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Clock Evolves: Algoritmo Evolutivo para Relógios Simulados

Nı́colas Hecker Silva∗ Esther Luna Colombini†

Resumo

Este trabalho consiste na implementação de um algoritmo evolutivo para obtenção de
um relógio mecânico simulado. O surgimento de complexidade nos seres vivos através de
mecanismos como seleção natural, reprodução com mutação e deriva genética é muito
bem descrito na literatura cient́ıfica. Como forma de rebater um exemplo anedótico
t́ıpico de discursos relacionados ao design inteligente, este trabalho utilizou dos mecanis-
mos descritos para a evolução em um pequeno conjunto de peças mecânicas simuladas
incluindo vigas, engrenagens, pregos e âncoras. Os resultados foram analisados para
identificar a sua capacidade de medir o tempo, trajeto evolutivo e número de gerações
para serem obtidos. A conclusão foi que foi posśıvel criar relógios muito simplificados
através desse método.

1 Introdução

Em 24 de novembro de 1859, na Inglaterra, Charles Robert Darwin publicava seu livro “On
the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races
in the Struggle for Life” [6] ou em um t́ıtulo simplificado em português, “A Origem das
Espécies”. Nesse livro ele relata o processo da evolução das populações das espécies como
ele mesmo pôde verificar através de suas viagens pelo mundo. Apesar de ainda incompleta,
por não saber explicar a origem da variabilidade de caracteŕısticas em populações, a sua
teoria era um contraponto importante para a teoria Lamarckista de Lei do uso e desuso [8]
e principalmente para a teoria fixista, explicação que dominava o senso comum na época.
Apesar da resistência inicial, a teoria da evolução foi aceita como a mais adequada para ex-
plicar a origem das espécies pela comunidade cient́ıfica. De acordo com essa teoria, em todo
o mundo, existem populações de seres vivos da mesma espécie. Dentro dessa população, na-
turalmente existem indiv́ıduos diferentes entre si. Estando competindo pela sobrevivência
e reprodução, se iguais, não haveria qualquer distinção para qualquer indiv́ıduo gerar mais
descendentes em detrimento a outro. Contudo, com diferenças, os indiv́ıduos cujas carac-
teŕısticas atrapalharem sua capacidade de gerar mais descendentes, sejam psicológicas como
a ausência de medo de predadores, ou estéticas, como as penas de pavões, acabam por se-
rem removidos da população. Já se essas caracteŕısticas não atrapalharem a sobrevivência
ou ainda auxiliarem sua reprodução, a população possuirá mais indiv́ıduos com as mesmas
caracteŕısticas que seus pais. Uma mesma caracteŕıstica pode ser vantajosa ou danosa para
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os indiv́ıduos dependendo do ambiente em que estão inseridos. Darwin argumentou que esse
era o mecanismo por trás da existência de todas as espécies atuais, o que foi corroborado
com a presença de fósseis intermediários de espécies vivas hoje.

Ao mesmo tempo, nos Estados Unidos, as perseguições religiosas que levaram muitos
europeus a migrarem para a América motivaram a inclusão de emendas na Constituição,
entre elas a Primeira Emenda, que estabelece a separação entre Igreja e Estado [14]. Essa
disposição dificultou o ensino do fixismo nas escolas públicas. Como forma de contornar essa
restrição, surgiu a corrente de pensamento do “Design Inteligente”, que se apoia na ideia de
complexidade irredut́ıvel, como explicado em 2012 por Pirulla em seu v́ıdeo “Criacionismo
[9] - Complexidade Irredut́ıvel” [11]. A complexidade irredut́ıvel é o ponto de falseabili-
dade da teoria da evolução. Se em algum momento for demonstrado que uma estrutura
biológica não pode ter se formada por meio de modificações graduais em organismos pre-
existentes, então a teoria da evolução proposta por Darwin seria considerada insuficiente.
Até o momento, todas os casos apontados como complexidade irredut́ıvel foram explicados
como mudanças graduais em outros organismos, algumas mais abruptas como a hipótese
de endossimbiose da mitocôndria [12] — explicando seu surgimento através da convivência
proto-cooperativa de uma célula eucariota e uma procariota — outras baseadas em mu-
dança de função, como a explicação do surgimento do flagelo bacteriano, que ocorreu no
processo juŕıdico, o caso Dover [7] — cujo objetivo era permitir o ensino do criacionismo
nas escolas públicas como contraponto a evolução.

Se existir tal complexidade irredut́ıvel, uma outra teoria ganharia espaço: O design
inteligente [10]. Uma anedota conhecida motivadora para o entendimento dessa teoria é a
seguinte:

“Imagine que ao andar sobre a praia de uma ilha deserta você encontra uma pedra. Ao
questionar sobre sua origem, você imagina possibilidades. Ela poderia vir de uma rocha
maior, sendo partida pelo vento, mar ou animais. Poderia ter sido trazida pelo mar de uma
terra distante. Poderia ainda ter sido formada ali mesmo por uma atividade vulcânica a
muito tempo no passado, e permanecida ali para ser encontrada. Satisfeito você continua
sua jornada. Mais a frente você identifica um relógio de bolso. Ao percebê-lo você se enche
de esperança, pois sabe que não está sozinho, aquele artefato pode ter sido trazido pelo mar,
mas você sabe que possui origem humana. Isso ocorre, pois o relógio é muito complexo e
não poderia ser gerado por processos naturais como a rocha. Ele portanto, precisa de um
criador, um projetista. O mesmo pode ser dito sobre os seres vivos no mundo. Nós somos
muito complexos para sermos gerados por processos naturais, e portanto precisamos de um
projetista, sendo a complexidade irredut́ıvel evidência disso.”

Essa anetoda utiliza da falácia do espantalho que reduz o argumento contrário a um
argumento mais fácil de combater, entretanto as simplificações são grandes. Diferente do
relógio de bolso, os seres vivos possuem três caracteŕısticas que favorecem o surgimento de
complexidade:

1. A reprodução. Essa propriedade possibilita gerar um novo indiv́ıduo idêntico ao
anterior, dando continuidade às suas caracteŕısticas, mesmo quando o próprio in-
div́ıduo original deixou de existir. Essa reprodução pode ser sexuada, combinando as
caracteŕısticas dos indiv́ıduos originais nos seus descendentes.
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2. A mutação. Durante a vida dos indiv́ıduos ou ainda durante o processo de re-
produção, podem ocorrer mudanças nas caracteŕısticas que serão passadas para os
novos indiv́ıduos, gerando variabilidade na população.

3. A seleção. Agindo sobre os indiv́ıduos da população, a seleção discrimina-os sob
um determinado critério, facilitando a sobrevivência ou reprodução de alguns em
detrimento a outros.

A presença dessas 3 caracteŕısticas move a população de seres vivos em direção ao critério
apontado pela seleção. Os relógios podem sofrer mutações, se quebrando ou sendo alterados,
podem sofrer seleção, sendo descartados os quebrados, muito confusos ou não atraentes, mas
eles não podem se reproduzir, o que anula a evolução. Assim surge a pergunta: “Se relógios
pudessem se reproduzir, sofrer mutações e seleção, eles seriam capazes de evoluir?”.

O trabalho apresentado no v́ıdeo “Evolution is a blind watchmaker” [4] na plataforma
YouTube e traduzido no v́ıdeo “A evolução É mesmo um relojoeiro cego” [9], apresenta
um experimento em que ele garante essas três propriedades para estruturas constitúıdas de
molas, âncoras, engrenagens e ponteiros, além de conexões entre elas. Elas são capazes de se
reproduzirem, copiando o indiv́ıduo pai, sofrerem mutações, e seleção, discriminando-os com
respeito a sua capacidade me medir o tempo. Para realizar esse processo, o autor utilizou
de multiplicações de matrizes em um programa em matlab. Entretanto ele não simulou os
relógios fisicamente, sua definição de qualidade de medir o tempo não é muito precisa e ele
parte de um número fixo de peças, além de garantir uma fonte de energia externa. Esses
problemas são corrigidos neste trabalho: Uma simulação f́ısica de peças de relógios para
evolução de um relógio mecânico.

O funcionamento de um relógio é ilustrado no Website de Bartosz Ciechanowski [5].
Das estruturas apresentadas, foram escolhidas as componentes mais básicas para serem
simuladas. Os detalhes sobre as peças e parâmetros da simulação são detalhados no corpo
deste trabalho.

O repositório github.com/salocinrevenge/ClockEvolves contém todo o código utilizado.

2 Objetivos

O principal objetivo deste trabalho é Analisar a possibilidade de evoluir relógios mecânicos
simulados apenas com algoritmo evolutivo.

Assim, as perguntas de pesquisa que norteiam este trabalho são:

1. Como construir um ambiente para evolução de relógios em simulação?

2. Qual a velocidade da evolução dos indiv́ıduos em número de gerações?

3. Quais as condições iniciais mı́nimas para que um relógio possa evoluir?

4. Qual a capacidade dos relógios evolúıdos de medir o tempo?

Para responder a essas perguntas, foram definidas algumas restrições:

1. O tempo real máximo de cada simulação é de uma semana.

https://github.com/salocinrevenge/ClockEvolves
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2. Um indiv́ıduo é considerado um relógio mı́nimo se houver peças com velocidades não
nulas após 5 segundos de simulação a frequência padrão de 120 estados por segundo.

Dessa forma, para responder tais perguntas, foi:

1. Constrúıdo um ambiente computacional para simulação de peças mecânicas;

2. Desenhado e testado um modelo esperado para os relógios;

3. Definido funções de pontuação exigindo o mı́nimo de propriedades dos indiv́ıduos;

4. Testado as diferentes funções de seleção;

5. Testado diversas condições iniciais;

6. Analisado os resultados obtidos.

3 Metodologia

Para realizar as simulações, foi utilizada a biblioteca Pygame[13]. A execução de toda a
simulação foi realizada utilizando apenas o processador, não sendo utilizado placas gráficas
para acelerar a simulação ou qualquer etapa do código.

3.1 Ambiente de simulação

As primeiras tentativas de construir um ambiente para a simulação se basearam em escre-
ver as equações de colisão e conservação de momento para os diversos poĺıgonos utilizados.
Devido a complexidade de resolução de colisões, essa abordagem foi abandonada e foi uti-
lizado a biblioteca Pymunk [2] para controlar todas as peças e movimentos presentes. A
construção de relógios mecânicos exige a utilização de estruturas complexas conectadas em
diferentes camadas tridimensionais, como uma conexão simples entre duas engrenagens de
diferentes tamanhos para alterar a velocidade linear de rotação (vide Figura 1a). Como, por
simplicidade, é desejável a utilização de um ambiente bidimensional, mas há a necessidade
de caracteŕısticas tridimensionais, foi utilizado uma estrutura de dois planos, um a frente e
outro atrás, em que todas as peças ocupam apenas um plano e colidem apenas com outras
peças no mesmo plano.
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(a) Duas engrenagens de tamanhos distintos
conectadas por um eixo. Essa estrutura exige
3 dimensões. Imagem produzida com soft-
ware Blender [1]

(b) Estrutura equivalente a Figura 1a cons-
trúıda dentro do ambiente de simulação.

Figura 1: Comparação entre o modelo das engrenagens em três dimensões e sua reprodução
no ambiente de simulação.

Todas as simulações utilizaram apenas 4 tipos de peças:

1. Vigas: retângulos com uma dimensão muito maior que as outras. Ela pode ser rota-
cionada ou escalada até valores limite. Pode ser colocada em qualquer dos planos.

2. Pinos: Pinos ou pregos são pontos de conexão entre peças, podendo conectar com
o fundo (pinos vermelhos) ou apenas nos pontos de peças sobrepostas (azul). Para
conectar duas peças, é necessário que estejam em planos distintos. Não são adicionadas
restrições re torque em um prego em particular, ou seja, duas peças conectadas por
um único prego não necessariamente compartilharão da mesma velocidade angular.

3. Engrenagens: Ćırculo dentado que pode ser rotacionado ou escalado mantendo a
mesma distância entre os dentes, podendo ser posicionado em qualquer um dos planos.
As engrenagens também podem possuir seus dentes direcionados para alguma direção.

4. Âncoras: estruturas côncavas em formato de V. Pode ser escalado ou rotacionado e
posicionado em qualquer um dos planos.
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Além disso também são utilizado 4 segmentos estáticos para definir as bordas da si-
mulação. A área da simulação é de 800 por 800 pixels.

Não foi utilizado nenhuma forma de fornecimento de energia externa. Todo energia da
simulação deve ser proveniente da energia potencial gravitacional.

Para produzir as peças da simulação, a primeira ideia fora utilizar a função poĺıgono do
pymunk para shapes. Entretanto, ao projetar os pontos para a âncora, o poĺıgono produzido
foi convexo, ou seja, sem a abertura interna da peça. Por conta disso, foi necessário construir
um corpo baseado em diversos poĺıgonos menores. Para isso foi utilizado um algoritmo de
triangularização. Esse algoritmo se baseia em remover pontas do poĺıgono. Para isso, ele
percorre todos os pontos e verifica os 2 posteriores a ele em ordem horária. Caso verifique
que eles formam um triângulo externo (convexo), e que eles não contém nenhum outro
ponto, percorrendo os demais, esses três pontos são retirados do vetor e anotados para
retorno em um conjunto de triângulos de sáıda como um triângulo a parte. Sempre será
posśıvel realizar esse procedimento pois é posśıvel triangularizar qualquer poĺıgono cujas
arestas não se sobrepõem. Como as peças nesse trabalho são previamente definidas, não
ocorrerão casos de borda, logo este algoritmo é suficiente.

Para garantir que o ambiente de simulação permite a construção de um relógio mecânico
funcional, foi constrúıdo um editor de relógios manual e a partir dele, projetado um relógio
exemplo, como mostrado na Figura 2. Ele então foi testado com a primeira função de
seleção (Apresentado na Seção 3.3.1) atingindo uma pontuação de 20905.
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Figura 2: Relógio exemplo do que é posśıvel ser constrúıdo com a simulação. Essa simulação
atingiu pontuação 20905 para a primeira função de seleção 3.3.1.

Os comandos dispońıveis nesse simulador são:

• Clicar em um espaço vazio com uma peça selecionada. Se for posśıvel de adiciona-la
nesse local com todos seus parâmetros, ela é inserida no espaço pymunk na posição
selecionada. Caso haja colisões com outras peças no mesmo plano, ou, para o caso
dos pinos, não esteja conectando duas peças ou uma peça e o fundo, o pino não é
inserido. Se uma peça não puder ser inserida, ela continua selecionada. Se puder, a
seleção passa a ser None.

• Clicar com o mouse sobre alguma peça da simulação já existente. Dessa forma a peça
colocada primeiro, que cobre essa região, é removida do espaço e fica selecionada com
o mouse.

• Clicar com o mouse sobre algum botão. Isso realizará a ação do botão, criando uma
viga, uma âncora, um pino, uma engrenagem, ou ainda iniciando a simulação. Se uma
peça for criada ela fica selecionada pelo mouse, sendo desenhada sobre ele.
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• Se a roda do mouse for alterada para cima ou para baixo, o ângulo da peça selecionada
irá aumentar ou diminuir no sentido horário.

• Mover o mouse com uma peça selecionada, altera a posição dela para a do mouse.

• Pressionar backspace remove a seleção de uma peça que, para todos os propósitos,
deixa de existir.

• A tecla “Espaço”altera o plano sobre a qual a peça selecionada será inserida.

• A tecla − diminui a escala da peça selecionada.

• A tecla + aumenta a escala da peça selecionada.

• A tecla o aumenta a orientação dos dentes da engrenagem seleciona para o sentido
horário.

• A tecla i aumenta a orientação dos dentes da engrenagem seleciona para o sentido
anti-horário.

• A tecla g ativa a grade para posicionamento das peças. Ele varia pelas escalas: 1; 10;
50; 100. Isso significa que para a grade com escala g, as peças selecionadas só podem
ser colocadas em coordenadas x e y tal que modg(x) = 0 e modg(y) = 0.

O comando p está dispońıvel durante o peŕıodo de simulação. O efeito é congelar a
simulação até que p seja pressionado novamente.

Na tentativa de diminuir o tempo de simulação, cada simulação foi executada em um
processo diferente para maximizar o uso dos recursos computacionais.

As cores das peças são escolhidas aleatoriamente como forma de identificar a mesma
peça no passar das gerações. Entretanto, há uma tendência na escolha de cores para cada
tipo. As engrenagens possuem cores mais próximas ao verde, as vigas possuem cores mais
próximas ao vermelho e as âncoras possuem cores mais próximas ao azul. A Figura 3
apresenta exemplos de peças dispońıveis, com suas propriedades sendo variadas.



Clock Evolves 9

Figura 3: Exemplo de estados para cada peça do simulador

3.2 Algoritmo Evolutivo

O algoritmo evolutivo é o responsável pelo surgimento de complexidade nos indiv́ıduos. Um
indiv́ıduo é todo o conjunto de peças com suas propriedades e conexões em uma simulação.
Dessa forma, cada um dos indiv́ıduos em uma população é testado durante o peŕıodo de
simulação. O algoritmo evolutivo é constitúıdo de diversas gerações cada uma com 4 etapas.

Primeiro são executadas todas simulações dos indiv́ıduos da geração atual. O fim de
cada simulação é determinado pela sua respectiva função de seleção (Seção 3.3).

Quando a última simulação se encerra, a segunda etapa se inicia. Utilizando as pon-
tuações de cada indiv́ıduo computadas pela sua função de seleção (Seção 3.3), são selecio-
nados os 3 melhores para se reproduzirem, com uma ponderação de 70% das carateŕısticas
do melhor indiv́ıduo, 20% das carateŕısticas do segundo melhor indiv́ıduo e 10% das ca-
rateŕısticas do terceiro melhor indiv́ıduo. Além disso, o melhor indiv́ıduo é reinserido na
população como forma de manter suas caracteŕısticas presentes. Essa estratégia é denomi-
nada elitismo e pode acarretar dificuldades na evolução. Essas dificuldades são detalhadas
em breve.

A terceira etapa é a reprodução. Com as probabilidades de cada um dos 3 pais definidas,
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é selecionado um deles segundo essa probabilidade (pai j) para cada peça no primeiro pai.
Se essa peça existir em j, todas as suas caracteŕısticas são copiadas para o indiv́ıduo final.

A quarta e última etapa é a mutação. É definido um número de mutações para os
indiv́ıduos, nesse caso 1 e a taxa de mutação, nesse caso 1. O número de mutações define
quantas mutações ocorrerão por indiv́ıduo, enquanto a taxa de mutação define a intensidade
dessa mutação. Para realizar a mutação, primeiro é escolhido o parâmetro a ser alterado den-
tre as seguintes opções: {“posição”, “ângulo”, “escala”, “orientação”, “parede”, “plano”}.
Cada um deles possui restrições sobre valores máximos, quais objetos podem ser aplicados
e como se relacionam com a taxa mutagênica. Os atributos são detalhados a seguir:

• O atributo “posição”é aplicado a todos os tipos de peças. A sua interação com a
taxa mutagênica é dada pela atribuição: posi := posi · random.uniform(1− 100t, 1+
100t), em que posi é um dos valores do par x, y da posição, t é a taxa mutagênica
e random.uniform(a, b) é uma função de gerador de números aleatórios segundo a
distribuição uniforme limitada ao intervalo [a, b). Após essa atribuição, o valor é
limitado ao intervalo [50, 750].

• O atributo “escala”é aplicado a todos os tipos de peça com exceção dos pinos. A sua
interação com a taxa mutagênica é dada por: escala := escala · random.uniform(1−
t, 1 + t) limitados para o intervalo [0.5, 2].

• O atributo “angulo”é aplicado a todos os tipos de peça com exceção dos pinos. A sua
interação com a taxa mutagênica é dada por: escala := escala · random.uniform(1−
t, 1 + t) limitados para o intervalo [0, 360].

• O atributo “orientation”é aplicado apenas a engrenagens. A sua interação com a taxa
mutagênica é dada por: orientation := orientation · random.uniform(1 − t, 1 + t)
limitados para o intervalo [−0.6, 0.6]. Ele modifica o ńıvel de orientação dos dentes
das engrenagens.

• O atributo “parede”é aplicado apenas a pinos. Uma mutação ocorrida nesse parâmetro
troca o seu valor booleano, equivalente a porta not.

• O atributo “categoria”é aplicado a todos tipos de peça com exceção dos pinos. Uma
mutação ocorrida nesse parâmetro troca o seu valor entre 1, 2. Equivalente a seguinte
equação: categoria := 3 − categoria. Esse parâmetro representa o plano no qual as
peças estão localizadas.

Há diversas formas de definir a população inicial dos indiv́ıduos. Nesse trabalho, a
população inicial começa com 0 peças cada uma. Todo novo indiv́ıduo durante a fase de
cruzamento, sorteia uma chance para adicionar e uma para remover peças. Para remover,
é necessário que, sorteado um valor R do intervalo [0, 50], satisfaça R > 50 − n em que n
é o número de peças atuais nesse indiv́ıduo. Para adicionar, é necessário que, sorteado um
valor A do intervalo [0, 50], satisfaça A < 50−n em que n é o número de peças atuais nesse
indiv́ıduo. As operações são executadas na ordem em que foram descritas. Essa função
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possibilita que indiv́ıduos variem os números de peças que possuem, mas adiciona uma
pressão em torno de cada um para possuir 25 peças.

Um dos mecanismos fundamentais da evolução em seres vivos é a deriva genética. Ele
consiste em diversas mutações acumuladas em uma população que não garantam a ela uma
vantagem evolutiva sobre as demais. Em dado momento, uma nova mutação pode surgir
e se beneficiar do conjunto acumulado para garantir uma vantagem no futuro. O elitismo
atrapalha esse mecanismo por garantir que o melhor indiv́ıduo continuará inalterado na
população, funcionando como uma “âncora”para a população. Para resolver esse problema,
foi observado que muitos indiv́ıduos diferentes na população possúıam a mesma pontuação.
Dessa forma, para garantir a presença da deriva genética, basta embaralhar os indiv́ıduos e
utilizar essa ordem como critério desempate para seleção dos 3 melhores indiv́ıduos. Assim,
as caracteŕısticas vantajosas não são perdidas, mas libera as outras caracteŕısticas para
evolúırem.

O número de gerações é grande o suficiente para que a simulação dure por 1 semana.
No geral é escolhido um milhão de gerações.

3.3 Funções de Seleção

Uma das 3 propriedades necessárias para a evolução é a seleção. A hipótese inicial desse
trabalho é a de que “é posśıvel evoluir um relógio mecânico sem a presença de um projetista”.
Dessa forma, é desejável que a função de seleção seja a mais branda posśıvel para não
tendenciar o relógio evolúıdo transparecendo a presença de um projetista. Foram testadas
diversas funções de seleção, aumentando gradualmente a complexidade de cada uma delas.
Elas são detalhadas a seguir.

3.3.1 Função de seleção 1: Repetição global

A primeira função de seleção é baseada na repetição global das peças. Um bom relógio
humano possui 2 propriedades desejáveis: A precisão e a amplitude no número de esta-
dos. A precisão é garantida por se tratar de um ambiente computacional determińıstico.
Assim, quando todas as peças passarem por um exato estado que já percorreram antes,
todos os estados posteriores serão iguais aos já visitados. Aqui, um estado é o conjunto
das propriedades “posição”, “velocidade linear”, “ângulo”, “velocidade angular”para cada
peça. Fornecido os objetos e essas propriedades para cada um deles, é posśıvel reproduzir
completamente uma simulação. Já a amplitude do número de estados pode variar entre
indiv́ıduos diferentes. Essa é a primeira função de seleção: “O número de estados distintos
que uma simulação percorre até atingir um estado posteriormente visitado. Em termos
computacionais, o algoritmo percorre os estados em ordem e para ao encontrar um ciclo.

Para implementar esse algoritmo, é utilizado um dicionário E, representando os estados
da simulação. Para cada novo estado é computado o seu Hash. O conjunto de todos os
objetos é então adicionado em E com a chave sendo o Hash computado. Se em algum
momento já existir um elemento ocupando essa posição no dicionário, então a simulação
está repetindo os estados e é encerrada, com a pontuação sendo o número de estados até
esse momento. O Hash é computado com o modo 0, detalhado na subseção 3.4.
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3.3.2 Função de seleção 1: Repetição local

A segunda função de seleção tenta resolver o problema do tempo de simulação de relógios
evolúıdos. Após algumas gerações, o tempo de simulação de uma geração torna-se muito
elevado. Para resolver esse problema, foi testado uma outra função de seleção e de parada
da simulação. Ao invés de contabilizar um estado somo sendo todas as peças de um in-
div́ıduo, contamos os estados de cada peça individualmente. Todas as peças começam sendo
consideradas que não repetiram. É computado o hash modificado para receber apenas uma
peça ao invés do indiv́ıduo como um todo. Cada peça possui um dicionário de hashs pre-
senciados. Se uma peça percorrer um estado de um hash já visitado, é considerado que essa
peça já repetiu alguma vez. A simulação acaba quando todas as peças tiverem repetido pelo
menos uma vez. Quando isso ocorrer, a pontuação do indiv́ıduo será o número de estados
percorridos na simulação até ela acabar. A implementação dessa abordagem é semelhante
a anterior, mas com um dicionário externo englobando todas as peças.

3.3.3 Função de seleção 3: Repetição frequente

A terceira função testada resolve uma falha nas premissas estabelecidas na seção 3.3.1. Ao
finalizar uma simulação quando a última peça repete seu estado, não é garantido que o
estado global do relógio está se repetindo, ou ainda, não é posśıvel prever o próximo estado
dessa peça, podendo nunca voltar para esse último estado novamente. Isso ocorre por não
levar em consideração todas as outras peças que podem colidir e interagir com ela. Dessa
forma, não é garantida a precisão dos relógios. Por conta disso, é adicionado na função
de seleção, uma pontuação dependente dos peŕıodos da repetição de cada peça. Aqui, a
simulação acaba quando a última peça se repetir um número numero max rep de vezes.
Ou seja, são anotados para cada hash de cada peça, todos os tempos de simulação que a
peça o encontrou. Para os experimentos desse trabalho, numero max rep = 6. A pon-
tuação aqui é o máximo das pontuações de cada peça. A pontuação de cada peça tem o
objetivo de premia-la por se manter na mesma frequência de oscilação. Dado os tempos do
hash que possui mais anotações de tempo, é removido, em ordem, amostras que estejam 1
de distância da anotação anterior. Por exemplo, dado as anotações 1, 2, 3, 4, 6, 7, o resul-
tado final após a remoção é 1, 3, 6. Após isso, percorrendo todos os elementos a partir da
posição 2 e começando pontuacao com 0, tempos que intervalo atual = anot[i]−anot[i−1],
e intervalo passado = anot[i − 1] − anot[i − 2] e por fim pontuacao := pontuacao +
max(intervalo passado − |intervalo passado − intervalo atual|). Aqui anot é a lista de
anotações temporais do hash atual. Essa expressão está computando a diferença das va-
riações nos tempos mais frequentes (aceleração atual) e incrementando a pontuação em
velocidade atual e essa aceleração computada. Assim, é esperado que os indiv́ıduos evo-
luam sob pressão seletiva para manterem uma frequência constante em suas oscilações, mas
oscilações muito longas. Aqui estamos buscando relógios que levam muito tempo para dar
uma volta e que mantém essa volta a todo momento. Há ainda uma outra consequência
para essa função. Se o indiv́ıduo atrasar constantemente o seu relógio, ou seja, a aceleração
é constante, o indiv́ıduo é beneficiado. Entretanto esse ainda seria um relógio aceitável para
essa evolução.
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3.3.4 Função de seleção 4: Repetição paciente

A mudança da função de repetição frequente (subseção 3.3.3) para a repetição paciente,
é a paciência de 100 instantes de tempo. A todo momento que alguma peça acessar um
estado novo, a paciência é alterada para 100. A cada instante de tempo que nenhuma peça
assuma um novo estado, a paciência diminui em 1. Caso ela chegue em 0, a simulação
acaba. A pontuação começa em 0 e sempre que uma peça visitar um estado já visitado
anteriormente, ela aumenta em 1. Isso força que peças ou fiquem paradas, ou ciclem para
ganhar pontos, mas para aumentar o tempo da simulação é necessário que alguma peça
do indiv́ıduo encontre frequentemente novos estados, garantindo uma pressão seletiva para
peças se movendo. A implementação da verificação dos estados por peça é o mesmo da
função de seleção “Repetição local” 3.3.2 e “Repetição frequente” 3.3.3.

3.3.5 Função de seleção 5: Repetição colisão

A última função de seleção testada, foi um acréscimo sobre a “Repetição paciente” 3.3.4.
Agora colisões entre as peças são consideradas peças somam 1 nos pontos do indiv́ıduo. Isso
cria uma pressão seletiva para que peças colidam mais frequentemente para ganhar pontos,
mas ainda mantém as pressões da “Repetição paciente”.

3.4 Hash

Durante a etapa de simulação com diferentes funções de seleção, é utilizado um hash para
resumir em um único número, o indiv́ıduo por inteiro ou suas partes. Para isso é utilizada
uma função com perdas, mas experimentalmente muito eficaz. Como há diferentes neces-
sidades para as diferentes funções de seleção, os hashs possuem modos, especificando seus
comportamentos. Entretanto, todos eles utilizam 3 etapas: a aproximação, a limitação
e a escala.

A aproximação é a parte mais importante da função de hash. Apesar de computacional,
os elementos na simulação possuem valores racionais de precisão limitada. Entretanto, os
quadros da simulação possuem uma taxa de amostragem muito baixa. Dessa forma, para um
movimento circular simples, devido a taxa de amostragem, é posśıvel passar muitas rotações
antes de ser detectada a repetição. A discretização ou aproximação resolve esse problema.
Assumindo uma velocidade máxima, um objeto em movimento de forma ćıclica vai passar
em pelo menos uma casa de discretização se os intervalos forem constrúıdos corretamente.
Cada modo possui suas constantes de aproximação. O modo 0 possui: {”rotation”: 0.1,
”position”: 0.1, ”linear velocity”: 5, ”angular velocity”: 0.1 }, enquanto o modo 1 possui:
{”rotation”: 0.1, ”position”: 0.1, ”linear velocity”: 1, ”angular velocity”: 0.1 }, e por fim
o modo 2: {”rotation”: 0.5, ”position”: 0.05, ”linear velocity”: 0, ”angular velocity”: 0 }.
Para computar os valores para um parâmetro é utilizado o seguinte procedimento: valor :=
round(valor/aproximador) ∗ aproximador, em que valor é a entrada a ser aproximada e
aproximador é a constante aproximativa da respectiva propriedade do objeto. Se o valor
de aproximador for 0, valor é definido como 0 (valor := 0). Se valor é bidimensional, o
processo é realizado com cada uma das coordenadas.
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A limitação é importante para impedir extrapolações muito grandes de velocidade e
casos extremos de posição. Se alguma peça conseguir de alguma forma escapar da região
de simulação, a posição dela será limitada antes de computar a hash. Dessa forma os
indiv́ıduos não são beneficiados por conseguirem escapar de região de simulação. Além
disso, também é utilizado a limitação de velocidade máxima razoavelmente baixa. Isso
ajuda a diminuir o número de hashs posśıveis e facilitar encontrar um estado já percorrido.
os valores para limitações são para todos os modos de hash: {“rotation”: 360, “position”:
1000, “linear velocity”: 6, “angular velocity”: 360 }. Se valor é bidimensional, o processo
é realizado com cada uma das coordenadas. A expressão utilizada para definir o valor
é: valor := max(min(valor, limitardor),−limitador), com limitador sendo a constante
definida pelo tipo de objeto, min e max são as funções nativas para encontrar o menor valor
e o maior valor entre os argumentos respectivamente.

A escala possui uma função mais técnica sobre o hash final. Existe um número finito de
estados posśıveis dada as limitações e as discretizações. Além disso, seria bom se os hashs
não resultassem em colisões mas ocupassem o menor espaço de memória posśıvel. Por
conta disso, para cada propriedade dos objetos dispońıveis é multiplicado os valores atuais
por uma constante dependente do modo e da propriedade: para o modo 0 as escalas são
{“rotation”: 105, “position”: 107, “linear velocity”: 102, “angular velocity”: 102 }, para o
modo 1: {“rotation”: 104, “position”: 106, “linear velocity”: 102, “angular velocity”: 1 } e
para o modo 2: {“rotation”: 105, “position”: 106, “linear velocity”: 0, “angular velocity”:
0 }.

Após computar as alterações de aproximação, escala e limitação para cada peça do
indiv́ıduo, o valor final de cada uma é agregado ao valor do hash através da operação xor.
O hash inicialmente assume 0. Se a propriedade a ser agregada for bidimensional, é somado
os valores inteiros de cada uma das duas propriedades.

4 Resultados encontrados

Respeitando as restrições estabelecidas na seção de Objetivos 2, todas as simulações execu-
taram por no máximo uma semana, cada um gerando uma quantidade de gerações diferentes
com base no custo dessa função de seleção. Pelo menos um resultado relevante foi separado
de cada função de seleção e são mostrados a seguir.

4.1 Função de Seleção: Repetição global

Em um primeiro momento, a simulação foi executada sem restrições na localização das peças
para que elas não colidissem entre si ou com a borda. Dessa forma, frequentemente peças
eram colocadas sobrepostas, o que faziam com que elas entrassem em um estado imposśıvel
e começassem a vibrar rapidamente para resolver as colisões. Como elas são constrúıdas
por vários poĺıgonos menores como detalhado na seção sobre o ambiente de simulação 3.1,
quando um poĺıgono interno escapa da colisão, outro poĺıgono passa a colidir, fazendo a
peça como um todo vibrar e ficar presa. Isso causa pequenas mudanças de posição, mas
uma grande mudança na velocidade, o que no próximo momento, altera a posição da peça
de maneira considerável. Esse comportamento cria relógios caóticos e não está alinhado



Clock Evolves 15

com relógios reais. A figura 4 mostra um caso em que uma engrenagem fica presa no topo
da simulação.

Figura 4: Esse é o resultado da simulação com função de seleção de repetição global com um
erro. A engrenagem fica preso na borda superior da simulação e vai lentamente se movendo
para direita. Isso faz com que a simulação dure muito tempo.

Para resolver esse problema, durante o cruzamento e criação das peças, é verificado se
elas colidem com algo já presente no ambiente, como outra peça já inserida ou a borda. Se
isso ocorrer, a mutação inserida sobre essa alguma peça causou um estado inválido, logo
o indiv́ıduo criado é destrúıdo e um novo é criado em seu lugar com uma nova mutação
e cruzamentos. Isso garante que, se os pais forem válidos, os filhos também serão. Como
os pais começam com nenhuma peça, os pais sempre são válidos. Caso não seja posśıvel
adicionar uma nova peça, os indiv́ıduos que tentarem, não poderão sobreviver, permitindo
apenas a existência de indiv́ıduos que não adicionaram novas peças. Assim, sempre é posśıvel
gerar um novo indiv́ıduo válido diferente do pai, já que é posśıvel remover peças. Isso faz
com que a evolução não fique travada e possa continuar.

Com a adição dessa restrição na reprodução, foi posśıvel evoluir a primeira linha de
indiv́ıduos sob a função seletiva de “Repetição global”. O último indiv́ıduo após o tempo
de treinamento adequado é apresentado na Figura 5. Ele foi gerado com 75 gerações e 100
indiv́ıduos por geração.
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Figura 5: Esse é o resultado da simulação com função de seleção de repetição global. Há 3
pêndulos: a viga vermelha e as duas engrenagens verdes presas ao fundo com pinos verme-
lhos. Uma engrenagem é muito grande, outra pequena e a viga tem tamanho intermediário,
fazendo com que os tempos de oscilações sejam distintos.

O resultado final dessa função de seleção foram 3 pêndulos de tamanhos distintos os-
cilando. Isso ocorreu pois essa distribuição das peças cria muitos estados antes de repetir
completamente o estado da simulação. Como cada pêndulo possui tamanhos de peças di-
ferentes e a gravidade é a mesma para todos, o tempo de oscilação difere entre eles. Dessa
forma, assuma que o peŕıodo de oscilação de cada um dos três pêndulos é respectivamente:
a, b, e c. Assim, o tempo de oscilação do conjunto como um todo é de MMC(a, b, c), ou
seja, o mı́nimo múltiplo comum entre todos os peŕıodos de oscilação individuais. Se eles
forem coprimos, o peŕıodo total é a multiplicação entre eles. Isso faz com que o tempo
de simulação fique muito prolongado, principalmente quando simulados diversos indiv́ıduos
com peças não utilizadas. Por conta disso poucas gerações foram simuladas.



Clock Evolves 17

Figura 6: Esse é o resultado numérico da simulação com função de seleção de repetição
global.

Os gráficos na Figura 6 apresentam as recompensas dos indiv́ıduos durante as gerações.
A esquerda temos 3 tipos de indiv́ıduos em especial, os indiv́ıduo com maior pontuação em
cada geração (em azul), os indiv́ıduos que representam a mediana nos pontos de cada geração
(em laranja), e os indiv́ıduos com a pior pontuação em cada geração (em verde). Podemos
verificar um grande peŕıodo com nenhuma mudança considerável. Próximo à geração 60
há uma subida sutil na recompensa dos indiv́ıduos. Esse é o momento do surgimento do
primeiro pêndulo. Ele foi conectado à pequena viga no topo, o que garantiu uma vantagem,
mas por se tratar de uma viga muito pequena, o peŕıodo dela não agregou muito mais que
o peŕıodo das engrenagens rolando nas demais partes da simulação. Com o surgimento
do segundo pêndulo (a engrenagem mais abaixo), que ocorreu na geração 63, pudemos
identificar uma melhora considerável com relação ao restante da simulação. Entretanto, na
geração 71 ocorreu o surgimento do terceiro pêndulo, sendo a maior engrenagem. Com ela a
simulação passaria a repetir muito mais, o que é verificado no gráfico. Esse gráfico, porém,
mostra o desempenho apenas de 3 indiv́ıduos por geração.

Para poder apresentar todos de modo geral, é utilizado o gráfico a direita. Nele é
mostrado de cima para baixo os indiv́ıduos de cada geração do melhor para o pior e da
esquerda para direita as gerações. As cores de cada quadrado são as pontuações desses
indiv́ıduos. Esse gráfico nos possibilita adquirir uma intuição sobre o que está acontecendo
com todos os outros indiv́ıduos. Podemos verificar que logo antes de uma nova mancha, há
um pequeno quadrado isolado, mostrando a dificuldade no surgimento de uma nova carac-
teŕıstica benéfica surgir. Podemos verificar também que logo após esse ponto solitário, há
um grande trecho vertical, apresentando a rápida alteração da população para os indiv́ıduos
com essa caracteŕıstica. Apesar disso, ainda há muitos descendentes com uma pontuação
muito maior. Isso ocorre por conta da chance de uma mutação ser maléfica ser muito maior
que ela ser benéfica, assim, a maior parte das mutações acabam por destruir os pêndulos
bem formados. Nesse gráfico há um caso em que não foi identificado apenas um ponto
isolado, mas dois ao mesmo tempo com uma pontuação maior. Esse caso é a adição do
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segundo pêndulo. Possivelmente o que ocorreu foi a criação de um outro pêndulo menor, ao
mesmo tempo que esse foi criado. Por possúırem uma vantagem menor, foram superados
pelo melhor pêndulo. Como a reprodução é feita com três indiv́ıduos, as caracteŕısticas de-
les não são totalmente perdidas e possivelmente contribúıram para o surgimento do terceiro
pêndulo.

4.2 Função de Seleção: Repetição local

A função de seleção por repetição local gerou o indiv́ıduo final apresentado na Figura 7.
Esse indiv́ıduo foi coletado da geração 425, o que indica que a evolução possuiu muito mais
tempo para trabalhar, mas também que a simulação é muito mais leve, possibilitando para
o mesmo tempo, mais gerações.

Figura 7: Esse é o resultado da simulação com função de seleção “Repetição local”. Diversas
peças são não utilizadas, mas duas são presas a parede. A engrenagem é presa diretamente
através de um pino vermelho. Já a viga rosa é presa a engrenagem com um pino azul. Essa
composição define um pêndulo duplo, com a viga rosa oscilando de forma muito dif́ıcil de
prever.

O melhor indiv́ıduo nessa linha evolutiva convergiu para um pêndulo duplo. Isso ocorre
pois essa foi a estrutura mais simples encontrada que fornece diversos estados para uma peça
antes de repetir qualquer um deles. O pêndulo duplo é um problema conhecido na f́ısica [3]
por ser dif́ıcil de descrever, dependendo muito das variáveis iniciais. A viga conectada na
engrenagem passa por muitos estados distintos, garantindo uma grande pontuação para esse
indiv́ıduo.
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Figura 8: Esse é o resultado numérico da simulação com função de seleção de “Repetição
Local”.

Os gráficos da Figura 8 apresentam os dados da mesma forma que os da Figura 6. A
esquerda verificamos que diferente do primeiro caso, o primeiro pêndulo foi criado muito
cedo (na geração 19), com o pêndulo duplo já existindo na geração 40. Entretanto, essa
estrutura é muito mais instável a mutações, já que qualquer mutação maléfica sobre o
primeiro pêndulo, destrói o pêndulo duplo completo. Por conta disso, em alguns pontos, até
os indiv́ıduos medianos possúıram uma pontuação muito abaixo do ótimo, apresentando essa
instabilidade. Depois da época 300 em ambos gráficos é posśıvel identificar uma melhora no
pêndulo. Isso se deve a uma posição inicial mais favorável, ou seja, que faz a viga conectada
percorrer mais estados antes de repetir. Essa alteração ocorre alterando gradativamente
uma peça por geração, o que limita o espaço de busca. Isso acontece pois qualquer alteração
sobre essas peças modifica a pontuação final, sendo uma região muito senśıvel e é aplicado
apenas uma mutação por vez. Se a maximização precisar de mais de uma mutação por vez,
ela nunca será atingida. O gráfico da direita possui o mesmo comportamento de um trecho
vertical estar seguindo um indiv́ıduo ótimo isolado, mas por ser mais senśıvel, os picos de
piores indiv́ıduos são muito menos padronizados. Entretanto, por possuir menos peças que
a estrutura da função de seleção anterior, o número de mutações prejudiciais como um todo
é menor, já que modificar peças fora do pêndulo, não modifica a pontuação final. Assim, a
região em amarelo é maior que o caso anterior.

4.3 Função de Seleção Repetição frequente

Esse foi o resultado mais diferente em relação aos demais. Como mostra a Figura 9, o
relógio consiste na adição de uma engrenagem com movimento livre, sobre uma âncora
de ponta cabeça presa pela extremidade por dois pinos vermelhos (conectados a parede).
Essa construção força a âncora a permanecer parada, entretanto, por estar posicionada
na extremidade e com os pinos muito próximos, é garantida alguma mobilidade angular
a essa peça. Assim, quando a engrenagem cai sobre ela, é garantido momento, fazendo-
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a rotacionar. Os pinos impedem que isso ocorra e voltam a posição inicial, lançando a
engrenagem para cima. Esse foi o melhor indiv́ıduo da geração 607, mostrando que é
igualmente rápido em relação à função de seleção anterior.

Figura 9: Esse é o resultado da simulação de seleção “Repetição frequente”. A evolução
levou esse indiv́ıduo a posicionar uma âncora como um braço preso ao fundo com dois pinos
vermelhos e uma engrenagem acima. A engrenagem cai sobre o braço e ele a arremessa
para cima, colidindo com o teto e a parede lateral da simulação.

Esse indiv́ıduo encontrado possibilita que a engrenagem que está sendo jogada passa
por muitos estados antes de se repetir, pois não é jogada na mesma direção todas as vezes.
Após alguns lançamentos, o braço perde energia e começa a lançar a engrenagem cada vez
menos, até que uma pequena oscilação cont́ınua ocorre. Nesse momento, após 6 oscilações a
simulação termina. Apesar de satisfazer as restrições, esse é ainda mais diferente do relógio
real que as outras linhas evolutivas.
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Figura 10: Esse é o resultado numérico da simulação com função de seleção de “Repetição
Frequente”.

Os gráficos da Figura 10 apresentam o caminho evolutivo das gerações. Aqui, a solução
encontrada é ainda mais instável que a anterior. Na geração 19 surge o primeiro pêndulo
e pouco tempo depois é adicionado um outro pino vermelho a esse pêndulo feito por uma
âncora. Acima dela já estava uma engrenagem que quando cai sobre essa estrutura de
âncora, é jogada para cima com velocidade. Muito cedo foi encontrada uma solução que
oscila muito, percorre muitos estados e é extremamente instável. Esse cenário é tão instável
que mesmo com elitismo, houve momentos viśıveis no gráfico da esquerda, que a pontuação
máxima decresceu. Isso evidencia algum erro sobre o determinismo do ambiente, uma vez
que o mesmo indiv́ıduo gerou pontuações diferentes. Mesmo após procura dessa diferença,
não foi posśıvel compreender a causa. Podemos ver em ambos gráficos esquerda e direita,
que o cenário é muito instável. Além disso, na maior parte do tempo, a simulação está
otimizando a posição inicial da engrenagem, encontrando um estado inicial na qual ela
é solta para faze-la percorrer o maior número de estados de forma periódica. Qualquer
pequeno movimento nesse sistema caótico pode levar a resultados muito diferentes.

4.4 Função de Seleção repetição paciente

O indiv́ıduo 11 é o representante da geração 4814. Especialmente para esse método foi for-
necido mais tempo, uma vez que ele possui o mecanismo de paciência. Surpreendentemente
as gerações acompanharam o acréscimo, chegando ao maior número de gerações. Por outro
lado, o resultado não foi diferente dos anteriores.
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Figura 11: Esse é o resultado da simulação repetição paciente. Aqui verificamos a existência
de dois pêndulos: uma engrenagem travada no chão e uma viga livre ao topo. Outras peças
livres estão no chão da simulação.

Esse resultado mostra apenas um pêndulo. Possivelmente isso ocorre pela amostragem
do pêndulo oscilando. Quando o pêndulo percorre uma posição repetida pela primeira vez,
ele deveria continuar repetindo todos os estados a partir desse momento, mas por conta da
pequena perda de energia, gradualmente ele desacelera, levando a viga a visitar um novo
estado. Quando isso ocorrer a contagem reinicia, estendendo a simulação e ganhando mais
pontos por isso.

Figura 12: Esse é o resultado numérico da simulação com função de seleção de “Repetição
Paciente”.
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Os resultados apresentados na Figura 12 mostram um cenário em que pela primeira
vez os piores indiv́ıduos conseguem alcançar pontuações semelhantes aos melhores. Isso
ocorreu pois o resultado encontrado um único pêndulo. Assim, as piores pontuações são
ruins quando destroem o pêndulo, ou indiferentes quando ocorrem fora dele. A adição de
uma outra estrutura rotacionando (o pêndulo feito pela engrenagem travado no chão), não
auxilia no processo de aumentar o tempo da simulação, já que ele é completamente feito
pelo pêndulo, e mantido conforme ele perde energia. Os gráficos mostram que a única
otimização feita nesse cenário foi a posição inicial do pêndulo, alterada pouco a pouco para
percorrer mais estados novos dentro do intervalo de paciência de 100 instantes. Por possuir
muitas gerações, o gráfico muito cheio. Para resolver isso, foi utilizado uma média móvel
de 50 amostras como apresentado na Figura 13.

Figura 13: Esse é o resultado numérico da simulação com função de seleção de “Repetição
Paciente”com uma média móvel de 50 amostras.

A Figura 13 apresenta o mesmo problema encontrado na simulação da função de perda
“Repetição Frequente”: Uma pontuação máxima que caiu em certo momento. Além disso é
posśıvel verificar que nesse caso os piores indiv́ıduos estão melhores que os outros métodos,
enquanto a mediana está muito próxima ao ótimo.

4.5 Função de Seleção Repetição colisão

O indiv́ıduo apresentado na Figura 14 é o representante da geração 14 da função de seleção
“Repetição colisão”.
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Figura 14: Esse é o resultado da simulação com função de seleção “Repetição colisão”. É
posśıvel verificar que foram criados dois pêndulos oscilantes.

Aqui podemos verificar que a parte na pontuação que considera a colisão não foi relevante
o suficiente. Além disso, o número de gerações está muito abaixo do esperado. Possivelmente
isso ocorreu por conta de algum conjunto de gerações que muito cedo geraram uma simulação
muito lenta, mas também um erro na estrutura computacional no momento da execução, o
que diminuiu o processamento para esse processo e levou a simulações mais lentas.

Figura 15: Esse é o resultado numérico da simulação com função de seleção de “Repetição
Frequente”.

A Figura 15 mostra o desempenho por gerações, dessa linha evolutiva. O gráfico a
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esquerda mostra mais claramente o surgimentos dos pêndulos nessa simulação. O primeiro
surgiu na geração 5 e suas caracteŕısticas são passadas para os demais logo na próxima
geração, também sendo posśıvel de ver esse comportamento no gráfico da direita. Após
otimizar o primeiro pêndulo, na geração 12 surge o segundo pêndulo, e suas caracteŕısticas
são passadas adiante logo em seguida.

4.6 Diminuir a população

Foi testado para a terceira função de seleção uma população de 10 indiv́ıduos. O resultado
após 3374 gerações é apresentado na figura 16. Devido a quantidade de indiv́ıduos, foi
posśıvel percorrer mais gerações. Entretanto, devido ao elitismo e o baixo número de
mutações nos indiv́ıduos, a evolução não encontrou uma forma de evoluir, permanecendo
em varias peças desconexas pelo espaço.

Figura 16: Esse é o resultado da simulação com função de seleção “Repetição frequente”.
É posśıvel verificar que nenhuma estrutura coerente emergiu apesar da quantidade extensa
de gerações dos indiv́ıduos.

4.7 Resultados Gerais

Segundo a restrição de relógio apresentada na Seção 2, todos as simulações de 100 indiv́ıduos
foram capazes de gerar relógios funcionais. Cada um otimiza sua própria pontuação depen-
dendo da função de seleção. Em alguns momentos foi necessário muitas gerações, em outros,
estruturas consideradas relógios já surgiram com 5 gerações. Ao diminuir o número de in-
div́ıduos, mesmo com muitas gerações, não foi posśıvel encontrar um relógio. O surgimento
das primeiras estruturas complexas parecem dificultar o surgimento das próximas, uma vez
que estas não estão sujeitos a algumas funções de seleção.
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5 Limitações e trabalhos futuros

Esse trabalho possui diversas limitações em sua metodologia e resultados, grande parte
delas devido ao tempo. Elas restringem as conclusões derivadas desse trabalho. São elas:

• Estruturas Conexas. Apesar de esse trabalho utilizar o fundo para realizar co-
nexões, sendo posśıvel interpretá-lo como uma peça, não há restrições nas funções de
seleção testadas que motivem a evolução a unir as peças com os pinos. No mundo
real, há relações de afinidade eletromagnéticas que aproximam átomos, moléculas e
protéınas. Essa caracteŕıstica pode ser fundamental para o surgimento de complexi-
dade e não foi abordada nesse trabalho.

• Simulação. A simulação nesse trabalho não é perfeita. Em diversos momentos
ocorrem comportamentos inesperados nas simulações que a diferem do mundo f́ısico.
A principal fonte de problemas é a discretização do tempo, necessária para realizar
qualquer simulação. Com a discretização, movimentos cont́ınuos se tornam discretos, e
sob altas velocidades, objetos que deveriam se colidir acabam se atravessando, objetos
podem ficar presos nas estruturas de outros, ou ainda as colisões e forças deixam
de conservar energia. Utilizar um motor de f́ısica mais apropriado poderia fornecer
resultados mais próximos da realidade.

• Custo computacional. As simulações f́ısicas e algoritmos evolutivos são computa-
cionalmente custosos. Os programas utilizados apenas fazem uso da CPU. O tempo
dispońıvel para a simulação desses relógios é limitado. Unindo esses três fatores,
pode ser posśıvel que um relógio ideal fosse encontrado após gerações das simulações,
mas devido às restrições, a simulação se encerrou muito antes disso ocorrer. Adaptar
o motor f́ısico e os algoritmos utilizados para a GPU poderia melhorar a eficiência
computacional e percorrer mais gerações, garantindo mais liberdade à evolução.

• Projetista. Uma das premissas originais desse trabalho era a evolução de relógios sem
a presença de um projetista. Apesar dos autores não guiarem cada passo da evolução
desses relógios, as regras e funções de seleção foram desenhadas para expressar o
entendimento de relógios por esses autores. Dessa forma, não é posśıvel remover a
necessidade mı́nima do projetista a partir desse trabalho. Apesar disso, as funções de
seleção foram escolhidas de forma a minimizar o viés do projetista, e gradualmente
premissas são adicionadas para auxiliar a evolução.

• Peças. A evolução dos relógios nesse trabalho, utilizou de peças pré desenhadas.
Apesar de na natureza a evolução trabalhar com átomos e moléculas já definidos, elas
são muito mais simples que as peças utilizadas nesse trabalho. Idealmente, os relógios
deveriam partir ou de poĺıgonos aleatórios ou moldáveis pela evolução, ou de pequenas
peças mais simples (removendo a engrenagem e a âncora). Essas modificações expan-
diriam as conclusões finais, mas tornariam o processo evolutivo ainda mais custoso e
complexo.



Clock Evolves 27

• Reprodução. Esse trabalho fez uma escolha peculiar para a reprodução: Uma
reprodução sexuada com 3 indiv́ıduos. Essa escolha permite impedir a dominação
das populações pelo indiv́ıduo com maior pontuação e simplificar o processo de re-
produção, entretanto há duas diferenças fundamentais com a realidade que poderiam
ser resolvidas em trabalhos futuros para expandir as conclusões: Devido ao custo
energético, a maioria dos seres sexuados no mundo realizam reprodução com apenas
2 indiv́ıduos. Além disso, a evolução de populações inclui a reprodução de diversos
pares de indiv́ıduos, não apenas os dominantes.

• Dimensão. Esse trabalho foi realizado em 2 planos bidimensionais. A vida e os
relógios reais existem em um espaço tridimensional. Devido às diferentes restrições
desses ambientes, não é posśıvel extrapolar o comportamento de um sobre o outro,
podendo ser mais fácil ou mais dif́ıcil evoluir relógios em 3 dimensões. Utilizar um
motor f́ısico adaptado a 3 dimensões resolveria essa limitação.

• Mutação. As fontes de mutação no mundo real são diversas e múltiplas. Nesse
trabalho, o valor máximo de mutação e o número de mutações foi previamente defi-
nido. Utilizar outros valores poderia levar a evolução a encontrar atalhos ou explorar
caminhos antes bloqueados por essas limitações.

• Elitismo. A estratégia usada para conservar as caracteŕısticas benéficas de uma
população, não estão presentes no mundo real, uma vez que não existem seres vivos
imortais. O elitismo atrapalha no surgimento de derivas genéticas e no surgimento de
variabilidade em uma população, o que limita o espaço da evolução. Adicionar um
tempo máximo de vida para cada indiv́ıduo como um parâmetro da evolução poderia
ser uma solução para aproximar os resultados da realidade.

• Motor. Diferente de relógios reais, esse trabalho não possui nenhuma fonte externa
de energia. Adicioná-la pode trazer resultados mais comparáveis ao mundo real.

Esperamos que essas limitações possam ser resolvidas em trabalhos futuros.

6 Conclusões

Esse trabalho definiu um subconjunto de peças iniciais, regras de evolução, e condições
iniciais mı́nimas e funções de seleção para, através de um algoritmo evolutivo, construir
relógios primitivos. Foram testadas 5 diferentes funções de seleção para guiar a evolução.
Essas funções tentam definir relógios reais com o menor conjunto de premissas posśıveis,
de forma a dispensar a existência de um projetista na criação desses relógios. Apesar dos
resultados estarem muito distantes do esperado, os relógios obtidos são capazes de medir o
tempo e satisfazem muito bem todas as restrições definidas pelas funções de seleção. Esse
trabalho também apresentou em sua metodologia uma forma de simular o ambiente para
evolução dos relógios. O tempo de evolução dos relógios varia muito, sendo dependente
das mutações aleatórias que ocorrem em cada geração, mas para populações com mais de
100 indiv́ıduos, em todos os 5 casos apresentados, foi posśıvel evoluir relógios mı́nimos em
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até 300 gerações. Nesse trabalho foi utilizada uma condição inicial vazia para as peças,
começando cada indiv́ıduo com nenhuma peça, e adicionando a cada cruzamento, alguma
alteração. Entretanto, os indiv́ıduos partiram de 4 tipos de peças pré definidas e um limite
no espaço da simulação, além de restrições também nos parâmetros de suas peças. A
capacidade de medir o tempo de cada relógio é relativa a forma de definição de medir o
tempo. Isso pode ser interpretado como a pontuação das funções de seleção em cada caso.
Dessa forma, a seção 4 aponta individualmente a capacidade dos relógios de medir o tempo
para cada geração e função de seleção. Mesmo não atingindo um relógio útil para seres
humanos, relógios primitivos foram encontrados, mostrando o quão dif́ıcil é controlar o
algoritmo evolutivo, sendo necessário uma função de seleção muito bem definida de forma
a atingir os relógios mecânicos desejados.
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