
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Migração de um Sistema
Distribuído para
WebAssembly

D. M. de Morais G. de L. Palma L. F. Bittencourt
R. R. Filho A. R. B. P. Barata

Relatório Técnico - IC-PFG-25-35

Projeto Final de Graduação

2025 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Migração de um Sistema Distribúıdo para WebAssembly

Daniela Marques de Morais∗ Gustavo de Lima Palma†

Luiz Fernando Bittencourt‡ Roberto Rodrigues Filho§

Arthur Rezende Bueno Pontes Barata¶

Resumo

O documento descreve a migração de um sistema de multiplicação de matrizes, antes
totalmente nativo em Dana, para uma arquitetura distribúıda baseada emWebAssembly
executando no navegador. A mudança foi motivada pelas limitações do ambiente web,
que impede o uso de sockets TCP e operações bloqueantes. Isso exigiu a troca do RPC
por uma API REST, a simplificação do mecanismo de adaptação dinâmica e a adoção
de um coordenador nativo responsável pela fila de tarefas, distribuição do trabalho e
coleta de resultados.

A nova arquitetura combina três elementos: a aplicação principal em Wasm, que
envia matrizes e realiza polling pelos resultados; workers também em Wasm, cada um
executado em uma aba do navegador; e o coordenador nativo, que mantém o estado
global e garante sincronização com mutexes. Todo o fluxo é asśıncrono para evitar tra-
vamentos no navegador. Diversos ajustes foram necessários durante o desenvolvimento,
como substituir chamadas HTTP bloqueantes por versões asśıncronas, padronizar a se-
rialização em JSON e delegar o gerenciamento de sockets ao módulo ws.core para evitar
respostas truncadas.

O resultado é um sistema funcional capaz de distribuir a multiplicação de matrizes
entre vários workers Wasm, retornando o resultado à aplicação principal. Ainda há
oportunidades claras de avanço, como análise de desempenho, melhoria da robustez do
coordenador e expansão da arquitetura para múltiplas instâncias, mas a viabilidade da
abordagem foi demonstrada.

1 Introdução

Sistemas autodistribúıdos (Self-Distributing Systems ou SDS) são sistemas que permitem
seu próprio software determine de forma autônoma a sua arquitetura mais apropriada em
tempo real, com base nas condições operacionais atuais. Ao invés de ter engenheiros en-
volvidos na tomada de decisão sobre a distribuição do sistema, os SDS delegam as escolhas

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
†Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
‡Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
§Departamento de Ciência da Computação, Universidade de Braśılia, 70910-900 Braśılia, DF.
¶Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1



2 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

de design distribúıdo inteiramente a processos autônomos. [1] Ao realocar ou replicar com-
ponentes em tempo de execução, os SDS permitem otimizar a performance, movendo a
computação para mais perto de recursos poderosos na nuvem quando necessário.

A linguagem de programação Dana foi desenhada especificamente para suportar este
paradigma. Como uma linguagem orientada a componentes, Dana é constrúıda sobre com-
ponentes de software onde tipos não primitivos são considerados pasśıveis de hot-swap. O
seu runtime suporta a adaptação transparente do software, substituindo um componente
por uma das suas variantes em tempo de execução e de forma segura [2]. Esta capaci-
dade é viabilizada pelo implementação da mesma interface entre o proxy e o componente
equivalente, que permite a troca entre eles de forma transparente.

O sistema de multiplicação de matrizes (MatMul) serve como um estudo de caso para
estes conceitos [3]. Originalmente, o MatMul foi implementado como um sistema puramente
nativo em Dana: O sistema inicia como uma aplicação local e, ao detectar um aumento
na carga, substitui dinamicamente o seu componente de multiplicação de matrizes por um
proxy que distribui o trabalho para workers remotos através de RPC. No entanto, o Dana
ainda possui limitações relacionadas à sua implementação em larga escala. Por isso, a
compilação de um projeto tão essencial como MatMul para Wasm, uma linguagem já muito
difundida, torna a implementação de soluções reais baseadas em Dana mais palpáveis.

O foco do projeto é a migração e reformulação deste sistema para um ambi-
ente de computação distribúıda baseado em WebAssembly (Wasm), explorando
o navegador web como uma plataforma de processamento.

2 Motivação e limitações

A adoção do WebAssembly nesta migração oferece várias vantagens estratégicas para além
da execução no navegador:

• Portabilidade: O WebAssembly fornece um formato binário do tipo ”escreva uma
vez, execute em qualquer lugar”. Isto simplifica a distribuição de componentes, já
que um único binário Wasm pode ser executado em qualquer arquitetura, incluindo
navegadores, ao contrário da compilação nativa.

• Independência da Linguagem: A migração para Wasm desacopla a arquitetura
(SDS) da linguagem de programação. A lógica de alto desempenho, como a mul-
tiplicação de matrizes, pode ser implementada em Rust ou C++ para otimizações
de baixo ńıvel, enquanto a lógica de orquestração pode ser escrita numa linguagem
de mais alto ńıvel, com todos os componentes a compilar para um formato Wasm
interoperável.

Em contrapartida, a computação distribúıda em ambientes web apresenta desafios únicos
devido às restrições de segurança dos navegadores, que limitam o acesso direto a sockets TCP
e operações de rede de baixo ńıvel. WebAssembly (Wasm) oferece uma solução promissora
mas requer padrões de design espećıficos para manter a responsividade da interface do
utilizador.

Esta transição implicou numa reformulação fundamental do sistema:



Migração para WebAssembly 3

• Comunicação: O modelo de RPC sobre TCP foi substitúıdo por uma API RESTful

• Simplificação da Arquitetura: O sistema de adaptação dinâmica e autônoma foi
substitúıdo por uma arquitetura distribúıda mais simples com um coordenador nativo
e workers em Wasm. A adaptação dinâmica do sistema original foi temporariamente
simplificada para focar na resolução dos desafios fundamentais da plataforma Wasm.
Esta decisão permitiu estabelecer a viabilidade técnica da abordagem antes de rein-
troduzir complexidade adicional.

• Ambiente de Execução: O sistema evoluiu de um serviço de backend puramente
nativo para um sistema h́ıbrido: a interface de usuário e os workers executando no
navegador (Wasm), e um coordenador nativo para gerir tarefas.

• Separação de Responsabilidades do Coordenador: A lógica central de coor-
denação foi implementada em server/CoordinatorController.dn, que gerencia o ci-
clo de vida das tarefas. A exposição dessa lógica via HTTP é feita por ws/CoordinatorWeb.dn,
um adaptador que se integra ao servidor web, tratando de requisições e cabeçalhos
(CORS), e que carrega dinamicamente o controlador principal.

3 Evolução da Arquitetura

A arquitetura do sistema puramente em Dana nativo é organizada em torno de um compo-
nente principal Server que atua como um servidor HTTP e orquestra a lógica de adaptação
em tempo de execução. O ponto de entrada da aplicação, Main, permite iniciar o servidor
em três modos distintos: modo local, modo distribúıdo utilizando um proxy desde o ińıcio
e modo adaptativo que alterna entre local e distribúıdo com base na performance. Para a
computação distribúıda, existe o componente Worker que escuta numa porta TCP para re-
ceber requisições de cálculo via RPC. As requisições HTTP para o endpoint /matmul eram
recebidas e o cálculo é delegado ao componente Matmul, o qual contém a lógica central para
a multiplicação de matrizes. Para viabilizar a distribuição, MatmulProxy divide o trabalho e
o distribui para os workers remotos, gerenciando as chamadas RPC. O componente Server
monitora os tempos de resposta e utiliza esse proxy para alternar dinamicamente para o
modo de execução distribúıda quando a performance da computação local se degradava,
realizando a adaptação em tempo de execução.

A definição da arquitetura final em WebAssembly foi um processo iterativo, a estrutura
final do sistema emergiu da resolução sucessiva de erros de compilação e de execução e é
composto por três tipos principais de componentes:

1. Aplicação Principal (Wasm): A interface de usuário que submete tarefas e exibe
resultados, executando no navegador (app/main.dn + app/MainAppLoopImpl.dn).

2. Workers (Wasm): Os processadores distribúıdos que executam as multiplicações de
matrizes, cada um executando em uma aba separada do navegador (app/BrowserWorkerWasm.dn
+ app/BrowserWorkerLoopImpl.dn).



4 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

3.1 Diagrama de Arquitetura

MainAppLoop
- UI Interface
- Submissão
- Polling resultados

Aplicação Principal (Wasm)

BrowserWorkerLoop
- Polling de tarefas
- Processamento
- Submissão

Workers (múltiplas abas) (Wasm)

CoordinatorController
- Gerenciamento de fila
- Distribuição de tarefas
- Armazenamento de resultados

CoordinatorServer
- Roteamento HTTP
- CORS
- Servir arquivos estáticos

Navegador Web

Coordenador (Dana Nativo)

Porta: 8080

HTTP POST /task

HTTP GET /result

HTTP GET /task/next

HTTP POST /task/:id/

Figura 1: Diagrama da Arquitetura do Sistema.



Migração para WebAssembly 5

3.2 Diagrama de Sequência

Usuário
Aplicação
Principal Coordenador Worker 1 Worker 2

Submit

POST /task

taskId

GET /task/next

Task Data

(processa)

POST /result

GET /result

Result

Display

Figura 2: Diagrama de Sequência da Multiplicação de Matrizes.

3.3 Componentes na nova arquitetura

A aplicação principal (app/main.dn) fornece a interface de utilizador para submissão das
matrizes: envia as matrizes em formato JSON para o coordenador via POST /task, re-
cebe um ID de tarefa e, de seguida, faz polling periódico por resultados através de GET

/result/:id. Os workers (app/BrowserWorkerWasm.dn) operam em abas de navegador
independentes, solicitando tarefas ao coordenador com GET /task/next. Realizam a mul-
tiplicação de matrizes utilizando o componente matmul/Matmul.dn e submetem o resultado
de volta ao coordenador via POST /task/:id/result.

Ambos são executados em WebAssembly e utilizam o padrão ProcessLoop de Dana
para operações não-bloqueantes, essencial para manter a responsividade da interface do
utilizador e todas as requisições HTTP são executadas de forma asśıncrona.



6 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

3.3.1 Servidor Coordenador em Dana Nativo

O coordenador é executado como uma aplicação Dana nativa para possibilitar a comunicação
entre os workers e a aplicação principal, é necessário pois o ambiente WebAssembly não
permite operações de rede de baixo ńıvel como a vinculação a portas TCP. A lógica reside
no componente server/CoordinatorController.dn: gere uma fila de tarefas em memória
e expõe uma API REST para receber novas tarefas da aplicação principal, distribuir tarefas
pendentes para os workers, receber os resultados dos workers e fornecer os resultados finais
à aplicação principal.

As operações que modificam o estado compartilhado são protegidas por mutexes para
garantir a segurança em ambientes com concorrência (thread safety), e todas as respostas
HTTP incluem os cabeçalhos CORS necessários para a comunicação com o navegador.

3.4 Fluxo de Dados

O fluxo completo de uma multiplicação de matrizes funciona da seguinte forma:

1. Submissão de Tarefa:

• Usuário abre a aplicação principal em uma aba do navegador (http://localhost:8081/xdana.html)

• A aplicação carrega o runtime Dana Wasm e o arquivo file system.js (contém
todos os componentes compilados empacotados)

• Usuário insere duas matrizes e clica em ”Submit”

• Aplicação constrói requisição HTTP POST para http://localhost:8080/task com
corpo JSON contendo as matrizes A e B

• Requisição é executada de forma asśıncrona usando asynch::executeSubmitRequest

2. Processamento pelo Coordenador:

• Coordenador recebe a requisição, cria nova tarefa com ID único

• Armazena dados da tarefa em memória

• Adiciona ID à fila de tarefas pendentes

• Retorna resposta JSON com taskId

3. Polling pela Aplicação Principal:

• Aplicação principal recebe taskId e entra em estado de polling

• Faz requisições GET periódicas para /result/:id até que o resultado esteja
dispońıvel

4. Processamento pelo Worker:

• Worker(s) executando em abas separadas fazem polling no endpoint /task/next?workerId=X

• Quando há tarefa pendente, coordenador:



Migração para WebAssembly 7

– Remove tarefa da fila

– Marca status como ”processing”

– Atribui worker ID à tarefa

– Retorna dados das matrizes A e B

• Worker recebe tarefa, converte JSON para Matrix, realiza multiplicação, con-
verte resultado de volta para JSON

• Worker submete resultado ao coordenador via POST /task/:id/result

5. Retorno do Resultado:

• Coordenador recebe resultado, atualiza status para ”completed”, armazena re-
sultado

• Quando aplicação principal faz próximo poll em /result/:id, coordenador re-
torna resultado completo

• Aplicação principal exibe resultado na interface do usuário

4 Processo de decisão da arquitetura

Durante o desenvolvimento, foram encontrados diversos problemas de compilação ou du-
rante a execução, que estão, juntos de suas soluções, representados pelos itens abaixo:

4.1 O Padrão ProcessLoop e Operações Não-Bloqueantes

Qualquer operação bloqueante dentro do loop() causa o travamento do navegador.

Solução: Operações potencialmente demoradas devem ser movidas para threads asśıncronas
(usando asynch::) ou reestruturadas para usar padrões não-bloqueantes, como o polling
com contadores para gerir atrasos e verificar o estado de operações.

Exemplo de implementação de polling não-bloqueante:

int pollCounter = 0

const int POLL_INTERVAL_LOOPS = 50 // ~500ms

bool loop() {

if (state == POLLING) {

pollCounter++

if (pollCounter >= POLL_INTERVAL_LOOPS) {

pollCounter = 0

asynch::executePollRequest(taskId)

}

}

return true

}



8 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

4.2 Requisições HTTP em Wasm

net.http.HTTPRequest é uma operação bloqueante e por isso não pode ser usada direta-
mente dentro do método loop() do ProcessLoop em Wasm.

Solução: Criar funções separadas (ex: executeSubmitRequest, executePollRequest)
que são chamadas com asynch::, e usar flags de estado como waitingForResponse para
verificar no loop() quando a resposta está dispońıvel:

bool waitingForResponse = false

HTTPResponse currentResponse = null

bool loop() {

if (waitingForResponse) {

if (currentResponse != null) {

handleResponse(currentResponse)

waitingForResponse = false

currentResponse = null

}

return true

}

// ... resto da lógica

}

void executeSubmitRequest(char url[], Header headers[], char postData[]) {

waitingForResponse = true

currentResponse = http.post(url, headers, postData, false)

}

4.3 Buffers de Socket TCP e Transmissão de Dados

A implementação inicial do servidor, que utilizava net.TCPServerSocket enfrentava pro-
blemas de transmissão incompleta de dados. As respostas HTTP eram por vezes truncadas
porque a conexão do socket era fechada antes do buffer de envio do sistema operativo ser
completamente transmitido.

Solução: Ao invés de implementar uma solução manual de flushing de buffer, o pro-
blema foi resolvido de forma mais robusta ao migrar o servidor para usar ws.core. A
implementação em ws/CoordinatorWeb.dn delega todo o gerenciamento de sockets e a
transmissão de respostas ao ws.core que garante a entrega completa dos dados, eliminando
a necessidade de manipulação direta de sockets.

4.4 Serialização JSON

Tivemos inconsistências em como os dados JSON eram estruturados em diferentes pontos
do sistema.



Migração para WebAssembly 9

Solução: Padronizar formato: matrizes são sempre enviadas como strings JSON (ex:
"[[1,2],[3,4]]"), usando data.json.JSONEncoder e data.json.JSONParser consisten-
temente.

4.5 Race Conditions no Coordenador

Múltiplos workers fazendo polling simultaneamente poderiam receber a mesma tarefa.
Solução: Garantir que remoção da fila e atualização do status aconteçam atomicamente

dentro do mesmo bloco mutex, verificando status da tarefa antes de atribúı-la a um worker:

mutex(lock) {

if (taskQueue.arrayLength > 0) {

int taskId = taskQueue[0]

Task task = findTask(taskId)

if (task != null && task.status == "pending") {

taskQueue = removeFromQueue(taskQueue, 0) // Remove atomicamente

task.status = "processing" // Atualiza status atomicamente

task.workerId = workerId

return task

}

}

}

5 Testes

A validação do sistema concentrou-se em testes funcionais para garantir a corretude da
multiplicação de matrizes e do fluxo completo de execução.

1. Testes Funcionais Manuais: Foram realizados para validar o fluxo completo do
sistema, desde a submissão de uma tarefa de multiplicação de matriz até o recebimento
do resultado. Estes testes verificaram a interação entre o coordenador e os workers
no cenário distribúıdo.

2. Testes Automatizados (Coordenador): Foram implementados testes automati-
zados (test-coordinator.sh) focando na lógica de gestão de tarefas e na corretude dos
cálculos em modo de execução local.

Os critérios de sucesso para a validação funcional foram:

• Executa multiplicações de matrizes corretamente, tanto no modo local como no dis-
tribúıdo.

• O coordenador distribui a carga de trabalho entre os workers dispońıveis.

• A aplicação cliente recebe o resultado correto da multiplicação.

• O sistema gere a fila de tarefas de forma correta, processando os pedidos por ordem
de chegada.



10 D. M. de Morais, G. de L. Palma, L. F. Bittencourt, R. R. Filho e A. R. B. P. Barata

5.1 Trabalhos Futuros

Uma área cŕıtica para trabalhos futuros é a introdução de uma análise de desempenho
quantitativa abrangente como: entender se há overhead considerável adicionado pela comu-
nicação baseada em HTTP em comparação com o sistema original, medir como o tempo de
resposta varia à medida que o número de workers Wasm aumenta e uma comparação de
desempenho direta entre a versão nativa original e a nova arquitetura baseada em Wasm.

Além disso, há a necessidade de testar problemas de concorrência no código do servidor,
já que foram observados alguns bugs demonstrados pela falta de resposta do servidor quando
múltiplas requisições são feitas em um curto espaço de tempo.

No que diz respeito à robustez e escalabilidade, seria crucial introduzir múltiplos coor-
denadores com um balanceador de carga para eliminar o ponto único de falha, bem como
implementar timeouts e um sistema de descoberta automática para os workers. O apro-
fundamento da análise e dos testes sobre a adaptação dinâmica entre as implementações
locais e distribúıdas continua a ser uma área central para investigação futura. Além disso,
a experiência do utilizador poderia ser significativamente melhorada através de aprimora-
mentos na interface e da implementação de uma funcionalidade para visualizar o progresso
das tarefas em tempo real.

6 Considerações finais

O sistema implementado demonstra uma arquitetura funcional de multiplicação de matrizes
distribúıda usando Dana, com componentes principais e workers executando em Wasm e um
coordenador executando nativamente. A implementação resolveu vários desafios técnicos
relacionados a Wasm, ProcessLoops, comunicação HTTP e gerenciamento de estado.

Apesar de algumas melhorias poderem ser necessárias para explorar a fundo, os resulta-
dos demonstram que a abordagem é viável, é adequado para demonstração e abre caminhos
para futuras investigações.

Referências

[1] R. Rodrigues-Filho and B. Porter, Hatch: Self-distributing systems for data centers,
Future Generation Computer Systems, 132, p. 80 (2022).

[2] R. Rodrigues Filho, B. Porter, F. M. Costa and I. Sene Júnior, Emergent Software
Systems: Theory and Practice, Livro-texto de Minicursos XXXIX Simpósio Brasileiro
de Redes de Computadores e Sistemas Distribúıdos — SBRC (2021)

[3] A. Barata, R. Rodrigues-Filho, C. A. Astudillo, and L. F. Bittencourt, An Interface
Definition Language for Supporting Stub Generation in Self-Distributing Systems, 2025
IEEE International Conference on Quantum Software (QSW), 2025, pp. 269–274, doi:
10.1109/QSW67625.2025.00040.


