar e implantar seus servigos de forma mais isolada. Em projetos mono-
repo, multiplos servigos podem compartilhar o mesmo repositério, mas possuir Dockerfiles
distintos e pipelines de CI/CD especificos. Em projetos multi-repo, é comum que cada
repositorio esteja diretamente associado a uma imagem de contéiner ou a um conjunto
pequeno de servigos relacionados.

2.4 Mineracao de Repositérios de Software

O método de Mineracao de Repositérios de Software (MSR) dedica-se & extracao e andlise
de dados provenientes de repositérios de software. Esses dados permitem investigar praticas



4 Aratijo, Franca

de desenvolvimento, evolucao de sistemas e fenémenos relacionados a engenharia de software
empirica (VIDONI, 2022)

Segundo (VIDONTI, 2022), estudos MSR geralmente envolvem trés etapas: i) selecao de
repositérios, ii) extragdo de dados relevantes e iii) anélise sistemética desses dados para
responder as questoes de pesquisa. O autor ressalta que a conducao inadequada dessas
etapas, especialmente a auséncia de critérios de selecao transparentes e a falta de discussao
de ameagas a validade, pode comprometer a confiabilidade dos resultados e dificultar sua
replicagao (VIDONI, 2022). O método de MSR pode ser aplicado em diversos contextos,
como no estudo da evolugao de software (SAHA et al., 2013) (RAY et al., 2012) e na
predicao de defeitos (KIM et al., 2014) (NAGAPPAN; BALL; ZELLER, 2014). Exemplos
de estudos MSR incluem a investigacao da evolucao de clones de cddigo em sistemas open
source (SAHA et al., 2013), anélises em larga escala relacionando linguagens de programagao
e qualidade de cédigo em projetos do GitHub (RAY et al., 2012) e estudos de predicao de
defeitos baseados em histérico de mudancas e métricas extraidas de repositérios (KIM et
al., 2014; NAGAPPAN; BALL; ZELLER, 2014). Esses trabalhos ilustram como diferentes
tipos de dados provenientes de repositorios podem ser explorados para responder questoes
sobre desenvolvimento de software.

3 Meétodos

A fim de responder a seguinte questao de pesquisa, descrevemos o método de pesquisa nessa
secao.

RQ Quais sao alguns dos repositérios open-source que representam aplicagdes reais em
producao desenvolvidas na arquitetura de microservigos?

3.1 Critérios de Selecao

A seguir, detalham-se cada um dos critérios utilizados para determinar se um repositério
poderia ser incluido neste estudo. Tais critérios foram definidos para identificar aplicagoes
reais baseadas na arquitetura de microservicos, com documentacao suficiente e atividade
recente que permitisse sua avaliacao.

e Disponibilidade na plataforma GitHub: Somente foram considerados repositérios hos-
pedados no GitHub. Essa decisao se justifica pelo fato da plataforma ser amplamente
adotada pela comunidade open-source, oferecendo uma API unificada que permite
a extracao estruturada de metadados de forma reprodutivel. A utilizacdo de uma
unica fonte reduz a variabilidade, padroniza a coleta e estd em linha com estudos de
mineracao de repositorios de software.

e Minimo de 100 estrelas: Repositorios incluidos deveriam possuir pelo menos 100 es-
trelas. Esse critério funciona como um indicador indireto de relevancia, visibilidade
e adocao do projeto, reduzindo a chance de que aplicagoes pouco utilizadas ou sem



Dataset de Microservigos 5

tragdo comunitaria fossem incorporadas ao dataset. Projetos amplamente reconhe-
cidos tendem a refletir praticas mais préximas das adotadas em contextos reais de
producao.

e Minimo de trés contribuidores: A exigéncia de ao menos trés contribuidores distin-
tos buscou evitar repositorios mantidos exclusivamente por uma tnica pessoa, cuja
representatividade como aplicagao real poderia ser limitada. Projetos com multiplos
contribuidores tendem a apresentar maior maturidade organizacional, diversidade de
decisoes arquiteturais e maior probabilidade de estarem inseridos em processos cola-
borativos tipicos de sistemas distribuidos.

e Atividade recente: Apenas repositérios que apresentaram algum commit no periodo
de até um ano anterior a mineracao foram incluidos. Esse critério garante que as
aplicacoes selecionadas estejam em uso ou manutengao ativa, alinhadas ao objetivo de
identificar sistemas reais e contemporaneos. Projetos abandonados poderiam compro-
meter a representatividade do dataset e distorcer conclusoes sobre ecossistemas atuais
de microservicos.

e Aceitacao de monorepos, microservicos isolados e plataformas baseadas em micro-
servicos: Além dos requisitos estruturais e de atividade, este estudo também conside-
rou diferentes formas de organizacao arquitetural que aparecem em aplicagoes reais
baseadas em microservicos. Foram incluidos repositérios estruturados como mono-
repos, nos quais diversos servigos coexistem em um unico cédigo-fonte, bem como
microservigos isolados pertencentes a aplicacbes multirepo. Essa flexibilidade busca
refletir a variedade de praticas de versionamento adotadas na industria, evitando que
o dataset final fique restrito a um tnico modelo de organizagao.

e Documentagao predominantemente em inglés: Somente foram incluidos repositérios
cujo README e codigo estivessem predominantemente em inglés. Esse critério teve
carater pratico: a andlise manual e a interpretacao arquitetural tornam-se mais con-
sistentes quando realizadas em um idioma compartilhado pelos pesquisadores. Além
disso, o inglés constitui o padrao de comunicacao da maior parte dos projetos open-
source.

Também foram incluidos repositérios que representam plataformas operacionais ou sis-
temas de suporte cujo funcionamento interno depende de miltiplos servigos independentes.
Embora tais plataformas nao se configurem como uma aplicacdo tradicional unica, sao
compostas por componentes distribuidos que interagem entre si, implementando, de fato,
principios fundamentais da arquitetura de microservigos. Assim, mesmo quando sua fi-
nalidade ¢é habilitar, gerenciar ou coordenar outras aplicagoes, a estrutura interna dessas
plataformas atende aos critérios estabelecidos para este estudo.

3.2 Critérios de Exclusao

Apds a aplicagao dos critérios de inclusao, um segundo conjunto de critérios foi utilizado
para identificar repositdorios que, embora inicialmente elegiveis, nao atendiam ao objetivo



6 Araitijo, Franga

de identificar aplicacoes reais estruturadas como microservigos.

e Auséncia de README: Repositérios sem README foram excluidos imediatamente,
pois a falta de documentacao minima impede a identificacdo do objetivo, escopo e
arquitetura do projeto. A auséncia desse arquivo compromete significativamente qual-
quer tentativa de andlise e caracterizacao.

e Auséncia de Dockerfile ou artefatos equivalentes: Foram excluidos repositorios que
nao apresentavam Dockerfile ou arquivos equivalentes de definicao de contéineres. A
conteinerizacao é hoje um elemento fundamental na implantacao e operacao de micro-
servigos; portanto, a auséncia desse artefato sugere que o repositério nao representa
um servico executavel de forma independente ou alinhado as praticas contemporaneas.

e Projetos experimentais ou didaticos: Repositérios classificados como experimentais —
incluindo provas de conceito, exemplos de cursos, materiais diddticos e demonstragoes
— foram excluidos. Embora esses projetos frequentemente mencionem microservicos,
sua finalidade pedagdgica ou exploratéria nao reflete cenarios reais de produgao. A
exclusao foi definida por meio de palavras-chave no README e anélise manual.

e Ferramentas e bibliotecas que nao implementam microservigos: Por fim, foram ex-
cluidos repositérios que, embora mencionassem microservicos em sua descricao, nao
implementavam essa arquitetura. Projetos como ferramentas, bibliotecas, frameworks
ou solugoes auxiliares — por exemplo, sistemas de tracing, gateways ou mecanismos
de observabilidade — nao configuram aplicacbes compostas por multiplos servigos
independentes e, portanto, ndo atendem ao foco deste estudo.

3.3 Fonte da Busca

O GitHub foi selecionado como fonte priméria devido a sua ampla adogdao na comunidade
open source e ao grande volume de projetos ativos. Além disso, a plataforma fornece uma
API que permite realizar buscas complexas, facilitando a aplicacdo de técnicas de MSR.
Como controle para validagao dos critérios, utilizou-se o Spinnaker, um sistema reconhecido
na literatura como exemplo de aplicagao real composta por diversos microservicos.

A busca pelos repositorios foi conduzida por meio do endpoint de Search Repositories
da API oficial do GitHub, que permite criar consultas estruturadas utilizando operadores
especificos. Segundo a documentacao da GitHub REST API, uma query pode ser cons-
truida combinando palavras-chave, filtros por campos, operadores relacionais e parametros
de ordenacao.

3.4 Procedimento de Busca

A consulta final utilizada é composta pelos seguintes elementos, conforme descrito na do-
cumentacao oficial:

e Search keywords: termos livres que descrevem o conteido desejado no repositorio.

1 query = "microservices distributed"


https://github.com/spinnaker

Dataset de Microservigos 7

e in: especifica onde os termos devem ser procurados (titulo, descrigago ou README).

1 query = "microservices in:description"

e sort: define o atributo usado para ordenar resultados (e.g., stars, updated).

1 query = "microservices sort:stars"

e stars: filtra repositérios pelo nimero de estrelas utilizando operadores relacionais (=,
>, <, >, <).

1 query = "microservices stars:>100"

e pushed: filtra por data de ultimo commit, permitindo garantir que apenas projetos
ativos sejam retornados.

1 query = "microservices pushed:>=2020-01-01"

Com isso, temos a seguinte query final:

query = "microservice OR service OR micro-service in:description sort:
stars stars:>=100 pushed:>={QUERY_DATE_THRESHOLD}"

Onde QUERY _DATE_THRESHOLD ¢ definido como a data de 12 meses atrds, no
formato YYYY-MM-DD:

QUERY_DATE_THRESHOLD = (datetime.now() - relativedelta(months=12)).
strftime ("%Y-%m-%d")

3.4.1 Limitacoes da API do GitHub

A API restringe os resultados a, no maximo, 1.000 repositérios por consulta. Mesmo que a
busca retorne mais resultados, apenas os primeiros 1.000 podem ser paginados e consultados
pela APIL. Essa restricdo influenciou a quantidade de repositérios encontrados, visto que,
para aumentar o nimero de repositérios alcancados pela pesquisa, seria necessario ajustar
os parametros da query de busca.

Ainda, o Github restringe a quantidade de requisicbes que podem ser realizadas por
minuto e, portanto, foram necessarias duas estratégias para contornar esse problema:

e Salvamento local de resultado de requisicoes: Uma estratégia adotada para
reduzir o nimero de requisigoes foi salvar localmente os resultados das fases de pro-
cessamento que necessitavam que chamadas fossem feitas para a API. Com isso, foi
possivel reutilizar os dados de chamadas anteriores, assim como consultar a evolugao
dos repositérios durante o processamento.

1 def save_json(data, filename=FILENAME, folder=INITIAL_DATA_FOLDER,
timestamp=False, total_count=None):
nnn
3 Save a Python object (list/dict) as JSON
4 If timestamp=True, appends a date/time string to the filename.
5 Includes total_count if provided.



Aratijo, Franca

if timestamp:
ts = time.strftime ("%Y-%m-%d_%H-%M-%S")
name, ext = filename.rsplit(’.’, 1)
filename = f"{name}_{ts}.{extl}"

path = f"{folder.rstrip(’/’)}/{filenamel}"

# Ensure the directory exists before saving
os .makedirs (os.path.dirname (path), exist_ok=True)

data_to_save = {
"repos": data,
"total_count": total_count
¥

with open(path, ’w’) as f:
json.dump(data_to_save, f, indent=2)

print (f"Saved JSON to: {pathl}")
return path

Listing 1: Funcao para salvar o resultado das requisi¢oes

def load_json(filename=FILENAME, folder=INITIAL_DATA_FOLDER, newest
=True) :

nmnn

Load a JSON file.

If newest=True, automatically loads the most recently modified
file

matching the base filename (e.g., repos_*.json).

Returns the data and total_count if available.

nmnn

folder = folder.rstrip(’/’)

base, ext = os.path.splitext(filename)

# Ensure the folder exists before trying to list its contents
if not os.path.exists(folder):
raise FileNotFoundError (f"Folder ’{folder}’ not found.
Please ensure data is mined or placed in the correct location.")

if newest:
candidates = [
os.path.join(folder, f)
for f in os.listdir (folder)
if f.startswith(base) and f.endswith(ext)

if not candidates:
raise FileNotFoundError (f"No files matching ’{basel}x*{
ext}’ found in {folder}")
path = max(candidates, key=os.path.getmtime)
print (f"Newest file detected: {os.path.basename(path)l}")
else:
path = f"{folder}/{filenamel}"



Dataset de Microservigos 9

with open(path, ’r’) as f:
data_loaded = json.load(f)

print (f"Loaded JSON from: {pathl}")
if type(data_loaded) is dict and "repos" in data_loaded:

return data_loaded.get("repos"), data_loaded.get("total_count

return data_loaded, None

Listing 2: Funcao para carregar um arquivo salvo anteriormente

Funcao de sleep: A outra estratégia adotada foi adicionar uma fungao para detectar
quando a resposta da API indicava que o limite de requisi¢oes havia sido atingido e,
a partir disso, aguardar para que o restante das requisigoes pudesse ser completado.

# A shared lock to ensure only one thread prints the rate limit
warning and runs the tqdm progress bar
RATE_LIMIT_LOCK = threading.Lock()

def sleep_if_needed(response, fallback_delay=5):

Waits if the response indicates rate limit exceeded.
nnn

remaining = response.headers.get("X-Ratelimit-Remaining")
reset_time = response.headers.get("X-RatelLimit-Reset")
wait_seconds = 0
desc = ""
if remaining is not None and remaining == "0":
reset_timestamp = int(reset_time) if reset_time else Nomne
wait_seconds = max(0, reset_timestamp - int(time.time()))
if reset_timestamp else fallback_delay
desc = f"Rate limit hit. Waiting {wait_seconds} seconds..."
elif response.status_code == 403:
wait_seconds = fallback_delay

desc = f"Received 403 (possible rate limit). Waiting {
fallback_delay} seconds..."

if wait_seconds > O:
# Try to acquire the lock without blocking. Only the thread
that gets the lock proceeds to print.
if RATE_LIMIT_LOCK.acquire(blocking=False):
try:
# The first thread prints the message and runs the
visual countdown.
print (desc, flush=True)
for _ in trange(wait_seconds, desc="Waiting", unit=
"sec"
time.sleep (1)
finally:



10 Araitijo, Franga

31 # Release the lock after waiting.

32 RATE_LIMIT_LOCK.release ()

33 else:

34 # Other threads that couldn’t acquire the lock will
wait silently to respect the rate limit.

35 time.sleep(wait_seconds)

Listing 3: Fungao para aguardar em caso de limite de requisi¢oes da API

3.4.2 Ordenagao por Estrelas

Nessa primeira versao da string de busca (Segao 3.4), estd ausente o parametro sort e, por
isso, os resultados retornados estarao ordenados por best_match. A primeira execucao
completa do notebook foi realizada com essa query, que apresentou resultados satisfatorios,
com repositérios presentes nos resultados finais. No entanto, essa string de busca néao retorna
nenhum dos repositorios da aplicacao de controle Spinnaker, o que torna necessaria a sua
atualizacdo com o parametro sort, presente na string final.

3.4.3 Processamento Paralelo

Para melhorar o desempenho do notebook Python, foram implementadas estratégias de
processamento paralelo utilizando multiplos workers, reduzindo o tempo de execucao entre
as iteragoes do processo de mineragao.

3.5 Selecao Automatizada dos Repositdérios

A selecdo automatizada de repositérios foi dividida em cinco etapas distintas, cada uma
com o objetivo de selecionar repositérios que atendam a algum dos requisitos propostos.

A primeira etapa ocorre logo apds a coleta dos 1.000 repositérios retornados pela API
do Github e consiste na extracao das informagoes necessarias de cada repositério, além de
solicitar a API o nimero de contribuidores de cada um. Na segunda etapa, os repositérios
sao filtrados pelo nimero minimo de contribuidores. Em seguida, na terceira etapa, todos
os repositorios que contiverem alguma palavra da lista de filtros de About e Topics sao
eliminados. De forma semelhante, a quarta etapa também filtra repositérios por meio de
uma lista de palavras, mas agora esse filtro é aplicado no README do repositério. Essas
duas etapas foram separadas porque a lista de palavras a serem buscadas no README
precisa ser mais restrita, devido a maior probabilidade de encontrar falsos negativos ao
aplicar o filtro no README. Por fim, a ultima etapa automaética consiste em verificar a
existéncia de arquivos Docker nos repositorios analisados.

3.5.1 Extracao de Informacgoes Necessarias

Nesta etapa, nenhum repositorio é excluido, visto que o objetivo é apenas selecionar as
informacoes necessarias para o estudo, além de requisitar & API a informacao sobre o niimero
de contribuidores.



18
19

Dataset de Microservicos 11

def get_contributor_count(session: requests.Session, owner: str, repo:
str, anon: bool = True, max_retries: int = 3):

url = f"{GITHUB_BASE_URL}/repos/{owner}/{repo}/contributors?per_page
=1&anon={’true’ if anon else ’false’}"

for _ in range(max_retries):
r = session.get(url)
if r.status_code == 200:

if ’Link’ in r.headers:
for part in r.headers[’Link’].split(’,’):
if ’rel="last"’ in part:
last_url = part[part.find(’<’) + 1l:part.find(’>’
)]
if ’page=’ in last_url:
page_num = last_url.split(’page=’)[-1].split
(’&’) [0]
try:
return int (page_num)
except ValueError:
pass
try:
return len(r. json())
except Exception:
return O

if r.status_code in (403, 502, 503, 504):
sleep_if_needed (r)
continue
else:
return O
return O

Listing 4: Funcao para recuperar o nimero de contribuidores de um repositorio

def worker (item):

owner = item[’owner’][’login’]
repo = item[’name’]
contribs = get_contributor_count(session, owner, repo)

pushed_at = item.get(’pushed_at’)

return {

’name’: repo,

>full_name’: item[’full_name’],

’repo_url’: item[’html_url’],

’owner_name’: owner,

’owner_url’: item[’owner’][’html_url’],

’description’: item.get(’description’),

’fork’: item.get(’fork’),

’stars’: item.get(’stargazers_count’, 0),

’language’: item.get(’language’),

’license_name’: item[’license’][’name’] if item.get(’license’)
els ’No license’,

>topics’: item.get(’topics’, [1),

>forks’: item.get(’forks’, 0),



12 Aratijo, Franca

’open_issues’: item.get(’open_issues’, 0),
>default_branch’: item.get(’default_branch’),
’score’: item.get(’score’),

contributors’: contribs,

’pushed_at’: pushed_at,
3

Listing 5: Funcgao para selecionar apenas as informacoes necessarias dos repositérios

3.5.2 Filtrar Niimero de Contribuidores

Neste passo, sao selecionados apenas repositérios cujo numero de contribuidores, retor-
nados pelo endpoint GITHUB_BASE_URL /repos/{owner}/{repo}/contributors,
seja maior do que 2, em que owner e repo sao varidveis correspondentes ao repositorio
desejado. A seguir, descrevemos a funcao que seleciona as informacdes necessarias e imple-
menta o filtro.

def process_repositories(session: requests.Session, items: list,
min_contributors: int = 3):
print (40 * "=" "Processing repositories...", 40 x "="_  "\n")
if PROCESS_INITIAL_REPOS:
results = []
total_items len(items)
max_workers = min(32, max(l, total_items))
print (£"Using {max_workers} threads to process {total_items}
repositories")

# Increase connection pool size to avoid warnings

adapter = requests.adapters.HTTPAdapter (pool_connections=
max_workers, pool_maxsize=max_workers)

session.mount (’http://’, adapter)

session.mount (’https://’, adapter)

def worker (item) :

owner = item[’owner’][’login’]
repo = item[’name’]
contribs = get_contributor_count(session, owner , repo)

pushed_at = item.get(’pushed_at’)

return {

’name’: repo,

>full_name’: item[’full_name’],

’repo_url’: item[’html_url’],

’owner_name’: owner,

’owner_url’: item[’owner’][’html_url’],

>description’: item.get(’description’),

>fork’: item.get(’fork’),

’stars’: item.get(’stargazers_count’, 0),

>language’: item.get(’language’),

>license_name’: item[’license’][’name’] if item.get(’
license’) else ’No license’,

>topics’: item.get(’topics’, []),

>forks’: item.get(’forks’, 0),



Dataset de Microservigos 13

’open_issues’: item.get(’open_issues’, 0),
’default_branch’: item.get(’default_branch’),
’score’: item.get(’score’),

’contributors’: contribs,

’pushed_at’: pushed_at,

# Executor with manual counter
with concurrent.futures.ThreadPoolExecutor (max_workers=max_workers
) as executor:
futures = [executor.submit(worker, it) for it in items]

for fut in tqdm(concurrent.futures.as_completed(futures),
total=total_items, desc="Processing repos"):

try:
res = fut.result ()
if res[’contributors’] >= min_contributors:

results.append(res)

except Exception as e:

print (f"Error processing repository: {el}", flush=True)

print (f"Processing complete! {len(results)} repositories added.",
flush=True) # Clear the counter line

save_json(results, timestamp=USE_TIMESTAMP, folder=
PROCESSED_INITIAL_DATA_FOLDER, total_count=len(results))

print (f"Repositories that passed the filter (>=3 contributors): {
len(results)}", flush=True)

print ("Data saved and ready for analysis!", flush=True)

return results

else:
results, total = load_json(newest=True, folder=
PROCESSED_INITIAL_DATA_FOLDER)
count = total if total is not None else len(results)

print (f"Repositories that passed the filter (>=3 contributors): {
len(results)}", flush=True)
print ("Data saved and ready for analysis!\n", flush=True)

return results

Listing 6: Fungao que seleciona informagoes necessarias e filtra por niimero de contribuidores

3.5.3 Filtrar About e Topics

Para encontrar a lista de palavras que seria utilizada neste passo e no seguinte, foi reali-
zado um processo iterativo no qual, a cada palavra adicionada, eram analisados quantos
repositérios eram removidos por essa palavra. Caso fosse um nimero relevante, a palavra
era mantida no filtro. A lista de palavras nado poderia remover todos os repositérios da



14 Aratijo, Franca

aplicagdo de controle Spinnaker, e ror isso, essa verificagdo também foi realizada. As pala-
vras adicionadas visam identificar repositérios que nao se encaixam na definicao proposta
de aplicacao real em microservicos.

11

33

A lista final de palavras para o About e Topics foi:

DESC_AND_TOPICS_FILTER_WORDS = ["sample", "demo", "example", "sample-app

n
>

"demo-app", "example-app", "workshop",

"hackathon", "course", "guide", "papers",
"paper", "CRUD", "template", "masterclass",
"setup", "toolkit", "framework", "library",
"boilerplate", "starter"]

def filter_repos_by_description_and_topics(repos):
Filters a list of repositories based on keywords in their
description and topics.

Args:
repos: List of repositories (dictionaries).

Returns:
A tuple containing:
- final_repositories: List of repositories that do not
contain filter words.
- wrong_repositories: List of repositories that contain

filter words.
nnn

wrong_repositories = []
final_repositories = []
print (40 * "=","Applying description and topics filter...", 40 *x "="
s ||\n||)
for repo in tqdm(repos, desc="Filtering descriptions"):
is_wrong = False
description = repo.get("description", "").lower ()

topics = repo.get("topics", [])

for word in DESC_AND_TOPICS_FILTER_WORDS:
if word in description or any(word in topic for topic in

topics):
wrong_repositories.append(repo)
is_wrong = True
break

if not is_wrong:
final _repositories.append(repo)

print (f"Description and topics filter applied.")

print (f"Repositories that passed the filter: {len(final_repositories
")

print (f"Repositories that were filtered out: {len(wrong_repositories

)I\n")



19

Dataset de Microservigos 15

return final_repositories, wrong_repositories

Listing 7: Fungao para filtrar repositérios por palavras no About e nos Topics

3.5.4 Filtrar pelo README

Semelhante ao passo anterior, o mesmo processo iterativo para a escolha de palavras foi
aplicado neste passo. No entanto, a lista de palavras acabou sendo menor, pois muitas
das palavras utilizadas anteriormente removeriam repositorios da aplicagao de controle,
como, por exemplo, a palavra ”example”, presente em READMESs que apresentam trechos
de codigo de exemplo. Além disso, devido a os arquivos README serem escritos em
Markdown, muitas palavras acabam ocorrendo dentro de hyperlinks. Para resolver esse
problema, foi necessério remover todos os hiperlinks dos arquivos README antes de aplicar
a funcao de filtro.

def _readme_worker (session: requests.Session, repo: dict):

full_name = repo[’full_name’]
url = f"https://api.github.com/repos/{full_namel}/readme"

try:
response = session.get(url, headers=GITHUB_HEADERS)
sleep_if _needed(response)
readme_content = ""
if response.status_code == 200:
content = response.json().get(’content’)
if content:
readme_content = base64.b64decode (content).decode(’utf-8’).lower ()

readme_without_links = re.sub(xr’\(["()]1*\)’, ’*()’, readme_content)
elif response.status_code == 404:
pass
else:
print (£"\nWarning: Could not decode README content for {full_name
T. Status code: {response.status_codel}")
is_wrong = any(w in readme_without_links for w in

README_FILTER_WORDS)
return repo, is_wrong
except Exception as e:
print (£"\nError processing README for {full_namel}: {el}")
return repo, False

Listing 8: Fungao auxiliar para carregar e limpar o conteiiddo do README

def filter_repos_by_readme(session: requests.Session, repos, folder_final=
README_DATA_FOLDER, folder_wrong=README_REMOVED_DATA_FOLDER, timestamp=
USE_TIMESTAMP) :

nnn

Filters a list of repositories based on keywords in their README content

Args:
session: The requests session to use for API calls.



40

16

Aratijo, Franca

repos: List of repositories (dictionaries).

folder_final: The folder to save the final results.
folder_wrong: The folder to save the filtered out results.
timestamp: Boolean to append a timestamp to the filename.

Returns:
A tuple containing:

- final _repositories: List of repositories that do not contain
filter words.

- wrong_repositories: List of repositories that contain filter
words .
nmnn
wrong_repositories = []
final_repositories []
total_repos = len(repos)

print (40 * "=","Applying README filter...", 40 % "=", "\n")

if not FILTER_README: # If FILTER_README is False, load data

try:
# Load both final and wrong repositories
final_repositories, _ = load_json(newest=True, folder=
folder_final)
wrong_repositories, _ = load_json(newest=True, folder=

folder_wrong)

print ("Loaded filtered data.")
print (f"Repositories that passed the filter: {len(
final_repositories)l}")
print (f"Repositories that were filtered out: {len(
wrong_repositories)}\n")
return final_repositories, wrong_repositories
except FileNotFoundError:

print(”Filtered data not found. Please set FILTER_README to True

to run the filter.")
return [], [] # Return empty lists if file not found and not

filtering
print ("Applying README filter...")
max_workers = min(32, max(1l, total_repos))

with concurrent.futures.ThreadPoolExecutor (max_workers=max_workers) as
executor:

futures = [executor.submit(_readme_worker , session, repo) for repo
in repos]

for fut in tqdm(concurrent.futures.as_completed(futures), total=
total_repos, desc="Filtering READMEs"):
try:
repo, is_wrong = fut.result()
if is_wrong:
wrong_repositories.append(repo)
else:
final _repositories.append(repo)
except Exception as e:



1

Dataset de Microservigos 17

print (f"Error processing repository: {el}", flush=True)

print (f"README filter applied.")
print (f"Repositories that passed the filter: {len(final_repositories)l}")
print (f"Repositories that were filtered out: {len(wrong_repositories)l}\n

ll)

if SAVE_JSON:
save_json(final_repositories, folder=folder_final, filename="
repos_readme_filter.json", timestamp=timestamp)
save_json(wrong_repositories, folder=folder_wrong, filename="
repos_readme_removed_filter. json", timestamp=timestamp)

return final_repositories, wrong_repositories

Listing 9: Fungao para filtrar repositérios com base no conteido do README

3.5.5 Filtrar por Dockerfile

Por fim, o 1dltimo passo da selecao automatizada foi a filtragem de repositérios que nao
possuiam Dockerfile. Para isso, foram feitas novas requisi¢bes & API do GitHub, com o
intuito de obter todas as linguagens presentes em cada repositério. Como descrito na
Secao 2.3, Docker se alinha diretamente com principios da arquitetura de microservigos e,
por conta disso, decidiu-se selecionar apenas repositorios que apresentem algum Dockerfile,
de forma semelhante ao que foi feito em (D’ARAGONA et al., 2024). E muito pouco
provavel que um repositério que implemente um microsservigo real nao tenha sua definigao
em contéineres.

def _language_worker (session: requests.Session, repo: dict):

full_name = repo[’full_name’]
url = f"{GITHUB_BASE_URL}/repos/{full_name}/languages"

try:
response = session.get(url, headers=GITHUB_HEADERS)

sleep_if_needed(response)

languages = {}

if response.status_code == 200:
languages = response. json ()
else:

print (f"\nWarning: Could not fetch language data for {full_namel.
Status code: {response.status_codel}")

if "Dockerfile" in languages:
return repo
return None

except Exception as e:
print (£"\nError processing language data for {full_namel}: {e}")
return None

Listing 10: Funcgao para recuperar linguagens do repositério e filtrar aqueles sem Dockerfile



18 Araitijo, Franga

1 def filter_repos_by_language (session: requests.Session, repos,folder=
LANGUAGES_DATA_FOLDER, timestamp=USE_TIMESTAMP):

2 nmnn

3 Filters a list of repositories to keep only those that have Dockerfile
as a language.

5 Args:

6 session: The requests session to use for API calls.
7 repos: List of repositories (dictionaries).

8 folder: The folder to save the results.

9 timestamp: Boolean to append a timestamp to the filename.
10
11 Returns:

12 A list of repositories that have Dockerfile as a language.
13 nmnn

14 filtered_repos = []

15 total_repos = len(repos)

16

17 print (40 * "=","Applying language filter...", 40 *x "=", "\n")

18

19 if not FILTER_LANG: # If FILTER_LANG is False, load data

20 try:

21 filtered_repos, _ = load_json(newest=True, folder=folder,
filename="repos_lang_filter.json")

22 print (Loaded filtered data.")

23 print (f"Repositories that passed the filter: {len(filtered_repos
I

24 return filtered_repos

25 except FileNotFoundError:

26 print ("Filtered data not found. Please set FILTER_LANG to True
to run the filter.")

27 return [] # Return empty list if file not found and not
filtering

28

29

30 # If FILTER_LANG is True, proceed with filtering

31 print ("Applying language filter...")

32 max_workers = min(32, max(l, total_repos))

33

34 with concurrent.futures.ThreadPoolExecutor (max_workers=max_workers) as
executor:

35 futures = [executor.submit(_language_worker , session, repo) for repo

in repos]

37 for fut in tqdm(concurrent.futures.as_completed(futures), total=
total_repos, desc="Filtering languages"):

38 try:

39 repo = fut.result ()

40 if repo:

41 filtered_repos.append(repo)

42 except Exception as e:

43 print (f"Error processing repository: {e}", flush=True)

45 print (f"Language filter applied.")



47
18

49

50

Dataset de Microservigos 19

print (f"Repositories that passed the filter: {len(filtered_repos)l}")

if SAVE_JSON:
save_json(filtered_repos, folder=folder, filename="repos_lang_filter
.json", timestamp=timestamp)

return filtered_repos

Listing 11: Funcao para filtrar repositorios que possuam Dockerfile entre suas linguagens

3.6 Selecao Manual dos Repositérios

Apés a etapa de selecdo automatizada, os repositérios restantes passaram por trés novas
etapas de selecao, agora manuais. A primeira etapa consistiu em uma filtragem por idioma.
A segunda etapa consistiu em uma checagem manual do objetivo da aplicacdo. Por fim,
a terceira etapa consistiu em uma andlise arquitetural da aplicagdo. A seguir, resumimos
essas etapas:

1. Remover repositorios com idiomas diferentes do inglés Nesta etapa, foram
removidos todos os repositorios que apresentavam algum idioma diferente do inglés
no README. Neste passo, nao foi feita nenhuma investigacao sobre o objetivo da
aplicacao ou sua arquitetura.

2. Selecao de aplicagoes reais Esta etapa serve como uma validagao adicional dos
filtros automatizados aplicados no README, nos Topics e no About. Nela, foram
procuradas evidéncias sobre o objetivo da aplicacao e sobre se o repositorio poderia
ser considerado uma aplicacao real.

3. Analise arquitetural do repositério Esta etapa constitui uma analise mais apro-
fundada do repositério, buscando entender como sua arquitetura esta estruturada e se
ela pode ser considerada uma aplicacdo de microservigos. Para reduzir vieses, todos
0s repositérios que chegaram a essa etapa foram verificados por outros dois pesquisa-
dores e, apenas se houvesse concordancia entre os trés, o repositério seria considerado
para o dataset.

3.7 Extracao de Metadados

Com os repositorios finais selecionados, foi necessaria a extracao de alguns metadados,
tais como: existéncia de CI/CD, nimero de releases, data da tltima atualiza¢ao, nimero
de contribuidores, quantidade de microservicos, linguagem principal e se o projeto utiliza
mono-repo ou multi-repo.

4 Resultados

A Tabela 1 apresenta o dataset de aplicagoes baseadas na arquitetura de microservigos,
acompanhado de metadados extraidos para auxiliar pesquisadores na selecao das aplicagoes



20 Araitijo, Franga

mais adequadas para seus estudos. A primeira coluna mostra o repositério analisado, que
corresponde ao repositério encontrado e selecionado pela mineracao e nao necessariamente
a toda a aplicacao.

E importante destacar que aplicagdoes compostas por multiplos repositérios, como € o
caso do OpenStack, tiveram mais de um repositério identificado durante a etapa de MSR.
Contudo, para evitar duplicidade e garantir que cada aplicagdo seja representada apenas
uma vez no dataset, selecionou-se um unico repositério por aplicacao. Nesse sentido, a
segunda coluna inclui a organizacao ou o projeto agregador dos demais repositorios.

Além do nome do repositério, a tabela apresenta informagoes sobre CI/CD, indicando
se o repositério possui pipelines configurados para integracao e entrega continuas. A coluna
Releases apresenta o ntimero de versdes publicadas, estimando a evolugao do software ao
longo do tempo. J& a coluna Ultima Atualizagao registra a data do commit mais recente,
permitindo avaliar o nivel de atividade atual do projeto.

O nimero de Contribuidores fornece uma métrica aproximada do engajamento da comu-
nidade, enquanto a coluna microservicos representa a quantidade de servicos identificados na
arquitetura observada, o que auxilia na selecao de projetos com graus variados de complexi-
dade arquitetural. A coluna Linguagem informa a linguagem predominante no repositério,
possibilitando que pesquisadores filtrem projetos de acordo com seus interesses. Por fim, a
coluna Mono-repo/Multi-repo descreve a estratégia de organizagao adotada pela aplicagao.



Tabela 1: Repositérios de microservigos

Repositorio Ocrfr(e)r CI/CD | Releases Atg:mﬁ;zéo Contribuidores | Microservigos | Linguagem ﬁii?jggg
blockscout-rs | blockscout | Sim 157 03/12/2025 37 11 Rust Mono-repo
bbox bbox Sim 16 11/10/2025 6 6 Rust Mono-repo
CONVOX CONVOX Sim 169 08/12/2025 38 3 Go Multi-repo
linkerd2-proxy linkerd2 Sim 293 09/12/2025 58 5 Rust Multi-repo
metaflow-service | metaflow Sim 47 04/11/2025 23 3 Python | Mono-repo
trove openstack Sim 32 05/12/2025 247 6 Python | Multi-repo
paasta Yelp Sim 379 08/12/2025 189 N/A Python | Mono-repo
corrosion superfly Sim 4 09/12/2025 18 8 Rust Multi-repo
kayenta spinnaker Sim 140 08/04/2025 74 11 Java Multi-repo

<

SOJIAIOSOIDIJA] Op 3OSBIR(]

1¢


https://github.com/blockscout/blockscout-rs
http://github.com/blockscout/blockscout?utm_source=chatgpt.com
https://github.com/bbox-services/bbox
https://github.com/bbox-services/bbox
https://github.com/convox/convox
https://github.com/convox
https://github.com/linkerd/linkerd2-proxy
https://github.com/linkerd/linkerd2
https://github.com/Netflix/metaflow-service
https://github.com/Netflix/metaflow
https://github.com/openstack/trove
https://github.com/openstack/openstack
https://github.com/Yelp/paasta
https://github.com/Yelp
https://github.com/superfly/corrosion
https://github.com/superfly
https://github.com/spinnaker/kayenta
https://github.com/spinnaker/spinnaker

22 Aratijo, Franca

4.1 Visao Geral dos Repositorios

A seguir, apresentamos uma breve descricao de cada repositério que compoe o dataset final,
destacando sua finalidade e papel no contexto das aplicacoes analisadas.

blockscout-rs: Repositorio escrito em Rust que retne os principais servigos do Blocks-
cout, um explorador de blockchains compativeis com EVM. Inclui componentes responséaveis
pela indexacao, consulta e exposicao de dados on-chain.

bbox: Aplicagdo modular desenvolvida em Rust para processamento, anélise e disponi-
bilizacao de dados geoespaciais. O repositorio agrupa diversos médulos que, em conjunto,
formam o BBOX Server.

convox: Plataforma PaaS de cédigo aberto voltada ao deploy e gerenciamento de
aplicacoes conteinerizadas. O repositorio concentra o runtime, a CLI e automacoes de
infraestrutura necessarias ao funcionamento do Convox.

linkerd2-proxy: Proxy de alto desempenho escrito em Rust e utilizado como plano de
dados do service mesh Linkerd. Atua como sidecar responsavel por roteamento de trafego,
observabilidade e aplicacao de politicas.

metaflow-service: Servigo de backend do Metaflow utilizado para rastreamento de
metadata, controle de execucoes e exposicao de informacoes sobre pipelines de machine
learning. Complementa a ferramenta principal mantida pela Netflix.

trove: Servico Database-as-a-Service (DBaaS) do ecossistema OpenStack. Permite o
provisionamento, gerenciamento e operagao automatizada de bancos de dados em ambientes
OpenStack.

paasta: Plataforma de deploy e operacao de servigos conteinerizados desenvolvida pelo
Yelp. Centraliza orquestracao, CI/CD e definigoes de infraestrutura utilizadas em larga
escala pela organizagao.

corrosion: Sistema distribuido escrito em Rust e desenvolvido pela Fly.io, oferecendo
primitivas para construgao de aplicacoes globais, incluindo replicagao, coordenacgao e rote-
amento inteligente.

kayenta: Servigo integrante do Spinnaker dedicado a andlise automatizada de canary
releases. Implementa métricas, comparagoes estatisticas e mecanismos de tomada de decisao
para implantacoes progressivas mais seguras.

4.2 Repositorios Conhecidos Nao Retornados

Durante a execucao deste estudo, observou-se que diversos repositérios amplamente reconhe-
cidos na literatura sobre microservicos nao foram recuperados pelo processo de mineracao,
apesar de sua importancia histérica e de sua recorréncia em trabalhos académicos. Essa
auséncia estd diretamente relacionada aos critérios definidos para a busca, em especial a
exigéncia de atividade recente e a presenca de artefatos compativeis com praticas modernas
de conteinerizagao.

Entre os repositérios nao capturados destacam-se projetos da Netflix que influenciaram
significativamente a adogao de microservicos na industria, tais como Conductor, Eureka
e Hystrix. Esses projetos, embora extremamente relevantes do ponto de vista histérico,
apresentam baixa atividade recente, com contribuicdes majoritariamente antigas ou desen-


https://github.com/Netflix/conductor
https://github.com/Netflix/eureka
https://github.com/Netflix/hystrix

Dataset de Microservigos 23

volvimento descontinuado. Como a query aplicada restringia os resultados a repositérios
com atualizacoes dentro de um intervalo temporal especifico, tais projetos nao foram retor-
nados pela API do GitHub.

Um caso semelhante ocorre com o Choerodon, uma plataforma empresarial que integra
diversas ferramentas relacionadas & arquitetura de microservigos. Apesar de sua relevancia
e adogdo em ambientes corporativos, o repositério principal nao se enquadrou nos critérios
de atualizacao recente exigidos pela consulta e, portanto, também nao foi capturado.

Além disso, a filtragem pelo uso de conteinerizacao introduziu outras exclusdes impor-
tantes. O Zuul, gateway desenvolvido pela Netflix e frequentemente citado em trabalhos
sobre arquiteturas distribuidas, nao foi selecionado por nao apresentar um Dockerfile
explicito em seu repositério. Considerando que a defini¢ao de contéineres é hoje um arte-
fato amplamente consolidado em aplicacoes reais de microservicos, a auséncia desse arquivo
levou a remocao automatica do Zuul durante a etapa de filtragem.

5 Ameacas a Validade

Tendo como base o estudo de (PETERSEN; GENCEL, 2013), foram elencadas possiveis
ameacas a validade considerando uma visao pragmatica.

Validade Externa. A capacidade de generalizacdo do estudo esta limitada ao con-
texto de repositérios de software livre. Nesse cendrio, buscamos o tanto quanto possivel,
dadas as limitagoes da API do GitHub, recuperar o méximo de repositérios para um con-
junto de andlises automatizadas e manuais. O dataset de microservicos nao abrange todas
as possiveis implementacoes dessa arquitetura. No entanto, na tentativa de mitigar essa
ameaga, nao foi aplicado nenhum filtro relacionado a plataformas tecnoldgicas, exceto o
Dockerfile, que é, de fato, o padrao para a conteinerizacao de microsservicos.

Validade de Constructo. Parte da andlise dos repositérios possui carater subjetivo,
uma vez que envolve a andlise manual da composicao arquitetural desses repositorios. Como
forma de mitigar essa ameaca, a escolha dos repositorios que compoem o dataset foi revisada
por trés pesquisadores, o que aumenta a confiabilidade do processo de selecao e acuracia na
aplicacao dos critérios pré-estabelecidos.

Validade Interna. Ao filtrar os repositérios a partir de parametros como numero de es-
trelas, nimero de contribuidores e presenca de arquivos Dockerfile no projeto, introduzimos
uma ameaca a validade interna do estudo, pois passamos a estabelecer uma relagao entre
esses parametros e a relevancia dos repositérios selecionados. Para mitigar essa ameaca,
os parametros da query e das etapas de filtragem foram definidos de forma incremental,
utilizando o Spinnaker como aplicagdo de controle e verificando se alteragoes nos filtros
mantinham, até o final da execucao do estudo, repositérios ja reconhecidos como aplicagoes
reais em microservicos.

Confiabilidade. A capacidade de reproduzir o estudo estd limitada tanto as alteracoes
naturais dos repositorios ao longo do tempo quanto ao carater subjetivo da analise manual
realizada por cada pesquisador. Para mitigar esse problema e aumentar a confiabilidade, a
maior parte dos filtros aplicados aos repositérios retornados foi automatizada, garantindo
que diferentes execugoes do notebook em Python produzam resultados consistentes entre


https://github.com/open-hand/choerodon
https://github.com/Netflix/zuul

24 Aratijo, Franca

si, ainda que haja variabilidade inerente aos repositérios analisados.

6 Consideragoes Finais

A partir do método de Mineracao de Repositdrios de Software, foi possivel construir um
dataset composto exclusivamente por aplicagoes reais baseadas na arquitetura de micro-
servigos. Utilizando requisi¢oes a API do GitHub, processos de filtragem automatizados e
etapas de andlise e selecao manual, partimos de um total de 1.969 repositérios para chegar
a um conjunto final de 9 aplicagoes que atendem aos critérios definidos, incluindo atividade
recente, presenca de conteinerizacao e evidéncias de uso em contextos reais. O dataset
resultante estd acompanhado de metadados que descrevem caracteristicas relevantes para
outros estudos, como o numero de contribuidores, a quantidade de microservicos, a pre-
senga de CI/CD, a linguagem predominante e a organizagdo em mono-repo ou multi-repo.
Com base nessas informagoes, pesquisadores podem selecionar as aplicacoes que mais se
alinham aos objetivos de seus estudos, semelhantemente ao estudo de (D’ARAGONA et
al., 2024), porém com foco especifico em aplicagoes com evidéncias de uso em produgao.
Como trabalhos futuros, é possivel ampliar o dataset variando a query de busca e a fonte dos
repositorios analisados, bem como extrair novos metadados que representem aspectos ainda
nao explorados neste estudo, como métricas de evolugao, caracteristicas de observabilidade
ou informagoes mais detalhadas sobre o ambiente de execucao das aplicagoes.

Referéncias

D’ARAGONA, D. A. et al. A dataset of microservices-based open-source projects. In:
Proceedings of the 21st International Conference on Mining Software Repositories. [S.l.:
s.n.], 2024. p. 504-509.

FRANCESCO, P. D.; LAGO, P.; MALAVOLTA, 1. Architecting with microservices: A
systematic mapping study. Journal of Systems and Software, v. 150, p. 77-97, 2019.
Disponivel em: (https://doi.org/10.1016/j.jss.2019.01.001).

JARAMILLO, D.; NGUYEN, D. V.; SMART, R. Leveraging microservices architecture by
using docker technology. In: IEEE SoutheastCon 2016. Norfolk, VA, USA: IEEE, 2016.
p. 1-5. Disponivel em: (https://ieeexplore.ieee.org/document/7506647).

KIM, S. et al. An empirical study of just-in-time defect prediction in open source software.
In: Proceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014). [S.1]: ACM, 2014. p. 182-191. ISBN 978-1-4503-2883-8.

LEWIS, J.; FOWLER, M. Microservices. 2014. Disponivel em: (https://martinfowler.
com/articles/microservices.html).

NAGAPPAN, N.; BALL, T.; ZELLER, A. Using history to improve software fault
prediction models. In: Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014). [S.1.]: ACM, 2014. p. 88-97. ISBN 978-1-4503-2883-8.


https://doi.org/10.1016/j.jss.2019.01.001
https://ieeexplore.ieee.org/document/7506647
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Dataset de Microservigos 25

PETERSEN, K.; GENCEL, C. Worldviews, research methods, and their relationship to
validity in empirical software engineering research. In: 2013 Joint Conference of the 25rd
International Workshop on Software Measurement (IWSM) and the Eighth International
Conference on Software Process and Product Measurement (Mensura). [S.].: s.n.], 2013.
Kai Petersen: School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden;
Cigdem Gencel: Facult of Computer Science, Free University of Bolzano/Bozen, Italy.

RAY, B. et al. A large-scale study of programming languages and code quality in github.
In: Proceedings of the 9th Working Conference on Mining Software Repositories (MSR
2012). [S.1.]: IEEE, 2012. p. 90-99. ISBN 978-1-4673-1761-0.

REISINGER, M. et al. The issue of monorepo and polyrepo in large enterprises. In:
International Conference on Software Engineering Advances. [S.1.: s.n.], 2019.

SAHA, R. K. et al. Understanding the evolution of type-3 clones: An exploratory study.
In: Proceedings of the 10th Working Conference on Mining Software Repositories (MSR
2013). [S.1.]: IEEE Computer Society, 2013. p. 139-148. ISBN 978-1-4673-2936-1.

VIDONI, M. A systematic process for mining software repositories: Results from a
systematic literature review. Information and Software Technology, Elsevier, v. 144, p.
106791, 2022. Disponivel em: (https://doi.org/10.1016/j.infsof.2021.106791).


https://doi.org/10.1016/j.infsof.2021.106791

	Introdução
	Background
	Arquitetura de Microserviços
	Mono-repositório e Multi-repositórios
	Docker na arquitetura de microserviços
	Mineração de Repositórios de Software

	Métodos
	Critérios de Seleção
	Critérios de Exclusão
	Fonte da Busca
	Procedimento de Busca
	Limitações da API do GitHub
	Ordenação por Estrelas
	Processamento Paralelo

	Seleção Automatizada dos Repositórios
	Extração de Informações Necessárias
	Filtrar Número de Contribuidores
	Filtrar About e Topics
	Filtrar pelo README
	Filtrar por Dockerfile

	Seleção Manual dos Repositórios
	Extração de Metadados

	Resultados
	Visão Geral dos Repositórios
	Repositórios Conhecidos Não Retornados

	Ameaças à Validade
	Considerações Finais

