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Abstract

The present report details the development of a framework for the construction of self-
contained pipelines for data processing, using Dask and Argo for the generation of these
pipelines. This structure benefits from Dask Kubernetes Operator for adaptive scaling,
automatically adjusting according to demand and complexity of tasks. Implemented on
the Kubernetes platform, this framework ensures scalability, flexibility, and optimization
of resources.

The system was designed to cater to a wide range of applications, being especially
relevant in areas such as seismic data analysis and ETL (Extraction, Transformation,
and Loading) processes. Thanks to the efficient integration between Dasf, Dask, Argo,
RapidsAI, and Kubernetes, it is possible to handle workloads of various sizes and
intensities, enhancing the processing and analysis of large volumes of data.

In a scenario where data production is growing exponentially, the need for robust and
scalable solutions like this becomes essential. This project is an important step towards
scalable solutions, paving the way for future innovations in the field of large-scale data
processing.
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1 Introduction

The development of data processing and machine learning applications is generally based
on a recurring flow of code development and testing with data sets. For this interactive
development flow to be effective, it is important that the developer has quick access to
test results. Therefore, development and most tests are usually carried out on dedicated
workstations (e.g., laptops and/or desktop computers) and with small samples of the data
sets. Once the code functionalities have been validated with the small data sets, the code is
migrated to a high-performance computing system and executed with the large data set. This
execution can take hours or even days, depending on the size of the data set or the waiting
time in the computational system’s queues. Finally, once the system finishes processing, the
developer analyzes the results and can return to the interactive flow to make adjustments to
the code or implement new functionalities. Figure 1 illustrates these two development flows.

One of the challenges faced in this type of development is the adaptation of the code
used in interactive development flow so that it can be executed in a scalable manner on a
high-performance computing system. Often, this requires the implementation of specialized
routines for accelerators (such as GPUs) and the adaptation of the code for distributed
execution on multiple computational nodes. Therefore, various frameworks have emerged to
allow the developer to implement and test the application on a workstation and then scale
the execution of the application to high-performance computational systems with little effort.

DASF is a tool being developed by the Dicovery lab at UNICAMP that has the purpose
of enabling the processing of seismic data in a scalable manner.

Although DASF allows the implementation of complex applications, it is often of interest
to combine DASF applications with other applications in a workflow. In this context, the
DASF application acts as a task, consuming data produced by other tasks (e.g., other
applications) and producing data for other tasks. In particular, there is interest in executing
DASF applications as tasks of the Argo workflow manager [1]. This workflow manager
simplifies the integration of multiple applications through the execution of tasks in specialized
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Figure 1: Interactive and scalable data processing and machine learning applications devel-
opment cycles.

containers, which allows the specialization of the environment (such as the installation of
libraries and/or adjustments of environment variables) for each task.

In its standard form, Argo executes each task in a container, however, to scale the
execution of tasks based on DASF applications, it is important that this type of task is
executed in a cluster of computational nodes, i.e., in multiple containers. Therefore, it is
necessary to implement tools for the configuration and management of DASF task execution
in the Argo system.

In this work, we propose the implementation of a framework to facilitate the scalable
execution of DASF tasks in Argo workflows. For this purpose, we designed a system that
utilizes Argo, Pulumi, Dask, DASF, Hera, and Kubernetes. As a result, the framework has
simplified the execution of scalable DASF tasks in Argo, requiring only a few lines of code
from the developer.

The remainder of this report is organized in the following way:
Section 2 presents the fundamental concepts and tools essential for understanding the

framework. Section 3 goes over the functional and non-functional requirements that our
solution had to meet to be considered a success. Section 4 details the Argo-DASF Framework,
discussing its overview, the creation of custom Docker images for DASF, the integration of
Infrastructure as Code, and specific components like the Dask Operator and storage module.
Section 5 focuses on the validation and results of the project, demonstrating the effectiveness
and efficiency of the Argo-DASF framework in real-world applications. Section 6 covers the
project development process, encompassing the stages from requirements gathering to the
final report submission. Finally, Section 7 offers conclusions, summarizing the achievements,
challenges, and the overall impact of the project.
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2 Fundamental Concepts and Tools

The following sections present the fundamental concepts and tools used in our framework.

2.1 Workflows

A workflow [15], in the context of computing and data processing, is essentially a series of
tasks that are executed in accordance with a set of procedural rules. These tasks are often
represented as nodes in a graph, with the edges indicating dependencies between them. This
structure not only defines the set of tasks but also imposes an order on their execution.
Figure 2 illustrates a dependency graph for tasks.

Figure 2: Example of a dependency graph for tasks

Key Terms and Concepts

• Tasks: These are the individual units of work or operations within a workflow. Each
task performs a specific function or process.

• Dependencies: Dependencies refer to the relationship between tasks, where the initiation
or completion of one task is contingent upon the initiation or completion of another.

• Parallel Execution: Tasks that do not have dependencies among themselves can be
executed in parallel. This is managed by the workflow scheduler, which optimizes the
execution flow for efficiency.

• Containers: Containers are lightweight, standalone, executable packages that include
everything needed to run a task: code, runtime, system tools, system libraries, and
settings.

• Computational Nodes: These are the physical or virtual machines where the containers,
hence the tasks, are executed. They provide the necessary processing power.
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• Storage: Systems like Network File System (NFS) are often used to store data that is
used or generated by the workflow tasks.

Workflows are crucial in automating complex sequences of tasks, especially in fields like
data science, software development, and systems administration. They help in orchestrating
and automating the processes, making them more efficient, reliable, and scalable.

By understanding these basic concepts, you can better grasp how workflows function
and how they are crucial in the context of computational tasks and data processing. This
understanding is essential, especially when discussing more advanced topics like workflow
optimization and the integration of specific technologies like containerization and distributed
computing in workflow execution.

A note about terminology: In the literature, the terms workflows and pipelines are
often used interchangeably, since they define the same concept. For clarity, in this project,
we reserve the pipeline term to refer to Dask and DASF pipelines, while the workflow term
will be dedicated to refer to Argo Workflows. Both represent a series of tasks that use a
dependency mechanism to define which task to be performed before the other. But in the
context of this work, Argo workflows are a series of tasks where a task can be a DASF
pipeline. So from here on out, whenever we mention a workflow we are specifying workflows
in the context of Argo Workflows and pipeline for DASF/Dask pipelines.

2.2 Kubernetes

Kubernetes [10], often abbreviated as K8s, is an open-source platform designed to automate
deploying, scaling, and operating application containers. It groups containers that make up
an application into logical units for easy management and discovery.

The key components of Kubernetes are:

• Pods: The smallest deployable unit that can be created and managed in Kubernetes.
Each Pod represents a single instance of a running process in a computing cluster.
When comparing to Docker containers, a container is a standalone unit of software
encapsulating an application’s code and dependencies, whereas a pod in Kubernetes is
a group of one or more containers with shared storage and network resources, operating
as a single entity.

• Services: An abstraction which defines a logical set of Pods and a policy by which to
access them. This is often used to expose a set of Pods as a “network service” .

• Volumes: A way to persist data in a pod.

• Namespaces: Used to organize objects (pods, volumes, services...) in a cluster and
provide a way to divide cluster resources between multiple users.
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2.3 Operator Architecture

Kubernetes Operators are a method of packaging, deploying, and managing Kubernetes
applications. An operator takes human operational knowledge and encodes it into software
that is more easily packaged and shared with consumers.

1. Custom Resource Definitions (CRDs): Operators extend Kubernetes by introducing
new object types (objects with a certain configuration that defines them) called custom
resources. CRDs allow users to create and manage these custom resources just like they
would do with standard Kubernetes objects. Imagine you’re creating a new application
that requires tracking of specific data not covered by standard Kubernetes resources.
With CRDs, you can define a ‘Book’ resource with properties like ‘author’, ‘title’,
and ‘publishDate’. Once defined, you can use Kubernetes API to manage your ‘Book’
resources, similar to how you manage built-in resources like Pods.

2. Controller: The core of an operator is its controller. This controller watches the
Kubernetes API for changes to specific resources and takes action to drive the current
state towards the desired state.

3. Focus of Operator Architecture: The operator architecture focuses on automating
complex, application-specific operations. It extends the Kubernetes API and its
functionalities, allowing for more sophisticated deployment and lifecycle management of
applications. The operator enables developers to encode domain knowledge for specific
applications into Kubernetes extensions.

By leveraging the Kubernetes Operator architecture, organizations can automate and
simplify many aspects of deploying and managing cloud-native applications, thus enabling a
more efficient and scalable infrastructure.

2.4 Argo

Argo [1] is an open-source platform that provides tools for orchestrating tasks in Kubernetes
environments, making it possible to execute, for example, workflows, CI/CD pipelines, and
batch computations. It was specifically designed to leverage Kubernetes resources, optimizing
container orchestration and task automation. One of the main features of Argo is its operator
for Kubernetes, the Argo workflow operator. This operator extends the Kubernetes API,
adding new types of custom resources, thus allowing Kubernetes to understand and manage
Argo workflows natively. This significantly simplifies the management and execution of
complex tasks and workflows in a Kubernetes cluster.

One of the biggest advantages of this integration is the ability to create an endpoint for
submitting self-contained pipelines. An endpoint, in this context, is essentially a specific
URL or a network address where external systems can send requests to interact with the
integrated service. This endpoint allows users to define and submit all the necessary elements
for the execution of a pipeline in a unified form. This includes task definitions, dependencies,
and data.

7



The creation of such an endpoint significantly streamlines the process of integrating
with external systems, automations, and facilitates the rapid iteration and testing of new
workflows. Users can leverage this feature to make quick and efficient changes without
needing extensive modifications to the existing infrastructure, emphasizing the flexibility and
scalability of the system.

For interaction with the Argo workflows operator, we use the Hera library, an Argo
workflows client in Python, which allows direct integration with the notebook/environment
of DASF (Python).

Essentially, Argo is a tool designed for executing workflows composed of tasks, where
each task is generally carried out by a container or a Custom Resource Definition (CRD).
We aim to implement a framework to facilitate the scalable execution of DASF pipelines
as tasks within Argo workflows. This approach will enable each task to be executed in a
cluster of containers using CRDs, rather than just a single container. This methodology
significantly enhances the scalability and efficiency of processing, leveraging the distributed
nature of container clusters to optimize the performance of DASF applications within the
Argo workflow environment.

2.5 Infrastructure-as-Code

Infrastructure as Code (IaC) is a key practice in the realm of DevOps and modern cloud com-
puting that involves managing and provisioning computing infrastructure through machine-
readable definition files, rather than physical hardware configuration or interactive configura-
tion tools. This approach enables developers and system administrators to automatically
manage, monitor, and provision resources through code, rather than using a manual process.

IaC brings several advantages, such as:

1. Consistency and Standardization: By defining infrastructure through code, it ensures
that the environment is consistent and reduces the chances of discrepancies or manual
errors.

2. Version Control: Infrastructure configurations can be versioned, audited, and tracked
using the same version control systems used for source code.

3. Efficiency in Deployment: IaC allows for rapid deployment and updating of infrastruc-
ture, enabling faster and more agile responses to changes in business requirements or
technology.

4. Documentation: The code itself serves as documentation, showing exactly what the
infrastructure looks like at any point in time.

Some well-known tools and technologies in the field of Infrastructure as Code include:

• Terraform: A tool that allows you to define infrastructure in a high-level configuration
language.

• Pulumi: An open-source tool that allows you to define infrastructure in a high-level
configuration language.
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• Ansible: An open-source automation tool for software provisioning, configuration
management, and application deployment.

• Chef: A powerful automation platform that transforms infrastructure into code.

• Puppet: A software configuration management tool which automates the provisioning
and management of infrastructure.

For this project, we have chosen Pulumi, Helm, and the Hera API. The following sections
describe these tools.

2.5.1 Pulumi

Pulumi [12] is an open-source infrastructure as code platform that allows developers and
infrastructure operators to define and provision cloud resources using traditional programming
languages, instead of markup languages or specialized scripts. Pulumi stands out for its
ability to integrate with various cloud providers and tools, offering a unified experience.
Pulumi was chosen for this project due to its flexibility, ease of use, and the power it offers
for complex infrastructure setups. It has the following properties:

1. Clear Definition: By using popular programming languages such as Python, Type-
Script, Go, among others, developers can define complex infrastructures with the
flexibility and power that these languages offer.

2. Complete Automation: With Pulumi, the entire infrastructure, from creating
Kubernetes clusters to configuring Argo and additional integrations, can be automated,
ensuring consistency and reducing human errors.

3. Reproducibility: One of the major advantages of using IaC is the ability to reproduce
the exact same infrastructure in different environments or regions. This facilitates the
processes of testing, staging, and production, and allows different teams to work in
harmony.

4. State Management: Pulumi manages the state of the infrastructure, allowing for
incremental updates, rollbacks, and detailed previews of proposed changes before they
are applied.

In summary, with Pulumi, it is not only possible to create all the necessary infrastructure
automatically, but also to ensure that this infrastructure is easily reproducible in various
contexts, promoting agility, consistency, and reliability to the project.

2.5.2 Helm

Helm [8] is a package management tool for Kubernetes, allowing users to define, install,
and update Kubernetes applications simply and consistently. Helm charts are packages of
instructions for Kubernetes, containing predefined and configurable resource definitions. One
of the main utilities of Helm charts is the ability to define and manage CRDs (Custom
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Resource Definitions) and other complex structures, enabling simpler and more modular
management of Kubernetes resources.

Here are some ways in which Helm and Pulumi can be used together to facilitate
infrastructure creation:

1. Direct Integration: Pulumi has direct integration with Helm, allowing developers to
leverage existing Helm charts and customize them as needed, all within the Pulumi
ecosystem.

2. Simplified Configuration: Using Helm charts, the definition of CRDs and other
Kubernetes resources becomes much more simplified and modular. Pulumi can then be
used to adjust and personalize these definitions as per the specific needs of the project.

3. Automation: Pulumi can automate the deployment and management of Helm charts,
making the process of configuring and deploying resources even more seamless and
integrated.

4. Version Management: Since Helm charts are versioned, it is possible to use different
versions of a chart for different environments or phases of the project, ensuring consis-
tency and reproducibility. Pulumi, in turn, can manage and orchestrate these different
versions efficiently.

In summary, the combination of Helm and Pulumi provides a powerful and flexible
approach to defining, configuring, and managing complex infrastructures in Kubernetes,
simplifying the process and ensuring efficiency and reliability. Both the Kubernetes Dask
operator, which creates the KubeClusters (Dask Clusters created in a Kubernetes environ-
ment), and the Argo Operator, which creates the DASF containers responsible for executing
the DASF tasks, have Helm charts that we can use to create this desired structure.

2.6 Hera Client

The Python Hera [9] client for Argo Workflows is a tool developed to simplify the construction
and submission of workflows in the Argo ecosystem. This Python SDK (Software Development
Kit) aims to make accessing and using Argo project resources easier and more accessible for
everyone.

Here are some features of Hera that made us choose it for our development:

• Abstraction of Configuration Details: The tool abstracts workflow configuration
details, allowing users to focus more on workflow logic than on its technical configuration.
This is achieved by maintaining terminology consistency with Argo while removing
native Kubernetes YMAL templating elements, making it easier for users already
familiar with Argo to understand and use Hera.

• Construction of DAGs: Hera is particularly useful in constructing DAGs, as it
simplifies the process of defining workflow steps and dependencies. By using Hera,
users can focus on business logic and workflow, rather than worrying about the syntax
and structure of YAML.
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• Abstraction of Traditional YAML Templates: One of the main challenges with
Argo is the need to write and maintain complex YAML templates. Hera addresses
this challenge, allowing users to define workflows in Python, a more familiar and
easier-to-use language for many developers. This not only simplifies the workflow
creation process but also makes maintaining and tuning workflows more accessible.

• Expanding Accessibility to the Argo Ecosystem: By providing a more user-
friendly and less technical interface, Hera makes the Argo ecosystem more accessible to
a broader audience, including those who may not have a strong technical background
in Kubernetes infrastructure and configuration.

In summary, the Hera Python framework for Argo Workflows is a significant tool for
those looking to simplify and streamline the process of building and managing complex
workflows in Kubernetes environments, especially for those who prefer working with Python
over YAML.

To exemplify the improved readability and ease of use of Hera when compared to the
classical Argo workflows in pure YMAL, let us consider Listings 1 and 2. The first one
illustrates how to create a diamond DAG workflow in Hera, while the second one shows how
to create the same workflow using the Argo pure YMAL interface. Notice that the Hera
interface allows a more compact and simpler definition when compared to the Argo one.

1 from hera.workflows import (
2 DAG ,
3 Workflow ,
4 script ,
5 )
6

7 @script(add_cwd_to_sys_path=False , image="python:alpine3 .6")
8 def echo(message):
9 print(message)

10

11 with Workflow(generate_name="dag -diamond -", entrypoint="diamond") as w:
12 with DAG(name="diamond"):
13 A = echo(name="A", arguments ={"message": "A"})
14 B = echo(name="B", arguments ={"message": "B"})
15 C = echo(name="C", arguments ={"message": "C"})
16 D = echo(name="D", arguments ={"message": "D"})
17 A >> [B, C] >> D

Listing 1: Example of a diamond DAG in Hera
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1 apiVersion: argoproj.io/v1alpha1
2 kind: Workflow
3 metadata:
4 generateName: dag -diamond -
5 spec:
6 entrypoint: diamond
7 templates:
8 - dag:
9 tasks:

10 - arguments:
11 parameters:
12 - name: message
13 value: A
14 name: A
15 template: echo
16 - arguments:
17 parameters:
18 - name: message
19 value: B
20 depends: A
21 name: B
22 template: echo
23 - arguments:
24 parameters:
25 - name: message
26 value: C
27 depends: A
28 name: C
29 template: echo
30 - arguments:
31 parameters:
32 - name: message
33 value: D
34 depends: B && C
35 name: D
36 template: echo
37 name: diamond
38 - inputs:
39 parameters:
40 - name: message
41 name: echo
42 script:
43 command:
44 - python
45 image: python:alpine3 .6
46 source: ’import json
47

48 try: message = json.loads(r’’’’ ’’{{inputs.parameters.message }} ’’’’’’
)

49

50 except: message = r’’’’’’{{ inputs.parameters.message }} ’’’’’’
51

52 print(message)’

Listing 2: Example of a diamond DAG in pure Argo YMAL
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2.7 The DASF Framework

DASF [3], or the Accelerated and Scalable Framework, is an approach for computing Machine
Learning algorithms in Python using Dask and RAPIDS AI, specifically designed to address
the challenges posed by deep learning techniques and data handling in batch formats. This
innovative framework stands out in the current landscape of machine learning tools by
offering unique capabilities and features.

The core concepts in DASF are:

1. Distributed Data Processing: Unlike existing tools, DASF introduces the capability to
process data in a distributed manner across various computing nodes. This approach not
only enhances scalability but also optimizes the utilization of computational resources.

2. GPU Utilization: DASF leverages the maximum computational power of GPUs, a
feature not commonly found in many existing machine learning tools. This utilization
significantly accelerates data processing, making DASF a highly efficient framework for
complex computations.

3. Standard API: To ensure ease of use, DASF adopts a Standard API similar to the
popular scikit-learn. This design choice minimizes the learning curve for new users and
facilitates seamless integration into existing machine learning projects.

4. Extensibility to New Devices: DASF supports easy extensibility to various devices,
including GPUs. Users can thus employ the framework across different hardware setups
without worrying about compatibility or implementation details.

5. Multi-Node Scalability: The integration of Dask construct graphs in DASF allows for
scalable, distributed computing across multiple nodes. This feature is particularly
beneficial for large-scale projects requiring extensive computational resources.

DASF applications are Python applications composed of one or more DASF pipelines.
A DASF pipeline is a graph in which nodes are DASF operators and edges indicate the
data flowing between DASF operators. A DASF operator is a Python object designed
to perform a task, which can be user-defined or imported from a set of operators available
on the DASF framework. DASF applications can create and execute one or more DASF
pipelines. These pipelines can be executed locally (on the same machine running the DASF
application), or remotely, on an HPC cluster1, for example.

Listing 3 shows a basic DASF application running an application locally with no GPU.

1 from dasf.pipeline import Pipeline
2 from dasf.ml.cluster import KMeans
3 from dasf.ml.cluster import SOM
4 from dasf.pipeline.executors import DaskPipelineExecutor
5 from dasf.transforms import Normalize , PersistDaskData
6

1Section 2.7.1 introduces Dask and Section 2.7.2 discusses how DASF employ Dask to execute DASF
pipelines on remote HPC clusters.
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7 # define a dataset
8 train_set = ...
9 # create the pipeline executor and objects

10 dask = DaskPipelineExecutor(local=True , use_gpu=False)
11 normalize = Normalize ()
12 kmeans = KMeans(n_clusters =3, max_iter =100)
13 som = SOM(x=1, y=3, input_len=2, num_epochs =100)
14 # As we want to reuse the data after the pipeline execution , we need to

persist the data
15 persist_kmeans = PersistDaskData ()
16 persist_som = PersistDaskData ()
17

18 # create the pipeline and adds the operators to it
19 pipeline = Pipeline("A KMeans and SOM Pipeline", executor=dask)
20

21 pipeline.add(normalize , X=train_set) \
22 .add(kmeans.fit_predict , X=normalize) \
23 .add(som.fit_predict , X=normalize) \
24 .add(persist_kmeans , X=kmeans.fit_predict) \
25 .add(persist_som , X=som.fit_predict) \
26 .visualize ()
27

28 pipeline.run()

Listing 3: Example DASF application defining a pipeline and operators

In summary, DASF emerges as a cutting-edge framework tailored for machine learning
applications, particularly beneficial for handling large datasets and exploiting the full potential
of modern computational resources like GPUs. Its user-friendly approach, coupled with
its powerful and scalable architecture, makes it an attractive choice for both novice and
experienced practitioners in the field of machine learning. It is a framework designed at the
Discovery Lab at UNICAMP to facilitate the design and implementation of scalable machine
learning code for large datasets, that scale well on high-performance computers.

More specifically, it offers an API (Application Programming Interface) that aims at
abstracting away the complications introduced by designing code for distributed memory
systems or GPUs, which are common requirements for scalability on high-performance
computing (HPC) clusters.

In this way, users can design, debug, and explore the application on desktop-like computers
using only a fraction of the large dataset and, finally, process the whole dataset on a large
computing system with little or no code refactoring effort.

2.7.1 Dask

Dask [4] is a parallel computing library that allows the execution of data science operations
in a distributed and parallel manner [13]. It is flexible and optimized for interactive and
computationally intensive tasks. By breaking down large datasets into small pieces and
processing them in parallel, Dask speeds up processing time and enables operations on
datasets that exceed the system’s RAM memory.

One of the main advantages of Dask is its easy integration with existing Python ecosystem
libraries, such as Pandas and NumPy, allowing users to continue using the tools and techniques
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they are familiar with, but with the additional capacity for scale and performance that Dask
offers.

Dask’s ability to execute data science operations in a distributed and parallel manner
is facilitated by its use of a Dask cluster. This cluster is a flexible, scalable computing
system that enhances Dask’s efficiency in handling large-scale data processing and scientific
computing tasks. It operates by breaking down large datasets into smaller chunks and
processing them concurrently across multiple computational units, significantly accelerating
processing time and enabling operations on datasets larger than the system’s RAM. The
main components of a Dask cluster include:

• Dask Scheduler: The heart of the Dask cluster. The scheduler manages task distribution
and orchestrates the execution of tasks across Dask workers. It monitors their progress
and schedules tasks to optimize resource usage and computation time.

• Dask Workers: These are the computational units of the cluster. Dask Workers execute
the tasks assigned to them by the scheduler. Each worker can process multiple tasks
simultaneously, depending on its resources (like CPU cores and memory).

• Client: This is the user-facing interface to the Dask cluster. Through the client, users
submit tasks (in the form of Dask graphs) to the cluster. The client communicates
with the scheduler, which in turn coordinates the execution of these tasks across the
available workers.

• Task Graph: This is a data structure that represents the tasks to be executed. It is a
directed acyclic graph where nodes represent computational tasks, and edges represent
data dependencies between these tasks. The task graph is generated based on the
computation the user wants to perform and the chunks extracted from the dataset.

• Dashboard: Dask provides a real-time web dashboard that offers valuable insights into
the cluster’s performance and resource utilization. This includes visualizations of task
progress, memory usage, and other metrics.

Dask clusters can be set up in various environments, including single machines, local
networks, and cloud platforms. They are highly scalable, allowing for the dynamic addition or
removal of workers according to computational needs. This makes Dask clusters particularly
useful for handling varying workloads and large datasets.

2.7.2 Scaling DASF Applications on HPC clusters

A DASF executor is the module responsible for executing a DASF pipeline. The default
DASF executor is the “Local Executor”, which executes the DASF pipeline locally, i.e., on
the same machine that is executing the DASF application. As discussed in the previous
section, Dask enables large-scale computations to be distributed across multiple machines,
enhancing the efficiency of applications, especially in HPC environments and Kubernetes
clusters. The DASF “Dask Executor” allows the user to execute the DASF pipelines on HPC
clusters, relying on a Dask scheduler and Dask workers. Figure 3 illustrates these concepts.
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Figure 3: Execution of a DASF application on a local machine and on a HPC cluster.

HPC Clusters in Cloud Environments
Scaling DASF applications on High-Performance Computing (HPC) clusters, particularly

in cloud environments, necessitates a strategic approach to leveraging the resources provided
by cloud providers. These resources form the backbone of an HPC infrastructure that’s
optimized to meet specific computational requirements.

For the creation of these elements in a HPC Cluster, these are some of the essential
components of Cloud-Based HPC Infrastructure:

• Virtual Machine Type and Image: Selecting the right virtual machine type and image
is critical for performance alignment with the workload.

• Storage Solutions: Determining the appropriate storage capacity and type is vital for
efficient data handling and accessibility.

• Network Configuration: Choosing suitable network adapters is essential for effective
data communication within the cluster.

• Geographical Considerations: The location (region and availability zone) of these
resources can impact factors like latency and data governance.

As discussed by Borin and Napoli [2], the management of these cloud resources can be
approached in three primary ways:

• Web-Based GUIs: User-friendly interfaces, like the AWS Web Console, are straightfor-
ward for initial learning and deployment. However, they become less practical with
increasing scale and complexity.
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• Infrastructure as Code (IaC): IaC emerges as a superior method for managing larger or
multiple infrastructures. It leverages automation tools for better organization, change
tracking, error management, and reduction in overall management workload.

• Automation Tool Selection: The effectiveness of IaC heavily relies on the chosen
automation tools, which should be evaluated based on usability, scalability, and error
handling capabilities.

Kubernetes Cluster Execution

• DASF applications can also be executed on Kubernetes clusters using the Dask Kuber-
netes Operator.

• This setup allows Dask to dynamically scale up or down by adding or removing workers
in response to the workload, all managed within a Kubernetes environment.

• The Dask operator on Kubernetes facilitates easy deployment and management of Dask
clusters, making it an efficient choice for cloud-native environments.

In conclusion, DASF applications, thanks to their integration with Dask, offer flexibility
in terms of deployment environments. They can run efficiently on a local machine, scale up
to leverage HPC clusters, or even operate within a Kubernetes-managed cloud environment,
making them versatile for various scientific computing needs.

2.8 Dask clusters on Kubernetes

In the dynamic realm of Kubernetes, the concept of an ‘operator’ plays a pivotal role,
especially in deploying sophisticated applications like Dask clusters. The Dask Kubernetes
Operator, a fine embodiment of this concept, stands as a testament to the evolving synergy
between Kubernetes and complex data processing tasks.

At its heart, the operator comprises two fundamental elements: a data structure for
articulating what needs to be deployed (in this case, a Dask cluster), and a controller that
orchestrates the deployment itself. This duality of structure and action forms the essence of
the operator.

In the world of Kubernetes, these data structures are known as Custom Resource
Definitions (CRDs). They are the cornerstones of extending Kubernetes’ capabilities, allowing
us to introduce new, custom-designed resource types into the Kubernetes API landscape.

Each CRD is a blueprint, a declaration of intent, transforming our vision of a Dask
environment into a tangible Kubernetes reality.

2.8.1 Dask Kubernetes Operator

The Dask Kubernetes Operator [6] is an innovative tool designed for managing Dask workloads
within a Kubernetes environment.

However, deploying and managing Dask clusters in a dynamic and containerized environ-
ment like Kubernetes can be complex.
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This is where the Dask Kubernetes Operator comes in. It acts as a bridge between Dask
and Kubernetes, streamlining the deployment and management of Dask clusters. With the
operator, users can easily launch Dask clusters, scale them up or down based on the workload,
and handle their lifecycle within the Kubernetes ecosystem.

Key features of the Dask Kubernetes Operator include:

1. Automated Cluster Management: It automates the deployment of Dask clusters, man-
aging their lifecycle and scaling them as per computational requirements.

2. Custom Resource Definitions (CRDs): The operator uses CRDs to define Dask clusters.
Users can specify the size, configuration, and other parameters of their Dask clusters
through these CRDs.

3. Seamless Integration: It integrates deeply with Kubernetes, allowing Dask to leverage
Kubernetes’ native features like auto-scaling, load balancing, and self-healing.

4. Resource Optimization: By intelligently scaling clusters, the operator ensures efficient
use of resources, reducing costs and improving performance.

5. User-Friendly Operations: It simplifies complex operations, making it easier for users
to deploy and manage Dask within Kubernetes without requiring in-depth knowledge
of either Dask or Kubernetes internals.

In summary, the Dask Kubernetes Operator is a powerful tool for anyone looking to
harness the power of Dask in a Kubernetes environment. It not only simplifies the deployment
and scaling of Dask clusters but also optimizes resource utilization, making it an essential
tool for efficient data processing and analysis in cloud-native ecosystems.

2.8.2 DaskJob

The DaskJob resource (CRD) in Kubernetes works in a way that’s similar to other batch
resources in Kubernetes. It’s designed to complete a specific task or command. These are its
main functionalities, as depicted in Figure 4:

• Creates a Pod: Just like other Kubernetes resources, DaskJob creates a Pod. This
Pod is a small unit in Kubernetes that runs your task.

• Runs a Command: Inside this Pod, DaskJob executes the command you want to
complete. This could be any data processing task you’ve set up.

• Builds a Dask Cluster: Alongside creating a Pod, DaskJob also sets up a DaskCluster.
This cluster is a group of machines working together to process your data more efficiently.

• Connects Pod to Cluster: The job Pod is automatically configured to connect
with this Dask cluster. This means the Pod can use the power of the entire cluster to
complete its task faster and more efficiently.
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• Leverages Dask’s Features: By connecting to the Dask cluster, your job can handle
larger datasets and more complex computations than a single Pod could manage on its
own.

Figure 4: Structure of a DaskJob as show in the Custom Resources - Dask Documentation [5]

Figure 5: Example of a DaskJob submission to operator directly from the user

In essence, a DaskJob in Kubernetes not only executes your specified task but also
smartly utilizes the capabilities of a Dask cluster to enhance the efficiency and scale of your
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data processing tasks. It works as a stand alone component that can also receive tasks from
users, as in Figure 5, although in our project we focus on its integration with workflows.

2.9 Storage module

An NFS (Network File System) storage system is ideal for environments where multiple
clients need to read and write data simultaneously. It functions as a centralized file server
that allows various workers or processes to access and modify the same files concurrently
over a network.

NFS ensures data consistency and integrity through its file locking mechanism, even
when multiple writes occur at the same time. This makes it especially useful in distributed
computing contexts like ours were workers act concurrently computing values and saving
checkpoints in-file, while maintaining efficiency and reducing data redundancy by storing
information centrally.

3 Requirements and Choices

3.1 Requirements

The following functional requirements (FR) were defined:

• FR 1: The system must be able to implement a workflow process that uses Dask and
DASF programs as operators;

• FR 2: The system needs to be capable of managing the execution of DASF tasks in
multiple containers to ensure scalability;

• FR 3: The system must be able to distinguish between DASF and non-DASF tasks
and treat them appropriately;

• FR 4: The system must be able to orchestrate the launch of multiple containers,
including a scheduler container and multiple worker containers when a DASF task is
executed for execution;

• FR 5: The system must be able to manage communication between containers, especially
connecting workers to the scheduler when necessary;

• FR 6: The system must work with the Workflow retry mechanism to reuse intermediate
results in multiple executions; and

• FR 7: The system must provide a Python API for new developers.

Besides the functional requirements, the following non-functional requirements (NFR)
were defined:

Non-Functional Requirements (RNF):

• NFR 1: High availability and reliability;
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• NFR 2: Optimized for quick execution and low computational cost;

• NFR 3: Security in deployment and execution processes; and

• NFR 4: The system should be resource-efficient, minimizing unnecessary container
launches and ensuring proper destruction after task completion.

3.2 Choice of workflow framework

A workflow in this context, neat and concise,
Is a series of tasks, in order, precise.

It flows like a stream, from start to end,
With rules and paths on which it depends.
In each step it morphs, with data it dances,
Towards completion, it steadily advances.

When choosing the workflow framework for the project, the main frameworks studied
were:

• Argo Workflows: A highly popular, Kubernetes-native engine known for its lightweight
and scalable nature. It’s designed for container environments and is cloud-agnostic,
capable of running on any Kubernetes cluster.

• KubeAdaptor: This cloud-native engine integrates workflow systems with Kubernetes,
offering flexible workflow definitions and an interface for optimized task execution
sequences.

• Kubeflow: Focused on machine learning (ML) workflows, Kubeflow simplifies the
deployment of ML tasks on Kubernetes, making them simple, portable, and scalable.
It incorporates Argo Workflows for orchestrating these complex data science tasks.

After careful consideration, we have decided to utilize Argo for our workflow framework,
specifically for building Dask workflows with the Custom Resource Definitions of the Dask
jobs. This decision was primarily influenced by Argo’s robust capabilities in deploying YAML
CRDs for complete jobs. Argo’s structure lends itself well to our requirements, offering both
flexibility and efficiency in workflow management. Figure 6 shows an example of a Workflow
with 7 tasks depicted by Argo Dashboard. The nodes indicate the tasks while the edges
indicate the tasks dependencies. The green ticks indicate the successfully concluded tasks –
all of them, in this example.

To complement our choice of Argo and enhance our Python-centric workflow, we have also
decided to incorporate Hera’s syntactic sugar. Hera’s Python-friendly approach to defining
and managing workflows aligns well with our team’s expertise and our workflow’s technical
requirements, making it an invaluable addition to our toolkit.

In summary, Argo, complemented by Hera, provides the perfect blend of flexibility, power,
and ease-of-use for our specific needs in building and managing workflows that contain DASF
tasks. Its ability to handle complex task sequences with CRD and its superior Python
integration make it the ideal choice for our project.
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Figure 6: Example of a Workflow viewed in the Argo Dashboard.

4 The Argo-DASF Framework

As discussed in the previous section, DASF applications can easily migrate the execution
of DASF pipelines from the local machine, e.g., a laptop, to an HPC cluster by simply
switching the DASF executor. For example, the DaskExecutor can be used to execute the
DASF pipelines on a Dask cluster, composed of a Dask scheduler and multiple Dask workers.

Currently, the default way of executing DASF pipelines on high-performance computing
cluster is to start a Dask scheduler and several Dask workers on the cluster and leverage
the Dask backend to schedule the DASF application pipeline on the cluster. This process is
usually performed manually, or by custom made scripts, designed for specific HPC clusters

This project aims to develop a framework to facilitate the creation of Kubernetes
infrastructure for DASF applications, making it more accessible and scalable in cloud
environments using infrastructure as code. More specifically, we are interested in scaling the
performance of DASF applications that are embedded as Argo workflow tasks. To this end,
we propose the Argo-DASF framework.

Figure 7 provides an overview of the Argo-DASF framework components.
The image shows a common interaction in this system:

1. The system admin creates the base infrastructure with the Argo/Dask operators and
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Figure 7: Argo-DASF overview.

the shared storage using Helm and Pulumi.

2. A user sends a workflow to be treated.

3. The argo operator creates containers to run commands and sends pipelines to the Dask
Operator.

4. The Dask operator creates clusters that runs the pipelines using the shared storage.

The following sections present the Argo-DASF framework components.

4.1 Argo-DASF overview

The Argo-DASF framework is composed of 3 main components: The Argo Operator, the
Dask Kubernetes Operator and an NFS storage system, it was inspired by a talk by Severin
Ryberg [14] that talked about the power of Dask and Argo together.

Figure 8 illustrates how these components are used to scale the execution of DASF tasks2

on Argo.
There are several ways of using the system. For example:

1. User submits a workflow through the Argo operator:

2DASF tasks are DASF applications embedded as Argo tasks.
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Figure 8: Scaling the execution of DASF tasks with Argo-DASF.

• The Argo operator sends a request to the Kubernetes API server to create a new
workflow.

• The Kubernetes API server creates a new resource definition for the workflow and
updates the namespace with the new resource, calling each step in the workflow
in order.

• The Dask Operator watches for changes to the namespace and detects the creation
of the new workflow resource that calls uppon it.

• The Dask Operator creates a new Dask job based on the workflow configuration
and creates a Dask cluster for each job, with a set of controller, scheduler and
workers.

2. Dask scheduler schedules the Dask job:

• The Dask scheduler receives the job submission from the Dask Operator and
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checks the availability of workers.

• If there are available workers, the scheduler assigns the job to one or more workers
and starts executing the job.

• Otherwise, the scheduler waits for a worker to become available and then assigns
the job to the worker.

3. Dask worker executes the Dask job:

• The Dask worker receives the job assignment from the scheduler and starts
executing the job.

• The worker processes the data and produces output, which can be received and
stored in a persistent volume claim (PVC).

4. Argo Workflows polls the status of the workflow:

• Argo Workflows periodically polls the Kubernetes API server to check the status
of the workflow.

• When the workflow completes successfully, Argo Workflows retrieves the output
from each step and passes it to the next step in the workflow as parameters.

5. User accesses the results of the workflow:

• The user can access the results of the workflow through the Argo UI or by querying
the Kubernetes API server directly.

• These interactions enable the system to perform complex data processing tasks in
a scalable and efficient manner, while providing a straightforward way for users
to interact with the system and monitor the progress of their workflows.

4.1.1 Creating Dask Clusters

In addition to using Argo Workflows, users can directly interact with the Dask Operator
from their local environment to submit Dask jobs and create Dask clusters. This can be
useful for initial data exploration or for users who want to persist the cluster for continued
study of the dataset. To do this, users can utilize one of the Pulumi stacks, which does not
rely on the Argo Operator. Instead, users can write Python code to provision and manage
their Dask clusters from Python.

For example, Listing 4 illustrates how to create a Dask Cluster in the Dask Operator
programmatically with a Python application.

1 def create_dasf_cluster(
2 name="cluster -spec -name",
3 namespace=namespace ,
4 adapt=False ,
5 minimum=1,
6 maximum=2,
7 replicas=1,
8 use_gpu=False ,
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9 image_dask="dasf:cpu",
10 **kwargs ,
11 ):
12 print(image_dask)
13 spec = make_cluster_spec(name=name , n_workers=replicas , image=image_dask

)
14 spec = adapt_worker_spec(spec , use_gpu=use_gpu)
15 cluster = KubeCluster(
16 namespace=namespace , custom_cluster_spec=spec , resource_timeout =300
17 )
18 # use adapt to scale the cluster up and down automatically , or scale to

a fixed number of workers
19 if adapt:
20 cluster.adapt(minimum=minimum , maximum=maximum)
21 else:
22 cluster.scale(replicas)
23 return cluster
24

25 def adapt_worker_spec(spec , use_gpu=False):
26 # Modify the worker pod spec to use a GPU -enabled image and request GPU

resources
27 if use_gpu:
28 spec["spec"]["worker"]["spec"]["containers"][0][
29 "image"
30 ] = "nvcr.io/nvidia/rapidsai/rapidsai -core :23.04 - cuda11.8-runtime -

ubuntu22 .04-py3 .10"
31 spec["spec"]["worker"]["spec"]["containers"][0]["args"] = [
32 "dask -cuda -worker",
33 "$(DASK_SCHEDULER_ADDRESS)",
34 "--rmm -pool -size",
35 "10GB",
36 ]
37 spec["spec"]["worker"]["spec"]["containers"][0]["resources"] = {}
38 spec["spec"]["worker"]["spec"]["containers"][0]["resources"]["limits

"] = {}
39 spec["spec"]["worker"]["spec"]["containers"][0]["resources"]["

requests"] = {}
40 spec["spec"]["worker"]["spec"]["containers"][0]["resources"]["limits

"][
41 "nvidia.com/gpu"
42 ] = 1
43 spec["spec"]["worker"]["spec"]["containers"][0]["resources"]["

requests"][
44 "nvidia.com/gpu"
45 ] = 1
46 return spec
47

48 # Create a Dask cluster
49 cluster = create_dasf_cluster(
50 use_gpu=False ,
51 name=cluster_name ,
52 namespace=namespace ,
53 image_dask=image_dask ,
54 replicas=3,
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55 )
56

57 dask = DaskPipelineExecutor(cluster=cluster , use_gpu=False)

Listing 4: How to create a DASF cluster in the Dask Operator programatically

This provides a lightweight and flexible way for users to interact with their Dask clusters,
without requiring the overhead of a fully-fledged workflow manager like Argo for simpler
tasks. This can be called from a python script or a Jupyter notebook with access to the
Kubernetes configuration.

4.1.2 Creating DaskJobs from Argo

To bring DaskJobs into our Python workflow submission, we create a CRD in YMAL with a
template mechanism that allows us to pass parameters to it from a Python script. For the
DaskJob using CPU we declare it as illustrated in Listing 5.

1 apiVersion: kubernetes.dask.org/v1
2 kind: DaskJob
3 metadata:
4 generateName: dask -jobs -
5 namespace: {{ namespace }}
6 spec:
7 job:
8 spec:
9 serviceAccountName: {{ serviceAccountName }}

10 containers:
11 - name: job
12 image: "{{ image}}"
13 imagePullPolicy: "IfNotPresent"
14 args: {{ formatted_args }}
15 volumeMounts:
16 - name: shared
17 mountPath: /shared
18 volumes:
19 - name: shared
20 persistentVolumeClaim:
21 claimName: {{ nfsname }}
22

23 cluster:
24 spec:
25 worker:
26 replicas: 2
27 spec:
28 containers:
29 - name: worker
30 image: "{{ image}}"
31 imagePullPolicy: "IfNotPresent"
32 args:
33 - dask -worker
34 - --name
35 - $( DASK_WORKER_NAME)
36 - --dashboard
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37 - --dashboard -address
38 - "8788"
39 ports:
40 - name: http -dashboard
41 containerPort: 8788
42 protocol: TCP
43 env:
44 - name: WORKER_ENV
45 value: hello -world # We dont test the value , just the name
46 scheduler:
47 spec:
48 containers:
49 - name: scheduler
50 image: "{{ image}}"
51 imagePullPolicy: "IfNotPresent"
52 args:
53 - dask -scheduler
54 ports:
55 - name: tcp -comm
56 containerPort: 8786
57 protocol: TCP
58 - name: http -dashboard
59 containerPort: 8787
60 protocol: TCP
61 readinessProbe:
62 httpGet:
63 port: http -dashboard
64 path: /health
65 initialDelaySeconds: 5
66 periodSeconds: 10
67 livenessProbe:
68 httpGet:
69 port: http -dashboard
70 path: /health
71 initialDelaySeconds: 15
72 periodSeconds: 20
73 env:
74 - name: SCHEDULER_ENV
75 value: hello -world
76 service:
77 type: ClusterIP
78 selector:
79 dask.org/cluster -name: simple -job
80 dask.org/component: scheduler
81 ports:
82 - name: tcp -comm
83 protocol: TCP
84 port: 8786
85 targetPort: "tcp -comm"
86 - name: http -dashboard
87 protocol: TCP
88 port: 8787
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89 targetPort: "http -dashboard"

Listing 5: YMAL template file with parameters for itegration with python and enable
reusable configs

Where the "{{items}}" are parameters used in the job creation.
Note: if the workflow is going to run parallel jobs to the same namespace, the ports

declared in the CRD must be different between the 2 parallel jobs so that the schedulers and
workers do not overlap and crash. Or run 2 jobs on the same scheduler and workers with
adaptive scaling.

4.1.3 RBAC roles and service accounts

RBAC (Role-Based Access Control) in Kubernetes (K8s) is a security mechanism for managing
access and giving permissions to resources. It involves defining Roles and ClusterRoles to
specify permissions for resources. RoleBindings and ClusterRoleBindings are then used to
assign these roles to users, groups, or service accounts within specific namespaces or across
the entire cluster, ensuring secure and controlled access.

To create clusters and CRDs defined in Dask, you need special permissions. These
permissions are assigned to a service account (a user in the Kubernetes cluster) through a
role. This setup ensures that only the service account with the correct role has the authority
to create and manage these resources in your Kubernetes environment.

From the line in the previous section were we define:

serviceAccountName : {{serviceAccountName}}

We pass the name of the service account created in Pulumi defined in Listing 6, which
will give the permission for a resource within the Kubernetes cluster to create other resources.

This is a characteristic of Kubernetes that enforces that no resource within the K8
cluster can create something without the proper authorization, this is done with the intent
of guaranteeing security within the cluster.

1 export const createDaskServiceAccount = (
2 namespace: k8s.core.v1.Namespace
3 ): k8s.core.v1.ServiceAccount => {
4 const daskRole = new k8s.rbac.v1.Role(’dask -role’, {
5 metadata: {
6 namespace: namespace.metadata.name
7 },
8 rules: [
9 {

10 apiGroups: [’kubernetes.dask.org’],
11 resources: [
12 ’daskclusters ’,
13 ’daskworkergroups ’,
14 ’daskworkergroups/scale ’,
15 ’daskjobs ’,
16 ’daskautoscalers ’
17 ],
18 verbs: [’get’, ’list’, ’watch ’, ’patch’, ’create ’, ’delete ’]
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19 },
20 {
21 apiGroups: [’’], // indicates the core API group
22 resources: [
23 ’pods’,
24 ’pods/status ’,
25 ’pods/log’,
26 ’services ’,
27 ’poddisruptionbudgets ’
28 ],
29 verbs: [’get’, ’list’, ’watch ’, ’create ’, ’delete ’]
30 }
31 ]
32 });

Listing 6: Creating service account name for Argo Workflows and DaskJobs using Pulumi

4.2 Kubernetes modifications for GPU

Kubernetes is a powerful platform for data processing, offering significant advantages in
scalability and reproducibility. For our case in particular, our main aim was to integrate
DASF to this Kubernetes ecosystem. DASF is, at its core, a framework that uses Dask and
RAPIDS.ai to make data pipelines using GPUs that handle data processing of huge datasets
concurrently. For this, we use the native Kubernetes creation of Dask Workers that uses
NVIDIA GPUs so that the environment can run these efficient workflows.

To enable the use of GPU on a Kubernetes environment that has access to NVIDIA GPUs,
because dask-Kubernetes uses standard Kubernetes pod specifications, we can use Kubernetes
device plugins and add resource limits defining the number of GPUs per pod/worker.
Additionally, we can also use tools like dask-cuda for optimized Dask/GPU interactions, like
shown in the Listing 7.

1 kind: Pod
2 metadata:
3 labels:
4 foo: bar
5 spec:
6 restartPolicy: Never
7 containers:
8 - image: nvcr.io/nvidia/rapidsai/rapidsai -core:23 .04- cuda11.8-runtime -

ubuntu22 .04-py3 .10
9 imagePullPolicy: IfNotPresent

10 args: [dask -cuda -worker , $( DASK_SCHEDULER_ADDRESS), --rmm -pool -size , 10
GB]

11 name: dask -cuda
12 resources:
13 limits:
14 cpu: "2"
15 memory: 6G
16 nvidia.com/gpu: 1 # requesting 1 GPU
17 requests:
18 cpu: "2"
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19 memory: 6G
20 nvidia.com/gpu: 1 # requesting 1 GPU

Listing 7: Kubernetes Pod for a Dask Worker with the changes necessary for GPU integration

4.3 Argo workflows and Hera

The integration of Argo Workflows with Hera in our project represents a leap forward in
orchestrating complex data processing tasks within a Kubernetes environment. The Python
code in Listing 8 illustrates how we leverage these powerful tools to create and manage
workflows efficiently.

1 from hera.workflows import (
2 Workflow ,
3 DAG ,
4 Parameter ,
5 Container ,
6 Resource ,
7 NFSVolume ,
8 models ,
9 )

10 from .BaseConfig import BaseConfig
11 from hera.shared import global_config
12 from .Utility import get_manifest
13

14 # define argo configs
15 global_config.host = "http ://127.0.0.1:2746"
16 global_config.token = ""
17

18 config = BaseConfig(
19 namespace="example -namespace",
20 service_account_name="example -sa",
21 base_image="example -image",
22 )
23

24 with Workflow(
25 generate_name="dag -target -",
26 entrypoint="dag -target",
27 namespace="dasf -da121b4a",
28 arguments=Parameter(name="target", value="E"),
29 volumes =[
30 models.Volume(
31 name="shared", persistent_volume_claim ={"claim_name": "many -nfs -

pvc"}
32 )
33 ],
34 ) as w:
35 # we can define containers that run commands
36 sendData = Container(
37 name="send -data",
38 image="senddata:cpu",
39 command =["sh", "-c"],
40 args=["cp -r /f3.zarr /shared/"],
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41 volume_mounts =[
42 models.VolumeMount(name="shared", mount_path="/shared"),
43 ],
44 )
45 # as well as CRDs for daskjob
46 dask_job = Resource(
47 name="dask -job",
48 action="create",
49 service_account_name=config.service_account_name ,
50 volume_mounts =[
51 models.VolumeMount(name="shared", mount_path="/shared"),
52 ],
53 manifest=get_manifest(
54 namespace=config.namespace ,
55 image=config.base_image ,
56 serviceAccountName=config.service_account_name ,
57 container_args =[
58 "python",
59 "attribute_extractor.py",
60 "-x",
61 "128",
62 "-y",
63 "128",
64 "-z",
65 "-1",
66 "-a",
67 "envelope",
68 "-r",
69 "cpu",
70 "-d",
71 "/shared/f3.zarr",
72 "-o",
73 "/shared/output.zarr",
74 ],
75 ),
76 )
77

78 with DAG(
79 name="dag -target",
80 ):
81 A = sendData(name="A")
82 B = dask_job(name="B")
83

84 # then we can define the graph dependency
85 A >> B
86

87 w.create ()

Listing 8: Python workflow example using the DaskJob template within the Hera API

Here the get_manifest function is an abstraction created to facilitate the translation of
CRDs into python parameterized YMAL code (defined previously), as such we can define
templates for DaskJob for both CPU and GPU code, by only changing the image with the
code responsible for the transformation, the correct YMAL template and the command that
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triggers the action required.
Through this setup, we efficiently manage data processing tasks, leveraging the capabilities

of both Argo Workflows and Dask within a Kubernetes ecosystem. This approach ensures
scalable, reproducible, and well-orchestrated data processing workflows.

4.4 NFS storage system

The NFS system is designed to provide a flexible and scalable file storage solution for
Kubernetes applications. It uses the OpenEBS Helm chart to deploy an NFS server and
client, allowing multiple pods to share the same NFS volume.

At a high level, here’s how the system works within our IaC code:

1. The createNFSVolume function creates a new Persistent Volume Claim (PVC) with
the desired size and storage class. In this case, we use the openebs-kernel-nfs storage
class, which is configured to use the OpenEBS NFS server.

2. The createNFSVolume function then deploys a Helm chart for the OpenEBS NFS
server, using the nfs-provisioner chart. This chart installs the NFS server and its
dependencies, including the OpenEBS driver.

3. The createNFSVolume function also deploys a second Helm chart for the Local PV
Provisioner, using the localpv-provisioner chart. This chart provisions a local Persistent
Volume (PV) that will be used to store the NFS data.

4. The testNfsPvc variable is created to represent the PVC that will be used to store the
NFS data. This PVC is requested by the testNfsPod pod when it starts up.

5. The testNfsPod pod is created with a single container that runs the busybox image
and sleeps for 3000 seconds. This pod serves as a placeholder to demonstrate how a
pod can consume the NFS volume.

6. To scale the NFS system, you can simply increase the number of replicas of the
testNfsPod pod, which will automatically request more PVCs and provision additional
NFS volumes as needed.

In a production environment, this setup could be replaced with other distributed file
systems like FSx for Lustre or EFS (in AWS), depending on the specific requirements of the
application. However, for smaller to medium-sized clusters, this NFS system can provide a
simple and cost-effective solution for shared file storage. As always, scaling considerations
should be taken into account when designing a Kubernetes storage solution.

4.5 Infrastructure as Code

In the evolving landscape of cloud infrastructure, Infrastructure as Code (IaC) has emerged
as a pivotal paradigm, and Pulumi stands at the forefront of this revolution, especially in the
Kubernetes community. Pulumi, a modern IaC tool, transforms how we build, deploy, and
manage cloud infrastructure by using familiar programming languages. Central to Pulumi’s
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power is the concept of ‘stacks’ – a mechanism that not only revolutionizes infrastructure
deployment but also enhances its scalability, manageability, and reproducibility.

4.5.1 Functionality of Pulumi Stacks

Pulumi stacks are akin to individual, isolated instances of our infrastructure. Each stack
represents a unique configuration state, making it possible to deploy multiple environments
(like development, staging, or production) from the same code base. This multiplicity allows
us to pass variables and manage configurations seamlessly across different environments,
offering an unmatched level of flexibility and control. By leveraging different stacks, we can
tailor the infrastructure to specific requirements or contexts without altering the underlying
code, a testament to the adaptability and sophistication of Pulumi.

4.5.2 Modularization through Stacks

Our project harnesses the full potential of Pulumi stacks by dividing the infrastructure code
into three main parts: ‘Dask’, ‘Argo’, and ‘nfsVolume’. This modular approach underlines
our commitment to a clean, organized, and functional infrastructure codebase.

• Dask Stack: This stack is the backbone of our Kubernetes environment, responsible
for setting up and managing the Dask Kubernetes Operator. It lays the groundwork for
deploying and orchestrating Dask clusters, ensuring a smooth and efficient integration
within our Kubernetes ecosystem.

• Argo Stack: The Argo stack focuses on the deployment and configuration of a Argo
Workflows endpoint. This segment of our infrastructure is crucial for managing complex
workflows, enabling us to automate and streamline our data processing tasks with
precision and reliability.

• NFS Volume Stack: The NFS Volume stack is dedicated to creating and managing
network file system (NFS) volumes. These volumes are essential for shared data
storage and accessibility across different pods and nodes, with simultaneous read/write,
facilitating seamless data exchange and storage in our distributed environment.

Each stack segment is meticulously crafted, with variables defined in the respective
Pulumi stack YAML files dictating the specific aspects of the infrastructure to be created.
This methodical division allows us to not only maintain clarity and organization within
our code but also to instantiate specific infrastructure components as needed, based on the
variables provided. Listing 9 illustrates how to define a stack that uses all three parts.

1 config:
2 dasf -iac:dasfImage: dasf:cpu
3 dasf -iac:kubeconfig: ’false ’
4 dasf -iac:namespace: ’dasf’
5 dasf -iac:portDasf: "8788"
6 dasf -iac:portScheduler: "8786"
7 dasf -iac:portWorker: "8787"
8 dasf -iac:replicas: "2"
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9 dasf -iac:dask: true
10 dasf -iac:argo: true
11 dasf -iac:nfsVolume: true
12 kubernetes:context: minikube

Listing 9: Example stack configuration in Pulumi to select the parts to use

For interacting with these stacks, here is a quick guide:

• Selecting a Stack: Use pulumi stack select [stack-name] to switch to the desired
stack.

• Creating a Stack: Create a new stack with pulumi stack init [new-stack-name].

• Deploying Resources: Deploy stack resources using pulumi up, which applies the
desired state defined in your code to your stack.

• Destroying Resources: To remove all resources in a stack, use pulumi destroy. This
command dismantles all the resources managed by the stack.

• Deleting a Stack: Finally, remove the stack itself with pulumi stack rm [stack-name].
Be cautious, as this is irreversible.

In essence, our use of Pulumi stacks use the fusion of modular coding practices with the
robust capabilities of IaC, resulting in a powerful, scalable, and versatile infrastructure that
is tailored to our project’s unique demands.

5 Validation and insights

The project was executed in both a local and scalable environment. Locally, it utilized
Minikube v1.31.2 with Docker v24.0.5 (linux/amd64), a lightweight Kubernetes implementa-
tion that creates a VM on the local machine as a Docker image containing a Kubernetes
cluster. Minikube is ideal for development and testing scenarios, offering an accessible and
efficient way to work with Kubernetes without complex infrastructure.

For scalability testing, Amazon Elastic Kubernetes Service (EKS) was used, with Kuber-
netes version 1.28. In EKS, we created a managed node group and integrated the cluster
autoscaling controller, allowing for dynamic adjustment of resources based on demand. This
setup enabled the project to be tested under realistic, scalable conditions, simulating actual
deployment environments, minus deeper security compliance configurations.

In the local environment, specific resource allocations were made for optimal performance.
The Kubernetes cluster’s specifications were as follows:

• CPU Allocation: 5 CPUs, ensuring sufficient processing power for concurrent tasks
without overburdening the host system.

• GPU Allocation: 2 GPUs, crucial for tasks requiring high computational capabilities,
like data processing and machine learning workflows.
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This configuration balanced performance with resource utilization, suitable for the
project’s limitations. For the nodes in the EKS, we used t3.medium instances for our workers
and general infrastructure, for a more fine-grained control of scaling and worker size for
different use cases, different managed node groups can be used in together.

Data for the project was sourced from the Unicamp Discovery Research Group, using
two .zarr format datasets - one at 80 MB and another at 3 GB. The .zarr format is efficient
for storing chunked, compressed, multidimensional arrays, ideal for handling large-scale data
in Kubernetes environments.

These datasets were pivotal in the project, providing essential information for system
integration and testing. The size variation of the datasets allowed assessment of the sys-
tem’s performance under different data loads in both the local Minikube and scalable EKS
environments.

5.1 Experimental Setup and Methodology

The validation involved two primary methods:

1. Argo Workflow with DaskJob: This method entailed running the envelope data
transformation within an Argo workflow, using a DaskJob that uses a DASF application
that computes the envelope attribute for a seismic data. It represents a scenario of
automated, large-scale data processing.

2. Programmatic Dask Cluster Creation: The second method involved program-
matically creating a Dask cluster within the Dask operator, executed from a local PC
through a Python script. This setup reflects a user-centric approach, allowing direct
interaction and testing of data transformations of DASF pipelines before scaling to a
system like item 1.

5.2 DASF adaptation for testing

To test our framework in conjunction with DASF, a few changes to the traditional DASF
framework had to be made. The following Dockerfile snippets detail the setup of our DASF
environment, crucial for ensuring compatibility with the Dask Kubernetes Operator and
maintaining reproducibility through version-controlled requirements.

5.2.1 Base Dask Image Setup

The first Dockerfile establishes the base environment for our Dask deployment. The contents
of this file is shown in Listing 10.

1 FROM ghcr.io/dask/dask:2023 .10.0
2

3 ENV DEBIAN_FRONTEND=noninteractive
4 RUN echo "tzdata tzdata/Areas select Europe" | debconf -set -selections
5 RUN echo "tzdata tzdata/Zones/Europe select London" | debconf -set -selections
6

7
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8 RUN apt update -y
9 RUN apt install -y --no-install -recommends \

10 g++ \
11 gcc \
12 git \
13 graphviz \
14 openssh -client \
15 python3 -dev \
16 xdg -utils \
17 python3 -pip && \
18 rm -rf /var/lib/apt/lists /*
19

20 RUN pip3 install pip --upgrade
21

22 COPY dasf /dasf
23 COPY requirements.txt /requirements.txt
24 COPY README.md README.md
25

26 RUN pip3 install --no-cache -dir -r requirements.txt
27

28 WORKDIR /

Listing 10: Dockerfile for building a DASF image

In this Dockerfile, we start with the official Dask image ghcr.io/dask/dask:2023.10.0 to ensure
compatibility with the Dask Kubernetes Operator. The environment is set to non-interactive
to streamline the installation process. Timezone settings are configured for Europe/London,
followed by updating and installing essential packages like g++, gcc, git, and others. We
then upgrade pip and copy the necessary files (DASF, requirements.txt, README.md) into
the container. The pip3 install command ensures that all dependencies are installed as per
the requirements.txt file, and the –no-cache-dir option is used to keep the Docker image size
minimal.

5.2.2 Seismic Lite Setup

The second Dockerfile extends the base image for seismic data processing. The contents of
this file is shown in Listing 11.

1 FROM dasf:cpu
2

3 # install the seismic stuff
4 COPY dasf_seismic /dasf_seismic
5 COPY requirements -seismic.txt /requirements -seismic.txt
6 RUN pip3 install --no-cache -dir -r requirements -seismic.txt
7

8 # add the code to run
9 COPY attribute_extractor.py /attribute_extractor.py

10

11 WORKDIR /

Listing 11: DASF seismic dockerfile based on the DASF CPU image
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This Dockerfile builds on the base DASF image, tagged dasf:cpu. It focuses on in-
stalling specific packages for seismic data processing. Required seismic-related files and
the requirements-seismic.txt are copied into the container, and the necessary Python
packages are installed using pip3. Again, the –no-cache-dir option is used to minimize the
Docker image size. Finally, the attribute_extractor.py script, the file that runs the test
data pipeline is added.

Together, these Dockerfiles provide a comprehensive and efficient setup for our DASF-
based data processing environment, ensuring compatibility between schedulers and workers,
reproducibility, and optimized image sizes.

5.2.3 DASF modifications

To ensure that the DASF project could be integrated with the Kubernetes system some
changes to the code had to be made. These changes are shown in Listing 12.

1 class DaskPipelineExecutor(Executor):
2 """
3 A pipeline engine based on dask data flow.
4

5 Keyword arguments:
6 address -- address of the Dask scheduler (default None).
7 port -- port of the Dask scheduler (default 8786).
8 local -- kicks off a new local Dask cluster (default False).
9 use_gpu -- in conjunction with ‘local ‘, it kicks off a local CUDA Dask

10 cluster (default False).
11 profiler -- sets a Dask profiler.
12 protocol -- sets the Dask protocol (default TCP)
13 gpu_allocator -- sets which is the memory allocator for GPU (default

cupy).
14 cluster_kwargs -- extra Dask parameters like memory , processes , etc.
15 client_kwargs -- extra Client parameters.
16 cluster -- a Dask cluster object.
17 daskjob -- boolean to indicate if the executor is used in a DaskJob.
18 """
19

20 def __init__(
21 self ,
22 address=None ,
23 port =8786 ,
24 local=False ,
25 use_gpu=False ,
26 profiler=None ,
27 protocol=None ,
28 gpu_allocator="cupy",
29 cluster_kwargs=None ,
30 client_kwargs=None ,
31 cluster=None ,
32 daskjob=False ,
33 ):
34 self.address = address
35 self.port = port
36
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37 if not cluster_kwargs:
38 cluster_kwargs = dict()
39

40 if not client_kwargs:
41 client_kwargs = dict()
42

43 # If address is not set , consider local
44 local = local or (
45 address is None
46 and "scheduler_file" not in client_kwargs
47 and cluster is None
48 )
49

50 if daskjob:
51 self.client = Client ()
52 elif cluster is not None:
53 self.client = Client(cluster)

Listing 12: Modifications made to the executor in the DASF executor to integrate with the
Kubernetes operator

In the dasf/pipeline/executors/dask.py file we had to add a configuration update
where we could pass the cluster itself to the Dask pipeline client or simply call the client if it
is part of a DaskJob CRD (Lines 50-53 in Listing 12). This was specially made so that we
could use the pipeline with a Dask operator called from a python client with access to the
namespace of our Kubernetes deployment.

5.3 Code source and testing

In this section we will go over the necessary steps to run these tests and how to deploy
yourself the infrastructure plus the workflow submission. The code can be found at:

https://github.com/discovery-unicamp/dasf-argo

5.3.1 Local Environment

The necessary steps to run the minikube local environment consists of :

1. Install minikube, pulumi and a container environment like Docker Desktop.

2. Install kubectl and set your local environment to use minikube.

3. Go inside the iac/ directory, from the root of the project, that contains the Pulumi
Typescript code.

4. Run pulumi up to build the infrastructure after selecting the type of stack you wish
to use locally.

5. Change into the workflow_api/ directory (from the root of the project) to access the
workflows created.

39

https://github.com/discovery-unicamp/dasf-argo


6. Verify the configuration of the testing file simple_example.py and run it with
python simple_example.py.

This process will begin the workflow that sets up the environment and that runs the
DaskJob containing a DASF pipeline.

5.3.2 AWS Environment

The deployment structure of our EKS cluster[7] using Pulumi is organized into four distinct
modules. Each module within our stack is responsible for creating specific resources in the
cloud. These modules output values that are utilized by subsequent modules, ensuring a
cohesive and efficient deployment process. This structure includes the following parts, as
shown by Figure 9 :

1. Cluster Module: This module is responsible for creating a Virtual Private Cloud
(VPC) and an Elastic Kubernetes Service (EKS) cluster. It also sets up a managed
node group that will be utilized by the pods and controllers within our system. The
VPC provides an isolated network environment for our EKS cluster, enhancing security
and control with private and public subnets secured by NAT Gateways and Internet
Gateways.

2. Autoscaler Module: It deploys the AWS Cluster Autoscaler controller. This controller
dynamically adjusts the number of nodes in the cluster based on current needs, ensuring
efficient resource utilization.

3. Argo-DASF Module: This module deploys the Argo-DASF framework within the
cluster. It also creates an Elastic Container Registry (ECR) repository for storing
Docker images and an NFS for shared data storage among pods. ECR provides a
secure, scalable container image registry, while NFS offers a simple file storage for use
with AWS Cloud services.

4. Services Module: This final module sets up the AWS Load Balancer Controller
using Helm. This controller enables the creation of Application Load Balancers (ALB)
to facilitate external user access to our framework in a secure manner with native
Kubernetes ingresses. ALBs offer high availability, automatic scaling, and robust
security features necessary for modern web-facing applications.

Each module is meticulously designed to ensure seamless integration and optimal per-
formance of the overall EKS cluster deployment, tailored to meet the specific needs of our
project.

To run the EKS cluster containing the project the process consists of:

1. Install AWS CLI and configure it with aws configure using the credentials from an
IAM user with sufficient permissions for cloud provisioning.

2. Install pulumi.
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Figure 9: Overall structure of cloud infrastructure for testing

3. Go inside the iac-eks/ directory, from the root of the project, that contains the Pulumi
Typescript code.

4. For each of the stack modules (cluster > autoscaler > argo-dasf > service, in order),
run pulumi up to build the infrastructure and use/create the dev stack, this will build
out the development infrastructure we created.

5. Change into the workflow_api/ directory (from the root of the project) to access the
workflows created.

6. Verify the configuration of the testing file simple_example_eks.py and modify it
to use the public DNS of the Application Load Balancer created by the infrastructure
as code at global_config.host as well as the base configuration defined within, the
alb url and the configurations will be outputted after the creation of the autoscaler,
services and argo-dasf modules.

7. Run it with python simple_example_eks.py.

8. Enter the load balance url to verify the workflow progression within the argo workflows
dashboard.

5.4 Results and Insights

The experimental outcomes demonstrated the framework’s efficacy in executing the envelope
data transformation across both approaches by succeeding in applying the transformation
and dimensional changes expected from the transformation. Key insights include:
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• The Argo workflow with DaskJob effectively managed to simplify the deployment DASF
pipeline, confirming the framework’s capability in orchestrating complex data workflows
with less effort required from the end user. This approach is particularly suited for
predefined and validated DASF pipelines, offering a distributed and cost-effective
solution for large data sets. This insight was achieved from successfully running a
simple python script containing the Listing 7, that created the workflow and ran the
contained pipeline with a verified output file in the NFS storage.

• The programmatically created Dask cluster provided an accessible platform for indi-
vidual users. It was run using the Listing 4, which created the Dask Cluster in the
Kubernetes cluster and ran a pipeline like Listing 3. This Python script was called
from a Jupyter notebook, as a testing method, similar to how data scientists work for
quickly testing a theory, but with the power of the cluster behind the system.

The data pipeline was viewed using the Dask Dashboard created with the Cluster and
the data verified against the output data.

This method is ideal for testing and verifying single DASF pipelines, offering simplicity
and flexibility for exploratory data analysis and transformation tasks.

• The implementation that was built in EKS on AWS was a great show of the scaling
capacity of our systems. With the addition of K8 cluster autoscalers to the EKS
clusters we were able to see that our systems scaled as needed by growing the number
of pods, and nodes when the number of pods reached a maximum.

Regarding the speedup of our system from implementing this is a scalable manner in
EKS, we saw that the time reduction was not too substantial in our test case. This
was due to the fast nature of our test case, so the overall time decrease was minimal,
the sum of the time that it took to initialize the pod was usually larger than that of
the Daskjob itself, as show in Table 1, where for 5 workers we saw that the system
performed a horizontal scaling of the number of instances/nodes rather than that of
pods, which is a slower process and this had a bigger effect in the overall time than the
task itself (usually took 3 to 4 seconds).

About the NFS volume created with openEBS on the EKS system, when too many
pods were mounted on the system at the same time (more than 10 pods, equivalent to 6
workers), the persistent volume claim created would crash by not being able to handle
such a large number of concurrent accesses. This showed a shortcoming regarding the
nfs stack and proved that implementing a cloud managed file sharing solution like EFS
or Lustre is better for production environments.

5.5 Conclusions

The validation of Argo-DASF highlighted its versatility and power in processing seismic
data. It proved capable of supporting automated workflows and individual, interactive data
processing tasks, with a simplified workflow creation. This dual capability ensures that the
framework can cater to diverse operational needs, from complex data analysis to individual
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Number of workers Time till completion (s)
1 15
1 18
2 16
3 14
4 14
5 30

Table 1: Time of completion for treating the zarr object, given the number of workers in the
DaskJob.

research and development efforts, thus affirming its value in the realm of data processing
and analysis.

The adaptation of the solution to EKS clusters and the use of the Kubernetes Cluster
Autoscaler, proved the capability of our systems at being a scalable solution by horizontally
scaling with nodes and pods to fit our workflows submitted to the Load Balancer that
targeted our Argo workflows controller.

6 Project Development

This section outlines the development of the project, detailing the journey from requirement
gathering to the final review and submission. We focus on selecting and implementing
frameworks like Kubernetes and Pulumi, overcoming challenges in scalability and integration,
and ensuring the system’s correctness and efficiency, delving deeper into the specifics of
framework implementation and the key challenges faced during this project.

1. Requirements Gathering: Focused on identifying the project’s specific needs includ-
ing data processing capabilities, scalability, and storage specifications.

2. Survey and Selection of Frameworks: Evaluated various frameworks like Kubeflow,
Dask Distributed, etc., based on performance, scalability, ease of integration, and
community support.

3. Framework Implementation: Set up the Kubernetes environment, installed and
configured Argo and Dask operators, created the NFS storage system, and addressed
challenges with versioning and kubectl commands in Pulumi. More details concerning
this are described in Section 6.1.

4. Correctness and Scalability Testing: Conducted tests to verify data workflow
accuracy and system performance under different workloads, with limitations due to
CPU and GPU constraints in my environment.
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5. Report Review and Submission: Reviewed the report for accuracy and clarity,
incorporating feedback from colleagues and experts, including Prof. Edson Borin and
Alan Souza.

6.1 Framework Implementation

In the preliminary phase, we dedicated ourselves to hands-on experimentation with Kuber-
netes, utilizing kubectl commands made with the help of “The Kubernetes Book” [11]. This
practical engagement was crucial for gaining a real-world grasp of Kubernetes functionalities
and limitations.

Transitioning from theory to application, we embarked on constructing a robust infrastruc-
ture using Pulumi. This phase was characterized by the translation of kubectl commands into
Pulumi scripts. The rationale behind this translation process was two-fold: Firstly, to ensure
a deep-rooted understanding of the underlying mechanisms of Kubernetes orchestration and
secondly, to establish a framework that ensures reproducibility and scalability.

This transition was not merely a change in tools but a strategic shift towards infrastructure
as code (IaC), an approach that guarantees consistency, version control, and a high degree of
automation. By leveraging Pulumi, we were able to encapsulate the complexity of Kubernetes
commands into reusable, scalable, and maintainable code structures.

Finally, we integrated the Hera clients and the parameterized templates that we submit
to the framework itself.

6.2 Main Challenges Through the Process

During the project development, several challenges were encountered:

• Versioning and Configuration: Updating the Dask image construction mechanism
for effective communication in a Kubernetes environment.

• Selection of Dask Deployment: Determining the optimal approach for the Dask
creation mechanism, which involved navigating through multiple deployment options.

• Integration Complexities: Ensuring seamless integration of various technologies like
EKS, Hera, DASF, Kubernetes, Argo, Dask, and NFS into a cohesive system.

These challenges were instrumental in shaping the project’s direction and contributed
significantly to the learning and development process.

7 Conclusions

The main focus of the project was to develop an efficient system for managing complex and
parallelizable data pipelines with DASF tasks. The designed system is organized in three
main modules:

• NFS Volume: responsible for simultaneous reading and writing operations from multiple
sources, vital for parallel processing in Dask pipelines.
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• Argo Operator: responsible for managing and executing workflows in Kubernetes,
simplifying task orchestration.

• Dask Operator: responsible for executing data processing pipelines in Kubernetes,
optimizing parallel and distributed processing.

The system was also designed so dask pipelines can be executed in Ephemeral Workflows.
In this context, Dask pipelines are implemented as jobs within Argo’s ephemeral workflows,
providing detailed control over each stage of the data process.

Moreover, the system leveraged the Python Hera client for workflow management, which
facilitated the definition and exectuion of workflows, abstracting the complexity of Argo’s
YAML templates and allowing a greater focus on the logic of data pipelines.

Figure 10 shows the dependency in levels between each component of the project, where
the elements are built using a bottom up approach.

Figure 10: Project Dependency Structure

Throughout our comprehensive exploration of how to deploy DASF frameworks to
Kubernetes, we have delved into various facets of deploying and managing cloud-native
applications using Kubernetes, with a particular focus on data processing workflows using
Dask and Argo Workflows.

• Dask Kubernetes Operator: We explored the Dask Kubernetes Operator in detail,
highlighting its role in simplifying the deployment of Dask clusters within Kubernetes.
This operator, with its use of Custom Resource Definitions (CRDs), exemplifies how
Kubernetes can be extended to manage complex, data-intensive tasks efficiently.

• Workflow Orchestration with Argo and Hera: The integration of Argo Work-
flows, augmented by Hera, demonstrated how complex data processing tasks could
be orchestrated and automated within a Kubernetes environment. This setup not
only enhanced the efficiency of our workflows but also underscored the scalability and
flexibility offered by Kubernetes in handling sophisticated workflows.

• Infrastructure as Code with Pulumi: The adoption of Pulumi for Infrastructure
as Code (IaC) was a significant stride in our project. By segmenting our infrastructure
into modular stacks - ‘operator’, ‘Argo’, and ‘nfsVolume’ - we achieved a high degree
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of organization and clarity. This modularization, coupled with the ability to select,
create, deploy, and delete stacks, showcased the agility and control we maintained over
our infrastructure.

• Pulumi Lifecycle Management: The lifecycle management of Pulumi stacks –
from creation to deletion – was instrumental in ensuring that our infrastructure
deployment was both dynamic and responsive to our project’s needs. The use of
pulumi commands brought about a smooth workflow for deploying and dismantling
infrastructure components as required.

In conclusion, this project stands as a testament to the synergy between Kubernetes, Dask,
Argo Workflows, and Pulumi. Each component played a critical role in creating a robust,
scalable, and efficient environment for data processing and workflow management. The lessons
learned and the methodologies applied here not only achieved the project’s immediate goals
but also laid down a blueprint for future endeavors in the realm of cloud-native application
development and management. This journey has been a vivid demonstration of the power
and versatility of modern cloud technologies when harnessed with expertise and foresight.

7.1 Future work

As we look ahead, there are several areas of potential development and improvement that
can further enhance the capabilities and efficiency of our system.

1. Enhanced Security Protocols: Continuous improvement of security measures is vital.
Future work could involve integrating advanced security protocols and encryption
methods to safeguard data and operations against emerging threats.

2. Cross-Platform Compatibility: Expanding the system’s testing with various cloud
providers and platforms would make it more versatile and user-friendly, catering to a
broader range of use cases and environments.

3. User Interface and Experience Improvements: Developing a more intuitive and user-
friendly interface will enhance the accessibility and usability of the system, making it
more approachable for a wider range of users.

4. Test at max scale: Fully test a HPC environment with our configuration, e.g., in AWS
use cluster placement groups for its instances, EFA acceleration and Lustre for shared
storage with high data dimensionality and complexity

5. Setup observability: The operators come with integration with Prometheus, so creating
monitoring Dashboards with Grafana could come in handy to avoid problems down
the development line.

These areas represent a roadmap for future enhancements, ensuring that the system
remains cutting-edge, user-centric, and adaptable to the evolving needs of its users.
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