
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Implementation of Vector
Instructions in the RISC-V

Rocket Processor
Iago Caran Aquino

Relatório Técnico - IC-PFG-23-62

Projeto Final de Graduação

2023 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Implementation of Vector Instructions in the RISC-V Rocket

Processor

Iago Caran Aquino ∗ Lucas Wanner∗ Sandro Rigo∗

Abstract

With the consolidation of the vector extension of the RISC-V ISA in 2021, its appli-
cation to highly parallelizable workloads such as HPC and Machine Learning becomes
mandatory. Still, there is currently no open implementation of this extension for the
Rocket processor. With this, we aimed to create a proof of concept of a vector unit
for this processor, serving as a basis for future developments. The theoretical analysis
indicates benefits to be extracted from this approach that differ from the experimental
results, due to implementation issues that require optimization. Future efforts should
lead to significant performance gains, in addition to execution in an FPGA environment
for energy efficiency studies.

Resumo

Com a consolidação da extensão vetorial para a ISA RISC-V em 2021, sua aplicação
em cargas de trabalho altamente paralelizáveis, como HPC e Machine Learning, torna-
se mais desejável. Ainda assim, não há no momento uma implementação aberta desta
extensão para o processador Rocket. Com isso, tivemos como objetivo criar uma prova
de conceito de unidade vetorial para este processador, servindo de base para futuros
desenvolvimentos. A unidade implementada na linguagem Chisel dentro do framework
Chipyard suporta algumas das instruções da especificação, a partir das quais carac-
terizamos seu desempenho atual. A análise teórica indica benef́ıcios a serem extráıdos
desta abordagem que diferem dos resultados experimentais, devido a questões na imple-
mentação que exigem otimização. Futuros esforços devem levar a ganhos significativos
de desempenho, além da execução em ambiente de FPGA para estudos de eficiência
energética.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2

1 Introduction

An instruction set architecture (ISA) is an abstract model of a computer that allows a
programmer to write code for a set of processors that implements that ISA. These models
are, for the most part, proprietary, created and maintained by large companies such as Intel
and ARM, which determine the entire functioning of their ISAs and charge high amounts
for licensing and customization. In this context, the RISC-V[1] ISA emerges as an open and
free alternative for developing chips and software, created by the University of California,
Berkeley, and managed by the RISC-V International.

The RISC-V ISA receives attention from multiple companies for its development and
application in the most varied fields of application, such as High-Performance Computing
(HPC) and Machine Learning, both benefiting from vectorization for enhancing perfor-
mance. In the HPC domain, data parallelism is used for increased throughput, allowing for
operations on large datasets. Meanwhile, in machine learning, executing large-scale matrix
and tensor operations is the basis for training and inference processes, which are highly
scalable from efficient parallelization.

The increasing demand in these areas stimulated the development of specialized vector
accelerators, exemplified by the Hwacha vector unit[2] created by the Berkeley Architecture
Research team, which features a custom ISA extension with particular emphasis on energy
efficiency. Hwacha has successfully created a System-On-Chip (SoC)[3], accentuating its
practical applicability. Additionally, various commercial implementations adhere to the
vector specifications[4] and implementations outside the Chipyard ecosystem, like the RISC-
V2[5].

Instruction sets incorporate specific instructions to speed up and standardize the inter-
face of certain operations. Modern processors from companies like Intel and ARM have
instructions dedicated to these tasks, named AVX[6] and SVE[7], respectively. In 2021,
RISC-V consolidated its ”V” extension[8] for vector instructions. Still, as of today, no open
implementation exists for the Rocket processor, the reference processor developed by the
creators of the ISA. Therefore, this project aims to fill this gap by integrating some of these
instructions into the Rocket processor.

2 Methodology

2.1 Chipyard Ecosystem

The Rocket Chip[9] is developed around the Chipyard framework. It assembles multiple tools
to enable the design, evaluation, and implementation of an SoC comprising the processor
core, memory, and all peripherals necessary for its operation. It also bundles all the software
needed for compiling and simulating code with the GNU Compiler Collection (GCC) and
the Spike simulator, as well as tools for FPGA-accelerated simulation and the Hammer
VLSI flow for physical design. However, it requires access to proprietary EDA tools and
process technology libraries.

The project is written in the Chisel hardware description language[10], an extension of
the Scala language that describes complex and parameterizable circuits utilizing object-

3

oriented and functional programming features.

2.2 Tools

The following tools were installed to run the project on an Ubuntu 22.04 system. It is
important to highlight that the process was done with version 1.8.1 of Chipyard and that
some steps may change for other versions.

The code in Figure 1 shows the configuration of environment variables and installation
of dependencies done before all other steps.

1 export RISCV=/opt/riscv

2 export PATH=$PATH:$RISCV/bin
3

4 sudo apt update

5 sudo apt install -y git help2man jq openjdk -8-jdk default -jdk

default -jre libusb -dev rsync libguestfs -tools expat bc

libncurses5 -dev gengetopt gettext software -properties -

common cmake device -tree -compiler libpixman -1-dev libgtk

-3-dev autoconf automake autotools -dev curl python3 libmpc

-dev libmpfr -dev libgmp -dev gawk build -essential bison

flex texinfo gperf libtool patchutils bc zlib1g -dev

libexpat -dev ninja -build scala

Figure 1: Environment variable configuration and dependency installation

2.2.1 GNU Compiler Collection

The GNU Compiler Collection (GCC) is a collection of tools produced by the GNU Project
supporting different programming languages, hardware architectures, and operating sys-
tems. GCC is distributed as free software under the GNU General Public License by the
Free Software Foundation.

As part of the riscv-tools, a collection of software toolchains used to develop and execute
software on the RISC-V ISA, GCC was also extended to target the RISC-V ISA. Although
the official GCC already supports RISC-V, the version distributed with riscv-tools will
always have the latest additions to the RISC-V spec, which is why we chose to compile it
from source code, following the steps in Figure 2.

2.2.2 Proxy Kernel

The RISC-V Proxy Kernel (pk) is another software included in the riscv-tools that enables
support for statically linked RISC-V ELF binaries in systems with limited I/O capability,
handling related system calls by proxying them to a host computer. This approach facilitates
the execution of code compiled without the modifications needed for bare-metal targets, like
the spike emulator.

4

1 git clone --recursive https:// github.com/riscv/riscv -gnu -

toolchain

2 cd riscv -gnu -toolchain

3 git submodule update --recursive

4 ./ configure --prefix=$RISCV --enable -multilib --with -arch=

rv64imafdcv_zicsr_zifencei

5

6 sudo make -j‘nproc ‘

7 sudo make linux -j‘nproc ‘

8 sudo make install -j‘nproc ‘

Figure 2: GCC installation steps

1 git clone https:// github.com/riscv/riscv -pk.git

2 cd riscv -pk

3 mkdir build && cd build

4 ../ configure --prefix=$RISCV --with -arch=

rv64imafdcv_zicsr_zifencei --host=riscv64 -unknown -linux -

gnu

5 make -j‘nproc ‘

6 make install

Figure 3: Proxy Kernel installation steps

2.2.3 riscv-tests

A suite of unit tests for RISC-V processors is available under the riscv-tests repository.
Although the tests were not used in this project’s scope, the compilation scripts were our
reference to target bare-metal execution. The steps in Figure 4 illustrate the installation.

1 git clone https:// github.com/riscv/riscv -tests

2 cd riscv -tests

3 git submodule update --init --recursive

4 autoconf

5 ./ configure --prefix=$RISCV/target
6 make -j‘nproc ‘

7 make install

Figure 4: riscv-tests installation steps

5

2.2.4 Spike

Spike is the golden reference functional RISC-V ISA C++ software simulator, providing
full system emulation. It is maintained by the same people who maintain the RISC-V ISA
and, therefore, is the first simulator to get new instructions.

It is a functional simulator that does not replicate the microarchitecture and timing
details. It also serves as a starting point for running software on a RISC-V target and
supports most extensions.

The simulator was compiled from the source code and used to verify the behavior of our
tests.

1 git clone https:// github.com/riscv/riscv -pk.git

2 cd riscv -pk

3 mkdir build && cd build

4 ../ configure --prefix=$RISCV --host=riscv64 -unknown -linux -gnu

5 make -j‘nproc ‘

6 make install

Figure 5: Spike installation steps

2.2.5 Verilator

Verilator is an open-source Verilog simulator that compiles into an optimized model wrapped
inside a multithreaded C++ module, which GCC then compiles.

The high-level tool then compiles the FIRRTL code, generating specialized Verilog code
for different targets such as FPGA, ASIC, and simulation. The Verilog output is then
compiled into a multithreaded C++ code by the Verilator simulator, which generates an
executable used to run a cycle-accurate simulation of code execution.

1 git clone https:// github.com/verilator/verilator

2 cd verilator

3 git checkout stable

4 autoconf

5 ./ configure

6 make -j‘nproc ‘

7 sudo make install

Figure 6: Verilator installation steps

2.3 RISC-V Instruction Set

The RISC-V ISA does not define a singular set of instructions but a foundation on which
other extensions can be incorporated for different specializations. Each distinct instruction

6

set is represented by a letter, with ”I” being the essential one for establishing a compiler
target and supporting modern operating system environments. Alongside these extensions,
the specification also has two main variants for 32-bit and 64-bit address spaces, further
expanding the flexibility of the ISA.

Some of these extensions are:

• M: Integer multiplication and division

• A: Atomic instructions

• F: Single-precision floating point

• D: Double-precision floating point

• C: Compact instructions

Besides those, other extensions define instructions for specific tasks, as is the case with
the ”V” extension for vector manipulation, which defines operations such as addition, sub-
traction, and multiplication of vectors. For this project, the Rocket Core is configured with
RV64I support.

2.4 Rocket Core

The Rocket Core is a scalar processor core[11], originally developed at the University of
California, Berkeley, and currently supported by SiFive, that implements the RV64I speci-
fication and can be customized with various extensions. The core follows a 5-stage in-order
pipeline, illustrated in Figure 7, which means each stage can only advance when the next
one is ready, simplifying execution flow control and avoiding complex synchronization efforts
as the added vector instructions take multiple cycles to complete.

Figure 7: Illustration of the five-stage pipeline[12]

7

The Rocket Chip generator combines a Rocket Core, a page-table walker, an L1 in-
struction cache, and an L1 data cache into a RocketTile that may feature accelerator cores
connected as coprocessors. The tile is then linked to the SystemBus, where the L2 Cache
and other peripherals are connected to complete the SoC.

2.5 RISC-V ”V” Vector Extension

The RISC-V ”V” Vector Extension adds instructions for data-level parallelism using a
set of 32 vector registers that can be configured for multiple data and vector sizes. Each
register has a fixed-size VLEN and can hold multiple vector elements. The instructions allow
for operating over all the elements at the same time, characterizing a Single-Instruction
Multiple-Data (SIMD) processing.

In the spirit of a reduced instruction set, the vector extension implements a configuration
instruction that allows the programmer to specify the data type represented in the registers,
thus reducing the need for specialized instructions for each data type. For example, if VLEN
is 128 bits, the unit can be configured for each register to hold two 64-bit values, four
32-bit values, eight 16-bit values, or sixteen 8-bit values. The first three configurations are
illustrated in Figure 8. After configuration, instructions may be used for integer, fixed-point,
and floating-point arithmetic, vector reduction, masking, and permutation operations.

Figure 8: Illustration of 128-bit register usage

3 The Vector Unit

In this project, we designed a vector unit integrated directly into the processor core, similar
to the floating-point unit. It is integrated within the core via multiple points in the pipeline:
the fetch stage to receive the instructions for processing, assuming control of the execution
flow upon identifying a vector instruction; the decode stage to receive the values of the
scalar registers; and the writeback stage to write to the scalar registers.

Moreover, the vector unit is connected to the L1 cache to access memory for loading
and storing vectors. These connections are depicted in the diagram of Figure 9.

8

Figure 9: Illustration of vector unit connection to rocket core

The connections exposed by the vector unit are defined in the VPUCoreIO class, as
illustrated by the code snippet in Figure 10. The inputs consist of the system clock, a cache
interface, the actual instruction, and the two register values, and outputs the writeback
data and a signal to stall the core pipeline while processing is not finished. There are also
connections to the Control and Status Registers, but their behavior is not implemented yet.

The cache interface works in a request/response model, featuring multiple request in-
terfaces connected to an arbiter. This arbiter selects the next request for processing once
the cache becomes available. In contrast, the response interface is shared, requiring the
connected modules to verify its identification when a response becomes available. The
HellaCacheIO interface contains both request and response signals specified by the Hella-
CacheReq and HellaCacheResp classes, respectively. The main characteristic of the request
class is the HasCoreMemOp trait, which defines the memory operation interface.

The code snippet in Figure 11 shows the HasCoreMemOp definition where the key
signals are: tag, serving as an identifier for the request; addr, representing the memory
address to access; cmd, indicating the type of operation (read or write); and size, indicating
the number of words to be retrieved.

The response interface implements, alongside the HasCoreMemOp trait, the HasCore-
Data trait, Figure 12. As implied by the name, it encapsulates the requested data. It’s
important to note that the response field is declared within a Valid context, indicating that
alongside the data, there is a valid signal to specify the data is ready to be consumed.

Internally, the vector unit follows the core five-stage pipeline, where the execution and
memory stages may span multiple cycles to complete their operations, as is the case for
multiplication instructions.

The first step to set up vector operations involves executing the vsetvli configuration
instruction to define the data type under consideration. Subsequently, the vle instruction
is employed to load the data into the registers, followed by a combination of operation
instructions acting simultaneously on all loaded elements. Finally, the outcome is recovered
from the vector unit with the vse instruction.

It is important to note that the vle and vse instructions encode the element size directly

9

1 class VPUCoreIO(implicit p: Parameters) extends CoreBundle ()(

p) {

2 val clock = Input(Clock())

3 val mem = new HellaCacheIO

4 val killd = Input(Bool())

5 val killx = Input(Bool())

6 val killm = Input(Bool())

7 val inst = Input(Bits (32.W))

8 val op1_data = Input(Bits(xLen.W))

9 val op2_data = Input(Bits(xLen.W))

10 val wb_data = Output(Valid(Bits(xLen.W)))

11 val stall_pipeline = Output(Bool())

12 val csr = new Bundle {

13 val vconfig = Input(new VConfig ())

14 val vstart = Input(UInt(maxVLMax.log2.W))

15 val vxrm = Input(UInt (2.W))

16 val set_vs_dirty = Output(Bool())

17 val set_vconfig = Flipped(Valid(new VConfig))

18 val set_vstart = Flipped(Valid(vstart))

19 val set_vxsat = Output(Bool())

20 }

21 val status = Input(new MStatus)

22 }

Figure 10: VPUCoreIO class implementation

within them and do not rely on the vector unit configuration. This feature reduces the need
to call vsetvli repeatedly when loading multiple vectors, for mixed-precision operations, and
for accommodating memory layouts without affecting the entire vector unit configuration.

As mentioned before, the VLEN parameter defines the size of the vector registers. Com-
bined with the element size configuration, it dictates the number of elements manipulated
by one instruction. For instance, one instruction would operate on four data values with
VLEN set to 128 bits and elements sized at 32 bits. In contrast, for VLEN set to 256 bits
and elements of 16 bits, the same instruction could manipulate as many as sixteen values.

10

1 trait HasCoreMemOp extends HasL1HellaCacheParameters {

2 val addr = UInt(coreMaxAddrBits.W)

3 val idx = (usingVM && untagBits > pgIdxBits).option(UInt(

coreMaxAddrBits.W))

4 val tag = UInt((coreParams.dcacheReqTagBits + log2Ceil(

dcacheArbPorts)).W)

5 val cmd = UInt(M_SZ.W)

6 val size = UInt(log2Ceil(coreDataBytes.log2 + 1).W)

7 val signed = Bool()

8 val dprv = UInt(PRV.SZ.W)

9 val dv = Bool()

10 }

Figure 11: HasCoreMemOp

1 trait HasCoreData extends HasCoreParameters {

2 val data = UInt(coreDataBits.W)

3 val mask = UInt(coreDataBytes.W)

4 }

Figure 12: HasCoreData

4 Experimental Results

The following sections will explain some applications of vector operations and show scalar
and vector implementations of the algorithms, as well as our results from verilator simula-
tion.

4.1 Vector addition

A direct application of vector instructions is a vector addition, denoted as the element-wise
sum of two vectors A⃗ and B⃗, each comprising n elements. The individual components of
the resultant vector C⃗ = A⃗+ B⃗ are defined as:

ci = ai + bi (1)

for i = 1, ..., n

Implementing a vector addition is not as simple as applying one instruction because
the vector registers are limited in size. Therefore, we need to iterate over several elements
that fit in the registers. Let’s call this parameter ”number done” (t0). The code snippet in
Figure 13, extracted from the examples provided in the RISC-V ”V” Specification, shows
an implementation of the algorithm.

11

1 vvaddint32:

2 vsetvli t0 , a0 , e32 , ta , ma

3 vle32.v v0, (a1)

4 sub a0 , a0 , t0

5 slli t0 , t0 , 2

6 add a1 , a1 , t0

7 vle32.v v1, (a2)

8 add a2 , a2 , t0

9 vadd.vv v2 , v0 , v1

10 vse32.v v2, (a3)

11 add a3 , a3 , t0

12 bnez a0 , vvaddint32

13 ret

Figure 13: Vectorized implementation of vector addition

Comparing this implementation with the scalar counterpart depicted in Figure 14, it
is evident that the ”number done” (t0) being higher than one makes the loop counter
increment faster than in the scalar implementation, leading to a lower number of iterations.

1 vvaddint:

2 lw t0 , 0(a1)

3 lw t1 , 0(a2)

4 add t2 , t0 , t1

5 sw t2 , 0(a3)

6 addi a1 , a1 , 4

7 addi a2 , a2 , 4

8 addi a3 , a3 , 4

9 addi t3 , t3 , 1

10 bnez a0 , vvaddint

Figure 14: Scalar implementation of vector addition

Table 1 compares the number of instructions used by both codes for different input sizes
and, for the vectorized version, VLEN sizes with 32-bit elements.

The parallel processing capability of vector operations substantially reduces the number
of iterations executed for the vector addition, amounting to less than half the number of
instructions executed compared to the scalar counterpart. This reduction doesn’t translate
directly into reducing the number of cycles, as some instructions take more cycles to be
executed, like the memory operations that will take analogous time, since the amount of
data fetched is comparable.

Some memory limitations are mitigated when the element size is reduced since one
vector memory step can fetch multiple elements in the same request, as opposed to the

12

Number of Instructions

VLEN - 128 256 512

Input size Scalar Code Vector Code

8 72 22 11 11

16 144 44 22 11

32 288 88 44 22

64 576 176 88 44

128 1152 352 176 88

Table 1: Comparison of the number of instructions for vector size addition

single-element behavior of the scalar code.

Another limitation shown in Table 1 is the parallelism limitation. As VLEN grows,
the number of instructions for the same input size decreases. Still, the vector registers are
underused for very small input sizes, and therefore, the number of instructions stagnates.

Table 2 compares the number of cycles taken between the two approaches using Verilator
simulation, meaning microarchitecture, cache, and timings are considered. The tests used
64-bit elements and a VLEN size of 128 bits, which do not benefit as much from parallelism
yet simplifies the memory interface requests.

Number of Cycles

Input size 8 16

Scalar Code 168 255

Vector Code 143 254

Table 2: Comparison of number of cycles for vector size addition

The initial implementation does not show a great benefit of the vector approach. The
unexpected result occurs due to a pipeline interlock problem in the memory access stage,
resulting in four extra cycles per memory instruction. Furthermore, an untreated data
hazard occurs between a vector load and a vector operation forces the addition of a nop
instruction after each vector loading, increasing the cycle count. Further developments of
the vector unit can mitigate these problems leading to significant performance gains in
future versions.

4.2 Dot Product

Another application of vector instructions is the dot product or scalar product, denoted
as the sum of the element-wise multiplication of two vectors A⃗ and B⃗, each comprising n
elements. The resulting value C = A⃗ · B⃗ is defined as:

C =
n∑

i=1

ai · bi (2)

for i = 1, ..., n

13

The implementation illustrated in Figure 15 shows the use of two other instructions:
vmul.vv, an element-wise multiplication of the elements of both vectors; and vredsum.vs,
a reduction of the elements of a vector into a scalar by summing. These instructions can
potentially speed up the process with parallelism, as opposed to the multiple instructions
used in the scalar implementation in Figure 16.

1 dotprodint64:

2 vsetvli t0 , a0 , e64 , ta , ma

3 vle64.v v0, (a1)

4 sub a0 , a0 , t0

5 slli t0 , t0 , 3

6 add a1 , a1 , t0

7 vle64.v v1, (a2)

8 add a2 , a2 , t0

9 vmul.vv v2 , v0 , v1

10 vredsum.vs v3 , v2 , v3

11 bnez a0 , dotprodint64

12 vse64.v v3, (a3)

Figure 15: Vectorized implementation of dot product

1 dotprod:

2 addi t3 , zero , 0

3 loop:

4 lw t0 , 0(a1)

5 lw t1 , 0(a2)

6 mul t2 , t0 , t1

7 add t3 , t3 , t2

8 addi a1 , a1 , 8

9 addi a2 , a2 , 8

10 addi a0 , a0 , -1

11 bnez a0 , loop

12 addi a3 , t3 , 0

Figure 16: Scalar implementation of dot product

Table 3 compares the number of instructions used by both codes for different input sizes
and, for the vectorized version, VLEN sizes with 32-bit elements. Once again, there is good
evidence that data-level parallelism can considerably speed up the application.

Table 4 compares the number of cycles taken between both approaches using the imple-
mented vector unit, with the same parameters as before, 64-bit elements, and a VLEN size
of 128-bits.

14

Number of Instructions

VLEN - 128 256 512

Input size Scalar Code Vector Code

8 66 21 11 11

16 130 41 21 11

32 258 81 41 21

64 514 161 81 41

128 1026 321 161 81

Table 3: Comparison of the number of instructions for the dot product

Number of Cycles

Input size 8 16

Scalar Code 154 257

Vector Code 145 271

Table 4: Comparison of number of cycles for dot product

Despite the signs of possible improvements, we again fell into an implementation limi-
tation, requiring further optimization to achieve the desired results.

5 Conclusion

The primary objective of this study was to implement a proof-of-concept vector unit inte-
grated into the Rocket Core and evaluate its impact on executing code that benefits from
data parallelization.

This work serves as a first step toward establishing a standard implementation of vector
instructions for the Rocket processor, and future endeavors may expand upon the current
results to cover the complete vector extension specification. Further research may deploy
the vector unit on an FPGA platform and perform a power analysis characterization to
investigate efficiency in different applications.

The experimental results along with the analysis of the examples demonstrated consid-
erable reductions in instruction count, but not as much for cycle counts. After the addition
of more instructions and optimizations, that should lead to significant performance gains
in future versions.

For those interested in delving deeper into the details of our work, the source code
for the Rocket Core with Vector Unit is openly accessible in the following repository:
https://github.com/iagocaran/rocket-chip. More information about the tests and tooling
is available in the following repository: https://github.com/iagocaran/PFG-23-62. We en-
courage the community to explore, contribute, and build upon this foundation.

15

References

[1] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. A. Patterson, and K. Asanovic, “The
risc-v instruction set.,” in Hot Chips Symposium, p. 1, 2013.

[2] C. Schmidt, A. Ou, and K. Asanović, “Hwacha v4: Decoupled data parallel custom
extension,” in Proc. Inaugural RISC-V Summit, pp. 1–40, 2018.

[3] J. C. Wright, C. Schmidt, B. Keller, D. P. Dabbelt, J. Kwak, V. Iyer, N. Mehta, P.-F.
Chiu, S. Bailey, K. Asanović, and B. Nikolić, “A dual-core risc-v vector processor with
on-chip fine-grain power management in 28-nm fd-soi,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 12, pp. 2721–2725, 2020.

[4] J. K. L. Lee, M. Jamieson, N. Brown, and R. Jesus, “Test-driving risc-v vector hardware
for hpc,” 2023.

[5] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos, “Risc-v2: A
scalable risc-v vector processor,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5, 2020.

[6] C. Lomont, “Introduction to intel advanced vector extensions,” Intel white paper,
vol. 23, pp. 1–21, 2011.

[7] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, et al., “The arm scalable vector extension,”
IEEE micro, vol. 37, no. 2, pp. 26–39, 2017.

[8] Y. Kimura, T. Kikuchi, K. Ootsu, and T. Yokota, “Proposal of scalable vector extension
for embedded risc-v soft-core processor,” in 2019 Seventh International Symposium on
Computing and Networking Workshops (CANDARW), pp. 435–439, 2019.

[9] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip gen-
erator,” Tech. Rep. UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, Apr 2016.

[10] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović, “Chisel: Constructing hardware in a scala embedded language,” in
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, (New York,
NY, USA), p. 1216–1225, Association for Computing Machinery, 2012.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quanti-
tative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 6th ed.,
2017.

16

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quanti-
tative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 6th ed.,
2017.

