
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Double King :
Design e Implementação de

um Jogo de Xadrez com
Regras Evolutivas e

Mecânicas Customizáveis
Andreas Cisi Ramos Emanuel Felipe Duarte

Relatório Técnico - IC-PFG-25-25

Projeto Final de Graduação

2025 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Double King : Design e Implementação de um Jogo de Xadrez

com Regras Evolutivas e Mecânicas Customizáveis

Andreas Cisi Ramos∗ Emanuel Felipe Duarte†

Resumo

Este trabalho apresenta o desenvolvimento do Double King, um jogo digital 2D que
combina fundamentos do xadrez com prinćıpios de game design contemporâneo, incor-
porando mecânicas evolutivas, geração procedural e regras customizáveis. O projeto
investiga, de forma prática e teórica, como sistemas formais tradicionais podem ser es-
tendidos por meio de transgressões sancionadas, produzindo novas formas de agência, in-
certeza e emergência. A implementação foi realizada em Unity, integrando um motor de
xadrez compat́ıvel com variantes (Fairy-Stockfish), arquitetura modular, algoritmos de
seleção procedural de peças e mecânicas inéditas como inventário, loja, peças evolúıdas
e o modo Double King. A análise do protótipo utiliza o arcabouço Rules, Play, Culture
para discutir como essas escolhas sustentam meaningful play e reforçam a identidade
roguelike do sistema. O resultado é um artefato que sintetiza competências técnicas e
conceituais da graduação, demonstrando como a combinação entre teoria e prática pode
gerar sistemas interativos ricos, expanśıveis e alinhados a prinćıpios fundamentais do
design de jogos.

Palavras-chave: Game Design, Xadrez Evolutivo, Unity 2D, Sistemas Emergentes,
Mecânicas Customizáveis.

∗Instituto de Computação, UNICAMP, 13083-852 Campinas, SP. a246932@dac.unicamp.br
†Instituto de Computação, UNICAMP, 13083-852 Campinas, SP. emanuel@ic.unicamp.br

1

2 Cisi e Duarte

Sumário

1 Introdução 4

2 Justificativa 4

3 Fundamentação Teórica 4

3.1 Arcabouço Regras, Jogo e Cultura . 5

3.2 Fundamentos de Game Design . 5

3.3 Conceitos Complementares . 5

3.4 Engine Unity e Conceitos Fundamentais do Desenvolvimento 2D 6

4 Objetivos 6

4.1 Objetivos espećıficos . 7

4.1.1 Construção de Base Técnica Sólida 7

4.1.2 Design de Novas Mecânicas e Exploração Teórica 7

4.1.3 Documentação Cŕıtica e Śıntese Formativa 7

5 Metodologia 7

5.1 Revisão Bibliográfica e Fundamentação Técnica 8

5.2 Construção da Base Técnica . 8

5.3 Ideação e Prototipação das Novas Mecânicas 8

5.4 Avaliação Prática e Refinamento Iterativo 9

5.5 Criação da Identidade Visual . 9

5.6 Documentação e Conclusões . 10

6 Desenvolvimento da Arquitetura Base 10

6.1 Base Sólida do Xadrez . 10

6.1.1 Arquitetura de Controladores . 10

6.1.2 Arquitetura de Modelos . 11

6.1.3 Geração Dinâmica de Tabuleiro . 11

6.1.4 Sistema de Peças e Movimentos Acopláveis 11

6.2 Oponente Artificial . 12

6.2.1 Interface IChessEngine . 13

6.2.2 Implementação com FairyStockfish 13

6.2.3 Conversão de Estados . 13

6.2.4 Controlador do Oponente Artificial 14

6.2.5 Limitações da Engine de Xadrez . 14

7 Regras Evolutivas e Mecânicas Customizáveis 15

7.1 Mecânicas Principais . 15

7.1.1 Nı́veis de Dificuldade . 15

7.1.2 Double King Mode . 16

7.2 Quebrando as Regras Passivamente . 20

7.2.1 Inventário e Posicionamento de Peças 21

Double King 3

7.2.2 Loja e Geração de Conjunto de Peças 22
7.3 Quebrando as Regras Ativamente . 25

7.3.1 Peças Evolúıdas . 25
7.3.2 Mecânicas Idealizadas: Cartas de Alteração de Regras 27

8 Experiência do Usuário 28
8.1 Identidade Visual . 28
8.2 Interface do Usuário . 30

9 Resultados 31
9.1 Análise Conceitual do Jogo . 32

9.1.1 Esquemas Formais (RULES) . 32
9.1.2 Esquemas Experienciais (PLAY) . 32
9.1.3 Esquemas Contextuais (CULTURE) 33

9.2 Playtesting . 33

10 Conclusões e Trabalhos Futuros 34

Referências 34

A Apêndice 35
A.1 Algoritmo de Escolha com Pesos do Double King Mode 35

4 Cisi e Duarte

1 Introdução

Desde as primeiras investigações formais sobre jogos, o Xadrez é utilizado como referência
para compreender sistemas interativos estruturados por regras. A simplicidade das regras
do Xadrez encobre um espaço combinatório amplo, tornando-o um domı́nio fértil para o
estudo de tomada de decisão [1]. E com isso, se torna um exemplo de como regras simples,
quando aplicadas de forma consistente, produzem profundidade estratégica, emergência e
criam uma experiência de jogo significativa [2]. Essa tradição evidencia como jogos podem
ser analisados enquanto sistemas formais nos quais estrutura, interação e consequência são
elementos centrais.

Com base nesse entendimento, o jogo Double King foi desenvolvido como um sistema
interativo que combina elementos do Xadrez com caracteŕısticas do gênero roguelike, tais
como geração procedural, alta rejogabilidade e imprevisibilidade estrutural. Essa aborda-
gem foi uma subversão proposital da natureza formal do Xadrez. Sendo este um exemplo
canônico de um Jogo de Estratégia Abstrata que, por definição, deve ter informação per-
feita, onde todos os jogadores têm informação completa sobre a posição atual do tabuleiro
[3]. O Double King, por sua vez, introduziu informação imperfeita e incerteza, permitindo
ao jogador moldar parte da experiência, alterando as regras e influenciando o desenvolvi-
mento do jogo de maneira ativa, criando um ambiente dinâmico, no qual as ações do jogador
transformam continuamente a configuração do sistema.

Esse cenário oferece condições proṕıcias para analisar como a combinação entre regras
estáveis e evolutivas, baseado na modificação de mecânicas, sustenta diferentes formas de
interação e estratégias, situando o Double King como um objeto relevante para discutir
conceitos fundamentais de game design relacionados à emergência, à agência do jogador e
à adaptação de sistemas formais.

2 Justificativa

A criação do Double King teve a oportunidade de articular teoria e prática em game design
por meio do desenvolvimento de um artefato capaz de materializar os prinćıpios investi-
gados. Esse jogo permitiu examinar, de modo aplicado, como regras, sistemas emergentes
e mecanismos de modificação estrutural se manifestam na experiência de jogo, ao mesmo
tempo em que o processo de implementação consolida habilidades técnicas e competências
adquiridas ao longo da graduação em Engenharia da Computação. Dessa forma, o projeto
atuou simultaneamente como instrumento de investigação teórica do design de jogos e como
śıntese prática da formação acadêmica.

3 Fundamentação Teórica

Para orientar a análise conceitual e estruturar o estudo com base em referenciais conso-
lidados, recorreu-se principalmente ao livro Rules of Play: Game Design Fundamentals,
de Salen e Zimmerman (2003), que propõe um arcabouço teórico abrangente para o en-
tendimento dos jogos enquanto sistemas formais, experiências de participação e artefatos

Double King 5

culturais.

3.1 Arcabouço Regras, Jogo e Cultura

O arcabouço teórico proposto por Salen e Zimmerman (2003) estrutura o entendimento dos
jogos através de três esquemas primários de design [2, Cap.1: What is this book about ?]:

• Rules (Regras): foca na organização do sistema projetado, nas estruturas lógicas e
matemáticas e nas qualidades formais do jogo. Essas são as estruturas que regem a
identidade do sistema.

• Play (Jogabilidade/Experiência): foca na experiência humana do sistema, na
participação do jogador, no prazer, no significado e na interação.

• Culture (Cultura): foca nos contextos mais amplos em que o jogo está inserido,
como as relações entre o jogo e os contextos culturais, ideologias e valores.

3.2 Fundamentos de Game Design

A partir do arcabouço teórico proposto por Salen e Zimmerman (2003), destacam-se os
seguintes conceitos fundamentais para o design de jogos:

• Meaningful Play (Experiência de jogo significativa): conceito central que ori-
enta os designers na criação de experiências que tenham sentido e relevância para os
jogadores, sendo o objetivo fundamental do design de jogos bem-sucedido [2, Cap.3:
Meaningful Play].

• Lusory Attitude (Atitude lusória): estado mental em que o jogador aceita vo-
luntariamente regras, objetivos e obstáculos arbitrários, possibilitando a existência e
o funcionamento do jogo [2, Cap.7: Defining Games].

• Emergent Systems (Sistemas emergentes): sistemas que produzem complexi-
dade e resultados impreviśıveis a partir de um conjunto de regras simples [2, Cap.14:
Games as Emergent Systems].

3.3 Conceitos Complementares

• Playtesting (Teste de Jogabilidade): componente fundamental do design itera-
tivo, envolvendo um ciclo cont́ınuo de criação, teste e revisão [2, Cap.2: The Design
Process].

• Roguelike (Gênero Roguelike): subgênero inspirado em Rogue (1980), cuja de-
finição, embora ainda debatida, geralmente inclui caracteŕısticas como geração pro-
cedural, elevada rejogabilidade e o conceito de morte definitiva. Essas propriedades
reforçam a essência do gênero, baseada na variabilidade extrema e no aprendizado
emergente ao longo de múltiplas tentativas [4].

6 Cisi e Duarte

3.4 Engine Unity e Conceitos Fundamentais do Desenvolvimento 2D

A Unity [5] é uma engine de desenvolvimento amplamente utilizada para a criação de jogos
digitais, oferecendo ferramentas visuais, um ecossistema modular baseada em C#. Seu
modelo operacional adota uma arquitetura centrada em GameObjects e Components, na
qual comportamentos podem ser acoplados, removidos e combinados de forma dinâmica.

• GameObject (Objeto do Jogo): Unidade estrutural fundamental da Unity e re-
presenta qualquer entidade presente em uma cena. Um GameObject funciona como
um contêiner que recebe funcionalidade através da adição de Componentes.

• Components (Componentes): Elementos que definem comportamento, aparência
e funcionalidades de um GameObject. A lógica personalizada do jogo também é im-
plementada como componentes, por meio de scripts em C#.

• Scripts C# (Scripts em C#): Componentes que implementam regras, decisões,
interações e fluxos internos do jogo.

• Sprites: Imagens 2D utilizadas como recursos gráficos para exibição na tela. Eles
representam texturas individuais importadas como objeto e são renderizados através
do componente SpriteRenderer, que controla como essas imagens aparecem na cena.

• ScriptableObjects (Objetos Scriptáveis): São estruturas de dados reutilizáveis
independentes do ciclo de vida dos GameObjects. Eles permitem armazenar confi-
gurações, valores, tabelas, curvas, parâmetros de balanceamento e perfis sem necessi-
dade de instanciação na cena.

• UnityEvent e Arquitetura Event-Driven (Orientada a Eventos): Sistema na-
tivo da Unity para implementar comunicação desacoplada entre objetos. Ele permite
que GameObjects e componentes se comuniquem sem depender diretamente uns dos
outros, seguindo o paradigma direcionado a eventos.

4 Objetivos

O objetivo central desse trabalho teve como prinćıpio investigar e documentar o processo
criativo no design de jogos, com foco na aplicação de técnicas e conceitos fundamentais, uti-
lizando o embasamento teórico e a experimentação prática. Nesse contexto, o jogo Double
King foi desenvolvido como um artefato de design capaz de materializar prinćıpios fun-
damentais do game design, permitindo examinar como variações de regras, pela criação de
mecânicas, e decisões de implementação tornaram a experiência de jogo significativa. O pro-
jeto igualmente se propôs a sintetizar os conhecimentos adquiridos na graduação, integrando
habilidades técnicas e fundamentos teóricos desenvolvidos ao longo do curso, aplicando-os
na construção de um jogo como um exemplo de software.

Double King 7

4.1 Objetivos espećıficos

4.1.1 Construção de Base Técnica Sólida

Antes de explorar mecânicas evolutivas, tornou-se fundamental estabelecer uma base es-
trutural robusta tomando o xadrez como sistema formal de referência. Essa base deve ser
modular e extenśıvel, garantindo estabilidade para futuras adições de regras dinâmicas,
incluindo a definição da arquitetura essencial do jogo (como tabuleiro, peças e lógica cen-
tral), a implementação dos elementos necessários para a interação em ambiente digital e
a integração de um oponente artificial capaz de sustentar o conflito próprio do sistema.
Essa etapa estabeleceu o alicerce sobre o qual as demais camadas de design poderão ser
investigadas.

4.1.2 Design de Novas Mecânicas e Exploração Teórica

O desenvolvimento do sistema buscou explorar mecânicas que ampliaram as regras clássicas
do xadrez e permitiram avaliar, sob a ótica teórica, como o arcabouço Rules, Play e Culture,
como adição de mecânicas favoreceram a experiência do jogo significativa. A partir de uma
base estrutural estável, investigou-se um conjunto de possibilidades teóricas oferecidas pela
literatura, examinando como variações de regras, modificações temporárias e estruturas
emergentes foram incorporadas ao jogo para expandir sua expressividade. O objetivo não
foi determinar previamente quais mecânicas são mais eficazes, mas explorar, analisar e
prototipar soluções que demonstraram potencial para produzir interações significativas.

4.1.3 Documentação Cŕıtica e Śıntese Formativa

O processo de desenvolvimento, as decisões de design, as justificativas conceituais e as
transformações na arquitetura constitúıram parte essencial do projeto. Essa documentação
articulou o percurso teórico-prático, relacionando escolhas de implementação aos prinćıpios
de game design estudados, ao mesmo tempo em que o artefato consolidou o projeto como
uma śıntese das competências desenvolvidas na graduação. O resultado final configura-se
como um protótipo expanśıvel, apto a servir tanto como artefato de investigação quanto
como base para evolução posterior em projetos futuros.

5 Metodologia

A metodologia adotada para o desenvolvimento do Double King combinou investigação
teórica, fundamentação técnica, criação art́ıstica e ciclos iterativos de experimentação. O
processo, de natureza não linear, estruturou-se em eixos que dialogam entre si ao longo do
processo — revisão conceitual, modelagem, ideação, implementação, avaliação e refinamento
— permitindo que decisões teóricas, técnicas e estéticas evolúıssem simultaneamente ao
longo do projeto.

8 Cisi e Duarte

5.1 Revisão Bibliográfica e Fundamentação Técnica

A primeira etapa consistiu na revisão de literatura para reunir modelos conceituais, exem-
plos práticos e prinćıpios de design que orientaram a criação do jogo. Esse estudo envolveu
obras fundamentais como Rules of Play e Game Design Workshop [6], além da análise de
literatura cinza e de t́ıtulos contemporâneos, como The Balatro Timeline [7], que demons-
tram como pequenas alterações em sistemas tradicionais podem expandir a profundidade
estratégica e gerar experiências altamente significativas. O objetivo dessa revisão não foi
definir antecipadamente quais mecânicas seriam adotadas, mas construir um repertório ca-
paz de orientar decisões ao longo do processo e fornecer referências de como jogos baseados
em regras podem produzir meaningful play.

Em paralelo, desenvolveu-se uma fundamentação técnica voltada ao domı́nio da Unity,
visando envolver a aprendizagem progressiva dos recursos centrais da engine para viabilizar
a implementação das ideias de design. A Unity mostrou-se particularmente adequada por
sua ampla adoção na indústria, pela documentação extensa e pela arquitetura baseada em
GameObjects e Components, que favorece modularidade e extensão. Esse estudo técnico
proporcionou a infraestrutura necessária para desenvolver sistemas dinâmicos e iterar sobre
eles com agilidade ao longo do projeto.

5.2 Construção da Base Técnica

A construção técnica iniciou-se pela definição de uma base estrutural sólida sobre a qual as
demais mecânicas poderiam ser desenvolvidas. O xadrez foi adotado como sistema inicial,
servindo como estrutura estável e bem definida para experimentações futuras. A arquitetura
do jogo foi projetada com foco em modularidade e baixo acoplamento, garantindo que peças,
movimentos e regras pudessem ser estendidos ou substitúıdos sem interferência entre os
componentes.

Para que essa base fosse funcional como jogo, era necessário preservar o conflito central
previsto no xadrez, o que exigia a presença de um oponente consistente e autônomo. O
motor Fairy-Stockfish [8] foi um elemento central na construção desse oponente artificial,
permitindo processar a configuração do tabuleiro e gerar decisões estratégicas mesmo quando
o sistema inclui peças com novos padrões de movimento ou tamanhos de tabuleiros não
convencionais.

Essa escolha tornou-se especialmente relevante tendo em vista que um oponente capaz
de antecipar e compreender todas as futuras regras evolutivas ou mecânicas customizáveis
extrapolaria o escopo do projeto, exigindo modelos de decisão complexos. Diante disso,
a pesquisa voltou-se para a busca de um motor que operasse não apenas sobre as regras
tradicionais do xadrez, mas que ainda oferecesse flexibilidade suficiente para lidar com
extensões estruturais.

5.3 Ideação e Prototipação das Novas Mecânicas

A ideação seguiu prinćıpios descritos em Game Design Workshop: A Playcentric Approach
to Creating Innovative Games [6], segundo os quais a clareza da mecânica e da experiência

Double King 9

desejada deve preceder a produção digital. Para isso, mecânicas foram inicialmente explo-
radas por meio de esboços e diagramas, permitindo avaliar potenciais desdobramentos sem
o custo e a rigidez que a implementação pode impor.

Essa etapa buscou identificar como alterações de regras, diferentes modos de jogo ou
modificações no comportamento das peças poderiam expandir o espaço de agência do joga-
dor. Assim, reduzir o tempo de iteração de cada validação conceitual, favorece a eliminação
de ideias desalinhadas aos objetivos do projeto [6].

5.4 Avaliação Prática e Refinamento Iterativo

O playtesting with confidants, conceito definido por Fullerton (2024) como teste de joga-
bilidade com confidentes, foi o tipo de avaliação prática explorada neste trabalho com a
ajuda de colegas e familiares. Esse tipo de testador é recomendado para as fases iniciais do
desenvolvimento, quando o objetivo principal é verificar legibilidade, clareza e compreensão
das regras sem a necessidade de um protótipo completo [6].

Durante as sessões, adotou-se a prática de solicitar que os participantes “pensassem
em voz alta”, permitindo registrar suas expectativas, dúvidas, hesitações e interpretações
espontâneas. Esse procedimento, recomendado por Fullerton (2024), fornece acesso direto
ao racioćınio do jogador, revelando antecipações incorretas, confusões na interface e dis-
crepâncias entre intenção do design e percepção do usuário.

O feedback coletado foi registrado tanto em forma qualitativa, incluindo impressões
verbais, dúvidas, interpretações e comentários sobre usabilidade, quanto em dados quan-
titativos simples, como duração das partidas e frequência de erros de operação. Essas
informações foram anotadas e utilizadas como base para identificar inconsistências de de-
sign, revisar regras, ajustar comportamentos do sistema e orientar novas ideias durante o
processo iterativo.

O refinamento do projeto emergiu diretamente desses ciclos cont́ınuos de experimentação,
teste e revisão. Em vários casos, ideias foram descartadas ainda na fase conceitual ou imedi-
atamente após as primeiras sessões de teste, evitando desperd́ıcio de tempo e concentrando
esforços nas mecânicas com maior potencial. Esse processo iterativo permitiu ajustar re-
gras, reequilibrar sistemas e direcionar a evolução do protótipo para novas mecânicas com
base na resposta real dos jogadores.

5.5 Criação da Identidade Visual

O desenvolvimento da identidade visual ocorreu paralelamente às etapas técnicas, uma vez
que a arte exerce papel central na legibilidade e na comunicação das ações do jogador. Obras
como The Art of Cuphead (2020) destacam que a clareza visual e a coerência estética são
essenciais para evitar ambiguidade mecânica e reforçar a intuição durante a jogabilidade.

Com base nesses prinćıpios, optou-se pela criação de pixel art autoral utilizando o LibreS-
prite [10], um software open source voltado para arte 2D. A ferramenta permitiu produzir
elementos visuais simples e expressivos, capazes de comunicar função e estado de maneira
imediata, além de estabelecer uma identidade estética consistente para o projeto.

10 Cisi e Duarte

5.6 Documentação e Conclusões

Essa etapa se preocupou no registro de decisões de design, alterações na arquitetura, justi-
ficativas conceituais e sucessivas revisões do sistema. Esse registro garantiu transparência
ao processo metodológico e forneceu a base necessária para a análise cŕıtica realizada ao
final do projeto.

As conclusões emergem da comparação entre os objetivos inicialmente definidos, as es-
colhas efetuadas ao longo do processo e os impactos observados na experiência do jogador.
Incluem também reflexões sobre mecânicas que surgiram durante o percurso, algumas im-
plementadas, outras apenas conceituadas e esboçadas, cuja viabilidade só se revelou graças
à interação cont́ınua entre fundamentação teórica, prática técnica e ciclos iterativos de ex-
perimentação e avaliação.

6 Desenvolvimento da Arquitetura Base

6.1 Base Sólida do Xadrez

Para estabelecer uma base sólida e extenśıvel do Xadrez tradicional, foi desenvolvida uma
arquitetura seguindo o padrão MVC (Modelo-Visão-Controlador) adaptado para Unity. O
sistema foi projetado com foco em separação de responsabilidades, onde cada componente
pode ser modificado ou estendido sem afetar o funcionamento do sistema como um todo.

6.1.1 Arquitetura de Controladores

A arquitetura utilizou um conjunto de controladores que formam a base estrutural do jogo.
O GameManager atua como orquestrador central, mantendo referências para todos os con-
troladores e coordenando o estado geral do jogo através de um sistema de eventos (event-
driven). Os principais controladores criados que compõem essa base são:

• GameManager: Gerencia estados do jogo, coordena inicialização e transições entre
fases. Implementando o padrão Singleton para acesso global e centraliza a comu-
nicação entre todos os controladores.

• BoardController: Responsável pela criação, destruição e gerenciamento do tabu-
leiro, incluindo validação de movimentos legais e detecção de estados de xadrez (xeque,
xeque mate, empate), mantendo referência ao modelo Board e gerenciando a matriz
de Tiles.

• PieceController: Gerencia criação, destruição e posicionamento de peças, mantendo
listas separadas para peças do jogador e do oponente, coordenando a instanciação de
GameObjects de peças.

• PlayerController: Controla ações do jogador e validação de turnos, gerenciando e
coordenando as ações do jogador.

• ChessController: Coordena a lógica de turnos e repassa comandos ao sistema do
oponente artificial quando necessário.

Double King 11

6.1.2 Arquitetura de Modelos

A camada de Modelo contém as estruturas de dados fundamentais que representam o
domı́nio do jogo, contendo os seguintes scripts desenvolvidos:

• Board (Tabuleiro): Representa o tabuleiro como uma matriz bidimensional de
Tiles, armazenando largura e comprimento.

• Tile (Casa): Representa uma casa do tabuleiro, contendo referência à peça posi-
cionada, coordenadas (x, y), posição no mundo Unity e estado visual. Cada Tile
expõe um tipo (TileAction) que define sua apresentação (sprite) e é ajustado via
ChangeTileAction: Idle, Movement, Selected, Capture, SpecialMove. Quando clicada
os controladores reagem decidindo o comportamento com base nesse TileAction.

• Piece (Peça): Representa uma peça de xadrez, contendo tipo(Rei, Rainha, Torre,
Bispo, Cavalo, Peão), cor, posição, lista de movimentos acoplados, implementando
métodos para cálculo de movimentos dispońıveis.

• PieceDescription (Descrição de Peça): Estrutura de dados que descreve uma
peça de forma serializável, contendo tipo, cor e movimentos, permitindo criação de
layouts de oponente e configurações de peças.

• IPieceMovement e Implementações: Interface e classes concretas (KingMove-
ment, QueenMovement, RookMovement, BishopMovement, KnightMovement, Pawn-
Movement) que implementam padrões de movimento espećıficos.

6.1.3 Geração Dinâmica de Tabuleiro

O sistema de tabuleiro foi implementado permitindo posśıveis variações de tamanho. A
geração é realizada pelo BoardController através do método CreateBoard(int boardWidth,

int boardLength), que cria uma matriz de Tiles com as dimensões especificadas.

O processo de criação envolveu o cálculo dinâmico de escala dos tiles, calculado pro-
porcionalmente ao tamanho do tabuleiro com um limite mı́nimo para manter legibilidade
em tabuleiros grandes. O método CreateTileGrid cria uma grade de GameObjects com
tiles diferentes para bordas (esquerda e direita) e centro, posicionando cada tile com base
em coordenadas calculadas. Cada tile recebe um sorting order, valor numérico usado pela
Unity para determinar a ordem de renderização de sprites em 2D, onde objetos com valores
maiores são renderizados por cima de objetos com valores menores. Assim, as tiles da frente
recebem um sorting order maior, criando a sensação de profundidade mesmo em um jogo
2D.

6.1.4 Sistema de Peças e Movimentos Acopláveis

As peças foram implementadas como entidades que podem receber múltiplas funções de
movimento e ataque acopladas dinamicamente. O sistema utiliza o padrão Strategy através
da interface IPieceMovement e da classe abstrata PieceMovementBase. O padrão Strategy

12 Cisi e Duarte

é um padrão de design comportamental que permite definir uma famı́lia de algoritmos,
encapsulá-los e torná-los intercambiáveis. Neste contexto, cada tipo de movimento (Rei,
Rainha, Torre, etc.) é uma estratégia que pode ser acoplada dinamicamente a uma peça,
permitindo que o comportamento de movimento seja selecionado em tempo de execução
sem modificar a estrutura da classe Piece.

Interface IPieceMovement: Define o contrato que todos os movimentos devem im-
plementar:

• GetAvailableMoves: Retorna os movimentos dispońıveis da peça, podendo combinar
movimentos e ataque;

• GetMovesPattern: Retorna apenas padrões de movimento;

• GetAttackPattern: Retorna apenas padrões de ataque.

Com essa interface foi posśıvel obter padrões de movimento e ataque diferentes, como
o do Peão que por mais que se move apenas uma casa para frente, pode capturar peças
inimigas diagonalmente. Cada tipo de peça possui uma classe que herda de PieceMo-
vementBase e implementa seus padrões espećıficos. A classe Piece mantém uma lista
List<IPieceMovement> Movements que permite adicionar múltiplos movimentos à mesma
peça. Isso permitiu que uma peça tenha, por exemplo, movimentos de Torre e Cavalo si-
multaneamente, criando comportamentos h́ıbridos que podem ser adicionados em tempo
de execução através do método AddPieceMovement(PieceType extraMovementType) [Fi-
gura 1].

public void AddPieceMovement(PieceType type)

{

switch (type)

{

case PieceType.King: Movements.Add(new KingMovement()); break;

case PieceType.Queen: Movements.Add(new QueenMovement()); break;

case PieceType.Rook: Movements.Add(new RookMovement()); break;

case PieceType.Bishop: Movements.Add(new BishopMovement()); break;

case PieceType.Knight: Movements.Add(new KnightMovement()); break;

case PieceType.Pawn: Movements.Add(new PawnMovement()); break;

default: break;

}

}

Figura 1: Métodos para acoplar novos padrões de movimento a uma peça (Piece.cs).

6.2 Oponente Artificial

Uma arquitetura para o sistema de oponente artificial foi desenvolvida utilizando o padrão
de interface para abstrair a integração da engine de xadrez sem modificar o código do jogo.

Double King 13

6.2.1 Interface IChessEngine

A interface IChessEngine define o contrato que a engine deve seguir, abstraindo detalhes
espećıficos de cada engine. Os principais métodos incluem:

• InitializeAsync(): Inicializa o engine de forma asśıncrona;

• SetPositionAsync(BoardPosition position): Define a posição atual do tabuleiro;

• CalculateMoveAsync(CalculationConstraints constraints): Solicita o cálculo
da melhor jogada.

6.2.2 Implementação com FairyStockfish

A solução implementada utilizou o FairyStockfish, um engine que suporta variantes do
xadrez e tabuleiros de tamanhos não-padrão. A classe FairyStockfishEngine implementa
IChessEngine e utiliza um componente UCIEngine para comunicação via protocolo UCI
(Universal Chess Interface), que permite comunicação padronizada com engines de xadrez
através de comandos de texto.

O FairyStockfishEngine gerencia a inicialização do processo do engine, a configuração
de variantes através de arquivos .fv (fairy variant) gerados dinamicamente, o ajuste de
parâmetros do engine (threads, profundidade) e a conversão entre formatos Unity e UCI.

O arquivo de variante fairy permite configurar algumas regras tradicionais do jogo,
incluindo: definição do tamanho do tabuleiro; definição de peças canônicas através de
pieceTypes usando notação espećıfica do Fairy-Stockfish; criação de peças com novos
padrões de movimento; e configuração de regras especiais como promoção de peões, en
passant, roque e duplo passo do peão.

6.2.3 Conversão de Estados

A classe BoardStateConverter realiza a tradução bidirecional entre o estado do tabuleiro
em Unity e a notação FEN (Forsyth-Edwards Notation), que é o formato padrão usado por
engines de xadrez, implementa a conversão de coordenadas UCI para posições do tabu-
leiro Unity através do método UCIMoveToUnity, que recebe uma string UCI (por exemplo,
"bestmove e2e4", indicando que a engine recomenda mover a peça de e2 para e4) e retorna
uma tupla contendo as posições de origem e destino em Vector2Int, além de informações
sobre promoção de peão, quando aplicável [Figura 2].

14 Cisi e Duarte

var (from, to, promotion) = BoardStateConverter.UCIMoveToUnity(bestMoveUCI);

Piece piece = boardController.GetPieceAtPosition(from);

if (piece != null)

{

var validMoves = piece.GetAvailableMoves(boardController.CurrentBoardState);

if (validMoves.Contains(to))

{

boardController.MovePiece(piece, to);

}

else

{

Debug.LogWarning("Movimento sugerido pelo engine é inválido no estado atual.");

}

}

Figura 2: Conversão UCI para coordenadas Unity e aplicação do movimento (método
UCIMoveToUnity).

Esse código demonstra a integração prática entre o comando retornado pela engine e o
sistema de movimentação de peças. Assim, o motor de xadrez calcula a jogada como texto,
que é então convertido para posições internas e validado/invocado pelas regras e classes de
movimento do Unity.

6.2.4 Controlador do Oponente Artificial

O BotController gerencia o fluxo de cálculo asśıncrono do oponente artificial, validando o
estado do tabuleiro antes de solicitar cálculo, gerenciando atrasos configuráveis para simu-
lar tempo de pensamento, validando movimentos retornados pelo engine contra o estado
atual do tabuleiro, implementando sistema de retry e re-sincronização em caso de erros e
reinicializando o engine automaticamente se necessário.

A interface de comunicação foi projetada de forma simples e direta: o BotControl-
ler apenas solicita a melhor jogada para um estado espećıfico do tabuleiro através de
CalculateMoveAsync, abstraindo toda a complexidade da comunicação com o engine. O
resultado é retornado via evento OnMoveCalculated e aplicado ao tabuleiro.

6.2.5 Limitações da Engine de Xadrez

O oponente artificial utilizado no projeto calcula suas jogadas exclusivamente a partir do
estado atual do tabuleiro, operando apenas como um oponente que conhece uma versão
expandida das regras do xadrez tradicional. Como esse motor não consegue interpretar ou
avaliar regras alternativas, o que exigiria algum treinamento após a criação de mecânicas
extras, essa limitação passou a orientar diretamente o design do jogo.

Double King 15

A assimetria entre um inimigo estável, limitado ao uso de regras tradicionais, e um joga-
dor capaz de explorar futuras outras regras e mecânicas passou a orientar a ideia central do
jogo. Conceito que será aprofundado no tópico seguinte, ao apresentar as Regras Evolutivas
e as Mecânicas Customizáveis.

7 Regras Evolutivas e Mecânicas Customizáveis

7.1 Mecânicas Principais

7.1.1 Nı́veis de Dificuldade

Visando explorar de maneira significativa a diferença entre o oponente artificial e o jogador,
adotou-se a assimetria no número de peças como elemento central do design. A desvanta-
gem numérica enfrentada pelo jogador foi estruturada como parte intencional do desafio,
reforçando que todo jogo opera sobre um conflito artificial [2, Cap.20: Games as Systems
of Conflict]. Nesse contexto, o jogador aceita voluntariamente tais restrições por meio da
Atitude Lusória, reconhecendo obstáculos arbitrários como condições leǵıtimas do sistema.

A partir dessa lógica, utilizou-se uma mecânica caracteŕıstica de jogos roguelike, estrutu-
rando o sistema em ńıveis sucessivos de dificuldade crescente. Jogos como Balatro reforçam
esse formato ao combinar aleatoriedade, adaptação estratégica e ciclos de dificuldade incre-
mental [7]. Dessa forma, cada vitória (xeque mate) conduz o jogador a tabuleiros maiores
e a conjuntos inimigos mais numerosos, refletindo o modelo de progressão escalonada e
desafios acumulativos t́ıpico do gênero.

Além da estrutura mecânica, buscou-se adicionar uma camada narrativa para reforçar
a escalada de dificuldade. Cada estágio apresenta um Boss (chefe) baseado em uma peça
de xadrez, progredindo de acordo com seus valores: do peão ao rei. Isso transforma a
progressão em uma sequência temática clara, na qual o jogador enfrenta partes do exército
adversário de forma simbólica.

Essa progressão vai além do que Salen e Zimmerman (2003) definem como Sistema de
Conflito, pois a assimetria crescente entre os exércitos pode tornar o desafio matematica-
mente imposśıvel, comprometendo a sensação de justiça, elemento essencial para um conflito
equilibrado que disperte meaningful play [2, Cap.20: Games as Systems of Conflict]. Em
contrapartida, essa limitação abre espaço para novas mecânicas que devolvem a capacidade
de agir do jogador, oferecendo novos caminhos em um cenário adverso.

Detalhes da Implementação A mecânica de dificuldade crescente foi implementada
através do LevelController, que gerencia a progressão de ńıveis com tabuleiros progressi-
vamente maiores e exércitos crescentes de peças. O controlador mantém um dicionário de
configurações de ńıvel (LevelConfig), que contém os seguintes parâmetros:

• Difficulty(Dificuldade): Enumeração que identifica o tipo de exército (Pawn, Knight,
Bishop, Rook, Queen, King);

• boardWidth e boardLength: Dimensões do tabuleiro para o ńıvel;

16 Cisi e Duarte

• opponentLayout : Matriz PieceDescription[,] que define o exército do oponente;

• description: Descrição textual do ńıvel.

O sistema foi projetado para facilitar ajustes de balanceamento. Novos ńıveis podem
ser adicionados simplesmente criando novas entradas no dicionário levelConfigs, exemplo na
Figura 3, e os layouts de oponente são gerados através de métodos dedicados (CreatePawn-
DifficultyLayout, CreateKnightDifficultyLayout, etc.), como mostra a Figura 4, permitindo
ajustes rápidos na composição dos exércitos.

levelConfigs[1] = new LevelConfig

{

difficulty = Difficulty.Pawn,

boardWidth = 5,

boardLength = 5,

description = "Basic chess setup - Pawn difficulty",

opponentLayout = CreatePawnDifficultyLayout()

};

Figura 3: Exemplo de configuração de LevelConfig para o ńıvel de dificuldade do Peão.

private PieceDescription[,] CreatePawnDifficultyLayout()

{

PieceDescription[,] layout = new PieceDescription[2, 5];

layout[0, 2] = new PieceDescription(PieceType.King, PieceColor.Black);

for (int i = 0; i < 5; i++)

{

layout[1, i] = new PieceDescription(PieceType.Pawn, PieceColor.Black);

}

return layout;

}

Figura 4: Exemplo de CreatePawnDifficultyLayout : geração do layout do exército do opo-
nente para o ńıvel de dificuldade do Peão.

Exemplo dos ńıvel de dificuldade do Peão implementados dentro da Unity podem ser
vistos na Figura 5.

7.1.2 Double King Mode

Considerando que o jogo adota dificuldade crescente como eixo central da experiência,
tornou-se necessário resolver como lidar com situações de empate sem comprometer a pro-
gressão. A primeira solução testada foi tratar o empate como vitória automática do jogador,

Double King 17

Figura 5: Exemplo ilustrativo do ńıvel de dificuldade Peão.

permitindo avançar para o próximo ńıvel de dificuldade. No entanto, durante as primei-
ras sessões de playtesting, observou-se que essa abordagem alterava a dinâmica estratégica
desejada: os jogadores passaram a buscar o empate de forma deliberada, usando trocas
de peças como caminho mais fácil para encerrar a partida. Isso reduzia a importância do
xeque-mate e enfraquecia a base estratégica do xadrez tradicional.

Identificado que o empate não poderia funcionar como parte da estratégia de evolução,
tornou-se necessário desenvolver um mecanismo espećıfico para resolver essa condição sem
prejudicar o ritmo do jogo. Essa avaliação também abriu espaço para integrar uma mecânica
customizável e distinta do xadrez tradicional. A solução deveria preservar o desafio, impedir
a exploração do sistema e introduzir um momento decisivo que mantivesse a coerência com
a experiência proposta.

Dessa necessidade surgiu um modo exclusivo: o modo Double King, um sistema de
desempate que combina decisão estratégica e sorte. Nesse modo, um empate desencadeia
uma disputa direta entre os dois reis no mesmo tabuleiro. A resolução ocorre por meio
de ciclos alternados de remoção de tiles e movimentação: (1) O rei inimigo seleciona uma
tile que será removida; (2) O jogador então realiza seu movimento sem saber qual tile
foi marcada; se escolher exatamente essa tile, o modo de desempate termina e o jogador
perde; (3) Caso contrário, a rodada é passada para o jogador, que escolhe uma tile para ser
eliminada; (4) O rei inimigo faz seu movimento, novamente sem saber qual tile foi escolhida
— e o ciclo se repete até que um dos reis caia do tabuleiro e seja eliminado.

A introdução de elementos de incerteza no modo Double King foi fundamental para
tornar o desempate significativo. O meaningful play depende de sistemas que não sejam
totalmente previśıveis [2, Cap.15: Games as Systems of Uncertainty]. O modo combina
agência do jogador, ao permitir que o jogador escolha qual tile será removida, com risco

18 Cisi e Duarte

e incerteza, já que o movimento do rei adversário ocorre sem conhecimento prévio da tile
marcada. Assim, o jogador pode influenciar a situação, mas nunca determiná-la por com-
pleto, mantendo um equiĺıbrio entre controle parcial e incerteza que torna cada rodada
tensa, impreviśıvel e relevante.

Nos playtests, essa dinâmica mostrou-se eficaz ao motivar rejogabilidade. Os participan-
tes relataram que desejariam experimentar esse modo novamente, mesmo sem relação com a
progressão principal, buscando manipular o risco e antecipar o comportamento do oponente.
Isso indica que o minigame não apenas evita empates, mas também sustenta engajamento
próprio ao explorar a relação equilibrada entre agência, probabilidade e incerteza.

Uma visualização do modo Double King em execução pode ser vista em [Figura 6].

Figura 6: Modo Double King em execução na rodada de movimentação do jogador para o
desempate do ńıvel de dificuldade Bispo.

Detalhes da Implementação O modo é ativado quando um empate é detectado. O
DoubleKingModeController inicializa o modo removendo todas as peças do tabuleiro e re-
posicionando os reis para o centro da primeira e última fileira. Os outros métodos dessa
classe ficam responsáveis pela remoção de tiles ou pela movimentação do rei, alternando a
rodada entre jogador e oponente ao fim da ação. Destaca-se aqui a ideia de configurar o
tabuleiro como uma matriz de tiles em que cada tile é um GameObject independente. Dessa
forma, cada tile pode ser removida individualmente sem quebrar ou refatorar o tabuleiro
inteiro [Figura 7].

Double King 19

public void OnKingMoved(Tile newTile)

{

if (tileToRemove != null && newTile != null &&

newTile.position == tileToRemove.position)

{

Piece fallenKing = newTile.piece;

StartCoroutine(KingAndTileFallSequence(fallenKing, newTile));

tileToRemove = null;

return;

}

boardController.RemoveTile(tileToRemove.position);

ChangeRemoveTurn();

tileToRemove = null;

if(isPlayerRemoveTurn){

StartPlayerTileRemovalTurn();

}

else{

StartOpponentTileRemovalTurn();

}

}

Figura 7: Método executado após movimentação do rei, responsável pela remoção de tile
e alternância de turno; se o rei estiver na tile marcada, executa-se a queda do rei (método
OnKingMoved).

Inicialmente, foi testado o FairyStockfish para calcular jogadas no Double King Mode.
No entanto, os primeiros testes mostraram inconsistências no comportamento do oponente
artificial: em alguns casos o rei não se movia, em outros tentava deslocar-se para uma tile já
removida, ou simplesmente repetia movimentos sem qualquer lógica estratégica. Isso ocorre
porque os motores de variantes assumem um tabuleiro retangular cont́ınuo, sem buracos,
e tratam configurações com apenas dois reis como empate. Assim, o engine era incapaz
de interpretar corretamente as regras do modo e não conseguia operar dentro da incerteza
gerada pela remoção dinâmica de tiles.

Vale ressaltar que no FairyStockfish é posśıvel criar uma variante do xadrez onde são
definidas peças com padrões customizados de movimento, sendo teoricamente posśıvel in-
cluir uma peça totalmente estática — sem ataque e sem possibilidade de deslocamento —
para representar buracos como obstáculos fixos no tabuleiro. No entanto, os resultados per-
maneceram inconsistentes: o engine, ao não identificar movimentos válidos que pudessem
levar a uma condição de vitória com apenas dois reis, deixava de responder, ocasionando
timeout mesmo após múltiplas tentativas de retry.

Diante dessas limitações, tornou-se necessário desenvolver um algoritmo próprio para
esse modo, tanto para a movimentação, escolha e remoção de tiles. Para suprir essa de-
manda, foi criado um algoritmo simples baseado em seleção probabiĺıstica ponderada. O

20 Cisi e Duarte

método ChooseWeightedByDistance (Apêndice A) calcula pesos para cada tile candidata
com base na distância ao rei adversário:

• Durante a fase de remoção de tiles pelo oponente: prioriza tiles próximas ao rei do
jogador, gerando escolhas mais agressivas.

• Durante a fase de movimentação do rei inimigo: a lógica inversa busca afastá-lo do
rei do jogador durante a fase de exclusão de tiles.

• Os pesos são normalizados e uma amostragem proporcional ocorre via ChooseIn-
dexByWeights (Apêndice A), garantindo que tiles com maior peso tenham maior
probabilidade de serem selecionadas, mas preservando um elemento de sorte.

O resultado é um algoritmo que não busca retornar a melhor jogada posśıvel, mas busca
equilibrar a estratégia e a probabilidade. Em certas situações, pode ser vantajoso isolar o
rei inimigo; em outras, mover-se de forma aparentemente aleatória pode gerar posições mais
favoráveis. Assim, adotou-se uma solução h́ıbrida: incorpora algum grau de estratégia, mas
permanece ancorada em probabilidade e variabilidade. Outras soluções mais sofisticadas
poderiam ser exploradas, mas esta abordagem demonstrou ser suficientemente robusta e
proporcionou um desafio relevante para o desenvolvimento.

7.2 Quebrando as Regras Passivamente

Diante de um oponente que opera com as regras tradicionais e uma grande diferença de valor
entre as peças, o conflito no Double King rapidamente se torna estruturalmente injusto.
Isso levou, de maneira natural, à necessidade de introduzir mecânicas capazes de quebrar a
rigidez formal do sistema, algo que Salen e Zimmerman (2003) descrevem como Transgressão
Sancionada, incorporando mecânicas que se comportam como trapaças na visão do oponente
artificial. Se elementos fundamentais do jogo, como o número de peças, seus movimentos ou
até mesmo a ordem de turno, pudessem ser explorados para enfrentar a assimetria crescente,
então o design precisava oferecer ao jogador os meios necessários para a essa quebra de regra
subvertendo as regras tradicionais do xadrez.

A partir dessa premissa, um sistema no qual o jogador tivesse controle sobre as peças
que utiliza pareceu uma solução natural. Essa ideia de peças como elementos configuráveis
aproxima o Double King da estrutura de jogos de construção estratégica, como Balatro [7],
um jogo roguelike focado no Poker, no qual o poder do jogador não é dado de imediato, mas
constrúıdo progressivamente. Dessa forma, o jogo se iniciando apenas com o rei, permitindo
que o jogador adquira e selecione novas peças ao longo de sua jornada se alinha com esse
prinćıpio.

Com base nessa lógica, duas mecânicas se tornam consequências diretas do design: (1)
um Inventário, no qual o jogador organiza as peças conquistadas, decidindo quais utilizar e
quais preservar, o que depende de uma mecânica de posicionamento das peças no ińıcio de
cada desafio; e (2) um sistema de Loja ou Obtenção de Peças, responsável pela aquisição
de novas peças e posśıveis habilidades adicionais.

Double King 21

Essas mecânicas ampliam a capacidade do jogador de subverter o sistema, mas fazem
isso antes ou depois da partida começar, preparando o terreno estratégico sem alterar di-
retamente as regras durante a partida de xadrez. Assim, no contexto deste projeto, foram
estabelecidas duas categorias de mecânicas: (1) “quebras de regra passivas”, criadas para
organizar as camadas de intervenção no sistema, fornecendo estruturas ou mecânicas fora
da partida do xadrez; e (2) “quebras de regra ativas”, voltadas a permitir que o jogador
modifique, amplie ou distorça as regras durante a própria partida.

7.2.1 Inventário e Posicionamento de Peças

Para que o jogador tenha uma visualização clara das peças de seu exército entre os ńıveis de
dificuldade, foi idealizado e implementado o Inventário. Esse inventário é representado por
um tabuleiro extra de 5x5, reutilizando os métodos criados para o tabuleiro principal. Com
essa mecânica, o jogador tem a possibilidade de preservar peças entre os ńıveis de dificuldade,
o que adiciona uma camada extra de estratégia. O oponente, por sua vez, não tem acesso a
esse inventário, o que significa que ele nunca saberá quais peças estarão dispońıveis para o
jogador no próximo desafio. Além disso, o jogador, com o inventário, pode posicionar suas
peças no ińıcio da partida de acordo com a estratégia que preferir, subvertendo em partes
o ińıcio tradicional do xadrez, uma vez que o jogador só pode posicionar suas peças nas
duas primeiras fileiras. Assim, o jogador tem a habilidade de contornar uma dificuldade
potencialmente injusta por meio de mecânicas que, na visão do oponente, podem parecer
trapaças. No entanto, essas mecânicas são fundamentais para garantir um jogo equilibrado
e adaptativo.

Detalhes da Implementação O sistema de inventário foi implementado através do In-
ventoryController, que gerencia uma grade secundária de Tiles dedicada ao armazenamento
de peças do jogador. O controller cria uma matriz de Tiles separada do tabuleiro principal,
posicionada em uma área dedicada da tela.

O InventoryController implementa:

• Grade de Inventário: Cria uma grade de tiles com sprites próprios, diferenciados
visualmente dos tiles do tabuleiro principal;

• Gerenciamento de Peças: Mantém listas de peças dispońıveis do jogador (playe-
rAvailablePieces) e peças em jogo (playerPiecesInGame);

• Seleção e Movimentação: Permite seleção e organização de peças dentro do in-
ventário e implementa métodos para movimentação entre inventário e tabuleiro;

• Posicionamento Controlado: Controla o posicionamento de peças para as 2 pri-
meiras fileiras do tabuleiro quando permitido.

Modo de Posicionamento de Peças: No ińıcio de cada ńıvel, o jogo entra no modo
PlacingPieces, onde o jogador deve posicionar suas peças do inventário no tabuleiro. Nesse
modo, o jogador tem a flexibilidade de mover as peças dentro do tabuleiro e do inventário

22 Cisi e Duarte

livremente, sem ser penalizado por colocar uma peça em um local errado. O InventoryCon-
troller força o posicionamento do rei no tabuleiro, garantindo que o jogador sempre comece
com o rei em campo. Conforme ilustrado na Figura 8, durante o modo PlacingPieces as
tiles das duas primeiras fileiras do tabuleiro e as do inventário (à direita) são marcadas
com TileAction.Movement (realçadas em verde), permitindo posicionamento livre de peças
nessas casas; a peça atualmente selecionada é indicada por TileAction.Selected (azul).

Figura 8: Modo de posicionamento (Placing Pieces), mostrando a alocação inicial de peças
do Inventário no tabuleiro.

7.2.2 Loja e Geração de Conjunto de Peças

A aquisição de peças foi estabelecida como uma mecânica essencial antes do ińıcio de cada
ńıvel, pois, sem ela, o jogador não teria um exército adequado para enfrentar o próximo
desafio. Várias abordagens foram inicialmente consideradas: adotar um sistema de mo-
eda tradicional, por exemplo, com recompensas fixas ou baseadas no desempenho (como
capturar mais peças ou vencer rapidamente), no entanto essa abordagem tenderia a incen-
tivar estratégias focadas em maximizar o ganho de moedas, o que poderia transformar a
estratégia em captura de peças em vez de um confronto estratégico baseado na subversão
da desvantagem. Ainda que um sistema de economia pudesse abrir espaço para estratégias
de gerenciamento de recursos entre desafios, essa abordagem teria que ser implementada
cuidadosamente para evitar que o jogo se torne apenas uma busca por otimizar moedas
para progredir. Como alternativa mais alinhada ao propósito do projeto, optou-se por um
sistema onde é fornecido diferentes conjuntos de peças a serem escolhidos pelo jogador. Tal
sistema se basearia em uma oferta variável e parcialmente aleatória, proporcionando a ca-
pacidade da escolha do melhor conjunto para sua estratégia ao reforçar agência do jogador.

Double King 23

Para que essa mecânica fosse expressiva, tornou-se necessário criar conjuntos com perfis
diferentes, garantindo que cada escolha representasse, de fato, uma decisão estratégica.

Para manter a imprevisibilidade e a sensação de descoberta, adotou-se a lógica de um
sistema de seleção de peças com componentes de aleatoriedade controlada, baseando-se
geração procedural. No contexto do jogo, o algoritmo que gera a oferta da loja utiliza
hiperparâmetros configuráveis para definir o conjunto de peças dispońıvel em cada ńıvel,
garantindo que as escolhas do jogador resultem em combinações distintas de desafios e re-
cursos. Esse processo exemplifica o conceito de Game Tuning (refinamento do jogo) [2, Cap.
14: Games as Emergent Systems], no qual regras e parâmetros são ajustados, testados e
refinados iterativamente para favorecer comportamentos desejáveis em sistemas emergen-
tes. No caso do Double King, a oferta de peças, sua frequência, raridade e combinações não
são pré-definidas manualmente, mas geradas de forma semi-aleatória a partir de critérios
parametrizados de design (como orçamento de dificuldade, variedade e quantidade de peças,
além do equiĺıbrio entre risco e recompensa). Esse modelo permite ajustar a dificuldade, o
balanceamento e a diversidade de cada partida sem tornar o jogo previśıvel ou repetitivo,
sustentando uma experiência rica e continuamente envolvente.

Detalhes da Implementação O sistema de Loja foi implementado por meio do com-
ponente SetGenerator e de controladores associados (PieceSetSelectorController, Shopping-
Controller). Em conjunto, esses elementos permitem que o jogador adquira novos conjuntos
de peças por meio de geração procedural, introduzindo variedade e imprevisibilidade a cada
ciclo de jogo.

O método SetGenerator.GenerateOneSet implementa um algoritmo de amostragem pon-
derada sem reposição que consome diretamente os parâmetros dos ScriptableObjects confi-
gurados (por exemplo, SetGenerationProfile, DifficultyBudgetTable, MovementValueTable,
UpgradeValueTable). Ele funciona assim:

1. Cálculo de valor (tabelas): para cada tipo selecionado, calcula-se o valor total por
unidade combinando tabelas de valor (PieceValueTable) [Figura 9]. A quantidade de
cada tipo também é sorteada entre mı́nimo e máximo configuráveis (hiperparâmetros
do perfil).

2. Seleção de tipos (perfil): escolhe-se aleatoriamente a quantidade de tipos distintos
usando um valor mı́nimo e máximo configuráveis (hiperparâmetros) no SetGenera-
tionProfile [Figura 10]. Os tipos de peça são sorteados por amostragem ponderada
usando os pesos do próprio perfil (por exemplo, pesos maiores para Peão aumentam
sua probabilidade de aparecer no conjunto).

3. Ajuste guloso (orçamento e capacidade): por fim, aplica-se um ajuste guloso
para respeitar as restrições de orçamento e capacidade. O orçamento vem de Diffi-
cultyBudgetTable.GetBudget(difficulty);

A configuração do sistema é feita por meio de ScriptableObjects que permitem o ba-
lanceamento sem necessidade de alterar código. Perfis de geração podem ser criados para
privilegiar diferentes caracteŕısticas: maior quantidade de peças baratas, menor quantidade

24 Cisi e Duarte

de peças caras ou configurações balanceadas. O orçamento vinculado à dificuldade influ-
encia diretamente as ofertas geradas, incorporando o ńıvel de desafio ao próprio processo
de geração procedural. Foram criadas quatro opções de escolha de conjunto de peças, cada
uma baseada em perfis distintos de geração. A primeira utiliza um perfil focado em maior
quantidade de peças, resultando naturalmente em valores individuais menores; a segunda
adota um perfil centrado em alto valor, priorizando peças mais valiosas em menor quan-
tidade; e as duas últimas derivam de um mesmo perfil balanceado, combinando peças de
valor intermediário em quantidades mais amplas.

[Header("Base values per piece type")]

public int pawn = 1, knight = 3, bishop = 3, rook = 5, queen = 9;

Figura 9: Valores base e probabilidades em tabelas (Piece/Movement/Upgrade Value Ta-
bles).

[Header("Distinct piece types per set (1..3)")]

[Range(1, 3)] public int minDistinctTypes = 1;

[Range(1, 3)] public int maxDistinctTypes = 3;

[Header("Quantity per selected type (min..max)")]

[Min(1)] public int minQuantityPerType = 1;

[Min(1)] public int maxQuantityPerType = 4;

[Header("Piece type weights (relative likelihood)")]

public int pawnWeight = 10;

public int knightWeight = 6;

public int bishopWeight = 6;

public int rookWeight = 3;

public int queenWeight = 1;

Figura 10: Hiperparâmetros do perfil de geração (SetGenerationProfile).

Com essa mecânica, o jogo passou a dispor, em termos estruturais, de ińıcio, meio
e fim: o jogador tem condições de construir um exército gradulamente e, por meio de
decisões estratégicas, concluir os desafios. Ainda assim, os testes indicaram que a dificuldade
permanecia elevada. Em determinados ńıveis, o conjunto gerado não era suficiente para lidar
com o exército do oponente. Esse cenário exigiu novos ciclos de tuning dos hiperparâmetros,
resultando em ajustes no orçamento de dificuldade e na quantidade de peças oferecidas nos
ńıveis iniciais, de forma a manter o conflito intenso, porém venćıvel.

Double King 25

7.3 Quebrando as Regras Ativamente

Com as mecânicas estruturais estabelecidas na etapa anterior, tornou-se posśıvel explorar
uma segunda modalidade de subversão das regras tradicionais do xadrez: aquelas que atuam
durante a própria partida. Essa idealização e prototipação se desdobrou em duas direções:

1. mecânicas que atuam sobre as peças — ampliando seus padrões de movimento, mo-
dificando sua persistência ou criando novas formas de interação — e que puderam ser
efetivamente implementadas;

2. mecânicas voltadas à alteração de regras estruturais do sistema, como reorganização
do tabuleiro, modificação de turnos ou ajustes em outras mecânicas. Essas propostas
foram concebidas conceitualmente, mas permaneceram no plano de design dentro do
escopo deste projeto, servindo como base para investigações futuras.

7.3.1 Peças Evolúıdas

A partir da arquitetura base e expanśıvel desenvolvida, tornou-se posśıvel tratar as peças
como entidades capazes de evolução. A implementação das Peças e engine do oponente
artifical já previa a capacidade de acoplar novos padrões de movimento e de integrá-los
ao jogo por meio de variantes do xadrez. Somado a isso, tornou-se viável criar atributos
espećıficos para as peças, permitindo que, em determinadas situações, a validação dessa
habilidade segueria um fluxo que substitúı ou complementa regras tradicionais do xadrez.
Essa abordagem abriu espaço para um sistema de habilidades que dialoga diretamente com
a lógica emergente do jogo. Assim, foi posśıvel intensificar a experiência de subversão das
regras clássicas, preservando sua estrutura essencial, mas introduzindo exceções controladas
que ampliam o espaço de possibilidade dispońıvel ao jogador.

Detalhes da Implementação Do ponto de vista de implementação, a adição de no-
vos movimentos aproveita diretamente a infraestrutura já compat́ıvel com o FairyStockfish,
permitindo, por exemplo, combinar os padrões de movimentação do cavalo e do bispo em
uma única peça. Essa compatibilidade foi importante, tendo em vista que sem ela, o opo-
nente artificial não teria consciência de que determinadas peças possuem movimentações
h́ıbridas, podendo mover o rei para casas atacadas, ocasionando na eventual captura do
Rei (mecânica que poderia ser explorada no futuro de forma mais balanceada). A esco-
lha do Fairy-Stockfish, portanto, garantiu que o adversário artificial entendesse as regras
expandidas, ainda que não possua em seu arsenal tais peças modificadas.

A introdução dessa funcionalidade revelou a necessidade de expandir o SetGeneration-
Profile com novos hiperparâmetros, permitindo que peças com padrões h́ıbridos também
fossem disponibilizadas na Loja. Assim, a decisão de adquirir ou não peças com movimen-
tos adicionais passou a integrar o espaço estratégico do jogador, enriquecendo a construção
do exército e criando novas linhas de planejamento.

Além da expansão dos movimentos, foi idealizado um sistema complementar de ha-
bilidades que alteram regras fundamentais do comportamento das peças — desde o que
ocorre quando capturam outra peça, até o que acontece quando são capturadas. Como

26 Cisi e Duarte

consequência da existência do inventário, surgiram naturalmente habilidades voltadas à in-
teração entre tabuleiro e armazenamento. Para organizar essa lógica, três categorias iniciais
foram definidas e, por facilitar a comunicação visual, denominadas R, G e B, como ilustrado
na Tabela 1.

Canal Habilidade

R Quando o jogador captura uma peça do oponente, essa peça
é adicionada ao inventário do jogador.

G Quando a peça do jogador é capturada, ela retorna ao in-
ventário em vez de ser destrúıda.

B Permite remover essa peça do tabuleiro e enviá-la de volta
ao inventário.

Tabela 1: Habilidades dos canais RGB

A metáfora da luz serviu de base conceitual: cada habilidade é representada por uma
cor, onde as combinações de habilidades são exibidas por meio da mistura dessas cores (ver
Seção 8.1). Isso permite que o jogador identifique imediatamente, pela tonalidade final,
quais habilidades uma peça possui, incluindo habilidades h́ıbridas derivadas da união de
duas ou três cores, caso novas expansões sejam exploradas futuramente.

Aproveitando esse conceito, caso a peça possua simultaneamente as três habilidades (R,
G e B), foi implementada uma quarta habilidade adicional: a capacidade de retornar do
inventário diretamente ao tabuleiro, introduzindo um elemento de surpresa e reforçando o
caráter de transgressão sancionada.

O sistema RGB foi implementado por meio da estrutura PiecesUpgrades, na qual cada
habilidade é representada por uma flag booleana. A lógica de ativação consiste em veri-
ficar a presença da habilidade antes da execução da regra padrão, desviando o fluxo para
comportamentos alternativos quando aplicável. Isso pode ser observado na Figura 11, que
exemplifica o método de captura: se a peça capturada possui a habilidade G, um fluxo
alternativo é acionado; se possui a habilidade R, um outro fluxo alternativo é acionado;
caso contrário, segue-se o comportamento tradicional, removendo o objeto do jogo.

Double King 27

public void CapturePiece(Tile fromTile, Tile toTile)

{

if (toTile != null && toTile.piece != null)

{

Piece attacker = fromTile.piece;

Piece captured = toTile.piece;

if (captured.HasUpgradeG())

{

pieceController.HandleCapturedUpgradeG(captured, toTile);

}

else if (attacker.HasUpgradeR())

{

pieceController.HandleAttackerUpgradeR(attacker, captured, toTile);

}

else

{

pieceController.DestroyPiece(toTile.piece);

toTile.RemovePiece();

}

}

}

Figura 11: Fluxo de captura: desvio para habilidades RGB e caminho padrão (BoardCon-
troller.CapturePiece).

Durante os playtests, essa mecânica se desdobrou em cenários particularmente interes-
santes. A habilidade R, por exemplo, permite ao jogador “roubar” peças do adversário,
compensando a raridade de determinadas unidades na Loja. Combinações avançadas, como
peças que reúnem R, G e B, aproximam-se de uma quebra quase absoluta das regras: tais
peças podem capturar, retornar ao inventário quando destrúıdas e voltar ao tabuleiro pos-
teriormente, funcionando como uma espécie de “soldado imortal” dentro da narrativa de
exércitos do xadrez.

Para evitar que esse comportamento se tornasse dominante, os hiperparâmetros associa-
dos às habilidades RGB foram ajustados para torná-los raros nos perfis da Loja, preservando
seu caráter de recompensa excepcional. Além disso, movimentos entre inventário e tabuleiro
contam como jogadas, o que balanceia seu uso em dificuldades mais altas, tendo em vista
que o oponente reage ao surgimento dessa peça antes dela poder ser mover, podendo cravar
ela ou prosseguir para outras estratégias tradicionais do xadrez.

7.3.2 Mecânicas Idealizadas: Cartas de Alteração de Regras

A partir da base constrúıda surgiu a idealização de um sistema de cartas dedicado à modi-
ficação expĺıcita de regras. Inspirado por jogos do gênero deckbuilder, como o próprio Ba-
latro, estilo que permite que cartas funcionem como elementos capazes de alterar condições
do jogo, ampliando ainda mais o espectro de transgressão sancionada já existente no Double

28 Cisi e Duarte

King.
Embora não tenham sido implementadas nesta versão do protótipo, essas ideias consti-

tuem um produto do processo de game design desenvolvido. Elas resultam diretamente das
mecânicas concebidas e da base teórica estabelecida até então. As cartas, idealizadas para
manipular regras alternativas, foram esboçadas como ferramentas capazes de introduzir no-
vas exceções, modificar prinćıpios clássicos do xadrez ou expandir mecânicas já subversivas.
Entre as propostas concebidas, destacam-se cartas que poderiam adicionar ou remover filei-
ras ou colunas, alterando o prinćıpio do tabuleiro quadrado, permitir que uma peça se mova
duas vezes seguidas ou, ainda, funcionar como um último recurso capaz de ativar o modo
Double King após um xeque-mate. Assim, mesmo permanecendo em ńıvel conceitual, esse
conjunto de propostas consolida direções de expansão futuras e demonstra como o sistema
pode continuar evoluindo de maneira emergente, modular e experimental.

8 Experiência do Usuário

A experiência do usuário foi estruturada em dois eixos complementares: a identidade visual,
responsável por comunicar a atmosfera e a narrativa do projeto, e a interface do usuário,
responsável por tornar leǵıveis as regras, os estados do sistema e as ações posśıveis, que
deixam de ser apenas elementos estéticos e tornam-se fundamentais para garantirMeaningful
Play.

Segundo Salen e Zimmerman (2003), o jogo só produz significado quando as ações do
jogador são discerńıveis, ou seja, quando o jogador compreende claramente o que sua ação
causou, e integrados, quando o resultado dessa ação se conecta ao restante do sistema,
influenciando situações posteriores. No Double King, no qual habilidades extras, regras al-
ternativas e comportamentos excepcionais se acumulam sobre a estrutura do xadrez clássico,
a clareza visual e a legibilidade tornam-se indispensáveis para que essas ações sejam per-
cept́ıveis e integradas ao fluxo estratégico do jogo.

8.1 Identidade Visual

A identidade visual foi desenvolvida com o objetivo de reforçar a atmosfera do projeto, uma
releitura do xadrez marcada por conflito, experimentação e subversão progressiva das regras
tradicionais. Para isso, optou-se pela criação de artes originais em pixel art, produzidas no
LibreSprite. A escolha desse estilo não foi apenas estética, mas funcional, a leitura clara
de peças, tiles, efeitos e estados é crucial para manter a compreensão necessária para o
Meaningful Play.

O conjunto de sprites criado reflete essa preocupação. As peças foram representadas
tanto em sua versão tradicional quanto em versões evolúıdas, nas quais combinações RGB
comunicam visualmente habilidades ativas, permitindo que o jogador identifique, de ime-
diato, a presença de efeitos especiais [Figura 13]. As tiles do tabuleiro também receberam
variações visuais, diferenciando áreas de movimento, casas atacadas, casas válidas, tiles
remov́ıveis e tiles especiais do modo Double King, reforçando a leitura espacial necessária
para ações estratégicas integradas (como ilustrado nas figuras apresentadas ao longo do
relatório).

Double King 29

Figura 12: Exemplo de peças com diferentes combinações de upgrades RGB.

A arte dos chefes (bosses) foi elaborada para associar cada ńıvel de dificuldade a uma
entidade visual própria, fortalecendo a sensação de progressão dentro da narrativa. Para
fins de ilustração, cada figura apresentada ao longo do relatório utilizou um chefe diferente,
de modo a exemplificar visualmente os distintos ńıveis e desafios do jogo. A tela inicial,
apresentada na Figura 13, busca transmitir a essência do Double King : um confronto direto
entre dois reis, o Rei Branco e o Rei Preto.

30 Cisi e Duarte

Figura 13: Tela inicial (Main Menu) do jogo.

Essa construção estética garantiu uma identidade visual coesa, capaz de comunicar
rapidamente estados, funções e identidades de cada elemento. Ao mesmo tempo, ela sustenta
os dois pilares do Meaningful Play : cada ação permanece percept́ıvel e compreenśıvel, e suas
consequências continuam conectadas ao desenvolvimento da partida como um todo.

8.2 Interface do Usuário

Se a identidade visual estabelece o caráter estético e temático do Double King, é a interface
do usuário (UI) que torna posśıvel ao jogador compreender, de forma clara e cont́ınua, o
que está acontecendo no sistema.

A UI foi constrúıda para comunicar, de modo imediato, em que estado o jogo se en-
contra e quais ações são posśıveis naquele momento. A Figura 14 ilustra esse prinćıpio: ao
selecionar uma peça, a interface destaca visualmente sua posição, exibe seus movimentos
válidos no tabuleiro e apresenta, no painel lateral, suas informações essenciais: tipo, habi-
lidades RGB e padrões de movimento. Esse mesmo painel informa qual jogador deve agir,
qual é o ńıvel de dificuldade, qual estado do sistema está ativo e quais instruções orientam
o próximo passo (“Selecione uma peça”, “Aguarde o oponente”, “Remova uma tile” etc.).
Essa combinação de feedback imediato, instrução contextual e sinalização espacial é fun-
damental para manter a experiência leǵıvel mesmo quando o comportamento das peças se
afasta das regras tradicionais do xadrez.

Double King 31

Figura 14: Elementos de interface relacionados ao estado do jogo.

9 Resultados

Após a construção da identidade visual, da interface e das diversas mecânicas que compõem
o protótipo, torna-se posśıvel examinar de forma integrada aquilo que o projeto efetivamente
produz como experiência e como sistema. Os resultados obtidos demonstram que o Double
King cumpriu de maneira consistente os objetivos estabelecidos, articulando fundamentação
teórica, escolhas de design e implementação técnica em um protótipo funcional e coerente
com o propósito investigativo do trabalho.

Partindo de um sistema formal estável, o xadrez, o projeto evoluiu para um ecossistema
de mecânicas que introduzem incerteza, emergência e transgressão sancionada, ampliando o
espaço de possibilidade do jogador sem comprometer a legibilidade das ações. Esse percurso
materializa, na prática, os prinćıpios de regras dinâmicas, sistemas emergentes e meaningful
play que orientaram o trabalho desde sua concepção, permitindo observar como decisões de
design e ciclos de prototipação se combinam para gerar experiências de jogo significativa-
mente distintas do sistema de origem.

Ainda que a ideia inicial de “regras evolutivas e mecânicas customizáveis” estivesse
prevista nos objetivos gerais, a forma espećıfica que essas mecânicas assumiram não foi
definida previamente, ela emergiu diretamente do processo iterativo de design. As soluções
implementadas (inventário, loja com geração procedural, peças evolúıdas, modo Double
King, sistema de posicionamento e habilidades RGB) surgiram como respostas a problemas
concretos identificados durante a prototipação, tais como a injustiça estrutural do conflito,
a necessidade de progressão significativa e a manutenção da rejogabilidade. Cada decisão
de design foi sustentada por referenciais teóricos, validada por experimentação e ajustada
por ciclos sucessivos de teste, em consonância com a metodologia playcentric de Fullerton

32 Cisi e Duarte

(2024), na qual teoria e prática evoluem em diálogo permanente.
Do ponto de vista formativo, o protótipo também cumpre o papel de śıntese integradora

das competências desenvolvidas ao longo da graduação. A arquitetura modular constrúıda
em Unity, a integração com o motor Fairy-Stockfish, a implementação de algoritmos de
geração procedural, a modelagem de sistemas, a criação de arte 2D original, a análise de
referências e a documentação cŕıtica constituem um conjunto de resultados que evidenciam
a consolidação de uma base técnica sólida.

9.1 Análise Conceitual do Jogo

O arcabouço conceitual Rules, Play e Culture permite observar diferentes dimensões do jogo:
sua estrutura formal, sua experiência e seu contexto. Ao examinar o Double King a partir
dessas lentes, torna-se posśıvel compreender não apenas como as mecânicas funcionam, mas
como elas se articulam para produzir uma experiência de jogo significativa, já que cada
uma dessas dimensões ilumina aspectos fundamentais da relação entre ação, consequência
e interpretação dentro do jogo.

9.1.1 Esquemas Formais (RULES)

Do ponto de vista formal, o Double King caracteriza-se como um sistema de incerteza e
emergência. Em vez de um conjunto estável e determińıstico de situações — como ocorre no
xadrez clássico, um jogo de informação perfeita —, o protótipo introduz múltiplas fontes de
variabilidade, que isoladamente, parecem regras simples, mas em conjunto, produzem com-
portamentos que não podem ser totalmente antecipados [2, Cap. 14: Games as Emergent
Systems].

A incerteza se manifesta tanto em ńıvel micro (quais peças serão oferecidas na loja, quais
habilidades estarão dispońıveis) quanto em ńıvel macro (quais configurações de exército
emergirão ao longo de uma partida) [2, Cap. 15: Games as Systems of Uncertainty]. Ao
transformar um jogo de informação perfeita em um sistema de informação imperfeita, o
Double King situa o jogador em um espaço cont́ınuo de risco e experimentação.

Nesse contexto, a transgressão sancionada torna-se um elemento central, permitindo
que o jogador quebre, de maneira controlada, a lógica tradicional do xadrez [2, Cap.21 :
Breaking the Rules]. A assimetria extrema criada pelo exército estável do oponente torna-se
interessante porque o jogador é incentivado a usar essas quebras de regra para superar uma
injustiça estrutural.

9.1.2 Esquemas Experienciais (PLAY)

A experiência constrúıda pelo Double King articula uma combinação de cálculo tático,
descoberta e adaptação cont́ınua que dialoga diretamente com o campo da experiência no
jogo [2, Cap. 23 : Play as the Game of Experience]. As decisões sobre qual peça adquirir,
como organizar o inventário, quando aceitar um empate e de que forma explorar habilidades
especiais fazem com que o jogador participe ativamente da construção do próprio percurso.
Cada partida passa a ser vivida como uma sequência encadeada de acontecimentos, na qual
escolhas iniciais influenciam estados posteriores de forma percept́ıvel.

Double King 33

Os ciclos de risco, frustração e recompensa presentes no jogo também dialogam com a
perspectiva do prazer no ato de jogar [2,Cap. 24: Games as the Play of Pleasure]. Enfrentar
um conflito estruturalmente desfavorável, sobreviver a turnos cŕıticos, recuperar peças por
meio de habilidades especiais e descobrir combinações eficazes produz um ritmo emocional
caracteŕıstico de jogos que engajam pelo desafio. A alternância entre tensão e aĺıvio, risco e
compensação, contribui diretamente para que a experiência permaneça motivadora mesmo
diante das incertezas impostas pelo sistema.

9.1.3 Esquemas Contextuais (CULTURE)

Como afirmam Salen e Zimmerman (2003) , “criar jogos é também criar cultura”: todo
jogo, ao ser projetado, inevitavelmente expressa valores, hierarquias e modos de interpretar
o mundo [2, Cap.30: Games as Cultural Rhetoric]. Sob essa perspectiva, o Double King
evidencia como escolhas de design podem reconfigurar estruturas culturais já consolidadas.
Ao tomar o xadrez como ponto de partida, um sistema formalmente ŕıgido e amplamente
reconhecido, e ao expandi-lo com mecânicas que flexibilizam sua lógica, o protótipo opera
no espaço cultural entre tradição e transformação.

As mecânicas introduzidas deslocam o sistema original em direção a retóricas culturais
associadas à criatividade, agência e resistência. O jogador é colocado diante de um sis-
tema desigual e convidado a intervir nele, assumindo um papel ativo na reconstrução das
possibilidades do jogo. Essa abordagem aproxima o projeto de diferentes retóricas , entre
elas a retórica do poder (herdada do xadrez), a retórica da imaginação (nas combinações
h́ıbridas de movimentos), e, sobretudo, a retórica da frivolidade, que permite questionar e
subverter regras estabelecidas. Assim, mais do que refletir valores culturais existentes, o
Double King cria um espaço em que a contestação lúdica das estruturas ŕıgidas torna-se
parte significativa da experiência.

9.2 Playtesting

Apesar de o protótipo se alinhar conceitualmente às estruturas que sustentam o meaningful
play, foi o processo de teste, e não apenas a teoria, que determinou, de fato, a qualidade
da experiência obtida. Ao longo da prototipação, ciclos cont́ınuos de playtesting revelaram
problemas de clareza, balanço e funcionalidade que não poderiam ser antecipados apenas
pela análise teórica, permitindo ajustar dificuldades, revisar fluxos, eliminar ambiguidades
e aprimorar a legibilidade das ações. Esse movimento reflete exatamente o que a literatura
descreve sobre o design iterativo: somente jogando e observando o jogo em ação é posśıvel
compreender como suas regras se traduzem em experiência [2, Cap. 2: The Design Pro-
cess]. Os feedbacks coletados guiaram decisões centrais de melhoria, sustentando o equiĺıbrio
entre risco, agência e descoberta. Ao final desse processo, o Double King apresentou estru-
tura suficiente para produzir uma experiência significativa, pela teoria e prática, mas que
ainda pode ser expandido e melhorado para despertar ainda mais a experiência significativa
durante o jogo .

34 Cisi e Duarte

10 Conclusões e Trabalhos Futuros

O projeto contribui de forma teórica e prática para o campo de game design ao articular,
em um protótipo funcional, conceitos fundamentais discutidos na literatura. A partir da
construção de um sistema inspirado no xadrez, mas estruturado em torno de regras evolu-
tivas e mecânicas customizáveis, foi posśıvel explorar, na prática, ideias sobre sistemas de
conflito, incerteza, emergência, transgressão sancionada e meaningful play.

Em termos conceituais, o trabalho demonstra como o uso de um arcabouço teórico sólido
pode orientar decisões de design desde o ńıvel micro (ajuste de algoritmos, orçamentos de
dificuldade, configuração de peças) até o ńıvel macro (estrutura de progressão, identidade
do jogo, papel do jogador no sistema). Em termos práticos, o projeto resultou em um
protótipo jogável que integra um oponente aritifical baseada em xadrez, geração procedural
de recursos, mecânicas de inventário, modos de jogo alternativos, regras dinâmicas e uma
identidade visual consistente.

Do ponto de vista da formação em Engenharia da Computação, o Double King funciona
como śıntese de competências desenvolvidas ao longo do curso: modelagem de sistemas,
programação orientada a objetos, integração com bibliotecas externas, desenvolvimento
iterativo e documentação técnica. O processo de desenvolvimento também evidencia a
importância do playtesting como ferramenta de investigação emṕırica, permitindo testar
hipóteses de design e ajustar parâmetros em função do comportamento observado.

Embora o protótipo desenvolvido seja plenamente suficiente para sustentar a análise
teórica proposta e demonstrar, na prática, a criação demeaningful play, o sistema constrúıdo
abre espaço para expansões que poderiam transformar o Double King em um jogo completo
e potencialmente publicável. A base técnica, estética e conceitual estabelecida ao longo do
projeto permite vislumbrar caminhos de aprofundamento que ampliariam a complexidade
estratégica, a legibilidade e a riqueza do jogo. Entre essas possibilidades, destacam-se:

• aprofundar o sistema de cartas de alteração de regras, integrando-o de forma plena
ao ciclo de jogo e reforçando a mecânica de quebra de regras;

• explorar modos adicionais de dificuldade com maior variação procedural na com-
posição dos exércitos inimigos, fortalecendo a rejogabilidade e o caráter roguelike do
projeto;

• refinar a interface e o feedback visual para comunicar com ainda mais clareza habili-
dades, estados especiais e consequências das ações, aprimorando a discernibilidade;

• conduzir estudos de playtesting com diferentes perfis de jogadores, investigando per-
cepções de dificuldade, justiça e, sobretudo, meaningful play.

Essas direções apontam para a continuidade natural do projeto, indicando como o protótipo
pode evoluir em direção a um artefato mais completo, aprofundando seu potencial expres-
sivo, sistêmico e cultural.

Em śıntese, o Double King não se encerra como produto final, mas como um ponto de
partida robusto para investigações futuras sobre como jogos podem usar sistemas formais
clássicos, como o xadrez, como base para experimentação com regras evolutivas e mecânicas
customizáveis, e por meio da emergência poder produzir meaningful play.

Double King 35

Referências

[1] Shannon, Claude E. “XXII. Programming a computer for playing chess.” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 314,
1950.

[2] Katie Salen Tekinbas and Eric Zimmerman. Rules of Play: Game Design Fundamen-
tals. MIT Press, 2003.

[3] Thompson, J. Mark. “Defining the abstract.” Game & Puzzle Design, vol. 1, no. 1,
2015.

[4] Szabados, György, et al. “Roguelike games: The way we play.” 2022.

[5] Unity Documentation. Dispońıvel em: https://docs.unity3d.com/Manual/index.html
(Acesso em: 21 nov. 2025).

[6] Fullerton, Tracy. Game Design Workshop: A Playcentric Approach to Creating Inno-
vative Games. AK Peters/CRC Press, 2024.

[7] LocalThunk. A Timeline do Balatro. LocalThunk, [s.d.]. Dispońıvel em:
https://localthunk.com/blog/balatro-timeline-3aarh. Acesso em: out. 2025.

[8] Fairy-Stockfish. Get involved. Fairy-Stockfish, [s.d.]. Dispońıvel em:
https://fairy-stockfish.github.io/get-involved/. Acesso em: 23 set. 2025.

[9] Yu, H.; Moldenhauer, C.; Moldenhauer, J. The Art of Cuphead. Milwaukee: Dark
Horse Books, 2020.

[10] LibreSprite. LibreSprite. LibreSprite, [s.d.]. Dispońıvel em:
https://libresprite.github.io/. Acesso em: ago. 2025.

A Apêndice

A.1 Algoritmo de Escolha com Pesos do Double King Mode

O algoritmo ChooseWeightedByDistance implementa a escolha probabiĺıstica de tiles no
Double King Mode, calculando pesos baseados na distância Manhattan ao rei adversário:

private Tile ChooseWeightedByDistance(List<Tile> candidates,

Vector2Int reference, bool preferCloser,

float preferenceSharpness = 1f)

{

if (candidates == null || candidates.Count == 0) return null;

float total = 0f;

float[] weights = new float[candidates.Count];

for (int i = 0; i < candidates.Count; i++)

{

36 Cisi e Duarte

var pos = candidates[i].position;

int d = Mathf.Abs(pos.x - reference.x) +

Mathf.Abs(pos.y - reference.y);

float baseW = preferCloser ? (1f / (1f + d)) : (1f + d);

float w = preferenceSharpness != 1f ?

Mathf.Pow(baseW, preferenceSharpness) : baseW;

weights[i] = w;

total += w;

}

int chosenIndex = ChooseIndexByWeights(weights, total);

return candidates[chosenIndex];

}

private int ChooseIndexByWeights(float[] weights, float total)

{

if (weights == null || weights.Length == 0) return 0;

if (total <= 0f)

{

return Mathf.FloorToInt(Random.value * weights.Length) % weights.Length;

}

float r = Random.value * total;

for (int i = 0; i < weights.Length; i++)

{

if (r < weights[i]) return i;

r -= weights[i];

}

return weights.Length - 1;

}

