2

4

4

Double King:
Design e Implementacao de
um Jogo de Xadrez com
Regras Evolutivas e
Mecanicas Customizaveis

Andreas Cisi Ramos Emanuel Felipe Duarte

Relatério Técnico - [IC-PFG-25-25
Projeto Final de Graduagdo
2025 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

Double King: Design e Implementacao de um Jogo de Xadrez
com Regras Evolutivas e Mecanicas Customizaveis

Andreas Cisi Ramos* Emanuel Felipe Duarte!

Resumo

Este trabalho apresenta o desenvolvimento do Double King, um jogo digital 2D que
combina fundamentos do xadrez com principios de game design contemporaneo, incor-
porando mecanicas evolutivas, geracao procedural e regras customizaveis. O projeto
investiga, de forma pratica e tedrica, como sistemas formais tradicionais podem ser es-
tendidos por meio de transgressoes sancionadas, produzindo novas formas de agéncia, in-
certeza e emergéncia. A implementagao foi realizada em Unity, integrando um motor de
xadrez compativel com variantes (Fairy-Stockfish), arquitetura modular, algoritmos de
selecao procedural de pecas e mecanicas inéditas como inventario, loja, pecas evoluidas
e o modo Double King. A andlise do protdtipo utiliza o arcabougo Rules, Play, Culture
para discutir como essas escolhas sustentam meaningful play e reforcam a identidade
roguelike do sistema. O resultado é um artefato que sintetiza competéncias técnicas e
conceituais da graduacao, demonstrando como a combinagao entre teoria e pratica pode
gerar sistemas interativos ricos, expansiveis e alinhados a principios fundamentais do
design de jogos.

Palavras-chave: Game Design, Xadrez Evolutivo, Unity 2D, Sistemas Emergentes,
Mecanicas Customizaveis.

*Instituto de Computagao, UNICAMP, 13083-852 Campinas, SP. a246932@dac.unicamp.br
fInstituto de Computacio, UNICAMP, 13083-852 Campinas, SP. emanuel@ic.unicamp.br

Sumario

1 Introdugao

2 Justificativa

3 Fundamentagao Tedrica

3.1 Arcabougo Regras, Jogo e Cultura
3.2 Fundamentos de Game Design
3.3 Conceitos Complementares

3.4 Engine Unity e Conceitos Fundamentais do Desenvolvimento 2D

Objetivos

4.1 Objetivos especificos L L
4.1.1 Construgao de Base Técnica Sélida
4.1.2 Design de Novas Mecanicas e Exploragao Teérica
4.1.3 Documentacao Critica e Sintese Formativa

Metodologia

5.1 Revisao Bibliografica e Fundamentacao Técnica
5.2 Construcao da Base Técnica
5.3 Ideacao e Prototipacao das Novas Mecéanicas
5.4 Avaliacao Pratica e Refinamento Iterativo
5.5 Criacao da Identidade Visual
5.6 Documentacao e Conclusdes

Desenvolvimento da Arquitetura Base

6.1 Base Solidado Xadrez
6.1.1 Arquitetura de Controladores
6.1.2 Arquitetura de Modelos
6.1.3 Geragao Dinamica de Tabuleiro
6.1.4 Sistema de Pegas e Movimentos Acoplaveis

6.2 Oponente Artificialo
6.2.1 Interface IChessEngine
6.2.2 Implementagao com FairyStockfish
6.2.3 Conversao de Estados
6.2.4 Controlador do Oponente Artificial
6.2.5 Limitacoes da Engine de Xadrez

Regras Evolutivas e Mecanicas Customizaveis

7.1 Mecanicas Principais L
7.1.1 Niveis de Dificuldade
7.1.2 Double King Mode

7.2 Quebrando as Regras Passivamente
7.2.1 Inventario e Posicionamento de Pecas

Cisi e Duarte

SN N BN N 2] S UL O U

© © 0o o o N

10

10
10
10
11
11
11
12
13
13
13
14
14

Double King

7.2.2 Loja e Geracao de Conjunto de Pegas
7.3 Quebrando as Regras Ativamente
7.3.1 Pecas Evoluidas
7.3.2 Mecénicas Idealizadas: Cartas de Alteragdo de Regras

8 Experiéncia do Usuario
8.1 Identidade Visual
8.2 Imterface do Usudrio e e

9 Resultados
9.1 Anélise Conceitual do Jogo
9.1.1 Esquemas Formais (RULES)
9.1.2 Esquemas Experienciais (PLAY)
9.1.3 Esquemas Contextuais (CULTURE)
9.2 Playtesting L

10 Conclusoes e Trabalhos Futuros
Referéncias

A Apéndice
A.1 Algoritmo de Escolha com Pesos do Double King Mode

4 Cisi e Duarte

1 Introducao

Desde as primeiras investigacoes formais sobre jogos, o Xadrez é utilizado como referéncia
para compreender sistemas interativos estruturados por regras. A simplicidade das regras
do Xadrez encobre um espaco combinatério amplo, tornando-o um dominio fértil para o
estudo de tomada de decis@o [1]. E com isso, se torna um exemplo de como regras simples,
quando aplicadas de forma consistente, produzem profundidade estratégica, emergéncia e
criam uma experiéncia de jogo significativa [2]. Essa tradigao evidencia como jogos podem
ser analisados enquanto sistemas formais nos quais estrutura, interacao e consequéncia sao
elementos centrais.

Com base nesse entendimento, o jogo Double King foi desenvolvido como um sistema
interativo que combina elementos do Xadrez com caracteristicas do género roguelike, tais
como geragao procedural, alta rejogabilidade e imprevisibilidade estrutural. Essa aborda-
gem foi uma subversao proposital da natureza formal do Xadrez. Sendo este um exemplo
canoénico de um Jogo de Estratégia Abstrata que, por definicido, deve ter informacao per-
feita, onde todos os jogadores tém informacao completa sobre a posigao atual do tabuleiro
[3]. O Double King, por sua vez, introduziu informacao imperfeita e incerteza, permitindo
ao jogador moldar parte da experiéncia, alterando as regras e influenciando o desenvolvi-
mento do jogo de maneira ativa, criando um ambiente dinamico, no qual as agoes do jogador
transformam continuamente a configuracao do sistema.

Esse cendrio oferece condi¢Oes propicias para analisar como a combinacao entre regras
estaveis e evolutivas, baseado na modificacdo de mecanicas, sustenta diferentes formas de
interacao e estratégias, situando o Double King como um objeto relevante para discutir
conceitos fundamentais de game design relacionados a emergéncia, a agéncia do jogador e
a adaptacao de sistemas formais.

2 Justificativa

A criagéo do Double King teve a oportunidade de articular teoria e pratica em game design
por meio do desenvolvimento de um artefato capaz de materializar os principios investi-
gados. Esse jogo permitiu examinar, de modo aplicado, como regras, sistemas emergentes
e mecanismos de modificacdo estrutural se manifestam na experiéncia de jogo, ao mesmo
tempo em que o processo de implementagao consolida habilidades técnicas e competéncias
adquiridas ao longo da graduagao em Engenharia da Computacao. Dessa forma, o projeto
atuou simultaneamente como instrumento de investigacao teérica do design de jogos e como
sintese pratica da formacgao académica.

3 Fundamentacao Tedrica

Para orientar a andlise conceitual e estruturar o estudo com base em referenciais conso-
lidados, recorreu-se principalmente ao livro Rules of Play: Game Design Fundamentals,
de Salen e Zimmerman (2003), que propde um arcabouco tedrico abrangente para o en-
tendimento dos jogos enquanto sistemas formais, experiéncias de participacao e artefatos

Double King 5

culturais.

3.1

Arcabouco Regras, Jogo e Cultura

O arcabougo tedrico proposto por Salen e Zimmerman (2003) estrutura o entendimento dos
jogos através de trés esquemas primdrios de design [2, Cap.1: What is this book about ?]:

e Rules (Regras): foca na organizagao do sistema projetado, nas estruturas légicas e

matematicas e nas qualidades formais do jogo. Essas sdo as estruturas que regem a
identidade do sistema.

e Play (Jogabilidade/Experiéncia): foca na experiéncia humana do sistema, na

participacao do jogador, no prazer, no significado e na interacao.

e Culture (Cultura): foca nos contextos mais amplos em que o jogo estd inserido,

3.2

como as relacoes entre o jogo e os contextos culturais, ideologias e valores.

Fundamentos de Game Design

A partir do arcabougo tedrico proposto por Salen e Zimmerman (2003), destacam-se os
seguintes conceitos fundamentais para o design de jogos:

e Meaningful Play (Experiéncia de jogo significativa): conceito central que ori-

3.3

enta os designers na criagao de experiéncias que tenham sentido e relevancia para os
jogadores, sendo o objetivo fundamental do design de jogos bem-sucedido [2, Cap.3:
Meaningful Play).

Lusory Attitude (Atitude luséria): estado mental em que o jogador aceita vo-
luntariamente regras, objetivos e obstaculos arbitrarios, possibilitando a existéncia e
o funcionamento do jogo [2, Cap.7: Defining Games].

Emergent Systems (Sistemas emergentes): sistemas que produzem complexi-
dade e resultados imprevisiveis a partir de um conjunto de regras simples [2, Cap.14:
Games as Emergent Systems].

Conceitos Complementares

Playtesting (Teste de Jogabilidade): componente fundamental do design itera-
tivo, envolvendo um ciclo continuo de criagao, teste e revisao [2, Cap.2: The Design
Process].

Roguelike (Género Roguelike): subgénero inspirado em Rogue (1980), cuja de-
finicao, embora ainda debatida, geralmente inclui caracteristicas como geracao pro-
cedural, elevada rejogabilidade e o conceito de morte definitiva. Essas propriedades
reforcam a esséncia do género, baseada na variabilidade extrema e no aprendizado
emergente ao longo de multiplas tentativas [4].

6 Cisi e Duarte

3.4 Engine Unity e Conceitos Fundamentais do Desenvolvimento 2D

A Unity [5] é uma engine de desenvolvimento amplamente utilizada para a criagao de jogos
digitais, oferecendo ferramentas visuais, um ecossistema modular baseada em C#. Seu
modelo operacional adota uma arquitetura centrada em GameObjects e Components, na
qual comportamentos podem ser acoplados, removidos e combinados de forma dinamica.

e GameObject (Objeto do Jogo): Unidade estrutural fundamental da Unity e re-
presenta qualquer entidade presente em uma cena. Um GameObject funciona como
um contéiner que recebe funcionalidade através da adicao de Componentes.

e Components (Componentes): Elementos que definem comportamento, aparéncia
e funcionalidades de um GameObject. A légica personalizada do jogo também é im-
plementada como componentes, por meio de scripts em C.

e Scripts C# (Scripts em C#): Componentes que implementam regras, decisoes,
interacoes e fluxos internos do jogo.

e Sprites: Imagens 2D utilizadas como recursos graficos para exibicao na tela. Eles
representam texturas individuais importadas como objeto e sao renderizados através
do componente SpriteRenderer, que controla como essas imagens aparecem na cena.

e ScriptableObjects (Objetos Scriptaveis): Sao estruturas de dados reutilizaveis
independentes do ciclo de vida dos GameObjects. Eles permitem armazenar confi-
guragoes, valores, tabelas, curvas, parametros de balanceamento e perfis sem necessi-
dade de instanciagao na cena.

e UnityEvent e Arquitetura Event-Driven (Orientada a Eventos): Sistema na-
tivo da Unity para implementar comunicacao desacoplada entre objetos. Ele permite
que GameObjects e componentes se comuniquem sem depender diretamente uns dos
outros, seguindo o paradigma direcionado a eventos.

4 Objetivos

O objetivo central desse trabalho teve como principio investigar e documentar o processo
criativo no design de jogos, com foco na aplicacao de técnicas e conceitos fundamentais, uti-
lizando o embasamento tedrico e a experimentacao pratica. Nesse contexto, o jogo Double
King foi desenvolvido como um artefato de design capaz de materializar principios fun-
damentais do game design, permitindo examinar como variacoes de regras, pela criacao de
mecanicas, e decisoes de implementagao tornaram a experiéncia de jogo significativa. O pro-
jeto igualmente se propos a sintetizar os conhecimentos adquiridos na graduacao, integrando
habilidades técnicas e fundamentos tedricos desenvolvidos ao longo do curso, aplicando-os
na construcao de um jogo como um exemplo de software.

Double King 7

4.1 Objetivos especificos
4.1.1 Construcao de Base Técnica Sélida

Antes de explorar mecéanicas evolutivas, tornou-se fundamental estabelecer uma base es-
trutural robusta tomando o xadrez como sistema formal de referéncia. Essa base deve ser
modular e extensivel, garantindo estabilidade para futuras adigoes de regras dinamicas,
incluindo a defini¢do da arquitetura essencial do jogo (como tabuleiro, pecas e 1égica cen-
tral), a implementacao dos elementos necessdrios para a interagdo em ambiente digital e
a integracao de um oponente artificial capaz de sustentar o conflito préprio do sistema.
Essa etapa estabeleceu o alicerce sobre o qual as demais camadas de design poderao ser
investigadas.

4.1.2 Design de Novas Mecanicas e Exploragao Teérica

O desenvolvimento do sistema buscou explorar mecanicas que ampliaram as regras cldssicas
do xadrez e permitiram avaliar, sob a 6tica tedrica, como o arcabouco Rules, Play e Culture,
como adicao de mecéanicas favoreceram a experiéncia do jogo significativa. A partir de uma
base estrutural estavel, investigou-se um conjunto de possibilidades tedricas oferecidas pela
literatura, examinando como variagoes de regras, modificacbes temporarias e estruturas
emergentes foram incorporadas ao jogo para expandir sua expressividade. O objetivo nao
foi determinar previamente quais mecanicas sdo mais eficazes, mas explorar, analisar e
prototipar solucoes que demonstraram potencial para produzir interagoes significativas.

4.1.3 Documentagao Critica e Sintese Formativa

O processo de desenvolvimento, as decisoes de design, as justificativas conceituais e as
transformagoes na arquitetura constituiram parte essencial do projeto. Essa documentagao
articulou o percurso tedrico-pratico, relacionando escolhas de implementacao aos principios
de game design estudados, ao mesmo tempo em que o artefato consolidou o projeto como
uma sintese das competéncias desenvolvidas na graduagao. O resultado final configura-se
como um protétipo expansivel, apto a servir tanto como artefato de investigacdo quanto
como base para evolucao posterior em projetos futuros.

5 Metodologia

A metodologia adotada para o desenvolvimento do Double King combinou investigacao
tedrica, fundamentagao técnica, criagao artistica e ciclos iterativos de experimentacao. O
processo, de natureza nao linear, estruturou-se em eixos que dialogam entre si ao longo do
processo — revisao conceitual, modelagem, ideacao, implementacao, avaliacao e refinamento
— permitindo que decisoes tedricas, técnicas e estéticas evoluissem simultaneamente ao
longo do projeto.

8 Cisi e Duarte

5.1 Revisao Bibliografica e Fundamentacao Técnica

A primeira etapa consistiu na revisao de literatura para reunir modelos conceituais, exem-
plos praticos e principios de design que orientaram a criacao do jogo. Esse estudo envolveu
obras fundamentais como Rules of Play e Game Design Workshop [6], além da andlise de
literatura cinza e de titulos contemporaneos, como The Balatro Timeline [7], que demons-
tram como pequenas alteracoes em sistemas tradicionais podem expandir a profundidade
estratégica e gerar experiéncias altamente significativas. O objetivo dessa revisdo nao foi
definir antecipadamente quais mecanicas seriam adotadas, mas construir um repertoério ca-
paz de orientar decisoes ao longo do processo e fornecer referéncias de como jogos baseados
em regras podem produzir meaningful play.

Em paralelo, desenvolveu-se uma fundamentagao técnica voltada ao dominio da Unity,
visando envolver a aprendizagem progressiva dos recursos centrais da engine para viabilizar
a implementacao das ideias de design. A Unity mostrou-se particularmente adequada por
sua ampla adocao na industria, pela documentacao extensa e pela arquitetura baseada em
GameObjects e Components, que favorece modularidade e extensao. Esse estudo técnico
proporcionou a infraestrutura necessaria para desenvolver sistemas dindmicos e iterar sobre
eles com agilidade ao longo do projeto.

5.2 Construcao da Base Técnica

A construcao técnica iniciou-se pela definicdo de uma base estrutural sélida sobre a qual as
demais mecanicas poderiam ser desenvolvidas. O xadrez foi adotado como sistema inicial,
servindo como estrutura estavel e bem definida para experimentagoes futuras. A arquitetura
do jogo foi projetada com foco em modularidade e baixo acoplamento, garantindo que pegas,
movimentos e regras pudessem ser estendidos ou substituidos sem interferéncia entre os
componentes.

Para que essa base fosse funcional como jogo, era necessario preservar o conflito central
previsto no xadrez, o que exigia a presenca de um oponente consistente e autéonomo. O
motor Fairy-Stockfish [8] foi um elemento central na construcao desse oponente artificial,
permitindo processar a configuracao do tabuleiro e gerar decisoes estratégicas mesmo quando
o sistema inclui pegas com novos padroes de movimento ou tamanhos de tabuleiros nao
convencionais.

Essa escolha tornou-se especialmente relevante tendo em vista que um oponente capaz
de antecipar e compreender todas as futuras regras evolutivas ou mecanicas customizaveis
extrapolaria o escopo do projeto, exigindo modelos de decisao complexos. Diante disso,
a pesquisa voltou-se para a busca de um motor que operasse nao apenas sobre as regras
tradicionais do xadrez, mas que ainda oferecesse flexibilidade suficiente para lidar com
extensoes estruturais.

5.3 Ideacao e Prototipacao das Novas Mecanicas

A ideagao seguiu principios descritos em Game Design Workshop: A Playcentric Approach
to Creating Innovative Games [6], segundo os quais a clareza da mecanica e da experiéncia

Double King 9

desejada deve preceder a producao digital. Para isso, mecanicas foram inicialmente explo-
radas por meio de esbocos e diagramas, permitindo avaliar potenciais desdobramentos sem
o custo e a rigidez que a implementagao pode impor.

Essa etapa buscou identificar como alteracoes de regras, diferentes modos de jogo ou
modificagoes no comportamento das pecas poderiam expandir o espacgo de agéncia do joga-
dor. Assim, reduzir o tempo de iteracao de cada validagao conceitual, favorece a eliminacao
de ideias desalinhadas aos objetivos do projeto [6].

5.4 Avaliacao Pratica e Refinamento Iterativo

O playtesting with confidants, conceito definido por Fullerton (2024) como teste de joga-
bilidade com confidentes, foi o tipo de avaliacao préatica explorada neste trabalho com a
ajuda de colegas e familiares. Esse tipo de testador é recomendado para as fases iniciais do
desenvolvimento, quando o objetivo principal é verificar legibilidade, clareza e compreensao
das regras sem a necessidade de um protétipo completo [6].

Durante as sessoes, adotou-se a pratica de solicitar que os participantes “pensassem
em voz alta”, permitindo registrar suas expectativas, dividas, hesitacoes e interpretagoes
espontaneas. Esse procedimento, recomendado por Fullerton (2024), fornece acesso direto
ao raciocinio do jogador, revelando antecipactes incorretas, confusdes na interface e dis-
crepancias entre intencao do design e percepcao do usudrio.

O feedback coletado foi registrado tanto em forma qualitativa, incluindo impressoes
verbais, duvidas, interpretacoes e comentarios sobre usabilidade, quanto em dados quan-
titativos simples, como duracao das partidas e frequéncia de erros de operacao. Essas
informagoes foram anotadas e utilizadas como base para identificar inconsisténcias de de-
sign, revisar regras, ajustar comportamentos do sistema e orientar novas ideias durante o
processo iterativo.

O refinamento do projeto emergiu diretamente desses ciclos continuos de experimentagao,
teste e revisao. Em varios casos, ideias foram descartadas ainda na fase conceitual ou imedi-
atamente ap0ds as primeiras sessoes de teste, evitando desperdicio de tempo e concentrando
esforgos nas mecéanicas com maior potencial. Esse processo iterativo permitiu ajustar re-
gras, reequilibrar sistemas e direcionar a evolucao do protdtipo para novas mecanicas com
base na resposta real dos jogadores.

5.5 Criacao da Identidade Visual

O desenvolvimento da identidade visual ocorreu paralelamente as etapas técnicas, uma vez
que a arte exerce papel central na legibilidade e na comunicagao das agoes do jogador. Obras
como The Art of Cuphead (2020) destacam que a clareza visual e a coeréncia estética sdo
essenciais para evitar ambiguidade mecanica e reforgar a intuigdo durante a jogabilidade.
Com base nesses principios, optou-se pela criagao de pixel art autoral utilizando o LibreS-
prite [10], um software open source voltado para arte 2D. A ferramenta permitiu produzir
elementos visuais simples e expressivos, capazes de comunicar funcao e estado de maneira
imediata, além de estabelecer uma identidade estética consistente para o projeto.

10 Cisi e Duarte

5.6 Documentagao e Conclusoes

Essa etapa se preocupou no registro de decisoes de design, alteragoes na arquitetura, justi-
ficativas conceituais e sucessivas revisces do sistema. Esse registro garantiu transparéncia
ao processo metodoldgico e forneceu a base necessaria para a andlise critica realizada ao
final do projeto.

As conclusoes emergem da comparacio entre os objetivos inicialmente definidos, as es-
colhas efetuadas ao longo do processo e os impactos observados na experiéncia do jogador.
Incluem também reflexGes sobre mecanicas que surgiram durante o percurso, algumas im-
plementadas, outras apenas conceituadas e esbocadas, cuja viabilidade sé se revelou gragas
a interacao continua entre fundamentacao tedrica, pratica técnica e ciclos iterativos de ex-
perimentacgao e avaliacao.

6 Desenvolvimento da Arquitetura Base

6.1 Base Solida do Xadrez

Para estabelecer uma base sélida e extensivel do Xadrez tradicional, foi desenvolvida uma
arquitetura seguindo o padrao MVC (Modelo-Visao-Controlador) adaptado para Unity. O
sistema foi projetado com foco em separagao de responsabilidades, onde cada componente
pode ser modificado ou estendido sem afetar o funcionamento do sistema como um todo.

6.1.1 Arquitetura de Controladores

A arquitetura utilizou um conjunto de controladores que formam a base estrutural do jogo.
O GameManager atua como orquestrador central, mantendo referéncias para todos os con-
troladores e coordenando o estado geral do jogo através de um sistema de eventos (event-
driven). Os principais controladores criados que compoem essa base sao:

e GameManager: Gerencia estados do jogo, coordena inicializagao e transicoes entre
fases. Implementando o padrao Singleton para acesso global e centraliza a comu-
nicacao entre todos os controladores.

e BoardController: Responsavel pela criacao, destruicao e gerenciamento do tabu-
leiro, incluindo validagao de movimentos legais e detecgao de estados de xadrez (xeque,
xeque mate, empate), mantendo referéncia ao modelo Board e gerenciando a matriz
de Tiles.

e PieceController: Gerencia criagao, destruicao e posicionamento de pegas, mantendo
listas separadas para pegas do jogador e do oponente, coordenando a instanciagao de
GameObjects de pegas.

e PlayerController: Controla acoes do jogador e validagao de turnos, gerenciando e
coordenando as agoes do jogador.

e ChessController: Coordena a légica de turnos e repassa comandos ao sistema do
oponente artificial quando necessario.

Double King 11

6.1.2 Arquitetura de Modelos

A camada de Modelo contém as estruturas de dados fundamentais que representam o
dominio do jogo, contendo os seguintes scripts desenvolvidos:

e Board (Tabuleiro): Representa o tabuleiro como uma matriz bidimensional de
Tiles, armazenando largura e comprimento.

e Tile (Casa): Representa uma casa do tabuleiro, contendo referéncia a pega posi-
cionada, coordenadas (x, y), posicdo no mundo Unity e estado visual. Cada Tile
expoe um tipo (TileAction) que define sua apresentacao (sprite) e é ajustado via
ChangeTileAction: Idle, Movement, Selected, Capture, SpecialMove. Quando clicada
os controladores reagem decidindo o comportamento com base nesse TileAction.

e Piece (Pecga): Representa uma pega de xadrez, contendo tipo(Rei, Rainha, Torre,
Bispo, Cavalo, Peao), cor, posigao, lista de movimentos acoplados, implementando
métodos para calculo de movimentos disponiveis.

e PieceDescription (Descricao de Pega): Estrutura de dados que descreve uma
peca de forma serializavel, contendo tipo, cor e movimentos, permitindo criacao de
layouts de oponente e configuracoes de pecas.

e IPieceMovement e Implementagoes: Interface e classes concretas (KingMove-
ment, QueenMovement, RookMovement, BishopMovement, KnightMovement, Pawn-
Movement) que implementam padroes de movimento especificos.

6.1.3 Geracao Dinadmica de Tabuleiro

O sistema de tabuleiro foi implementado permitindo possiveis variacoes de tamanho. A
geragao é realizada pelo BoardController através do método CreateBoard (int boardWidth,
int boardLength), que cria uma matriz de Tiles com as dimensoes especificadas.

O processo de criagao envolveu o calculo dinamico de escala dos tiles, calculado pro-
porcionalmente ao tamanho do tabuleiro com um limite minimo para manter legibilidade
em tabuleiros grandes. O método CreateTileGrid cria uma grade de GameObjects com
tiles diferentes para bordas (esquerda e direita) e centro, posicionando cada tile com base
em coordenadas calculadas. Cada tile recebe um sorting order, valor numérico usado pela
Unity para determinar a ordem de renderizacao de sprites em 2D, onde objetos com valores
maiores sao renderizados por cima de objetos com valores menores. Assim, as tiles da frente

recebem um sorting order maior, criando a sensacao de profundidade mesmo em um jogo
2D.

6.1.4 Sistema de Pecas e Movimentos Acoplaveis

As pecas foram implementadas como entidades que podem receber multiplas fungoes de
movimento e ataque acopladas dinamicamente. O sistema utiliza o padrao Strategy através
da interface IPieceMovement e da classe abstrata Piece MovementBase. O padrao Strategy

12 Cisi e Duarte

é um padrao de design comportamental que permite definir uma familia de algoritmos,
encapsuld-los e torna-los intercambidveis. Neste contexto, cada tipo de movimento (Rei,
Rainha, Torre, etc.) é uma estratégia que pode ser acoplada dinamicamente a uma pega,
permitindo que o comportamento de movimento seja selecionado em tempo de execucao
sem modificar a estrutura da classe Piece.

Interface IPieceMovement: Define o contrato que todos os movimentos devem im-
plementar:

e GetAvailableMoves: Retorna os movimentos disponiveis da peca, podendo combinar
movimentos e ataque;

e GetMovesPattern: Retorna apenas padroes de movimento;
e GetAttackPattern: Retorna apenas padroes de ataque.

Com essa interface foi possivel obter padroes de movimento e ataque diferentes, como
o do Pedo que por mais que se move apenas uma casa para frente, pode capturar pecas
inimigas diagonalmente. Cada tipo de pega possui uma classe que herda de PieceMo-
vementBase e implementa seus padroes especificos. A classe Piece mantém uma lista
List<IPieceMovement> Movements que permite adicionar miltiplos movimentos a mesma
peca. Isso permitiu que uma pega tenha, por exemplo, movimentos de Torre e Cavalo si-
multaneamente, criando comportamentos hibridos que podem ser adicionados em tempo
de execugao através do método AddPieceMovement (PieceType extraMovementType) [Fi-
gura 1].

public void AddPieceMovement (PieceType type)

{
switch (type)
{
case PieceType.King: Movements.Add (new KingMovement()); break;
case PieceType.Queen: Movements.Add(new QueenMovement()); break;
case PieceType.Rook: Movements.Add (new RookMovement()); break;
case PieceType.Bishop: Movements.Add(new BishopMovement()); break;
case PieceType.Knight: Movements.Add(new KnightMovement()); break;
case PieceType.Pawn: Movements.Add (new PawnMovement()); break;
default: break;
}
}

Figura 1: Métodos para acoplar novos padroes de movimento a uma pega (Piece.cs).

6.2 Oponente Artificial

Uma arquitetura para o sistema de oponente artificial foi desenvolvida utilizando o padrao
de interface para abstrair a integracao da engine de xadrez sem modificar o cédigo do jogo.

Double King 13

6.2.1 Interface IChessEngine

A interface IChessEngine define o contrato que a engine deve seguir, abstraindo detalhes
especificos de cada engine. Os principais métodos incluem:

e InitializeAsync(): Inicializa o engine de forma assincrona;

e SetPositionAsync(BoardPosition position): Define a posicao atual do tabuleiro;

e CalculateMoveAsync(CalculationConstraints constraints): Solicita o calculo
da melhor jogada.

6.2.2 Implementagao com FairyStockfish

A solucao implementada utilizou o FuairyStockfish, um engine que suporta variantes do
xadrez e tabuleiros de tamanhos nao-padrao. A classe FuairyStockfishEngine implementa
IChessEngine e utiliza um componente UCIEngine para comunicagao via protocolo UCI
(Universal Chess Interface), que permite comunicagao padronizada com engines de xadrez
através de comandos de texto.

O FuiryStockfishEngine gerencia a inicializacado do processo do engine, a configuragao
de variantes através de arquivos .fv (fairy variant) gerados dinamicamente, o ajuste de
parametros do engine (threads, profundidade) e a conversao entre formatos Unity e UCL

O arquivo de variante fairy permite configurar algumas regras tradicionais do jogo,
incluindo: definicao do tamanho do tabuleiro; definicdo de pecas canénicas através de
pieceTypes usando notagao especifica do Fuairy-Stockfish; criagdo de pecas com novos
padroes de movimento; e configuracao de regras especiais como promocao de pedes, en
passant, roque e duplo passo do peao.

6.2.3 Conversao de Estados

A classe BoardStateConverter realiza a tradugdo bidirecional entre o estado do tabuleiro
em Unity e a notacao FEN (Forsyth-Edwards Notation), que é o formato padrao usado por
engines de xadrez, implementa a conversao de coordenadas UCI para posigoes do tabu-
leiro Unity através do método UCIMoveToUnity, que recebe uma string UCI (por exemplo,
"bestmove e2e4", indicando que a engine recomenda mover a pega de e2 para e4) e retorna
uma tupla contendo as posicoes de origem e destino em Vector2Int, além de informagoes
sobre promocao de pedo, quando aplicivel [Figura 2].

14 Cisi e Duarte

var (from, to, promotion) = BoardStateConverter.UCIMoveToUnity(bestMoveUCI);
Piece piece = boardController.GetPieceAtPosition(from) ;

if (piece != null)

{
var validMoves = piece.GetAvailableMoves(boardController.CurrentBoardState) ;
if (validMoves.Contains(to))
{
boardController.MovePiece(piece, to);
b
else
{
Debug.LogWarning("Movimento sugerido pelo engine é invalido no estado atual.");
b
b

Figura 2: Conversao UCI para coordenadas Unity e aplicagdo do movimento (método
UCIMoveToUnity).

Esse c6digo demonstra a integracao pratica entre o comando retornado pela engine e o
sistema de movimentacao de pecas. Assim, o motor de xadrez calcula a jogada como texto,
que é entao convertido para posigoes internas e validado/invocado pelas regras e classes de
movimento do Unity.

6.2.4 Controlador do Oponente Artificial

O BotController gerencia o fluxo de cédlculo assincrono do oponente artificial, validando o
estado do tabuleiro antes de solicitar calculo, gerenciando atrasos configuraveis para simu-
lar tempo de pensamento, validando movimentos retornados pelo engine contra o estado
atual do tabuleiro, implementando sistema de retry e re-sincronizagao em caso de erros e
reinicializando o engine automaticamente se necessario.

A interface de comunicagao foi projetada de forma simples e direta: o BotControl-
ler apenas solicita a melhor jogada para um estado especifico do tabuleiro através de
CalculateMoveAsync, abstraindo toda a complexidade da comunicagao com o engine. O
resultado é retornado via evento OnMoveCalculated e aplicado ao tabuleiro.

6.2.5 Limitacoes da Engine de Xadrez

O oponente artificial utilizado no projeto calcula suas jogadas exclusivamente a partir do
estado atual do tabuleiro, operando apenas como um oponente que conhece uma versao
expandida das regras do xadrez tradicional. Como esse motor nao consegue interpretar ou
avaliar regras alternativas, o que exigiria algum treinamento apds a criagdo de mecanicas
extras, essa limitacao passou a orientar diretamente o design do jogo.

Double King 15

A assimetria entre um inimigo estavel, limitado ao uso de regras tradicionais, e um joga-
dor capaz de explorar futuras outras regras e mecanicas passou a orientar a ideia central do
jogo. Conceito que serd aprofundado no tépico seguinte, ao apresentar as Regras Evolutivas
e as Mecanicas Customizaveis.

7 Regras Evolutivas e Mecanicas Customizaveis

7.1 Mecanicas Principais
7.1.1 Niveis de Dificuldade

Visando explorar de maneira significativa a diferenca entre o oponente artificial e o jogador,
adotou-se a assimetria no nimero de pecas como elemento central do design. A desvanta-
gem numeérica enfrentada pelo jogador foi estruturada como parte intencional do desafio,
refor¢cando que todo jogo opera sobre um conflito artificial [2, Cap.20: Games as Systems
of Conflict]. Nesse contexto, o jogador aceita voluntariamente tais restricoes por meio da
Atitude Luséria, reconhecendo obstaculos arbitrarios como condicoes legitimas do sistema.

A partir dessa logica, utilizou-se uma mecéanica caracteristica de jogos roguelike, estrutu-
rando o sistema em niveis sucessivos de dificuldade crescente. Jogos como Balatro reforcam
esse formato ao combinar aleatoriedade, adaptacao estratégica e ciclos de dificuldade incre-
mental [7]. Dessa forma, cada vitéria (xeque mate) conduz o jogador a tabuleiros maiores
e a conjuntos inimigos mais numerosos, refletindo o modelo de progressao escalonada e
desafios acumulativos tipico do género.

Além da estrutura mecénica, buscou-se adicionar uma camada narrativa para reforcar
a escalada de dificuldade. Cada estdgio apresenta um Boss (chefe) baseado em uma pega
de xadrez, progredindo de acordo com seus valores: do peao ao rei. Isso transforma a
progressao em uma sequéncia tematica clara, na qual o jogador enfrenta partes do exército
adversario de forma simbdlica.

Essa progressao vai além do que Salen e Zimmerman (2003) definem como Sistema de
Conflito, pois a assimetria crescente entre os exércitos pode tornar o desafio matematica-
mente impossivel, comprometendo a sensagao de justica, elemento essencial para um conflito
equilibrado que disperte meaningful play [2, Cap.20: Games as Systems of Conflict]. Em
contrapartida, essa limitacao abre espaco para novas mecanicas que devolvem a capacidade
de agir do jogador, oferecendo novos caminhos em um cenério adverso.

Detalhes da Implementagao A mecanica de dificuldade crescente foi implementada
através do LevelController, que gerencia a progressao de niveis com tabuleiros progressi-
vamente maiores e exércitos crescentes de pecas. O controlador mantém um dicionério de
configuragoes de nivel (LevelConfig), que contém os seguintes parametros:

e Difficulty(Dificuldade): Enumeragao que identifica o tipo de exército (Pawn, Knight,
Bishop, Rook, Queen, King);

o boardWidth e boardLength: Dimensoes do tabuleiro para o nivel;

16 Cisi e Duarte

e opponentLayout: Matriz PieceDescription[,] que define o exército do oponente;
e description: Descricao textual do nivel.

O sistema foi projetado para facilitar ajustes de balanceamento. Novos niveis podem
ser adicionados simplesmente criando novas entradas no dicionério levelConfigs, exemplo na
Figura 3, e os layouts de oponente sao gerados através de métodos dedicados (Create Pawn-
DifficultyLayout, CreateKnightDifficultyLayout, etc.), como mostra a Figura 4, permitindo
ajustes rapidos na composicao dos exércitos.

levelConfigs[1] = new LevelConfig

{
difficulty = Difficulty.Pawn,
boardWidth = 5,
boardLength = 5,
description = "Basic chess setup - Pawn difficulty",
opponentLayout = CreatePawnDifficultyLayout()
3

Figura 3: Exemplo de configuragéo de LevelConfig para o nivel de dificuldade do Peao.

private PieceDescription[,] CreatePawnDifficultyLayout ()

{
PieceDescription[,] layout = new PieceDescription[2, 5];
layout [0, 2] = new PieceDescription(PieceType.King, PieceColor.Black);
for (int i = 0; i < 5; i++)
{
layout[1, i] = new PieceDescription(PieceType.Pawn, PieceColor.Black);
}
return layout;
}

Figura 4: Exemplo de CreatePawnDifficultyLayout: geragao do layout do exército do opo-
nente para o nivel de dificuldade do Peao.

Exemplo dos nivel de dificuldade do Peao implementados dentro da Unity podem ser
vistos na Figura 5.

7.1.2 Double King Mode

Considerando que o jogo adota dificuldade crescente como eixo central da experiéncia,
tornou-se necessario resolver como lidar com situagdes de empate sem comprometer a pro-
gressdo. A primeira solugao testada foi tratar o empate como vitéria automética do jogador,

Double King 17

Figura 5: Exemplo ilustrativo do nivel de dificuldade Peao.

permitindo avancar para o préximo nivel de dificuldade. No entanto, durante as primei-
ras sessoes de playtesting, observou-se que essa abordagem alterava a dinamica estratégica
desejada: os jogadores passaram a buscar o empate de forma deliberada, usando trocas
de pecas como caminho mais ficil para encerrar a partida. Isso reduzia a importancia do
xeque-mate e enfraquecia a base estratégica do xadrez tradicional.

Identificado que o empate nao poderia funcionar como parte da estratégia de evolugao,
tornou-se necessario desenvolver um mecanismo especifico para resolver essa condicao sem
prejudicar o ritmo do jogo. Essa avaliacao também abriu espago para integrar uma mecénica
customizavel e distinta do xadrez tradicional. A solucao deveria preservar o desafio, impedir
a exploracao do sistema e introduzir um momento decisivo que mantivesse a coeréncia com
a experiéncia proposta.

Dessa necessidade surgiu um modo exclusivo: o modo Double King, um sistema de
desempate que combina decisao estratégica e sorte. Nesse modo, um empate desencadeia
uma disputa direta entre os dois reis no mesmo tabuleiro. A resolucdo ocorre por meio
de ciclos alternados de remogao de tiles e movimentagao: (1) O rei inimigo seleciona uma
tile que serd removida; (2) O jogador entdo realiza seu movimento sem saber qual tile
foi marcada; se escolher exatamente essa tile, o0 modo de desempate termina e o jogador
perde; (3) Caso contrério, a rodada é passada para o jogador, que escolhe uma tile para ser
eliminada; (4) O rei inimigo faz seu movimento, novamente sem saber qual tile foi escolhida
— ¢ o ciclo se repete até que um dos reis caia do tabuleiro e seja eliminado.

A introdugao de elementos de incerteza no modo Double King foi fundamental para
tornar o desempate significativo. O meaningful play depende de sistemas que nao sejam
totalmente previsiveis [2, Cap.15: Games as Systems of Uncertainty]. O modo combina
agéncia do jogador, ao permitir que o jogador escolha qual tile serd removida, com risco

18 Cisi e Duarte

e incerteza, ja que o movimento do rei adversario ocorre sem conhecimento prévio da tile
marcada. Assim, o jogador pode influenciar a situacdo, mas nunca determind-la por com-
pleto, mantendo um equilibrio entre controle parcial e incerteza que torna cada rodada
tensa, imprevisivel e relevante.

Nos playtests, essa dinamica mostrou-se eficaz ao motivar rejogabilidade. Os participan-
tes relataram que desejariam experimentar esse modo novamente, mesmo sem relacao com a
progressao principal, buscando manipular o risco e antecipar o comportamento do oponente.
Isso indica que o minigame nao apenas evita empates, mas também sustenta engajamento
préprio ao explorar a relacao equilibrada entre agéncia, probabilidade e incerteza.

Uma visualizagdo do modo Double King em execucao pode ser vista em [Figura 6].

Figura 6: Modo Double King em execucao na rodada de movimentagao do jogador para o
desempate do nivel de dificuldade Bispo.

Detalhes da Implementacao O modo é ativado quando um empate é detectado. O
DoubleKingModeController inicializa o modo removendo todas as pecas do tabuleiro e re-
posicionando os reis para o centro da primeira e ultima fileira. Os outros métodos dessa
classe ficam responsaveis pela remocao de tiles ou pela movimentacao do rei, alternando a
rodada entre jogador e oponente ao fim da agdo. Destaca-se aqui a ideia de configurar o
tabuleiro como uma matriz de tiles em que cada tile é um GameObject independente. Dessa
forma, cada tile pode ser removida individualmente sem quebrar ou refatorar o tabuleiro
inteiro [Figura 7].

Double King 19

public void OnKingMoved(Tile newTile)

{
if (tileToRemove != null && newTile != null &&
newTile.position == tileToRemove.position)

{
Piece fallenKing = newTile.piece;
StartCoroutine (KingAndTileFallSequence(fallenKing, newTile));
tileToRemove = null;
return;

}

boardController.RemoveTile(tileToRemove.position);
ChangeRemoveTurn() ;
tileToRemove = null;

if (isPlayerRemoveTurn){
StartPlayerTileRemovalTurn() ;

}

else{
StartOpponentTileRemovalTurn() ;

}

Figura 7: Método executado apds movimentagao do rei, responsavel pela remocao de tile
e alternancia de turno; se o rei estiver na tile marcada, executa-se a queda do rei (método
OnKingMoved).

Inicialmente, foi testado o FairyStockfish para calcular jogadas no Double King Mode.
No entanto, os primeiros testes mostraram inconsisténcias no comportamento do oponente
artificial: em alguns casos o rei nao se movia, em outros tentava deslocar-se para uma tile ja
removida, ou simplesmente repetia movimentos sem qualquer 1égica estratégica. Isso ocorre
porque os motores de variantes assumem um tabuleiro retangular continuo, sem buracos,
e tratam configuragoes com apenas dois reis como empate. Assim, o engine era incapaz
de interpretar corretamente as regras do modo e nao conseguia operar dentro da incerteza
gerada pela remogao dinamica de tiles.

Vale ressaltar que no FairyStockfish é possivel criar uma variante do xadrez onde sao
definidas pecas com padrées customizados de movimento, sendo teoricamente possivel in-
cluir uma pecga totalmente estatica — sem ataque e sem possibilidade de deslocamento —
para representar buracos como obstéculos fixos no tabuleiro. No entanto, os resultados per-
maneceram inconsistentes: o engine, ao nao identificar movimentos vélidos que pudessem
levar a uma condicao de vitéoria com apenas dois reis, deixava de responder, ocasionando
timeout mesmo apos miultiplas tentativas de retry.

Diante dessas limitagoes, tornou-se necessario desenvolver um algoritmo préprio para
esse modo, tanto para a movimentacgao, escolha e remocao de tiles. Para suprir essa de-
manda, foi criado um algoritmo simples baseado em selecao probabilistica ponderada. O

20 Cisi e Duarte

método Choose WeightedByDistance (Apéndice A) calcula pesos para cada tile candidata
com base na distancia ao rei adversario:

e Durante a fase de remocao de tiles pelo oponente: prioriza tiles préximas ao rei do
jogador, gerando escolhas mais agressivas.

e Durante a fase de movimentacao do rei inimigo: a légica inversa busca afastd-lo do
rei do jogador durante a fase de exclusao de tiles.

e Os pesos sao normalizados e uma amostragem proporcional ocorre via Chooseln-
dexByWeights (Apéndice A), garantindo que tiles com maior peso tenham maior
probabilidade de serem selecionadas, mas preservando um elemento de sorte.

O resultado é um algoritmo que nao busca retornar a melhor jogada possivel, mas busca
equilibrar a estratégia e a probabilidade. Em certas situacoes, pode ser vantajoso isolar o
rei inimigo; em outras, mover-se de forma aparentemente aleatoria pode gerar posi¢oes mais
favoraveis. Assim, adotou-se uma solucéo hibrida: incorpora algum grau de estratégia, mas
permanece ancorada em probabilidade e variabilidade. Outras solugoes mais sofisticadas
poderiam ser exploradas, mas esta abordagem demonstrou ser suficientemente robusta e
proporcionou um desafio relevante para o desenvolvimento.

7.2 Quebrando as Regras Passivamente

Diante de um oponente que opera com as regras tradicionais e uma grande diferenga de valor
entre as pecas, o conflito no Double King rapidamente se torna estruturalmente injusto.
Isso levou, de maneira natural, & necessidade de introduzir mecanicas capazes de quebrar a
rigidez formal do sistema, algo que Salen e Zimmerman (2003) descrevem como Transgressao
Sancionada, incorporando mecanicas que se comportam como trapagas na visao do oponente
artificial. Se elementos fundamentais do jogo, como o niimero de pecas, seus movimentos ou
até mesmo a ordem de turno, pudessem ser explorados para enfrentar a assimetria crescente,
entao o design precisava oferecer ao jogador os meios necessarios para a essa quebra de regra
subvertendo as regras tradicionais do xadrez.

A partir dessa premissa, um sistema no qual o jogador tivesse controle sobre as pecas
que utiliza pareceu uma solucao natural. Essa ideia de pecas como elementos configurdveis
aproxima o Double King da estrutura de jogos de construgao estratégica, como Balatro [7],
um jogo roguelike focado no Poker, no qual o poder do jogador nao é dado de imediato, mas
construido progressivamente. Dessa forma, o jogo se iniciando apenas com o rei, permitindo
que o jogador adquira e selecione novas pecas ao longo de sua jornada se alinha com esse
principio.

Com base nessa ldgica, duas mecéanicas se tornam consequéncias diretas do design: (1)
um Inventario, no qual o jogador organiza as pegas conquistadas, decidindo quais utilizar e
quais preservar, o que depende de uma mecanica de posicionamento das pecgas no inicio de
cada desafio; e (2) um sistema de Loja ou Obtengao de Pegas, responsdvel pela aquisi¢ao
de novas pecas e possiveis habilidades adicionais.

Double King 21

Essas mecanicas ampliam a capacidade do jogador de subverter o sistema, mas fazem
isso antes ou depois da partida comecar, preparando o terreno estratégico sem alterar di-
retamente as regras durante a partida de xadrez. Assim, no contexto deste projeto, foram
estabelecidas duas categorias de mecanicas: (1) “quebras de regra passivas”, criadas para
organizar as camadas de intervengao no sistema, fornecendo estruturas ou mecénicas fora
da partida do xadrez; e (2) “quebras de regra ativas”, voltadas a permitir que o jogador
modifique, amplie ou distorca as regras durante a prépria partida.

7.2.1 Inventario e Posicionamento de Pecgas

Para que o jogador tenha uma visualizacao clara das pecas de seu exército entre os niveis de
dificuldade, foi idealizado e implementado o Inventario. Esse inventario é representado por
um tabuleiro extra de 5x5, reutilizando os métodos criados para o tabuleiro principal. Com
essa mecanica, o jogador tem a possibilidade de preservar pecas entre os niveis de dificuldade,
o que adiciona uma camada extra de estratégia. O oponente, por sua vez, nao tem acesso a
esse inventario, o que significa que ele nunca sabera quais pecas estarao disponiveis para o
jogador no préximo desafio. Além disso, o jogador, com o inventério, pode posicionar suas
pecas no inicio da partida de acordo com a estratégia que preferir, subvertendo em partes
o inicio tradicional do xadrez, uma vez que o jogador sé pode posicionar suas pecas nas
duas primeiras fileiras. Assim, o jogador tem a habilidade de contornar uma dificuldade
potencialmente injusta por meio de mecanicas que, na visao do oponente, podem parecer
trapacas. No entanto, essas mecanicas sao fundamentais para garantir um jogo equilibrado
e adaptativo.

Detalhes da Implementacao O sistema de inventéario foi implementado através do In-
ventoryController, que gerencia uma grade secundéaria de Tiles dedicada ao armazenamento
de pecas do jogador. O controller cria uma matriz de Tiles separada do tabuleiro principal,
posicionada em uma area dedicada da tela.

O InventoryController implementa:

e Grade de Inventario: Cria uma grade de tiles com sprites proprios, diferenciados
visualmente dos tiles do tabuleiro principal;

¢ Gerenciamento de Pecas: Mantém listas de pecas disponiveis do jogador (playe-
rAvailablePieces) e pecas em jogo (playerPiecesInGame);

e Selecao e Movimentagao: Permite selecao e organizacao de pecas dentro do in-
ventario e implementa métodos para movimentacao entre inventdrio e tabuleiro;

e Posicionamento Controlado: Controla o posicionamento de pecas para as 2 pri-
meiras fileiras do tabuleiro quando permitido.

Modo de Posicionamento de Pecgas: No inicio de cada nivel, o jogo entra no modo
PlacingPieces, onde o jogador deve posicionar suas pegas do inventario no tabuleiro. Nesse
modo, o jogador tem a flexibilidade de mover as pecas dentro do tabuleiro e do inventario

22 Cisi e Duarte

livremente, sem ser penalizado por colocar uma pega em um local errado. O InventoryCon-
troller forca o posicionamento do rei no tabuleiro, garantindo que o jogador sempre comece
com o rei em campo. Conforme ilustrado na Figura 8, durante o modo PlacingPieces as
tiles das duas primeiras fileiras do tabuleiro e as do inventario (a direita) sdo marcadas
com TileAction. Movement (realgadas em verde), permitindo posicionamento livre de pecas
nessas casas; a peca atualmente selecionada é indicada por TileAction.Selected (azul).

Figura 8: Modo de posicionamento (Placing Pieces), mostrando a alocacao inicial de pecas
do Inventério no tabuleiro.

7.2.2 Loja e Geragao de Conjunto de Pecas

A aquisicao de pecas foi estabelecida como uma mecanica essencial antes do inicio de cada
nivel, pois, sem ela, o jogador nao teria um exército adequado para enfrentar o préximo
desafio. Varias abordagens foram inicialmente consideradas: adotar um sistema de mo-
eda tradicional, por exemplo, com recompensas fixas ou baseadas no desempenho (como
capturar mais pecas ou vencer rapidamente), no entanto essa abordagem tenderia a incen-
tivar estratégias focadas em maximizar o ganho de moedas, o que poderia transformar a
estratégia em captura de pegas em vez de um confronto estratégico baseado na subversao
da desvantagem. Ainda que um sistema de economia pudesse abrir espago para estratégias
de gerenciamento de recursos entre desafios, essa abordagem teria que ser implementada
cuidadosamente para evitar que o jogo se torne apenas uma busca por otimizar moedas
para progredir. Como alternativa mais alinhada ao propédsito do projeto, optou-se por um
sistema onde é fornecido diferentes conjuntos de pecas a serem escolhidos pelo jogador. Tal
sistema, se basearia em uma oferta variavel e parcialmente aleatéria, proporcionando a ca-
pacidade da escolha do melhor conjunto para sua estratégia ao reforcar agéncia do jogador.

Double King 23

Para que essa mecanica fosse expressiva, tornou-se necessario criar conjuntos com perfis
diferentes, garantindo que cada escolha representasse, de fato, uma decisao estratégica.

Para manter a imprevisibilidade e a sensagao de descoberta, adotou-se a légica de um
sistema de selecao de pecas com componentes de aleatoriedade controlada, baseando-se
geracao procedural. No contexto do jogo, o algoritmo que gera a oferta da loja utiliza
hiperparametros configuraveis para definir o conjunto de pecas disponivel em cada nivel,
garantindo que as escolhas do jogador resultem em combinacoes distintas de desafios e re-
cursos. Esse processo exemplifica o conceito de Game Tuning (refinamento do jogo) [2, Cap.
14: Games as Emergent Systems], no qual regras e parametros sao ajustados, testados e
refinados iterativamente para favorecer comportamentos desejaveis em sistemas emergen-
tes. No caso do Double King, a oferta de pegas, sua frequéncia, raridade e combinagoes nao
sao pré-definidas manualmente, mas geradas de forma semi-aleatéria a partir de critérios
parametrizados de design (como orcamento de dificuldade, variedade e quantidade de pegas,
além do equilibrio entre risco e recompensa). Esse modelo permite ajustar a dificuldade, o
balanceamento e a diversidade de cada partida sem tornar o jogo previsivel ou repetitivo,
sustentando uma experiéncia rica e continuamente envolvente.

Detalhes da Implementagao O sistema de Loja foi implementado por meio do com-
ponente SetGenerator e de controladores associados (PieceSetSelectorController, Shopping-
Controller). Em conjunto, esses elementos permitem que o jogador adquira novos conjuntos
de pecas por meio de geragao procedural, introduzindo variedade e imprevisibilidade a cada
ciclo de jogo.

O método SetGenerator. GenerateOneSet implementa um algoritmo de amostragem pon-
derada sem reposi¢ao que consome diretamente os parametros dos ScriptableObjects confi-
gurados (por exemplo, SetGenerationProfile, DifficultyBudgetTable, MovementValueTable,
Upgrade Value Table). Ele funciona assim:

1. Célculo de valor (tabelas): para cada tipo selecionado, calcula-se o valor total por
unidade combinando tabelas de valor (Piece ValueTable) [Figura 9]. A quantidade de
cada tipo também é sorteada entre minimo e maximo configurdveis (hiperparametros

do perfil).

2. Selecao de tipos (perfil): escolhe-se aleatoriamente a quantidade de tipos distintos
usando um valor minimo e maximo configurdveis (hiperparametros) no SetGenera-
tionProfile [Figura 10]. Os tipos de pega sao sorteados por amostragem ponderada
usando os pesos do préprio perfil (por exemplo, pesos maiores para Pedo aumentam
sua probabilidade de aparecer no conjunto).

3. Ajuste guloso (orcamento e capacidade): por fim, aplica-se um ajuste guloso
para respeitar as restricoes de orcamento e capacidade. O orgamento vem de Diffi-
cultyBudget Table. GetBudget(difficulty);

A configuragdo do sistema é feita por meio de ScriptableObjects que permitem o ba-
lanceamento sem necessidade de alterar cédigo. Perfis de geragao podem ser criados para
privilegiar diferentes caracteristicas: maior quantidade de pegas baratas, menor quantidade

24 Cisi e Duarte

de pecas caras ou configuraces balanceadas. O orcamento vinculado a dificuldade influ-
encia diretamente as ofertas geradas, incorporando o nivel de desafio ao proprio processo
de geracao procedural. Foram criadas quatro opgoes de escolha de conjunto de pegas, cada
uma baseada em perfis distintos de geragdao. A primeira utiliza um perfil focado em maior
quantidade de pecas, resultando naturalmente em valores individuais menores; a segunda
adota um perfil centrado em alto valor, priorizando pecas mais valiosas em menor quan-
tidade; e as duas ultimas derivam de um mesmo perfil balanceado, combinando pecas de
valor intermedidrio em quantidades mais amplas.

[Header ("Base values per piece type")]
public int pawn = 1, knight = 3, bishop = 3, rook = 5, queen = 9;

Figura 9: Valores base e probabilidades em tabelas (Piece/Movement/Upgrade Value Ta-
bles).

[Header ("Distinct piece types per set (1..3)")]
[Range(1, 3)] public int minDistinctTypes = 1;
[Range(1, 3)] public int maxDistinctTypes = 3;

[Header ("Quantity per selected type (min..max)")]
[Min(1)] public int minQuantityPerType = 1;
[Min(1)] public int maxQuantityPerType = 4;

[Header ("Piece type weights (relative likelihood)")]
public int pawnWeight = 10;

public int knightWeight = 6;

public int bishopWeight = 6;

public int rookWeight = 3;

public int queenWeight = 1;

Figura 10: Hiperparametros do perfil de geracao (SetGenerationProfile).

Com essa mecanica, o jogo passou a dispor, em termos estruturais, de inicio, meio
e fim: o jogador tem condigbes de construir um exército gradulamente e, por meio de
decisoOes estratégicas, concluir os desafios. Ainda assim, os testes indicaram que a dificuldade
permanecia elevada. Em determinados niveis, o conjunto gerado nao era suficiente para lidar
com o exército do oponente. Esse cenario exigiu novos ciclos de tuning dos hiperparametros,
resultando em ajustes no orcamento de dificuldade e na quantidade de pecas oferecidas nos
niveis iniciais, de forma a manter o conflito intenso, porém vencivel.

Double King 25

7.3 Quebrando as Regras Ativamente

Com as mecanicas estruturais estabelecidas na etapa anterior, tornou-se possivel explorar
uma segunda modalidade de subversao das regras tradicionais do xadrez: aquelas que atuam
durante a propria partida. Essa idealizacao e prototipacao se desdobrou em duas diregoes:

1. mecanicas que atuam sobre as pecas — ampliando seus padroes de movimento, mo-
dificando sua persisténcia ou criando novas formas de interacdo — e que puderam ser
efetivamente implementadas;

2. mecanicas voltadas a alteracao de regras estruturais do sistema, como reorganizagao
do tabuleiro, modificacao de turnos ou ajustes em outras mecanicas. Essas propostas
foram concebidas conceitualmente, mas permaneceram no plano de design dentro do
escopo deste projeto, servindo como base para investigagoes futuras.

7.3.1 Pecgas Evoluidas

A partir da arquitetura base e expansivel desenvolvida, tornou-se possivel tratar as pecas
como entidades capazes de evolucdo. A implementagdao das Pecas e engine do oponente
artifical ja previa a capacidade de acoplar novos padroes de movimento e de integra-los
ao jogo por meio de variantes do xadrez. Somado a isso, tornou-se vidvel criar atributos
especificos para as pecas, permitindo que, em determinadas situagoes, a validacao dessa
habilidade segueria um fluxo que substitui ou complementa regras tradicionais do xadrez.
Essa abordagem abriu espago para um sistema de habilidades que dialoga diretamente com
a logica emergente do jogo. Assim, foi possivel intensificar a experiéncia de subversao das
regras classicas, preservando sua estrutura essencial, mas introduzindo excecoes controladas
que ampliam o espacgo de possibilidade disponivel ao jogador.

Detalhes da Implementagao Do ponto de vista de implementacao, a adigao de no-
vos movimentos aproveita diretamente a infraestrutura ja compativel com o FairyStockfish,
permitindo, por exemplo, combinar os padroes de movimentagao do cavalo e do bispo em
uma Unica peca. Essa compatibilidade foi importante, tendo em vista que sem ela, o opo-
nente artificial nao teria consciéncia de que determinadas pegas possuem movimentagoes
hibridas, podendo mover o rei para casas atacadas, ocasionando na eventual captura do
Rei (mecéanica que poderia ser explorada no futuro de forma mais balanceada). A esco-
lha do Fairy-Stockfish, portanto, garantiu que o adversario artificial entendesse as regras
expandidas, ainda que nao possua em seu arsenal tais pecas modificadas.

A introducgao dessa funcionalidade revelou a necessidade de expandir o SetGeneration-
Profile com novos hiperparametros, permitindo que pegas com padroes hibridos também
fossem disponibilizadas na Loja. Assim, a decisdo de adquirir ou ndo pecas com movimen-
tos adicionais passou a integrar o espaco estratégico do jogador, enriquecendo a construgao
do exército e criando novas linhas de planejamento.

Além da expansdo dos movimentos, foi idealizado um sistema complementar de ha-
bilidades que alteram regras fundamentais do comportamento das pegas — desde o que
ocorre quando capturam outra peca, até o que acontece quando sao capturadas. Como

26 Cisi e Duarte

consequéncia da existéncia do inventdario, surgiram naturalmente habilidades voltadas a in-
teracao entre tabuleiro e armazenamento. Para organizar essa logica, trés categorias iniciais
foram definidas e, por facilitar a comunicagao visual, denominadas R, G e B, como ilustrado
na Tabela 1.

Canal | Habilidade

R Quando o jogador captura uma peca do oponente, essa peca
¢é adicionada ao inventario do jogador.
G Quando a peca do jogador é capturada, ela retorna ao in-

ventario em vez de ser destruida.

B Permite remover essa peca do tabuleiro e envia-la de volta
ao inventario.

Tabela 1: Habilidades dos canais RGB

A metafora da luz serviu de base conceitual: cada habilidade é representada por uma
cor, onde as combinagoes de habilidades sdo exibidas por meio da mistura dessas cores (ver
Segao 8.1). Isso permite que o jogador identifique imediatamente, pela tonalidade final,
quais habilidades uma pecga possui, incluindo habilidades hibridas derivadas da uniao de
duas ou trés cores, caso novas expansoes sejam exploradas futuramente.

Aproveitando esse conceito, caso a pega possua simultaneamente as trés habilidades (R,
G e B), foi implementada uma quarta habilidade adicional: a capacidade de retornar do
inventario diretamente ao tabuleiro, introduzindo um elemento de surpresa e reforcando o
carater de transgressao sancionada.

O sistema RGB foi implementado por meio da estrutura PiecesUpgrades, na qual cada
habilidade é representada por uma flag booleana. A légica de ativagdo consiste em veri-
ficar a presenca da habilidade antes da execucao da regra padrao, desviando o fluxo para
comportamentos alternativos quando aplicavel. Isso pode ser observado na Figura 11, que
exemplifica o método de captura: se a pega capturada possui a habilidade G, um fluxo
alternativo é acionado; se possui a habilidade R, um outro fluxo alternativo é acionado;
caso contrario, segue-se o comportamento tradicional, removendo o objeto do jogo.

Double King 27

public void CapturePiece(Tile fromTile, Tile toTile)
{
if (toTile != null && toTile.piece != null)
{
Piece attacker = fromTile.piece;
Piece captured = toTile.piece;

if (captured.HasUpgradeG())
{
pieceController.HandleCapturedUpgradeG(captured, toTile);
}
else if (attacker.HasUpgradeR())

{
pieceController.HandleAttackerUpgradeR (attacker, captured, toTile);

}

else

{
pieceController.DestroyPiece(toTile.piece);
toTile.RemovePiece();

Figura 11: Fluxo de captura: desvio para habilidades RGB e caminho padrao (BoardCon-
troller. CapturePiece).

Durante os playtests, essa mecanica se desdobrou em cendrios particularmente interes-
santes. A habilidade R, por exemplo, permite ao jogador “roubar” pecgas do adversario,
compensando a raridade de determinadas unidades na Loja. Combinacoes avangadas, como
pecas que redinem R, G e B, aproximam-se de uma quebra quase absoluta das regras: tais
pecas podem capturar, retornar ao inventario quando destruidas e voltar ao tabuleiro pos-
teriormente, funcionando como uma espécie de “soldado imortal” dentro da narrativa de
exércitos do xadrez.

Para evitar que esse comportamento se tornasse dominante, os hiperparametros associa-
dos as habilidades RGB foram ajustados para torné-los raros nos perfis da Loja, preservando
seu carater de recompensa excepcional. Além disso, movimentos entre inventario e tabuleiro
contam como jogadas, o que balanceia seu uso em dificuldades mais altas, tendo em vista
que o oponente reage ao surgimento dessa peca antes dela poder ser mover, podendo cravar
ela ou prosseguir para outras estratégias tradicionais do xadrez.

7.3.2 Mecanicas Idealizadas: Cartas de Alteracao de Regras

A partir da base construida surgiu a idealizacao de um sistema de cartas dedicado a modi-
ficacao explicita de regras. Inspirado por jogos do género deckbuilder, como o préprio Ba-
latro, estilo que permite que cartas funcionem como elementos capazes de alterar condigoes
do jogo, ampliando ainda mais o espectro de transgressao sancionada ja existente no Double

28 Cisi e Duarte

King.

Embora nao tenham sido implementadas nesta versao do prototipo, essas ideias consti-
tuem um produto do processo de game design desenvolvido. Elas resultam diretamente das
mecanicas concebidas e da base tedrica estabelecida até entdo. As cartas, idealizadas para
manipular regras alternativas, foram esbogadas como ferramentas capazes de introduzir no-
vas excecoes, modificar principios classicos do xadrez ou expandir mecanicas j& subversivas.
Entre as propostas concebidas, destacam-se cartas que poderiam adicionar ou remover filei-
ras ou colunas, alterando o principio do tabuleiro quadrado, permitir que uma peca se mova
duas vezes seguidas ou, ainda, funcionar como um ultimo recurso capaz de ativar o modo
Double King apés um xeque-mate. Assim, mesmo permanecendo em nivel conceitual, esse
conjunto de propostas consolida direcoes de expansao futuras e demonstra como o sistema
pode continuar evoluindo de maneira emergente, modular e experimental.

8 Experiéncia do Usuario

A experiéncia do usudrio foi estruturada em dois eixos complementares: a identidade visual,
responsavel por comunicar a atmosfera e a narrativa do projeto, e a interface do usuario,
responsavel por tornar legiveis as regras, os estados do sistema e as agoes possiveis, que
deixam de ser apenas elementos estéticos e tornam-se fundamentais para garantir Meaningful
Play.

Segundo Salen e Zimmerman (2003), o jogo sé produz significado quando as agoes do
jogador sao discerniveis, ou seja, quando o jogador compreende claramente o que sua acao
causou, e integrados, quando o resultado dessa acao se conecta ao restante do sistema,
influenciando situagoes posteriores. No Double King, no qual habilidades extras, regras al-
ternativas e comportamentos excepcionais se acumulam sobre a estrutura do xadrez classico,
a clareza visual e a legibilidade tornam-se indispensaveis para que essas agdes sejam per-
ceptiveis e integradas ao fluxo estratégico do jogo.

8.1 Identidade Visual

A identidade visual foi desenvolvida com o objetivo de reforcar a atmosfera do projeto, uma
releitura do xadrez marcada por conflito, experimentagao e subversao progressiva das regras
tradicionais. Para isso, optou-se pela criacao de artes originais em pizel art, produzidas no
LibreSprite. A escolha desse estilo nao foi apenas estética, mas funcional, a leitura clara
de pegas, tiles, efeitos e estados é crucial para manter a compreensao necessaria para o
Meaningful Play.

O conjunto de sprites criado reflete essa preocupacao. As pegas foram representadas
tanto em sua versao tradicional quanto em versoes evoluidas, nas quais combinacdes RGB
comunicam visualmente habilidades ativas, permitindo que o jogador identifique, de ime-
diato, a presenca de efeitos especiais [Figura 13]. As tiles do tabuleiro também receberam
variacOes visuais, diferenciando areas de movimento, casas atacadas, casas validas, tiles
removiveis e tiles especiais do modo Double King, reforcando a leitura espacial necessaria
para agoOes estratégicas integradas (como ilustrado nas figuras apresentadas ao longo do
relatério).

Double King 29

]
bt
."_'E.
w
]
.
&

% [e» Do [FE [[

Figura 12: Exemplo de pegas com diferentes combinagoes de upgrades RGB.

A arte dos chefes (bosses) foi elaborada para associar cada nivel de dificuldade a uma
entidade visual prépria, fortalecendo a sensacao de progressao dentro da narrativa. Para
fins de ilustragao, cada figura apresentada ao longo do relatdrio utilizou um chefe diferente,
de modo a exemplificar visualmente os distintos niveis e desafios do jogo. A tela inicial,
apresentada na Figura 13, busca transmitir a esséncia do Double King: um confronto direto
entre dois reis, o Rei Branco e o Rei Preto.

30 Cisi e Duarte

KING

A CHESS ROGLUELIKE

START
QOFTIONS

QUIT

Figura 13: Tela inicial (Main Menu) do jogo.

Essa construcao estética garantiu uma identidade visual coesa, capaz de comunicar
rapidamente estados, funcoes e identidades de cada elemento. Ao mesmo tempo, ela sustenta,
os dois pilares do Meaningful Play: cada acao permanece perceptivel e compreensivel, e suas
consequéncias continuam conectadas ao desenvolvimento da partida como um todo.

8.2 Interface do Usuario

Se a identidade visual estabelece o carater estético e tematico do Double King, é a interface
do usudrio (UI) que torna possivel ao jogador compreender, de forma clara e continua, o
que esta acontecendo no sistema.

A UI foi construida para comunicar, de modo imediato, em que estado o jogo se en-
contra e quais acoes sdo possiveis naquele momento. A Figura 14 ilustra esse principio: ao
selecionar uma peca, a interface destaca visualmente sua posigdo, exibe seus movimentos
validos no tabuleiro e apresenta, no painel lateral, suas informacoes essenciais: tipo, habi-
lidades RGB e padroes de movimento. Esse mesmo painel informa qual jogador deve agir,
qual é o nivel de dificuldade, qual estado do sistema estd ativo e quais instrugoes orientam
o préximo passo (“Selecione uma pega”’, “Aguarde o oponente”, “Remova uma tile” etc.).
Essa combinacgao de feedback imediato, instrucao contextual e sinalizacao espacial é fun-
damental para manter a experiéncia legivel mesmo quando o comportamento das pecas se
afasta das regras tradicionais do xadrez.

Double King 31

DIFFICULTY:
GAME MODE:

ROGUELIKE CHESS

SELECTED PIECE:

w RooK U E] U

e ﬂ B S EI

HHITE'S TURM:
MOVE A PIECE

DELETE RIECE

Figura 14: Elementos de interface relacionados ao estado do jogo.

9 Resultados

Ap6és a construcao da identidade visual, da interface e das diversas mecéanicas que compdem
o prototipo, torna-se possivel examinar de forma integrada aquilo que o projeto efetivamente
produz como experiéncia e como sistema. Os resultados obtidos demonstram que o Double
King cumpriu de maneira consistente os objetivos estabelecidos, articulando fundamentagao
tedrica, escolhas de design e implementacao técnica em um protétipo funcional e coerente
com o proposito investigativo do trabalho.

Partindo de um sistema formal estavel, o xadrez, o projeto evoluiu para um ecossistema
de mecanicas que introduzem incerteza, emergéncia e transgressao sancionada, ampliando o
espago de possibilidade do jogador sem comprometer a legibilidade das a¢des. Esse percurso
materializa, na pratica, os principios de regras dinamicas, sistemas emergentes e meaningful
play que orientaram o trabalho desde sua concepgao, permitindo observar como decisoes de
design e ciclos de prototipacdo se combinam para gerar experiéncias de jogo significativa-
mente distintas do sistema de origem.

Ainda que a ideia inicial de “regras evolutivas e mecéanicas customizaveis” estivesse
prevista nos objetivos gerais, a forma especifica que essas mecanicas assumiram nao foi
definida previamente, ela emergiu diretamente do processo iterativo de design. As soluctes
implementadas (inventario, loja com geragao procedural, pecas evoluidas, modo Double
King, sistema de posicionamento e habilidades RGB) surgiram como respostas a problemas
concretos identificados durante a prototipagao, tais como a injustica estrutural do conflito,
a necessidade de progressao significativa e a manutencao da rejogabilidade. Cada decisao
de design foi sustentada por referenciais tedricos, validada por experimentacao e ajustada
por ciclos sucessivos de teste, em consonancia com a metodologia playcentric de Fullerton

32 Cisi e Duarte

(2024), na qual teoria e pratica evoluem em didlogo permanente.

Do ponto de vista formativo, o protétipo também cumpre o papel de sintese integradora
das competéncias desenvolvidas ao longo da graduag@o. A arquitetura modular construida
em Unity, a integragdo com o motor Fairy-Stockfish, a implementagao de algoritmos de
geragao procedural, a modelagem de sistemas, a criacdo de arte 2D original, a andlise de
referéncias e a documentagao critica constituem um conjunto de resultados que evidenciam
a consolidacéao de uma base técnica solida.

9.1 Analise Conceitual do Jogo

O arcabouco conceitual Rules, Play e Culture permite observar diferentes dimensodes do jogo:
sua estrutura formal, sua experiéncia e seu contexto. Ao examinar o Double King a partir
dessas lentes, torna-se possivel compreender nao apenas como as mecéanicas funcionam, mas
como elas se articulam para produzir uma experiéncia de jogo significativa, ja que cada
uma dessas dimensoes ilumina aspectos fundamentais da relacao entre acdo, consequéncia
e interpretacao dentro do jogo.

9.1.1 Esquemas Formais (RULES)

Do ponto de vista formal, o Double King caracteriza-se como um sistema de incerteza e
emergéncia. Em vez de um conjunto estavel e deterministico de situagdes — como ocorre no
xadrez classico, um jogo de informacao perfeita —, o protétipo introduz multiplas fontes de
variabilidade, que isoladamente, parecem regras simples, mas em conjunto, produzem com-
portamentos que nao podem ser totalmente antecipados [2, Cap. 14: Games as Emergent
Systems].

A incerteza se manifesta tanto em nivel micro (quais pegas serao oferecidas na loja, quais
habilidades estarao disponiveis) quanto em nivel macro (quais configuragoes de exército
emergirao ao longo de uma partida) [2, Cap. 15: Games as Systems of Uncertainty]. Ao
transformar um jogo de informagao perfeita em um sistema de informagao imperfeita, o
Double King situa o jogador em um espaco continuo de risco e experimentagao.

Nesse contexto, a transgressao sancionada torna-se um elemento central, permitindo
que o jogador quebre, de maneira controlada, a 16gica tradicional do xadrez [2, Cap.21 :
Breaking the Rules]. A assimetria extrema criada pelo exército estdvel do oponente torna-se
interessante porque o jogador é incentivado a usar essas quebras de regra para superar uma
injustica estrutural.

9.1.2 Esquemas Experienciais (PLAY)

A experiéncia construida pelo Double King articula uma combinacido de céalculo tético,
descoberta e adaptagao continua que dialoga diretamente com o campo da experiéncia no
jogo [2, Cap. 23 : Play as the Game of Experience]. As decisoes sobre qual pega adquirir,
como organizar o inventario, quando aceitar um empate e de que forma explorar habilidades
especiais fazem com que o jogador participe ativamente da construcao do préprio percurso.
Cada partida passa a ser vivida como uma sequéncia encadeada de acontecimentos, na qual
escolhas iniciais influenciam estados posteriores de forma perceptivel.

Double King 33

Os ciclos de risco, frustragao e recompensa presentes no jogo também dialogam com a
perspectiva do prazer no ato de jogar [2,Cap. 24: Games as the Play of Pleasure]. Enfrentar
um conflito estruturalmente desfavoravel, sobreviver a turnos criticos, recuperar pegas por
meio de habilidades especiais e descobrir combinagoes eficazes produz um ritmo emocional
caracteristico de jogos que engajam pelo desafio. A alternancia entre tensao e alivio, risco e
compensacao, contribui diretamente para que a experiéncia permaneca motivadora mesmo
diante das incertezas impostas pelo sistema.

9.1.3 Esquemas Contextuais (CULTURE)

Como afirmam Salen e Zimmerman (2003) , “criar jogos é também criar cultura”: todo
jogo, ao ser projetado, inevitavelmente expressa valores, hierarquias e modos de interpretar
o mundo [2, Cap.30: Games as Cultural Rhetoric]. Sob essa perspectiva, o Double King
evidencia como escolhas de design podem reconfigurar estruturas culturais ja consolidadas.
Ao tomar o xadrez como ponto de partida, um sistema formalmente rigido e amplamente
reconhecido, e ao expandi-lo com mecanicas que flexibilizam sua légica, o protétipo opera
no espago cultural entre tradi¢ao e transformagao.

As mecéanicas introduzidas deslocam o sistema original em dire¢do a retéricas culturais
associadas a criatividade, agéncia e resisténcia. O jogador é colocado diante de um sis-
tema desigual e convidado a intervir nele, assumindo um papel ativo na reconstrucao das
possibilidades do jogo. Essa abordagem aproxima o projeto de diferentes retéricas , entre
elas a retérica do poder (herdada do xadrez), a retérica da imaginagao (nas combinagoes
hibridas de movimentos), e, sobretudo, a retérica da frivolidade, que permite questionar e
subverter regras estabelecidas. Assim, mais do que refletir valores culturais existentes, o
Double King cria um espago em que a contestagao lidica das estruturas rigidas torna-se
parte significativa da experiéncia.

9.2 Playtesting

Apesar de o prototipo se alinhar conceitualmente as estruturas que sustentam o meaningful
play, foi o processo de teste, e nao apenas a teoria, que determinou, de fato, a qualidade
da experiéncia obtida. Ao longo da prototipacao, ciclos continuos de playtesting revelaram
problemas de clareza, balanco e funcionalidade que nao poderiam ser antecipados apenas
pela andlise tedrica, permitindo ajustar dificuldades, revisar fluxos, eliminar ambiguidades
e aprimorar a legibilidade das acGes. Esse movimento reflete exatamente o que a literatura
descreve sobre o design iterativo: somente jogando e observando o jogo em acao é possivel
compreender como suas regras se traduzem em experiéncia [2, Cap. 2: The Design Pro-
cess|. Os feedbacks coletados guiaram decisoes centrais de melhoria, sustentando o equilibrio
entre risco, agéncia e descoberta. Ao final desse processo, o Double King apresentou estru-
tura suficiente para produzir uma experiéncia significativa, pela teoria e pratica, mas que
ainda pode ser expandido e melhorado para despertar ainda mais a experiéncia significativa
durante o jogo .

34 Cisi e Duarte

10 Conclusoes e Trabalhos Futuros

O projeto contribui de forma tedrica e pratica para o campo de game design ao articular,
em um protétipo funcional, conceitos fundamentais discutidos na literatura. A partir da
construcao de um sistema inspirado no xadrez, mas estruturado em torno de regras evolu-
tivas e mecanicas customizaveis, foi possivel explorar, na pratica, ideias sobre sistemas de
conflito, incerteza, emergéncia, transgressao sancionada e meaningful play.

Em termos conceituais, o trabalho demonstra como o uso de um arcabouco tedrico sélido
pode orientar decisoes de design desde o nivel micro (ajuste de algoritmos, orgamentos de
dificuldade, configuracao de pegas) até o nivel macro (estrutura de progressao, identidade
do jogo, papel do jogador no sistema). Em termos préticos, o projeto resultou em um
protétipo jogavel que integra um oponente aritifical baseada em xadrez, geracao procedural
de recursos, mecanicas de inventario, modos de jogo alternativos, regras dinamicas e uma
identidade visual consistente.

Do ponto de vista da formacao em Engenharia da Computacao, o Double King funciona
como sintese de competéncias desenvolvidas ao longo do curso: modelagem de sistemas,
programacao orientada a objetos, integracao com bibliotecas externas, desenvolvimento
iterativo e documentacao técnica. O processo de desenvolvimento também evidencia a
importancia do playtesting como ferramenta de investigacdo empirica, permitindo testar
hipoteses de design e ajustar parametros em funcao do comportamento observado.

Embora o protétipo desenvolvido seja plenamente suficiente para sustentar a andlise
tedrica proposta e demonstrar, na pratica, a criacao de meaningful play, o sistema construido
abre espaco para expansoes que poderiam transformar o Double King em um jogo completo
e potencialmente publicdvel. A base técnica, estética e conceitual estabelecida ao longo do
projeto permite vislumbrar caminhos de aprofundamento que ampliariam a complexidade
estratégica, a legibilidade e a riqueza do jogo. Entre essas possibilidades, destacam-se:

e aprofundar o sistema de cartas de alteracdo de regras, integrando-o de forma plena
ao ciclo de jogo e reforcando a mecéanica de quebra de regras;

e explorar modos adicionais de dificuldade com maior variacao procedural na com-
posicao dos exércitos inimigos, fortalecendo a rejogabilidade e o carater roguelike do
projeto;

e refinar a interface e o feedback visual para comunicar com ainda mais clareza habili-
dades, estados especiais e consequéncias das ac¢oes, aprimorando a discernibilidade;

e conduzir estudos de playtesting com diferentes perfis de jogadores, investigando per-
cepcoes de dificuldade, justica e, sobretudo, meaningful play.

Essas diregoes apontam para a continuidade natural do projeto, indicando como o protétipo
pode evoluir em direcao a um artefato mais completo, aprofundando seu potencial expres-
sivo, sistémico e cultural.

Em sintese, o Double King nao se encerra como produto final, mas como um ponto de
partida robusto para investigacoes futuras sobre como jogos podem usar sistemas formais
classicos, como o xadrez, como base para experimentacao com regras evolutivas e mecanicas
customizaveis, e por meio da emergéncia poder produzir meaningful play.

Double King 35

Referéncias

[1] Shannon, Claude E. “XXII. Programming a computer for playing chess.” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 314,
1950.

[2] Katie Salen Tekinbas and Eric Zimmerman. Rules of Play: Game Design Fundamen-
tals. MIT Press, 2003.

[3] Thompson, J. Mark. “Defining the abstract.” Game & Puzzle Design, vol. 1, no. 1,
2015.

[4] Szabados, Gyorgy, et al. “Roguelike games: The way we play.” 2022.

[5] Unity Documentation. Disponivel em: https://docs.unity3d.com/Manual/index.html
(Acesso em: 21 nov. 2025).

[6] Fullerton, Tracy. Game Design Workshop: A Playcentric Approach to Creating Inno-
vative Games. AK Peters/CRC Press, 2024.

[7] LocalThunk. A Timeline do Balatro. LocalThunk, [s.d.]. Disponivel em:
https://localthunk.com/blog/balatro-timeline-3aarh. Acesso em: out. 2025.

[8] Fairy-Stockfish. Get involved. Fairy-Stockfish, [s.d.]. Disponivel em:
https://fairy-stockfish.github.io/get-involved/. Acesso em: 23 set. 2025.

9] Yu, H.; Moldenhauer, C.; Moldenhauer, J. The Art of Cuphead. Milwaukee: Dark
Horse Books, 2020.

[10] LibreSprite. LibreSprite. LibreSprite, [s.d.]. Disponivel em:
https://libresprite.github.io/. Acesso em: ago. 2025.

A Apéndice

A.1 Algoritmo de Escolha com Pesos do Double King Mode

O algoritmo Choose WeightedByDistance implementa a escolha probabilistica de tiles no
Double King Mode, calculando pesos baseados na distancia Manhattan ao rei adversario:

private Tile ChooseWeightedByDistance(List<Tile> candidates,
Vector2Int reference, bool preferCloser,
float preferenceSharpness = 1f)

if (candidates == null || candidates.Count == 0) return null;

float total = 0f;
float[] weights = new float[candidates.Count];
for (int i = 0; i < candidates.Count; i++)

{

36 Cisi e Duarte

var pos = candidates[i].position;
int d = Mathf.Abs(pos.x - reference.x) +
Mathf.Abs(pos.y - reference.y);

float baseW = preferCloser 7 (1f / (1f + d4)) : (1f + d);
float w = preferenceSharpness != 1f 7

Mathf .Pow(baseW, preferenceSharpness) : baselW;
weights[i] = w;
total += w;

int chosenIndex = ChooseIndexByWeights(weights, total);
return candidates[chosenIndex];

}
private int ChooseIndexByWeights(float[] weights, float total)
{

if (weights == null || weights.Length == 0) return O;

if (total <= Of)

{

return Mathf.FloorToInt(Random.value * weights.Length) % weights.Length;
}

float r = Random.value * total;
for (int i = 0; i < weights.Length; i++)
{
if (r < weights[i]) return i;
r -= weights[i];
}
return weights.Length - 1;

