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Abstract

Efficient weather routing is essential for modern merchant shipping, as route plan-
ning must simultaneously account for safety, energy efficiency, and rapidly evolving
metocean conditions. Traditional optimization approaches - such as isochrone methods,
dynamic programming, and 2D Dijkstra formulations - typically assume fixed ship speed
or coarse discretizations, often discarding potentially optimal sub-paths and requiring
several minutes to produce a single route. This work presents a new graph-based, three-
dimensional weather-routing algorithm designed to compute near-optimal ship trajecto-
ries in a matter of seconds. The method reinterprets the 3D weighted-graph formulation
proposed by Wang et al. (2019) and replaces the conventional time-marching isochrone
expansion with a preconstructed N -tree graph generated from spherical isodistance lay-
ers centered at the departure point. Each spatial waypoint is expanded into a set of
feasible arrival times, forming a full 3D node structure. Edges between stages are built
under physical and navigational constraints, and each edge is assigned a cost using a
multidimensional speed-loss table provided by Amphitrite, which incorporates waves,
wind, currents, heading, and vessel characteristics. Because the graph contains no cy-
cles, the optimal route for any target ETA can be obtained efficiently through a single
breadth-first search.

Performance was evaluated using operational metocean data from CMEMS MER-
CATOR and ECMWF IFS, and bathymetric and coastline masks for land avoidance.
A systematic parameter study shows that the algorithm can produce globally optimal
or near-optimal routes with execution times as low as a 2 or 3 seconds for long transat-
lantic voyages. The method also supports variable vessel speeds rather than fixed-power
or fixed-speed assumptions, enabling more realistic operational planning. This demon-
strates that the proposed 3D N -tree graph combined with BFS search is a fast, flexible,
and accurate alternative to traditional weather-routing techniques, and provides a foun-
dation for future improvements such as parallel computing (MPI/OpenMP), multi-route
parameter generalization, and integration with power-level decision models.

Keywords- Weather routing; Ship navigation; 3D graph optimization; N-tree graph; Breadth-
first search (BFS); Metocean data; NetCDF; Route planning; Speed-loss modeling; Marine opera-
tions; Great-circle navigation; Performance optimization; Ocean currents; Wind and wave effects;
Computational marine engineering.
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1 INTRODUCTION

1 Introduction

1.1 Background and Motivation

Navigating cargo ships across the world’s oceans is a complex and demanding task that has shaped
global trade and human development for centuries. From ancient navigation based on celestial cues to
modern systems supported by GPS, satellite observations, and numerical weather prediction models,
maritime navigation has undergone a profound technological transformation (1). Yet, despite these
advancements, cargo vessels remain highly vulnerable to dynamic environmental conditions such as
wind, waves, and ocean currents, which can significantly affect sailing speed, fuel consumption, and
operational safety.

In contemporary maritime transportation, ship safety and energy efficiency stand among the
most critical factors for achieving competitive and sustainable operations. The industry increasingly
relies on sail-planning systems, integrating weather routing and voyage optimization to avoid haz-
ardous conditions, reduce emissions, minimize fuel consumption, and meet operational constraints
such as expected time of arrival (ETA). During voyage planning, captains use short-term weather-
routing services to circumvent severe conditions and estimate arrival times, while long-term planning
relies on computational algorithms that evaluate an enormous number of possible sailing paths across
vast oceanic regions (2). Figure 1 illustrates an example of a possible vessel optimization where the
vessel travels in favor of currents going in the same direction as its destination.

Figure 1 – Ship routing proposal example

Source: (3)

Traditionally, voyage optimization systems discretize the sailing area into a 2D grid of waypoints
and search for optimal routes using algorithms such as modified isochrones, dynamic programming,
or Dijkstra’s algorithm. While effective, these models typically assume fixed-speed navigation and
do not fully represent the ship’s dynamic operational capabilities such as varying engine loads,
speed–power relationships, or weather induced performance variations. This simplification often
restricts the search to locally optimal solutions. More advanced 3D approaches incorporate the time
dimension, dynamically generating sub-paths as the voyage progresses. However, these methods can
eliminate intermediate nodes that may be part of a globally optimal solution, and they often cannot
predict ETA until the full optimization completes, limiting their operational practicality.
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To address these limitations, the Ocean Engineering study proposed by Wang et al. (2) that
inspired this project presented a way of generating a complete 3D weighted graph, where each
waypoint is associated with all feasible arrival times based on ship performance and environmental
conditions. Dijkstra’s algorithm is then applied to this full graph to search for the lowest-cost
route that satisfies predefined objectives such as minimizing fuel consumption for a fixed ETA.
By separating graph generation from path searching, their method reduces the risk of discarding
potentially optimal paths and enables precise ETA targeting.

The present project is a reinterpretation and practical implementation of the method proposed
by Wang et al. (2), adapted for high-speed computation and operational deployment. The goal is
to implement a reliable, robust, and extremely fast weather-routing algorithm for cargo
ships, capable of generating optimized voyage plans within seconds, substantially faster
than most commercial systems that require several minutes for similar computations. Achieving
this performance offers a decisive competitive advantage, enabling near-real-time route updates as
environmental conditions evolve.

To achieve this level of performance and precision, three core design decisions were made. First,
the C programming language was selected for its low-level control over memory and computation, its
predictable execution model, and its suitability for high-performance numerical algorithms. Second,
a smart graph construction strategy, inspired by an N-tree exploration structure, enables an efficient
breadth-first search (BFS) across a dynamically generated state space of multiple nodes, ensuring
that the most relevant routing paths are found. Finally, NetCDF (Network Common Data Form)
was adopted as the primary source of environmental information, as it is a standardized, compact,
and widely used format in meteorology and oceanography. It allows fast access to gridded datasets
such as wind, current, wave, and pressure fields, ensuring that the routing algorithm can interact
seamlessly with large, multi-dimensional environmental datasets while maintaining computational
efficiency.

1.2 Amphitrite Partnership

This project was developed in close collaboration with Amphitrite, a French maritime-technology
company specialized in high-resolution ocean data processing and operational decision-support tools
for the shipping industry. Amphitrite played a central role in enabling the practical conception,
validation, and benchmarking of the proposed routing algorithm by providing access to advanced
datasets, computational models, and an existing routing framework used in real operational envi-
ronments.

First, Amphitrite supplied the meteorological and oceanographic datasets required to model
realistic operational conditions. These included high-quality global fields of ocean currents generated
by the company’s internal model, as well as wind and wave forecasts obtained from the CMEMS–
Mercator Ocean circulation products and the ECMWF–IFS atmospheric prediction system. In
addition, Amphitrite provided global bathymetry data, allowing the algorithm to automatically
detect land masses, islands, and other navigational constraints during graph construction.

Second, Amphitrite contributed a physically informed cost function used to evaluate the feasibil-
ity and energetic impact of candidate route segments. This cost function integrates vessel geometry,
environmental conditions, and power or speed settings to estimate both the fuel consumption and
the resulting vessel speed between any two nodes in the routing graph. It effectively transforms the
environmental inputs into actionable performance metrics, ensuring that the optimization reflects
operational reality.

Finally, Amphitrite provided an already implemented operational weather-routing system based
on the classical isochrone method. This existing system was used as a baseline for comparison
throughout the development of the present work. By contrasting the performance of the proposed N-
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tree and BFS-based algorithm with Amphitrite’s established isochrone approach, the project benefits
from a direct industry-relevant benchmark, enabling a rigorous evaluation of speed, robustness, and
routing quality under identical environmental conditions.

Overall, Amphitrite’s contributions were essential to grounding this study in real-world data and
operational constraints, ensuring that the proposed algorithm is not only theoretically sound but
also practical and competitive in a professional maritime context.

Section 2 introduces some important concepts and terminologies to build a common ground
of knowledge that is useful for the rest of this report. Section 3 presents the functioning and the
idea behind the algorithm used, the reasoning behind it, alongside with the quantitative methods
implemented to obtain the results. Section 4 presents the results obtained with some discussion
on sensibility tests for optimal parameters. Finally, sections 5 and 6 concludes the research with
pertinent discussions for future work.

2 Common ground

2.1 Introduction

Before introducing the methodologies employed to conduct the study, it is worth revisiting and
commenting on some basic concepts of navigation, geography, and terminologies that are relevant
to the discussions in this report.

2.2 Latitude, longitude and azimuth angle

Latitude, longitude, and azimuth angle are fundamental concepts in cartography and navigation
that help us locate points on the Earth’s surface and determine directions.

Latitude is the angular measurement of the distance north or south of the Earth’s equator. It
is measured in degrees and ranges from 0° (at the equator) to 90° (at the North and South poles).
Lines of latitude are concentric circles that encircle the Earth from east to west, parallel to the
equator. Latitude is used to describe the north-south position of a specific point on the Earth’s
surface.

Longitude is the angular measurement of the distance east or west from the Prime Meridian,
which is defined as 0°. Longitude ranges from 0° to 180° both east and west. From the Prime
Meridian, longitudes extend east and west in concentric circles called meridians. Unlike lines of
latitude, lines of longitude converge at the North and South poles. Longitude is used to describe
the east-west position of a specific point on the Earth’s surface.

The azimuth angle is a concept used to determine the direction of a point in relation to another
reference point. It is generally measured in degrees, taking the North as a reference. The azimuth
angle is measured clockwise from North to the direction of the point of interest. For example, if a
certain point is located 45° east of North, we say that the azimuth angle is 45°. The azimuth angle
is also known as the heading, the direction a vessel is going at a particular moment.

2.3 Loxodromic and Orthodromic Routes

The Orthodromic Route (or The Great Circle) is the concept of a navigation route following
a great circle on the spherical surface of the Earth. The great circle is the shortest path between
two points on a sphere, such as the Earth. On a globe, a great circle route would appear as a
straight line. However, when projected onto a flat map (like a world map), this route often appears
curved. The great circle is often used in long-distance navigation, especially in air and sea travel, as
it represents the most efficient path in terms of distance.

GRECO PICOLI Leonardo
UNICAMP PFG

8



Modeling a fast ship routing optimization algorithm

Loxodromic Route (or Rhumb Line or Constant Course Line): The rhumb line is a navigation
route on a map or chart that follows a constant angle with all lines of longitude, forming a spiral
around the globe. In other words, on a flat map, the rhumb line would appear as a straight line.
This route is easier to follow using a compass and was widely used by sailors before the development
of more advanced navigation technologies. However, over long distances, the rhumb line does not
represent the shortest path, resulting in a longer route than the great circle.

An example of the orthodromic and loxodromic routes is shown in Figure 2. It’s worth noting
that, unlike the loxodromic route, in which the azimuth angle is constant along the path, the
orthodromic route has a different azimuth angle along the path.

(a) Orthodromic route

Source: (4)

(b) Loxodromic route

Source: (5)

Figure 2 – Loxodromic and Orthodromic routes

2.4 Navigation Concepts

In maritime navigation, several fundamental quantities are used to describe the motion, orien-
tation, and timing of a vessel during a voyage. These concepts are essential for understanding ship
routing, performance modeling, and voyage optimization.

Speed Over Ground (SOG). Speed over ground is the vessel’s actual speed relative to the
Earth’s surface. It represents how fast the ship moves from one geographical position to another,
independent of the water it is sailing through. SOG is influenced by environmental factors such as
ocean currents and is typically measured using GPS.

Speed Through Water (STW). Speed through water is the vessel’s speed relative to the
surrounding water mass. Unlike SOG, this speed does not account for the effect of currents. For
example, a ship with an STW of 12 knots sailing into a 2-knot opposing current will have an SOG
of 10 knots. STW is usually measured by Doppler log sensors or electromagnetic logs.

Ship Heading. The ship heading is the direction in which the bow of the vessel is pointed,
expressed in degrees relative to true north (azimuth angle). Heading is distinct from the ship’s
course over ground, which is the direction of actual movement. Wind, waves, and currents can cause
a difference between heading and track, requiring continual correction by the vessel’s navigation
systems.

Estimated Time of Arrival (ETA). The estimated time of arrival is the predicted time at
which the vessel will reach its destination or a specific waypoint. ETA is calculated using current
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position, expected speed, route geometry, and environmental influences. It is a key operational
parameter for scheduling, port coordination, and optimization of fuel consumption.

Estimated Time of Departure (ETD). The estimated time of departure is the planned time
at which the vessel is expected to leave a port or waypoint. ETD may be influenced by port oper-
ations, cargo handling schedules, weather conditions, or fleet coordination. In route optimization,
ETD serves as the starting point for generating the time dimension of the routing problem.

These navigation concepts form the foundation upon which routing algorithms interpret vessel
motion, evaluate feasibility, and compute optimal paths under varying environmental conditions.

2.5 Formulation of a voyage

For completeness, this subsection presents a concise restatement a voyage’s formulation proposed
by Wang et al. (2), which forms the conceptual foundation of the present work. It describes a ship’s

voyage as a sequence of waypoints P⃗ , each defined by geographical coordinates and an associated
passing time. At each waypoint, the ship state is represented as

P = [x, y, t]T , (1)

where x and y denote longitude and latitude, and t denotes the time at which the waypoint is
reached.

We denote by Dij and θij the great-circle distance and the corresponding initial azimuth (head-
ing) required to travel from waypoint Pi to waypoint Pj .

When the vessel sails Pi to Pj its control variables - speed and heading - can be expressed as

U(P⃗ ) = Uij(Pi −→ Pj) = [vij , θij ]
T , vij =

Dij

∆tij
(2)

where v is the vessel’s speed over ground and θ is the heading angle. These controls determine
the ship’s progression from one waypoint to the next.

Environmental inputs are expressed as a vector of weather and sea-state parameters,

W (P⃗ ) = [Hs, Tp, C, Vwu, Vwv, . . .]
T , (3)

including significant wave height Hs, peak period Tp, ocean current components C, and wind

velocity components Vwu and Vwv, all evaluated at the ship state P⃗ .
Ship motion must satisfy a set of feasibility constraints,

C(P⃗ , U(P⃗ ), W (P⃗ )),

which encapsulate geometric limits (e.g., land avoidance), machinery limits (e.g., engine power
envelope), and environmental safety limits (e.g., prohibitive sea states). The constraint function
returns a Boolean value indicating whether the ship can safely and feasibly traverse from one node
to another under the given conditions.

The total cost of a voyage segment is obtained by integrating an instantaneous cost function
along the path where the feasibility constraints are respected:

C =

∫ tN

t0

f(U(P⃗ ),W (P⃗ )) dt. (4)

The function f(U(P⃗ ),W (P⃗ )) is the instantaneous cost function that may represent fuel consump-
tion, expected time of arrival, fatigue accumulation, crack propagation risk, or any other performance
metric relevant to the voyage optimization problem.
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In their work, Wang et al. (2) highlight that conventional two-dimensional routing methods can
discard potentially optimal sub-paths. To address this, they propose constructing a complete three-
dimensional weighted graph where each spatial waypoint is associated with all feasible passing times.
Dijkstra’s algorithm is then applied to this fully generated graph to compute an optimal route for a
specified objective, such as minimizing fuel consumption for a fixed ETA.

This full-graph approach avoids premature elimination of sub-paths and allows the optimization
to target a precise arrival time, overcoming limitations found in dynamic programming or time-
marching isochrone methods. The present work adapts, extends, and reinterprets this framework
within a more computationally efficient routing architecture.

3 Methodology

3.1 Introduction

The overall objective is to find suitable waypoints P⃗ and operational control sets U(P⃗ ), which
will lead to the minimum/maximum value of C by following the optimum route encountering sea

conditions W (P⃗ ) at those waypoints.

3.2 The algorithm’s design

In contrast to the isochrone method, the central idea of this project is to pre-construct a struc-
tured exploration graphG = (P⃗ , E⃗) composed of a large set of fixed candidate waypoints and directed
edges between successive stages. Rather than dynamically “creating” new positions at each time
step, we first define a spatial skeleton of admissible waypoints P⃗ , then connect them in a disciplined
order to form multiple candidate sub-paths (edges) E⃗. Once the graph is built, the optimization

problem becomes the search for a minimum-cost path through this graph. Each edge ∈ E⃗ is weighted
by evaluating the ship controls and environmental conditions along that edge, and mapping them
through the cost model. Subsections 3.2.1 to 3.2.5 present a high-level overview of the algorithmic
workflow, outlining the main stages required to construct the routing methodology. These steps are
intentionally described in a general manner to provide the reader with an intuitive understanding of
the complete process. In the subsequent subsections (3.3 to 3.7), each of these stages is examined in
detail, with rigorous explanations, mathematical formulations, and implementation considerations.

3.2.1 Stage generation - isodistance lines

After defining the departure point P0 and destination point PN , a great-circle reference route
is computed between them. The sailing domain is then discretized into n stages characterized by
isodistance lines: loci of points that are at the same great-circle distance from the departure. In
the reference paper, these stages are obtained by creating lines perpendicular to the great-circle
route at regular distance increments. In our implementation, we adopt a geometrically equivalent
but spherical-consistent construction: each stage is the intersection of the Earth’s surface with
a spherical circle of radius ri (in great-circle distance) around the departure point. This yields
concentric distance fronts that naturally respect spherical geometry, avoiding distortions that can
arise from purely planar perpendicular offsets. Each stage therefore represents a constant-distance
shell from P0, and is indexed by i = 1, . . . , n. Figure 3 shows an example of the construction of
the isodistance lines (represented in green) around the great circle (represented as the red line) of a
route that begins in the Atlantic and ends in Europe.
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3 METHODOLOGY

Figure 3 – Representation of 4 isodistance line expansions (green) around the great circle (red line)

3.2.2 Waypoint distribution within stages

For each stage i, we generate a finite set of candidate waypoints

Pi,j = [xi,j , yi,j , ti,j ]
T , j = 1, . . . ,Mi,

distributed around the isodistance line, where Mi is equal to the number of points in the ith stage.
Intuitively, these waypoints represent alternative spatial deviations from the nominal great-circle
track while preserving progression toward the destination. The collection of all Pi,j over all stages

forms the node set P⃗ of the graph. Figure 4 shows the waypoints representation for the first stages.

3.2.3 Edge construction and N-tree structure

Edges are defined only between adjacent stages. Specifically, each node Pi,j in stage i is connected
to a subset of nodes Pi+1,k in the next stage i+ 1, forming directed edges

Ei,j,k : Pi,j → Pi+1,k.

This yields an ordered, acyclic, stage-by-stage graph that resembles an N-tree exploration structure,
depicted in Figure 5. Each waypoint branches into multiple feasible successors, but never connects
backwards or laterally within the same stage. By construction, any valid route is a sequence

P0 → P1,· → P2,· → · · · → PN ,

ensuring monotonic progress from departure to destination.

3.2.4 Edge weights from controls and weather

Each edge Ei,j,k is assigned a cost by first determining the control required to traverse it. Let

Ui,j,k = [vi,j,k, θi,j,k]
T

be the speed over ground and initial azimuth needed to sail from Pi,j to Pi+1,k over the chosen time
step ∆ti. The associated environmental forcing is taken as the metocean state at the departure
waypoint,

W (Pi,j),
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Figure 4 – Waypoints in each stage

including currents, wind, waves, and other fields. The edge weight is then computed through the
performance-based instantaneous cost model f(·), leading to

C(Ei,j,k) = f
(
Ui,j,k, W (Pi,j)

)
∆ti,

where C(Ei,j,k) may represent fuel consumption, travel time penalty, safety risk, or a multi-objective
combination depending on the optimization goal. This transforms the pre-built geometric graph into
a weighted operational graph.

3.2.5 Finding best path with BFS

The reference paper proposes applying Dijkstra’s algorithm to the resulting 3D weighted graph
in order to obtain a global minimum-cost route. However, in our specific construction there is no
possibility of closed loops: edges connect strictly from stage i to stage i + 1, producing a directed
acyclic graph (DAG). In such graphs, the search does not require cycle-handling or distance relax-
ation over arbitrary revisits, and the optimal path can be found efficiently by a breadth-first traversal
over stages while maintaining cumulative costs. Therefore, a BFS-style dynamic expansion over this
ordered graph is sufficient to recover the minimum-cost route, while reducing bookkeeping overhead
compared to a full Dijkstra implementation.

Overall, this graph approach preserves the exhaustive nature of other routing methods explo-
ration, by enumerating many feasible alternatives, but achieves it through a two-step strategy: (i)
build a fixed, stage-ordered N-tree graph of candidate waypoints; (ii) evaluate costs on all edges
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Figure 5 – Edges connection between waypoints forming an N-Tree graph

using Ui,j,k and W (Pi,j), then extract the optimal path via BFS on the acyclic structure. This
separation between geometric exploration and cost-driven search is the key architectural difference
enabling high computational efficiency in the present work.

3.3 Stage generation in-depth

To discretize the sailing domain into n stages (or isodistance lines), we first compute the great-
circle distance between the departure point P0 and the destination point PN , denoted Dtotal. This
distance is then partitioned using a user-defined spacing DL (in meters), which represents the radial
separation between successive stages. The radius associated with the i-th stage is therefore

DLi
= iDL, i = 0, 1, . . . , n,

with n = ⌊Dtotal/DL⌋. Each stage Li corresponds to the locus of points lying at a great-circle
distance DLi

from the departure point.
A full spherical circle is not required for each stage. In realistic ocean routing, the optimal path

tends to progress monotonically toward the destination, and only deviates laterally when necessary
(e.g., to avoid land masses or unfavorable metocean conditions). Hence, exploring regions that move
backward relative to the destination is computationally wasteful. For this reason, each stage is
constructed as an arc of a spherical circle rather than as a complete circle. This arc restricts the
exploration to the forward-looking corridor that remains relevant to reach PN .

To define the exploration arc for a given stage Li, we proceed as follows. Let Qi be the point on
the great-circle reference route such that the distance from P0 to Qi is DLi . At Qi, we construct a
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perpendicular segment of length DPi , centered at Qi. The endpoints of this perpendicular segment,
once projected onto the spherical circle of radius DLi

, define the θstart and θend azimuth angles of
the arc. The arc radius is fixed to DLi

, while its angular span is controlled by a user-defined function

DPi
= f(DLi

),

which expands the lateral exploration progressively up to mid-voyage and then contracts it as
the vessel approaches the destination. This design maintains broad exploration where uncertainty
is highest (typically in the mid-route oceanic region) while preventing unnecessary branching near
the start and end points.

Algorithm 1 gives the pseudocode corresponding to the perpendicular-distance rule implemented
in this work. The function enforces a minimum lateral exploration of 10 km near the start, increases
proportionally until mid-route, and caps exploration to 100 km to avoid excessive branching.

Input: Stage radius DLi , total route distance Dtotal

Output: Perpendicular distance DPi

DPi = min(d, Dtotal − d)

DPi = clamp
(
DPi , 10

5, 106
)

return DPi ;
Algorithm 1: perpendicular distance function for arc generation

Figure 6 illustrates some examples of these perpendicular lines and how their segment size grows
with the evolution of the route and 7 illustrates the process of defining the initial and end azimuth
(lines in light-green) of the arc of the spherical-circle (in green) using the perpendicular projection
of the perpendicular line (in yellow).

Figure 6 – Example of some perpendicular lines (yellow) varying in size along the route (red)

By doing this process repeatedly we end up building an ”exploration area” defined by the set of
all isodistance lines merged together along the entirety of the route, as shown in Figures 8 and 9.

Finally each stage Li can be denoted as
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Figure 7 – Representation of the generation process of 2 different isodistance arcs (green) with azimuth
angles (defined by light green lines), perpendicular lines (yellow) along the route (red)

Figure 8 – Exploration area (yellow) defined by the set of all stages (green)

Li = [DLi , θstart, θend]
T ,

3.4 Waypoints distribution for each stage in-depth

Once a stage Li has been defined by the parameters (DLi
, θstart, θend), the construction of its

waypoints is carried out by discretizing the corresponding spherical arc. The idea is to sweep the
arc from θstart to θend using an angular increment θstep such that the spherical distance between
two consecutive headings matches a user-defined spacing DP , representing the desired separation
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Figure 9 – All stages of a route going from (36N, 73W ) to (36N, 20W ) in the Atlantic
Ocean, using DL = 50 km

between neighboring waypoints on the same stage.
Since the arc length on a sphere is given by DLi

∆θ, where DLi
is the great-circle radius of the

stage, we define

θstep =
DP

DLi

.

The total number of waypoints generated on stage Li is therefore

Ni =

⌊
θend − θstart

θstep

⌋
+ 1,

and each waypoint is constructed by evaluating the geodesic at the heading

θi,j = θstart + j θstep, j = 0, 1, . . . , Ni − 1.

The figure 10 illustrates this building process. Waypoints can be seen in yellow and θstep and
DP are indicated.

However, this approach constructs only the two-dimensional aspect of the graph, in which each
waypoint is associated solely with a physical location on the Earth defined by its longitude and
latitude (x, y). As previously discussed, purely two-dimensional routing formulations may discard
potentially optimal sub-paths because they implicitly assume that the vessel sails with a fixed en-
gine power or a constant speed. To overcome this limitation, Wang et al. (2) propose constructing
a complete three-dimensional weighted graph in which each spatial waypoint is enriched with all
feasible passing times. This three-dimensional formulation preserves temporal variability and pre-
vents premature elimination of candidate paths, allowing the optimization procedure to target a
precise arrival time and mitigating constraints that otherwise arise in dynamic programming or
time-marching isochrone methods.

The present work adopts and extends this conceptual framework by defining each waypoint as

P = [x, y, t]T .

Thus, for each physical location on Earth, represented by a pair (x, y), we construct multiple
graph vertices corresponding to different possible arrival times at that same geographical position.
This constitutes the three-dimensional aspect of the exploration graph.
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Figure 10 – Waypoints building process with θstep and DP

To generate the temporal dimension associated with each 2D waypoint, three user-defined pa-
rameters are introduced: the minimum vessel speed vmin, the maximum vessel speed vmax, and the
ETA discretization interval ∆ETA. Consider a waypoint Pi,j located on the i-th stage, which lies
at a great-circle distance DLi

from the departure point. If the vessel sails at maximum speed, the
earliest possible arrival time at this waypoint is

Tmin =
DLi

vmax
,

whereas at minimum speed, the latest feasible arrival time is

Tmax =
DLi

vmin
.

The set of feasible ETAs associated with the waypoint Pi,j is then discretized uniformly between
these two limits. The temporal copies of the waypoint are defined by

t
(k)
i,j = Tmin + k∆ETA, k = 0, 1, 2, . . . ,Ki,j ,

where

Ki,j =

⌊
Tmax − Tmin

∆ETA

⌋
.

Each value t
(k)
i,j corresponds to a distinct node in the graph, so that a single spatial waypoint

generates a vertical “column” of temporally indexed states:
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P
(k)
i,j =

xi,j

yi,j

t
(k)
i,j

 , k = 0, . . . ,Ki,j .

Figures 11 and 12 help to illustrate this process.

Figure 11 – Illustration of the 3D graph construction: each 2D waypoint (x, y) generates a
vertical column of nodes indexed by feasible passing times t(k).

This construction ensures that the graph captures all feasible temporal progressions of the vessel,
allowing the routing algorithm to evaluate both slow and fast trajectories, adapt to environmental
conditions, and determine the globally optimal path subject to ETA and speed variability.

3.5 Edge construction in-depth

Once all waypoints have been generated, the next step is to construct the edges that connect
them, forming the full exploration graph. An edge between two nodes P1 and P2 is added only if
three feasibility constraints are satisfied:

1. Limited change in heading. The heading change between consecutive stages must not
exceed a user-defined exploration angle β.

2. Feasible vessel speed. The speed required to travel from P1 to P2, computed as

v1→2 =
D(P1, P2)

t2 − t1
,

must lie within the user-defined admissible interval [vmin, vmax].

3. No land or unsafe-weather intersection. The sailing segment must not cross land or
regions characterized by prohibited metocean conditions.

To enforce the first constraint, heading smoothness between stages is ensured by the exploration
angle β. When the geographic waypoints were generated using the geodesic direct problem, an
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Figure 12 – Waypoints 3d visualization for a ∆ETA = 1h. Green lines are the stages

azimuth angle was computed for each point. This azimuth serves as the nominal sailing heading at
that waypoint, as illustrated as small red segments in figure 13a.

Edges are therefore considered only when the heading at P2 lies within an angular window of
width β centered at the heading of P1. Edges that require turning outside of this window are omitted
to avoid unrealistic or excessively abrupt course changes (see 13b).

The second constraint is enforced by evaluating the implied vessel speed over the edge. If the
time difference (t2− t1) is incompatible with the distance D(P1, P2)-that is, if the speed falls outside
the permissible bounds-the edge is discarded (see figure 14)

Finally, to avoid land masses a land-mask grid provided by Amphitrite is used. Each candidate
edge is discretized into a series of small intermediate points separated by a user-defined distance
Dland-step-check. If any of these points intersect land cells or lie within a region flagged as unsafe
according to the metocean limits, the edge is rejected (see Figure 15).

Together, these three constraints ensure that the resulting edges represent dynamically feasible,
safe, and smooth sailing segments, yielding a graph that accurately reflects realistic operational
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(a) Waypoints headings depicted as small red
segments, with β exploration angles. The yel-
low point represents the current node and white
points represent feasible connections.

(b) Example of edge connections for a subset of
waypoints.

Figure 13 – Visualization of heading constraints and edge feasibility between waypoints.

Figure 14 – Feasible (black) and infeasible (red) temporal connections between stages. Each
spatial waypoint generates multiple time-indexed nodes; edges are admissible only if the
implied speed remains within [vmin, vmax].

limitations.

3.6 Edge weights and cost function in-depth

Once the full 3D exploration graph has been constructed, each directed edge Ei,j,k connecting
two nodes Pi,j and Pi+1,k must be assigned a scalar cost (or benefit) that quantifies the operational
impact of sailing that segment. Let
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Figure 15 – Example of edge connections for all points while avoiding land masses

Pi,j = P1 = [x1, y1, t1]
T , Pi+1,k = P2 = [x2, y2, t2]

T .

The weight assigned to edge Ei,j,k depends on:

1. The required control inputs. The control vector needed to sail from P1 to P2 is

U1→2 =

[
v1→2

θ1→2

]
,

where v1→2 = D(P1, P2)/(t2 − t1) is the speed over ground and θ1→2 is the initial heading.

2. Environmental forcing along the edge. The metocean state influencing the vessel is
denoted W (P1 → P2). In this work, the relevant environmental variables are:

W = [Hs, Tp, Vw,x, Vw,y, v⃗c]
T ,

where Hs is the significant wave height, Tp the wave period, (Vw,x, Vw,y) the wind velocity
components, and v⃗c the ocean current vector.

3. Performance-based cost model. A performance function f(·) maps (U,W ) into a physical
or operational cost.

The continuous cost of an edge is:

C(Ei,j,k) =

∫ t2

t1

f
(
U1→2(t), W (P (t))

)
dt.
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Discrete approximation. For small DL, metocean fields vary weakly over the edge. Thus:

C(Ei,j,k) ≈ f
(
U1→2, W (P1)

)
(t2 − t1).

If DL is large, the edge is discretized into points {P (q)}, giving:

C(Ei,j,k) ≈
Q−1∑
q=0

f
(
U (q), W (P (q))

)
∆t(q).

On the difficulty of defining physics-based cost functions. In classical naval archi-
tecture, predicting ship performance at sea requires evaluating several semi-empirical components:

— calm-water resistance (ITTC formulations),
— added wave resistance (STAWAVE, Holtrop–Mennen, or strip theory),
— wind drag models,
— shallow-water corrections,
— trim and sinkage effects,
— temperature and density corrections,
— nonlinear wave–hull interaction models.
A fully analytical model combining all these effects is extremely complex, often computationally

expensive, and depends on numerous vessel parameters that must be tuned using model tests or
sea trial data. Consequently, using such physics-based formulations for this university project is
generally impractical.

Amphitrite’s multidimensional speed-loss table. To avoid these challenges, Amphitrite
provides a precomputed, high-dimensional lookup table (built with machine learning and high-
quality data of past voyages for multiple vessels) that directly returns the speed loss experienced by
the vessel for any combination of:

(vs, θ, Hs, Tp, v⃗c, Vw,x, Vw,y, draft, . . .).

Here, the vessel input speed vs already incorporates both magnitude and heading direction, i.e.,

vs = v1→2, θ = θ1→2.

For each waypoint, the local metocean conditions are extracted via index-based search in the
NetCDF grids. Once all inputs are gathered, the multidimensional speed-loss table is queried using
a nearest-neighbour search over all dimensions. This approach yields the speed through water and
resulting total speed loss immediately, without requiring any expensive resistance or seakeeping
computations.

Cost function used in this work: accumulated speed gain. A vessel’s speed over
ground satisfies:

v⃗sog = v⃗stw + v⃗c.

The speed through water is given by the lookup table:

v⃗stw = g(vs, θ, Hs, Tp, Vw,x, Vw,y) .

Thus,

GRECO PICOLI Leonardo
UNICAMP PFG

23



3 METHODOLOGY

v⃗sog = g(vs, θ,Hs, Tp, Vw,x, Vw,y) + v⃗c.

The speed gain relative to calm-water service speed is defined as:

∆v = vsog − vs.

The cost assigned to edge Ei,j,k is therefore:

C(Ei,j,k) = ∆vi,j,k,

and the routing problem becomes one of finding the path that maximizes accumulated speed
gain across all stages. As a result, each terminal node at the final stage contains multiple ETAs,
each associated with the maximum achievable cumulative speed gain under the vessel’s operational
constraints and encountered metocean conditions. A cost function to minimize fuel could be used as
well but the Amphitrite’s lookup table doesn’t have yet implemented a fuel consumption dimension
to be used as output.

The NetCDF data The metocean information required for evaluating each graph edge is stored
in a collection of NetCDF files. These files are loaded into memory using the official NetCDF C
API. To minimize memory usage and improve I/O performance, the system does not load the
entire global dataset; instead, only the subset of variables that fall inside the bounding box of the
exploration region (as defined in Subsection 3.3) are pre-loaded into RAM. This ensures that the
graph generation and cost-evaluation steps access only the relevant spatial domain.

A practical complication arises from the fact that different operational datasets adopt different
longitude conventions: some span [−180◦, 180◦] while others use [0◦, 360◦). When the exploration
bounding box crosses these coordinate boundaries, wrapping must be handled explicitly. A dedicated
longitude-normalization routine was implemented to ensure that: (i) requests outside the native
NetCDF longitude domain are correctly mapped via modular arithmetic, and (ii) the extracted data
form a continuous spatial field consistent with the route-search domain. This careful preprocessing
step guarantees that the metocean variables remain coherent with the geometry of the generated
graph.

Although alternative strategies were tested, such as lazy-loading and on-demand disk access
through the NetCDF API, the performance degraded significantly, primarily due to high random-
access latency and the large number of data lookups required during cost evaluation. Empirically,
pre-loading the relevant spatial subset into RAM proved to be the most efficient and stable solution,
drastically reducing I/O overhead and enabling real-time or near real-time edge-cost computation.

3.7 Applying BFS in-depth

After the full 3D exploration graph is constructed-with spatial layers indexed by stage i, weights

assined, and temporal copies of each waypoint P
(k)
i,j -the next step is to determine the optimal path(s)

that maximize the accumulated speed gain until reaching the destination layer. Unlike classical
routing systems that rely on Dijkstra’s algorithm or dynamic programming approaches, the graph
produced in this work has a special structure: it is a directed acyclic layered graph (DAG) in which
edges only connect nodes in stage i to nodes in stage i + 1. Because no backward edges or cycles
exist, the shortest/longest path problem can be solved efficiently using a simple Breadth–First Search
(BFS) traversal across layers.

Figure 16 illustrates this process. Each node in stage i + 1 receives edge contributions from
all feasible nodes in stage i. For each incoming edge, its cost contribution Cp,q-representing the
accumulated speed gain-is added to the cumulative cost of the predecessor node. Thus, the cost

GRECO PICOLI Leonardo
UNICAMP PFG

24



Modeling a fast ship routing optimization algorithm

of reaching a node is computed recursively. For example, in the left part of the diagram, the cost
of reaching node P6 is the minimum (or maximum, depending on the objective) among all possible
incoming cumulative costs:

CP6 = min(C1,6, C2,6, C3,6, C4,6).

Similarly, when expanding the next stage, all predecessor cumulative costs are propagated for-
ward. In the middle diagram, the cost of reaching node P5 is

CP5 = C1,5 + CP1,

while the cost of reaching P7 or P6 follows analogously.

Finally, at the destination layer (rightmost diagram), the cumulative costs of all candidate paths
reaching the terminal waypoint P8 are compared:

CP8 = min(C1,5 + C5,8, C3,6 + C6,8, C1,7 + C7,8).

This layered propagation mechanism is exactly the same recursive structure described in the
original paper by Wang et al. (2) (Eq. (9)–(11)), but implemented through BFS instead of Dijkstra’s
algorithm. Because every node in stage i connects exclusively to stage i + 1, all outgoing edges
from stage i are visited before moving to stage i + 2. This ensures that BFS naturally follows the
temporal-spatial structure of the graph.
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 16 – Illustration of the cumulative-cost propagation across layers of the 3D explo-
ration graph. In each stage, all incoming feasible edges contribute potential cumulative
costs, and the optimal value is selected. This procedure is equivalent to dynamic program-
ming but is executed via BFS because of the acyclic layered graph structure.
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Why BFS is Sufficient for This Graph Structure

Several important properties justify the use of BFS:
— Acyclicity. Edges always go from stage i to stage i+1. There are no backward transitions

or cycles, making the graph a DAG.
— Uniform layer expansion. All nodes in stage i are processed together, exactly matching

the natural structure of BFS.
— Fixed horizon. The number of stages is predetermined by the discretization of the voyage,

so BFS completes in exactly n iterations.
— Equivalent to dynamic programming. BFS combined with cumulative cost propagation

produces the exact recurrence described in Eq. (10) of Wang et al. (2):

CPi,j = min
k

(CPi−1,k +∆ck) ,

but without requiring priority queues or relaxation steps.
Because BFS processes the graph level by level, it is computationally lighter than Dijkstra’s

algorithm: no heap operations, no key decreases, and no search across intra-layer edges are required.
This is especially important for large maritime grids containing tens of thousands of nodes.

Extracting the Optimal Path

During the BFS traversal, each node stores the index of the predecessor that yielded the optimal
cumulative cost:

parent(Pi,j) = Pi−1,k.

Once the destination layer is reached, the optimal route is recovered by backtracking from the
best terminal node:

P
(k)
N → P

(k)
N−1 → · · · → P0.

This yields the full spatio-temporal optimal ship trajectory-both the waypoints and their asso-
ciated ETAs.

Overall, BFS is not only simpler but also more efficient than methods typically used for continuous-
time shortest-path problems. Its layer-by-layer expansion perfectly matches the discretized structure
of the routing graph and allows optimal paths to be found in milliseconds.

3.8 Extracting waypoints

Once all optimal waypoints have been extracted by backtracking the BFS parent links,

P
(k)
N → P

(k)
N−1 → · · · → P0,

the resulting trajectory consists of one waypoint per stage. Depending on the discretization
resolution-especially the choice of stage spacing DL and the total voyage distance-the complete
optimal route may contain more than one hundred waypoints. Although this dense waypoint rep-
resentation is useful for the internal optimization procedures, it is not desirable for operational
use. In practice, ship captains typically work with a much smaller set of navigational waypoints:
approximately 15–20 waypoints for transoceanic voyages and 5–10 for shorter coastal routes.

To reduce the number of waypoints while preserving the overall geometry of the optimal path,
the Ramer–Douglas–Peucker (RDP) algorithm is applied. RDP is a classical polyline simplification
technique that iteratively removes points that contribute minimally to the shape of the path, while
retaining those that define significant deviations or curvature. The algorithm is controlled by a user-
defined parameter ϵmax, which specifies the maximum allowable perpendicular distance between the
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simplified path and the original polyline. This threshold determines the fidelity of the final route
representation.

How the RDP Algorithm Works. Given an ordered set of waypoints {P0, P1, . . . , PN}, the
RDP algorithm proceeds as follows:

1. Connect the first and last points P0 and PN with a straight line.

2. Compute, for every intermediate point Pi, the perpendicular distance di to this line.

3. Identify the point Pi∗ with the maximum deviation:

i∗ = argmax
i

di.

4. If di∗ > ϵmax, then Pi∗ is an essential point and must be retained. The polyline is recursively
subdivided into two segments:

{P0, . . . , Pi∗}, {Pi∗ , . . . , PN},

and the algorithm is applied to each segment.

5. If di∗ ≤ ϵmax, all intermediate points between P0 and PN are discarded; the straight line
segment is a sufficiently accurate approximation.

The recursion terminates when all segments satisfy the ϵmax tolerance criterion. The result is a
significantly reduced set of waypoints that preserves the essential geometric features of the optimal
route (see images 17 and 18).

Figure 17 – Example of Ramer-Douglas-Peucker Algorithm

Practical Impact. By adjusting ϵmax, the user can balance route smoothness and navigational
precision: larger values produce fewer waypoints and a more streamlined route, while smaller values
preserve detailed turns and avoidances. This allows the method to produce operationally realistic
voyage plans from a mathematically optimal but overly dense waypoint sequence.
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Figure 18 – Example of a particular route after application of RDP algorithm. The red line
represents the great-circle route, the green line represents the optimal route by connecting
all nodes, and the black line represents the route after application of RDP algorithm by
unifying the waypoints highlighted in white. The chosen ϵmax = 10km for this example.

3.9 Construction of the Display

To support the analysis, validation, and debugging of the routing algorithm, a dedicated visual-
ization tool was developed using OpenGL. This display window enables real-time inspection of all
relevant NetCDF fields, including ocean currents, wind vectors, and wave parameters, across the
entire exploration domain. A customizable heatmap renders scalar variables (e.g., significant wave
height, wind speed, current magnitude) using a perceptually uniform color scale, allowing rapid
identification of spatial gradients and meteorological structures.

In addition to scalar fields, the system overlays directional information. Small triangles are
rendered at each grid point to indicate the orientation of currents, wind, or wave propagation,
providing an intuitive vector-field representation superimposed on the underlying heatmap.

The visualization environment includes interactive controls: mouse-driven panning to navigate
across the domain, smooth zooming for inspecting local details, and keyboard shortcuts for switching
between datasets (currents, wind, waves, bathymetry, or land masks). A NetCDF-based landmask
is also loaded and displayed, allowing islands and coastlines to be visually distinguished. This is
particularly useful when diagnosing incorrect graph edges (e.g., edges crossing land or shallow-water
regions).

Overall, the OpenGL display acts as an essential debugging interface. When the graph gener-
ation, edge construction, or cost-evaluation components produce unexpected behavior, the visual
tool allows rapid identification of inconsistencies between the algorithm’s output and the underlying
meteorological or bathymetric data.

Figures 19 and 20 illustrate examples of the visualization tool in use.

3.10 Parameters definition

3.10.1 The problem

Because the proposed methodology relies on an explicitly constructed graph, the quality of the
final solution depends directly on the density and structure of that graph. In principle, the denser
the graph and the greater the number of feasible edges, the higher the likelihood of discovering a
truly global optimal solution rather than a locally optimal route constrained by sparse connectivity.
However, this comes at a cost: increasing the number of nodes and edges also increases the com-
putational load. Thus, an intrinsic trade-off exists between precision and execution time, and it is
reasonable to assume an inverse correlation between these two quantities.
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Figure 19 – Display window showing wind + land data

Figure 20 – Display window showing currents data near the gulf stream

The parameters that control the density of the spatial and temporal graph are:

DL, DP , β, ∆ETA
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Figure 21 – Example of a ”staircase effect” in a route where DP ≈ DL

representing respectively the stage spacing, lateral waypoint spacing, heading exploration angle,
and the time difference between all possible ETA’s. Smaller values of DL and DP produce more
stages and more waypoints per stage, while a larger value of β increases the angular spread of
connections between successive stages. A larger speed range and a lower ETA difference will impact
the amount of temporal connections that can be made between one stage and the other. Together,
these parameters determine the resolution of the search space.

The question that arises is: what are the best values of those parameters that will
ensure a fast execution (few seconds) and an optimal solution equal to (or at least the
closest possible to) the global optimal?

3.10.2 Premise nº 1

Before answering this question it’s worth exploring a little bit how the data is stored. If we take
a closer look in our NetCDF files, we’ll see the following resolutions:

— Currents resolution: 1
30 deg = 2′, meaning that from one grid cell to the other we have

roughly 2 nautical miles (Rc = 2nm = 3704m) spacing, and 1 day of temporal spacing
(currents only change significantly from one day to another).

— Wind and Waves resolution: 1
4 deg = 15′, meaning that from one grid cell to the other

we have roughly 15 nautical miles (Rw = 15nm = 27780m) spacing, and 3 hour of temporal
spacing (winds and wave change more often).

This means that graphs generated from distance valuesDL andDP that are lower thanmin(Rc, Rw) =
Rc = 3704m will eventually generate two points that lie in the same cell leading to redundancy. To
avoid redundancy (2 points in the same cell), we need to set

DL >= DP >= Rc

and it would be reasonable to assume that those conditions are sufficient, given the spatial
resolution of the data, to find a global optimal path. The problem by setting DL = DP or even
DL ≈ DP in the above equation is that the spacing between a stage and the lateral waypoints from
the next stage is equal, meaning that the heading change of the vessel from one stage to another
usually is quite big in some cases (approx 45 deg), and that often results in unrealistic, ”staircase
effect” routes that doesn’t represent the real motion and heading change capacity of a vessel (example
showed in figure 21).

Therefore, the premise number 1 considered to find the global optimal path is that
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DL >> DP >= Rc

3.10.3 Experiments

To understand the trade-offs between accuracy and speed, a systematic parameter exploration
was performed. First the parameters for global optimal path P⃗G were defined, then several com-
binations of (DL, DP , β) were tested to observe how graph density affects: (i) the smoothness and

optimality of the resulting route, (ii) how much it deviates from the defined P⃗G, and (iii) the algo-
rithm’s execution time.

For simplicity, and to avoid an overly long and repetitive results section, the analysis presented
here focuses on the estimation of the ETA on a single representative transoceanic corridor in the
North Atlantic with a fixed speed vessel (vmin = vmax, ∆ETA = 0), to simulate fixed engined
power. The evaluated route spans from coordinates (30.0◦N, 77.0◦W) to (43.0◦N, 30.0◦W). This
choice provides a reasonable testbed: long enough to expose sensitivity to graph density, yet well
contained within regions with strong currents and variable weather patterns.

For all experiments, the land-intersection discretization parameter was fixed at

Dstep-check-land = 1 nmi,

and the waypoint simplification tolerance was set to

ϵmax = 3 nmi.

These values were selected to guarantee consistent obstacle detection and stable path simplification
for all tested configurations, regardless of graph density.

Empirical tests indicated that the parameter combination

DL = 20 nmi, DP = 2 nmi, β = 120◦

produces highly reliable solutions. This configuration was used to generate the reference route P⃗G,
which is assumed to be the closest approximation to the global optimum. All other experiments are
evaluated with respect to this baseline.

To investigate the sensitivity of the algorithm to graph density, the following variations were
tested:

DL = (20, 25, 30, 35, 40, 45, 50),

DP = (2, 2.5, 3.0, 3.5, 4, 4.5, 5.0),

β = (120, 110, 100, 90, 80, 70, 60),

yielding a full factorial set of 73 = 343 parameter combinations. Each experiment was labeled
from L0P0B0 to L6P6B6, and the results were stored in individual JSON files containing the com-
puted ETA, total sailed distance, execution time, number of generated waypoints, and performance
metrics used by the routing engine. Since P⃗G is expected to be the most optimal route, its ETA
should be minimal; any increase in ETA among the other test cases indicates either loss of precision
or insufficient exploration caused by coarser parameter choices.

4 Results

The first set of comparisons analyzes the impact of reducing the angular exploration window β
and increasing waypoint spacing DP , while keeping the stage spacing fixed at DL = 20 nmi.
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Figure 22 – Navigation results showing total travel time (ETA, in hours) for a fixed stage
spacing DL = 20 nmi, across varying exploration angles β and lateral waypoint spacings
DP .

Figure 22 compares the ETAs of the 72 = 49 simulations generated by varying β and DP under
the fixed stage spacing DL = 20 nmi. Each colored curve corresponds to a different value of DP .
For instance, the pink curve (DP = 5 nmi) shows how the ETA changes as the exploration angle
is reduced from 120◦ to 60◦. The ETA begins at approximately 240 hours and increases to about
241.5 hours as β decreases. This trend is expected: a smaller exploration angle reduces the number
of feasible headings, limiting the algorithm’s ability to discover highly optimal local variations in
the route.

The same qualitative behavior arises for all other values of DP : optimality remains stable
for large exploration angles, but declines progressively as β becomes narrower. However, a finer
inspection reveals an important pattern: across all curves, the ETA remains essentially unchanged
for the first three exploration angles (120◦, 110◦, 100◦). Only when β drops to 90◦ or below does
a noticeable deterioration in precision emerge. Interestingly, this stability region persists across all
tests of different waypoint spacings DP and stage spacing DL.

This suggests that, for this particular transatlantic corridor, an exploration band of β ≥ 100◦ is
sufficient to recover a globally optimal or near-optimal solution.

Now, if we examine the corresponding execution-time plot for the same set of simulations (Fig-
ure 23), again with fixed stage spacing DL = 20 nmi, but now displaying the execution time on the
vertical axis, a very clear pattern emerges. As both DP and β decrease, the execution time consis-
tently decreases as well. This behavior is expected: smaller waypoint spacing reduces the number
of lateral nodes per stage, while smaller exploration angles reduce the number of feasible edges that
must be evaluated. The combined effect is a substantial reduction in graph density, leading to fewer
edge-cost computations and a shorter BFS traversal.
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Figure 23 – Execution time (in seconds) for fixed stage spacing DL = 20 nmi, across varying
values of lateral spacing DP and exploration angle β.

When the ETA results (Figure 22) and the execution times (Figure 23) are analyzed together, a
strong trade-off becomes evident. Although execution time improves monotonically as β decreases,
optimality does not. The ETA curves show that route quality remains stable for exploration angles
of 120◦, 110◦, and 100◦, but begins to degrade significantly below 100◦. Therefore, the exploration
angle β = 100◦ represents the optimal compromise:

— values of β < 100◦ reduce execution time but also degrade optimality by restricting the
search space too severely;

— values of β > 100◦ increase execution time without improving ETA or route quality.
Thus, for this transatlantic corridor, β = 100◦ emerges as the best-performing configuration,

achieving the minimal computational effort necessary to preserve the global optimal route while
avoiding the inefficiencies associated with overly broad exploration windows.

With a fixed exploration angle of β = 100◦, we now examine the full performance landscape
obtained by evaluating all 7× 7 = 49 combinations of (DL, DP ). Each configuration is represented
in Figure 24 by a labeled marker of the form LiPj, indicating the corresponding values of DL = DLi

and DP = DPj
. The horizontal axis shows the execution time, while the vertical axis shows the

resulting ETA (optimality). Colors range from green (best) to red (worst), allowing an immediate
visual identification of high-quality configurations.

Several important patterns emerge from this distribution:
— Cluster of optimal ETAs. A tight cluster of green and light-green points lies around

ETA ≈ 239.55 h, corresponding to the most optimal or near-optimal solutions. These
configurations use relatively small values of DL and moderate values of DP , which create
a sufficiently dense graph to capture subtle improvements in the route without excessive
computational cost.

— Execution-time gradient. As expected, execution time increases toward the right side
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Figure 24 – Scatter plot of all 49 configurations for fixed exploration angle β = 100◦. Each
point shows ETA versus execution time, colored from green (best ETA) to red (worst ETA).
Labels indicate the parameter codename LiPj.

of the graph. Larger values of DL (denser stage spacing) and smaller values of DP (denser
lateral spacing) both cause the graph to grow, increasing run time. This explains why the
slowest cases (L0P0, L1P0, etc.) appear toward the far right.

— Pareto-optimal band. The green and light-green points near the bottom-left represent the
true Pareto frontier: these configurations achieve both low ETA and relatively low execution
time. They include, for example, L2P1, L1P2, L2P2, and L3P2. These are of particular
interest because they preserve optimality while improving efficiency compared to the baseline
configuration L0P0.

— Degraded optimality for coarse parameters. Points in orange and red, generally those
with large values of both DL and DP , show visibly higher ETAs (≈ 239.78 − 240.00 h). In
these configurations the graph becomes too coarse, and the algorithm fails to capture the
subtle influence of currents and waves on the optimal route.

— Clear relationship between ETA and speedup. The top-21 configurations listed in
Table 1 confirm what is seen in the scatter plot: many routes offer substantial speedups (up
to 3.66×) with only negligible losses in ETA (0.1–0.2 h), illustrating that the algorithm’s
precision can be preserved without the computational cost associated with the densest graph.

Overall, the scatter plot demonstrates that β = 100◦ provides a large plateau of stable optimality
across many configurations of (DL, DP ). This reinforces the conclusion from the previous analysis:
exploration angles above 100◦ only slow the algorithm without improving precision, while angles
below 100◦ begin to restrict the graph and produce worse ETAs. The table of top-performing routes
further shows that carefully chosen combinations ofDL andDP can yield dramatic gains in execution
time while maintaining optimal route quality.
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Table 1 – Top 21 routes for fixed exploration angle β = 100◦ with speedup greater than
1.00.

Rank Codename DL (nmi) DP (nmi) ETA (h) Exec. Time (s) Speedup

1 L0P0 20.0 2.0 239.45 6.89 1.00
2 L2P1 30.0 2.5 239.47 5.45 1.26
3 L0P1 20.0 2.5 239.50 4.54 1.52
4 L1P1 25.0 2.5 239.51 4.89 1.41
5 L2P2 30.0 3.0 239.53 3.79 1.82
6 L3P1 35.0 2.5 239.53 5.75 1.20
7 L3P2 35.0 3.0 239.55 4.04 1.71
8 L1P2 25.0 3.0 239.57 3.49 1.97
9 L3P3 35.0 3.5 239.58 3.06 2.25
10 L4P1 40.0 2.5 239.58 6.33 1.09
11 L1P3 25.0 3.5 239.59 2.60 2.65
12 L2P3 30.0 3.5 239.59 2.84 2.43
13 L0P2 20.0 3.0 239.60 3.25 2.12
14 L4P2 40.0 3.0 239.60 4.40 1.57
15 L4P3 40.0 3.5 239.62 3.28 2.10
16 L2P4 30.0 4.0 239.62 2.21 3.12
17 L3P4 35.0 4.0 239.62 2.34 2.94
18 L5P1 45.0 2.5 239.63 6.65 1.04
19 L5P2 45.0 3.0 239.65 4.68 1.47
20 L0P3 20.0 3.5 239.65 2.42 2.85
21 L3P5 35.0 4.5 239.65 1.88 3.66

5 Next Steps

The present work demonstrates the feasibility and performance of a fast, three-dimensional
weather-routing algorithm based on an N-tree exploration graph and a BFS-style propagation pro-
cedure. However, several improvements and extensions can significantly enhance the capabilities,
robustness, and operational usability of the system:

1. Parallelization and high-performance computing. The current implementation exe-
cutes graph generation and edge-cost evaluation using a single thread. Since each edge and
each stage of the graph can be processed independently, the algorithm is naturally suited
for parallel computation. A combined use of MPI (for stage distribution across nodes) and
OpenMP (for intra-stage parallelism) could result in substantial performance gains.

2. Generalized parameter selection across multiple routes. The parameter analysis
presented in this work was conducted using a single transatlantic trajectory located near
the Gulf Stream, a region characterized by strong and highly nonlinear current patterns.
Although this provides a meaningful stress test for the algorithm, the resulting parameter
recommendations are inherently route-specific. A broader study-evaluating multiple de-
parture–arrival pairs across different ocean basins, current regimes, and voyage lengths-is
necessary to determine a robust, globally applicable set of parameters (DL, DP ,∆ETA, β).
Such an analysis would allow us to identify parameter configurations that consistently yield
high-quality routes and computational efficiency across a wide range of environmental and
operational scenarios.
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3. Improving graph skeleton topology. The current N-tree exploration strategy assumes
that a reasonably unobstructed ocean corridor exists between the departure and arrival
points. When large landmasses or island chains lie between the two, the algorithm may fail
to find a valid route because lateral exploration is not included in the base graph structure.

To address this limitation, a future extension involves computing a preliminary visibility
graph around land boundaries using algorithms such as A* or Theta*. This visibility graph
would supply a set of anchor points circumventing landmasses, after which the N-tree route-
search can proceed normally along the oceanic corridors between them. This hybrid approach
would combine global land-aware navigation with fast local weather-optimized routing.

4. Integration of power levels Although the current system allows the vessel to vary its
speed continuously within the bounds [vmin, vmax], real ships do not adjust speed in an
analog manner. Instead, engine output is typically controlled through a discrete set of power
levels or RPM settings, each corresponding to a specific service-speed regime. Transitions
between these levels are neither instantaneous nor arbitrarily precise, and operators generally
avoid frequent or small-scale adjustments due to fuel consumption constraints and engine
wear.

A natural extension of this work is therefore to integrate a discrete power-state model
into the routing engine. In such a framework, rather than treating speed as a continuous
variable, the vessel would choose among a finite set of admissible power levels, each associated
with:
— a nominal calm-water service speed,
— a characteristic startup or ramp-up time,
— an expected fuel-consumption curve,
— a speed-loss response to waves, wind, and currents.

Within the 3D graph, each node would carry not only a spatial and temporal dimension,
but also a power-state dimension. The resulting expansion enables the algorithm to evalu-
ate realistic operational decisions such as reducing power to conserve fuel in heavy seas, or
increasing power to meet a narrow ETA window. Although this increases the graph’s di-
mensionality, the layered structure remains compatible with BFS parallelization, especially
under a hybrid MPI–OpenMP execution environment.

6 Conclusion

This work introduces a novel weather-routing methodology by constructing a full three-dimensional
N-tree exploration graph and propagating costs through a BFS-based layered traversal. The resulting
algorithm is not only conceptually simpler but also significantly faster: for small and medium-length
voyages, optimal routes can often be computed in tenths of a second, enabling near real-time voyage
evaluation.

A key advantage of the proposed framework is its ability to incorporate variable vessel speeds.
Traditional routing models frequently assume a fixed engine power or a constant service speed;
in contrast, our approach evaluates a range of feasible speeds at every stage, capturing the full
operational flexibility of modern vessels and enabling optimization based on speed loss, speed gain,
or fuel efficiency.

Overall, the methodology presented here demonstrates that high-fidelity, time-aware routing can
be performed with great computational efficiency when the graph structure is designed appropriately
and much faster than most of the current commercial solutions. The approach forms a solid foun-
dation for future developments in large-scale parallel routing, adaptive resolution, visibility-graph
integration, and operational decision-support systems for commercial maritime navigation.
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