2

4

4

Migracao de um Sistema
Distribuido para
WebAssembly

D. M. de Morais G. de L. Palma L. F. Bittencourt
R. R. Filho A. R. B. P. Barata

Relatério Técnico - IC-PFG-25-35
Projeto Final de Graduagdo
2025 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

Migragao de um Sistema Distribuido para WebAssembly

Daniela Marques de Morais* Gustavo de Lima Palma'
Luiz Fernando Bittencourt? Roberto Rodrigues Filho®

Arthur Rezende Bueno Pontes Baratal

Resumo

O documento descreve a migragao de um sistema de multiplicacao de matrizes, antes
totalmente nativo em Dana, para uma arquitetura distribuida baseada em WebAssembly
executando no navegador. A mudanca foi motivada pelas limitacées do ambiente web,
que impede o uso de sockets TCP e operagoes bloqueantes. Isso exigiu a troca do RPC
por uma API REST, a simplificagdo do mecanismo de adaptacao dinamica e a adogao
de um coordenador nativo responsavel pela fila de tarefas, distribuicao do trabalho e
coleta de resultados.

A nova arquitetura combina trés elementos: a aplicacdo principal em Wasm, que
envia matrizes e realiza polling pelos resultados; workers também em Wasm, cada um
executado em uma aba do navegador; e o coordenador nativo, que mantém o estado
global e garante sincronizacao com mutexes. Todo o fluxo é assincrono para evitar tra-
vamentos no navegador. Diversos ajustes foram necessarios durante o desenvolvimento,
como substituir chamadas HTTP bloqueantes por versoes assincronas, padronizar a se-
rializacao em JSON e delegar o gerenciamento de sockets ao médulo ws.core para evitar
respostas truncadas.

O resultado é um sistema funcional capaz de distribuir a multiplicacao de matrizes
entre varios workers Wasm, retornando o resultado a aplicacao principal. Ainda h&
oportunidades claras de avanco, como analise de desempenho, melhoria da robustez do
coordenador e expansao da arquitetura para multiplas instancias, mas a viabilidade da
abordagem foi demonstrada.

1 Introducao

Sistemas autodistribuidos (Self-Distributing Systems ou SDS) s@o sistemas que permitem
seu proprio software determine de forma auténoma a sua arquitetura mais apropriada em
tempo real, com base nas condigbes operacionais atuais. Ao invés de ter engenheiros en-
volvidos na tomada de decisao sobre a distribuicao do sistema, os SDS delegam as escolhas

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
fInstituto de Computacdo, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
Hnstituto de Computacéo, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
$Departamento de Ciéncia da Computacdo, Universidade de Brasilia, 70910-900 Brasilia, DF.
IInstituto de Computacio, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

2 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

de design distribuido inteiramente a processos auténomos. [1] Ao realocar ou replicar com-
ponentes em tempo de execucao, os SDS permitem otimizar a performance, movendo a
computacao para mais perto de recursos poderosos na nuvem quando necessario.

A linguagem de programacao Dana foi desenhada especificamente para suportar este
paradigma. Como uma linguagem orientada a componentes, Dana é construida sobre com-
ponentes de software onde tipos ndo primitivos sao considerados passiveis de hot-swap. O
seu runtime suporta a adaptacao transparente do software, substituindo um componente
por uma das suas variantes em tempo de execugao e de forma segura [2]. Esta capaci-
dade ¢ viabilizada pelo implementacdao da mesma interface entre o proxy e o componente
equivalente, que permite a troca entre eles de forma transparente.

O sistema de multiplicacdo de matrizes (MatMul) serve como um estudo de caso para
estes conceitos [3]. Originalmente, o MatMul foi implementado como um sistema puramente
nativo em Dana: O sistema inicia como uma aplicagao local e, ao detectar um aumento
na carga, substitui dinamicamente o seu componente de multiplicacdo de matrizes por um
proxy que distribui o trabalho para workers remotos através de RPC. No entanto, o Dana
ainda possui limitacoes relacionadas a sua implementacdo em larga escala. Por isso, a
compilagao de um projeto tao essencial como MatMul para Wasm, uma linguagem j& muito
difundida, torna a implementacao de solucoes reais baseadas em Dana mais palpéveis.

O foco do projeto é a migracao e reformulacao deste sistema para um ambi-
ente de computagao distribuida baseado em WebAssembly (Wasm), explorando
o navegador web como uma plataforma de processamento.

2 Motivacgao e limitagoes

A adogdo do WebAssembly nesta migragao oferece varias vantagens estratégicas para além
da execucao no navegador:

e Portabilidade: O WebAssembly fornece um formato bindrio do tipo ”escreva uma
vez, execute em qualquer lugar”. Isto simplifica a distribuicdo de componentes, ja
que um unico bindrio Wasm pode ser executado em qualquer arquitetura, incluindo
navegadores, ao contrario da compilacao nativa.

e Independéncia da Linguagem: A migracao para Wasm desacopla a arquitetura
(SDS) da linguagem de programagao. A légica de alto desempenho, como a mul-
tiplicagdo de matrizes, pode ser implementada em Rust ou C+4 para otimizagoes
de baixo nivel, enquanto a logica de orquestracao pode ser escrita numa linguagem
de mais alto nivel, com todos os componentes a compilar para um formato Wasm
interoperavel.

Em contrapartida, a computacao distribuida em ambientes web apresenta desafios inicos
devido as restrigoes de seguranca dos navegadores, que limitam o acesso direto a sockets TCP
e operagoes de rede de baixo nivel. WebAssembly (Wasm) oferece uma solu¢ao promissora
mas requer padroes de design especificos para manter a responsividade da interface do
utilizador.

Esta transicao implicou numa reformulacao fundamental do sistema:

Migracao para WebAssembly 3

e Comunicacao: O modelo de RPC sobre TCP foi substituido por uma API RESTful

e Simplificacao da Arquitetura: O sistema de adaptagao dinamica e autéonoma foi
substituido por uma arquitetura distribuida mais simples com um coordenador nativo
e workers em Wasm. A adaptagao dindmica do sistema original foi temporariamente
simplificada para focar na resolucao dos desafios fundamentais da plataforma Wasm.
Esta decisao permitiu estabelecer a viabilidade técnica da abordagem antes de rein-
troduzir complexidade adicional.

¢ Ambiente de Execucao: O sistema evoluiu de um servico de backend puramente
nativo para um sistema hibrido: a interface de usudrio e os workers executando no
navegador (Wasm), e um coordenador nativo para gerir tarefas.

e Separagao de Responsabilidades do Coordenador: A ldgica central de coor-
denacao foi implementada em server/CoordinatorController.dn, que gerencia o ci-
clo de vida das tarefas. A exposicao dessa logica via HT'TP é feita por ws/CoordinatorWeb.dn,
um adaptador que se integra ao servidor web, tratando de requisicoes e cabegalhos
(CORS), e que carrega dinamicamente o controlador principal.

3 Evolugao da Arquitetura

A arquitetura do sistema puramente em Dana nativo é organizada em torno de um compo-
nente principal Server que atua como um servidor HT'TP e orquestra a légica de adaptacao
em tempo de execucao. O ponto de entrada da aplicacao, Main, permite iniciar o servidor
em trés modos distintos: modo local, modo distribuido utilizando um proxy desde o inicio
e modo adaptativo que alterna entre local e distribuido com base na performance. Para a
computacao distribuida, existe o componente Worker que escuta numa porta TCP para re-
ceber requisigoes de cédlculo via RPC. As requisicoes HT'TP para o endpoint /matmul eram
recebidas e o calculo é delegado ao componente Matmul, o qual contém a légica central para
a multiplicagdo de matrizes. Para viabilizar a distribuicao, MatmulProxy divide o trabalho e
o distribui para os workers remotos, gerenciando as chamadas RPC. O componente Server
monitora os tempos de resposta e utiliza esse proxy para alternar dinamicamente para o
modo de execugao distribuida quando a performance da computagao local se degradava,
realizando a adaptacdao em tempo de execucao.

A definicao da arquitetura final em WebAssembly foi um processo iterativo, a estrutura
final do sistema emergiu da resolucao sucessiva de erros de compilagao e de execucgao e é
composto por trés tipos principais de componentes:

1. Aplicagao Principal (Wasm): A interface de usudrio que submete tarefas e exibe
resultados, executando no navegador (app/main.dn + app/MainAppLoopImpl.dn).

2. Workers (Wasm): Os processadores distribuidos que executam as multiplicages de
matrizes, cada um executando em uma aba separada do navegador (app/BrowserWorkerWasm.dn
+ app/BrowserWorkerLoopImpl.dn).

4 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

3.1 Diagrama de Arquitetura

Navegador Web
Aplicacdo Principal (Wasm) Workers (mudltiplas abas) (Wasm)

MainAppLoop BrowserWorkerLoop
- Ul Interface - Polling de tarefas
- Submissdo - Processamento
- Polling resultados - Submissdo

HTTP POST /task HTTP GET /task/next

HTTP GET /result HTTP POST /task/:id/

N/

—— Coordenador (Dana Nativo) ——

Porta: 8080
CoordinatorController
- Gerenciamento de fila
- Distribuicdo de tarefas
- Armazenamento de resultados

CoordinatorServer

- Roteamento HTTP

- CORS

- Servir arquivos estaticos

Figura 1: Diagrama da Arquitetura do Sistema.

Migracao para WebAssembly 5

3.2 Diagrama de Sequéncia

. Aplicacdo
Usuario .o Coordenador Worker 1 Worker 2
Principal
Submit o
POST /task
taskId
(______________
GET /task/next
Task Data
(processa)
POST /result
GET /result
Result
(______________
Display
(______________

Figura 2: Diagrama de Sequéncia da Multiplicagao de Matrizes.

3.3 Componentes na nova arquitetura

A aplicagao principal (app/main.dn) fornece a interface de utilizador para submissao das
matrizes: envia as matrizes em formato JSON para o coordenador via POST /task, re-
cebe um ID de tarefa e, de seguida, faz polling periddico por resultados através de GET
/result/:id. Os workers (app/BrowserWorkerWasm.dn) operam em abas de navegador
independentes, solicitando tarefas ao coordenador com GET /task/next. Realizam a mul-
tiplicagdo de matrizes utilizando o componente matmul/Matmul.dn e submetem o resultado
de volta ao coordenador via POST /task/:id/result.

Ambos sdo executados em WebAssembly e utilizam o padrdo ProcessLoop de Dana
para operagoes nao-bloqueantes, essencial para manter a responsividade da interface do
utilizador e todas as requisicoes HT'TP sao executadas de forma assincrona.

6 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

3.3.1 Servidor Coordenador em Dana Nativo

O coordenador é executado como uma aplicagao Dana nativa para possibilitar a comunicagao
entre os workers e a aplicagao principal, é necessario pois o ambiente WebAssembly nao
permite operagoes de rede de baixo nivel como a vinculagao a portas TCP. A légica reside
no componente server/CoordinatorController.dn: gere uma fila de tarefas em meméria
e expoe uma API REST para receber novas tarefas da aplicacao principal, distribuir tarefas
pendentes para os workers, receber os resultados dos workers e fornecer os resultados finais
a aplicagao principal.

As operagoes que modificam o estado compartilhado sao protegidas por mutexes para
garantir a seguranga em ambientes com concorréncia (thread safety), e todas as respostas
HTTP incluem os cabecalhos CORS necessarios para a comunicacao com o navegador.

3.4 Fluxo de Dados

O fluxo completo de uma multiplicagdo de matrizes funciona da seguinte forma:

1. Submissao de Tarefa:

Usudrio abre a aplicagao principal em uma aba do navegador (http://localhost:8081 /xdana.html)

A aplicagao carrega o runtime Dana Wasm e o arquivo file_system. js (contém
todos os componentes compilados empacotados)

e Usudrio insere duas matrizes e clica em ” Submit”

Aplicagao constréi requisigao HTTP POST para http://localhost:8080/task com
corpo JSON contendo as matrizes A e B

e Requisicao é executada de forma assincrona usando asynch: : executeSubmitRequest
2. Processamento pelo Coordenador:

e Coordenador recebe a requisi¢ao, cria nova tarefa com ID tdnico
e Armazena dados da tarefa em memoria
e Adiciona ID a fila de tarefas pendentes

e Retorna resposta JSON com taskId
3. Polling pela Aplicacao Principal:

e Aplicacdo principal recebe taskId e entra em estado de polling

e Faz requisicbes GET periddicas para /result/:id até que o resultado esteja
disponivel

4. Processamento pelo Worker:

e Worker(s) executando em abas separadas fazem polling no endpoint /task/next?workerId=X

e Quando hé tarefa pendente, coordenador:

Migracao para WebAssembly 7

— Remove tarefa da fila

— Marca status como ”processing”

— Atribui worker ID & tarefa

— Retorna dados das matrizes A e B

e Worker recebe tarefa, converte JSON para Matrix, realiza multiplicacdo, con-
verte resultado de volta para JSON

e Worker submete resultado ao coordenador via POST /task/:id/result
5. Retorno do Resultado:

e Coordenador recebe resultado, atualiza status para ”completed”, armazena re-
sultado

e Quando aplicagao principal faz préximo poll em /result/:id, coordenador re-
torna resultado completo

e Aplicagao principal exibe resultado na interface do usuério

4 Processo de decisao da arquitetura

Durante o desenvolvimento, foram encontrados diversos problemas de compilacdao ou du-
rante a execugao, que estao, juntos de suas solugoes, representados pelos itens abaixo:

4.1 O Padrao ProcessLoop e Operacoes Nao-Bloqueantes

Qualquer operacao bloqueante dentro do loop() causa o travamento do navegador.

Solugao: Operagoes potencialmente demoradas devem ser movidas para threads assincronas
(usando asynch::) ou reestruturadas para usar padroes nao-bloqueantes, como o polling
com contadores para gerir atrasos e verificar o estado de operagoes.

Exemplo de implementacao de polling nao-bloqueante:

int pollCounter = 0
const int POLL_INTERVAL_LOOPS = 50 // ~500ms

bool loop() {
if (state == POLLING) {
pollCounter++
if (pollCounter >= POLL_INTERVAL_LOOPS) {
pollCounter = 0O
asynch: :executePollRequest (taskId)

}

return true

8 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

4.2 Requisicoes HTTP em Wasm

net.http.HTTPRequest é uma operacao bloqueante e por isso nao pode ser usada direta-
mente dentro do método loop() do ProcessLoop em Wasm.

Solugao: Criar fungoes separadas (ex: executeSubmitRequest, executePollRequest)
que sdo chamadas com asynch: :, e usar flags de estado como waitingForResponse para
verificar no loop() quando a resposta estd disponivel:

bool waitingForResponse = false
HTTPResponse currentResponse = null

bool loop() {
if (waitingForResponse) {
if (currentResponse != null) {
handleResponse (currentResponse)
waitingForResponse = false
currentResponse = null
}

return true

}
// ... resto da légica

void executeSubmitRequest(char url[], Header headers[], char postDatal[]) {
waitingForResponse = true
currentResponse = http.post(url, headers, postData, false)

4.3 Buffers de Socket TCP e Transmissao de Dados

A implementagao inicial do servidor, que utilizava net.TCPServerSocket enfrentava pro-
blemas de transmissdo incompleta de dados. As respostas HT'TP eram por vezes truncadas
porque a conexao do socket era fechada antes do buffer de envio do sistema operativo ser
completamente transmitido.

Solugao: Ao invés de implementar uma solucdo manual de flushing de buffer, o pro-
blema foi resolvido de forma mais robusta ao migrar o servidor para usar ws.core. A
implementacao em ws/CoordinatorWeb.dn delega todo o gerenciamento de sockets e a
transmissao de respostas ao ws.core que garante a entrega completa dos dados, eliminando
a necessidade de manipulacao direta de sockets.

4.4 Serializacao JSON

Tivemos inconsisténcias em como os dados JSON eram estruturados em diferentes pontos
do sistema.

Migracao para WebAssembly 9

Solugao: Padronizar formato: matrizes sao sempre enviadas como strings JSON (ex:
"[[1,2],[3,411"), usando data.json.JSONEncoder e data.json.JSONParser consisten-
temente.

4.5 Race Conditions no Coordenador

Muiltiplos workers fazendo polling simultaneamente poderiam receber a mesma tarefa.
Solucao: Garantir que remocao da fila e atualizacao do status acontecam atomicamente
dentro do mesmo bloco mutex, verificando status da tarefa antes de atribui-la a um worker:

mutex (lock) {
if (taskQueue.arrayLength > 0) {
int taskId = taskQueue[0]
Task task = findTask(taskId)

if (task != null && task.status == "pending") {
taskQueue = removeFromQueue(taskQueue, 0) // Remove atomicamente
task.status = "processing" // Atualiza status atomicamente

task.workerId = workerId
return task

5 Testes

A validacao do sistema concentrou-se em testes funcionais para garantir a corretude da
multiplicacao de matrizes e do fluxo completo de execucao.

1. Testes Funcionais Manuais: Foram realizados para validar o fluxo completo do
sistema, desde a submissao de uma tarefa de multiplicacao de matriz até o recebimento
do resultado. Estes testes verificaram a interagao entre o coordenador e os workers
no cenario distribuido.

2. Testes Automatizados (Coordenador): Foram implementados testes automati-
zados (test-coordinator.sh) focando na légica de gestao de tarefas e na corretude dos
célculos em modo de execugao local.

Os critérios de sucesso para a validagao funcional foram:

e Executa multiplicagoes de matrizes corretamente, tanto no modo local como no dis-
tribuido.

e O coordenador distribui a carga de trabalho entre os workers disponiveis.
e A aplicacao cliente recebe o resultado correto da multiplicagao.

e O sistema gere a fila de tarefas de forma correta, processando os pedidos por ordem
de chegada.

10 D. M. de Morais, GG. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

5.1 Trabalhos Futuros

Uma &area critica para trabalhos futuros é a introducao de uma andlise de desempenho
quantitativa abrangente como: entender se ha overhead consideravel adicionado pela comu-
nicacao baseada em HTTP em comparacao com o sistema original, medir como o tempo de
resposta varia a medida que o nimero de workers Wasm aumenta e uma comparacao de
desempenho direta entre a versao nativa original e a nova arquitetura baseada em Wasm.

Além disso, ha a necessidade de testar problemas de concorréncia no cédigo do servidor,
ja que foram observados alguns bugs demonstrados pela falta de resposta do servidor quando
multiplas requisi¢oes sao feitas em um curto espaco de tempo.

No que diz respeito a robustez e escalabilidade, seria crucial introduzir multiplos coor-
denadores com um balanceador de carga para eliminar o ponto tnico de falha, bem como
implementar timeouts e um sistema de descoberta automatica para os workers. O apro-
fundamento da andlise e dos testes sobre a adaptacao dindmica entre as implementagoes
locais e distribuidas continua a ser uma area central para investigacdo futura. Além disso,
a experiéncia do utilizador poderia ser significativamente melhorada através de aprimora-
mentos na interface e da implementacao de uma funcionalidade para visualizar o progresso
das tarefas em tempo real.

6 Consideracgoes finais

O sistema implementado demonstra uma arquitetura funcional de multiplicacdo de matrizes
distribuida usando Dana, com componentes principais e workers executando em Wasm e um
coordenador executando nativamente. A implementacao resolveu varios desafios técnicos
relacionados a Wasm, ProcessLoops, comunicacao HT'TP e gerenciamento de estado.

Apesar de algumas melhorias poderem ser necessarias para explorar a fundo, os resulta-
dos demonstram que a abordagem ¢ vidvel, é adequado para demonstragao e abre caminhos
para futuras investigagoes.

Referéncias

[1] R. Rodrigues-Filho and B. Porter, Hatch: Self-distributing systems for data centers,
Future Generation Computer Systems, 132, p. 80 (2022).

[2] R. Rodrigues Filho, B. Porter, F. M. Costa and I. Sene Junior, Emergent Software
Systems: Theory and Practice, Livro-texto de Minicursos XXXIX Simpésio Brasileiro
de Redes de Computadores e Sistemas Distribuidos — SBRC (2021)

[3] A. Barata, R. Rodrigues-Filho, C. A. Astudillo, and L. F. Bittencourt, An Interface
Definition Language for Supporting Stub Generation in Self-Distributing Systems, 2025
IEEEFE International Conference on Quantum Software (QSW), 2025, pp. 269-274, doi:
10.1109/QSW67625.2025.00040.

