
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Active Learning for Natural
Language Data Annotation

A. G. M. Purim J. C. dos Reis

Relatório Técnico - IC-PFG-23-55

Projeto Final de Graduação

2023 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Active Learning for Natural Language Data Annotation

Andreis Gustavo Malta Purim Julio Cesar dos Reis

01.12.23

Abstract

Developing task-oriented conversational systems requires substantial annotated data, posing a chal-
lenge in Natural Language Processing (NLP). Manual annotation is time-consuming and error-prone,
hindering progress for smaller AI teams. This work presents a novel Dialog Annotation Methodology
and a ready-to-use adaptable software tool offering automatic annotation. The automatic annotation
model is based on a cascade of Machine Learning and Large Language Model annotation to annotate
entities and intentions in natural language dialogs.

1 Introduction

The Natural Language Processing (NLP) is an area of research in Artificial Inteligence (AI) and computer
science focused on the processing of natural human languages, such as Portuguese or English. This pro-
cessing typically involves translating natural language into numbers that computers can use to interpret it
[1]. In this context, language models are often applied to interpret written text. Therefore, NLP can be
understood as an aspect of AI that helps computers understand, interpret, and use human languages. NLP
enables computers to communicate with people using human language and allows computers to read text,
listen to speech, and interpret it [2].

NLP is used to understand the structure and meaning of human language by analyzing different aspects
such as syntax, semantics, pragmatics, and morphology. Computer science then transforms this linguistic
knowledge into rule-based machine learning algorithms that can solve specific problems and perform desired
tasks [3]. Language models quantify the probability of a sequence in a text, allowing them to compute
the likelihood of a sequence of words in a text being plausible. Such models have various applications,
such as automatic translators, speech recognizers, and dialogue systems [4]. In addition to the mentioned
applications, these models can be used for constructing datasets through textual annotation.

In particular, virtual customer service through AI chatbots is a rapidly growing area for businesses [5].
It requires large amounts of structured dialogue data [6]. However, annotating this data is typically one of
the most exhaustive, time-consuming, and financially demanding tasks for companies and research teams.

Generating these annotated datasets can involve human annotators (an assisted approach) or be done
automatically based on data characteristics (an unassisted approach). If done by more than one person, it can
result in disagreements in the annotation pattern (e.g., annotating an entity or intention) [7]. Additionally,
studies indicate a lack of precise guidelines adapted to the peculiar human-AI nature of conversation system
interaction [8], resulting in discrepancies and inconsistencies [9].

This study emphasis the annotation of Entities and Intentions. An entity refers to a specific object,
person, location, or concept that is recognizable and distinguishable within a given tex - while intentions
refer to the underlying purpose or goal behind a particular statement or action. For instance, in a customer
service chatbot, identifying the entity “product” and the intention “purchase” would enable the system to
provide relevant assistance when a user wants to buy a specific item.
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Existing tools that support annotation are not user-friendly, often requiring technical knowledge, lacking
quick adaptability, and having non-intuitive interfaces [10]. They rarely support structured data like a con-
versation between two or more agents. Moreover, there is no standardization and interoperability between
data structures among tools, and there is no ease for cooperative annotations (one or more users annotating
the same data simultaneously).

Previously, we introduced a new online dialogue annotation tool called Assis [11], aiming for ease of
use and quick adaptability and integration with data generation tools. The main contribution of this current
research is expanding the tool into being capable of fully automatic annotation, reducing the main bottleneck
in annotation time. The system assisted in annotation in previous versions, but the human operator was still
responsible for the bulk of annotation.

In this investigation, the new, improved Automatic Learning method, with Active Learning, can now
change the bulk of annotation to a cascade of Machine Learning, Deep Learning, or Large Language Models,
with the human operator responsible solely for checking the correctness of annotation results.

The methodology employed in this study involved a systematic approach to addressing user needs in
the annotation process. Initially, users’ common challenges and requirements during annotation tasks were
identified. Then, tools were implemented as an annotation software to mitigate these challenges and improve
overall efficiency. To assess the effectiveness of the software, we conducted a quantitative test, comparing
the time required for manual annotation without the aid of tools versus the time taken when utilizing the
newly implemented tools and a qualitative survey t the users. The objective was to quantify and evaluate the
impact of tool integration on annotation speed and accuracy.

The study produced a new online natural language processing annotation tool with an active learning
module, designed to expedite annotation times. Quantitatively, the tool demonstrated faster annotation
speeds. Additionally, a qualitative analysis verified user satisfaction with the provided tools. The results
collectively highlight the efficiency gains and user approval of the developed annotation tool.

This report is organized as follows: Section 2 presents works related to this study. Section 3 describes
our annotation methodology of the work while 4 presents the software. In 5 We present the organized
experiments and strategies for experimental evaluation nd the obtained results, while in Section 6 develops
a discussion on the results. Finally, we present a conclusion in Section 7.

2 Literature Review

Online Annotation Tools. There is no shortage of tools for annotating textual data: Stav[12], Brat[13],
WebAnno[14], WordFreak[15], Palladin[16], Incepttion[17], Doccano[18], Pal[7], and Yedda[19].

A comparative analysis among existing tools and the desired behavior for dialogue annotation revealed
several limitations. Table 1 presents a comparative analysis of the available tools, which have some limita-
tions, in which the need for installation and the impossibility of annotating mobile stand out.

In the context of the Table 1, we separate annotation (whose definition will finally be formalized in detail
in Section 3) as Manual, Automatic and Distributed, but in short: Manual annotation refers to the ability
of users to annotate by clicking and manipulating tools to manually label entities and intentions; Automatic
annotation refers to automatic tools available to the user to annotate parts of the text, either using Machine
Learning models or simple heuristic programs. Collaborative refers to the capacity of many users to edit
the same document without causing conflict, either by separating the document in batches to different users
and joining them togheter after, or by allowing an online, in-real-time, multiuse of the tool.

No-deploy refers to tools that are available completely online without the need for configuration. In
most cases, this means the user has to install the software, run a package manager and possibly configure
his system to run - which is one of the major burdens to most users, especially those without technical
backgrounds. As can be seen, no tool in the current literature review allows it.
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Vocabulary Suggestion means either that the tool can import annotation vocabulary (entity or intentions)
from previous texts, or that a smart module in the tool is capable of suggesting new entities or intentions to
appearing texts.

Table 1: Comparative analysis of available annotation tools

Tool
Annotation No Deploy

Needed
Vocabulary
Suggestion

Documented
Methodology

Language
Manual Automatic Collaborative

Stav x x Java
Brat x x x Java

WebAnno x x Java
WordFreak x x Java

Palladin x x x Java
Incepttion x x x x Java
Doccano x x x Python

Pal x x x Python
Yedda x x x Python

Tools with an intuitive interface. Stav provides excellent annotation visualization but is restrictive in
the accepted data format [12]. Brat offers powerful annotation functions and rich visualization capabilities
but lacks result analysis integration [13]. WebAnno can compare annotation discrepancies for each sentence
but is not ideal for dialogues [14].

Tools with active learning. WordFreak adds an annotation recommendation function and integrates ac-
tive learning to classify unannotated sentences based on recommended confidence, but lacks post-annotation
analysis support [15]. Palladin integrates active and proactive learning for annotation but requires other ac-
tive/proactive learning algorithms for large-scale annotation [16].

Fast annotation. Inception generally supports extension annotation use cases but needs performance
improvements for large-scale tasks [17]. Doccano provides annotation features for text classification, se-
quence labeling, and tasks but does not use a standardized data structure [18]. Pal can significantly reduce
annotation time but, like other tools, lacks active learning [7]. Finally, Yedda lacks an active learning strategy
for a supervised sequence labeling model [19].

• All tools allow entity marking for NER (Named Entity Recognition) tasks but lack the annotation of
intents in individual messages—only for the entire text—compromising chatbot AI learning.

• None of the tools presented focus on dialogues, rarely supporting structured data like messages in a
chat between two agents (messages separated by turns). This often requires running a script to format
messages as a single text, causing information loss during annotation.

• Installation or deployment is required, typically hindering use by companies or teams lacking exten-
sive deployment knowledge.

• Non-standardized data structure: each tool has its particular way of importing, storing, and exporting
data, requiring a custom conversion script for users employing various tools.

• Vocabulary suggestions and pre-annotated data import exist only in three of the analyzed tools (We-
bAnno, Inception, Yedda).

• None of the tools support annotation on mobile devices. Although not the primary use of the tools, it
could be a necessary feature for users without access to personal computers.

• Few tools integrate with automatic annotation/Artificial Intelligence tools, and if they do, implemen-
tation is typically challenging.
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The evaluation is given qualitatively and interpretively, based on the user’s journey and experience in
various real-world case studies, assessed through a satisfaction questionnaire and interviews with users. This
is not only because it is a tool based on Human-Machine Interactions but also because the final result—a
chatbot with AI—is unsupervised. Thus, the “correctness” of messages is perceived through naturalness and
user satisfaction.

NLP Machine Learning Methods. Bidirectional Encoder Representation from Transformers (BERT),
one of the basis of the current research, has a transformer-based architecture and can be pretrained on
specific datasets [20]. BERT, designed by Google, has surpassed boundaries in various NLP areas. The
pretraining of the language model has proven effective in enhancing many NLP tasks. It includes sentence-
level tasks, such as natural language inference [21], which aims to predict relationships between sentences
holistically, as well as token-level tasks like named entity recognition and question answering, where models
need to produce token-level outputs [22]. It is also used in various languages, including Portuguese [20].
Originally pretrained on English texts, recent work by Brazilian researchers resulted in pretraining BERT on
Portuguese texts. This Portuguese pretrained model, named BERTimbau, extends advancements achieved
for the English language to Portuguese and is specifically tailored to Brazilian culture [23]. Because of the
familiarity of many of the main users of the Assis tool, the BERTimbau model was chosen to be a compoment
of the Active Learning module.

BERTimbau has important applications for corpus construction. As it has been pre-trained on large
amounts of Portuguese texts, it is highly applicable to processing conversations and messages in this lan-
guage, making it suitable for tasks like textual annotation of datasets [23]. In the context of tasks performed
by BERT, two approaches are highlighted: the feature-based approach and the fine-tuning-based approach.
These approaches differ in how the model is used and updated but can be applied to the same task.

Feature-based tasks involve applying the pretrained model to a textual dataset to generate a vector repre-
sentation (embedding) of the text. The generated vectors (features) are then used in models specialized for
specific tasks, such as classification. In this case, the BERT model’s parameters are not altered, as it is used
only for text embedding. On the other hand, the fine-tuning approach involves updating the entire model.
This method adds a final classification layer to the model, and during training, all parameters are refined
together. In this case, the entire pretrained version of the model is adjusted to perform the specified task.
For the task of constructing a corpus from dataset annotation, both approaches can be used, as annotation
can be seen as a text classification task.

Annotation Methodology. We understand as a Annotation Methodology (AM) any instructions and
procedures describing how data should be annotated. In the context of NLP, an annotation methodology is a
comprehensive framework that delineates the systematic process of annotating various aspects of linguistic
data, encompassing intentions, entities, and other relevant linguistic features.

Remarkably, to the best of our knowledge, the development of a comprehensive annotation methodology
for NLP data has not yet been explored in the broader literature. While existing methodologies address
specific aspects such as geo-related semantic annotation [24] or sentiment annotation in texts [25], a general
annotation methodology that encompasses the diverse facets of NLP remains conspicuously absent. This
underscores the need for further research and exploration in developing a unified annotation methodology
that can enhance the quality and consistency of annotated NLP datasets across a range of applications, which
is one of the contributions of this research.

3 Our Annotation Methodology

Tools such as stav [12], claim to be “fast”, or Paladin [16], that claims to be “faster” than other tools in time
of annotation. However, these papers do not define - for example - what is considered the time of annotation.
Should the download and configuration of a tool be considered at the time of annotation? Should the user’s
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time to navigate the menus be part of the annotation time?
We aim to create a cohesive definition for many of the terms mentioned but not defined by published

Annotation Tools to serve as a basis for developing our solution.

3.1 Definitions

Consider the following definitions:

• A word is a sequence of characters, numbers or symbols concatenated in order. Words are indivisible,
and are separated from other words by punctuation marks or spaces (including line breaks). A priori,
the methodology does not concern with semantic cohesion, that is, if the words “makes sense” -
however, we assume words carry certain relations to one another, thus, words, sentences and texts
carry meaning in relation to one another (even if said meaning is a simple statistical correlation).

• A sequence of words is an ordered finite sequence of words such that W = {w0,w1,w2, ...wn}, where
W is the sentence, wi a word and n the number of words, these words are separated by a punctuation
marks or spaces which are not relevant to the methodology. We assume the order of words is still im-
portant because they may carry semantic meaning, thus {w1,w0,w2} ̸= {w0,w1,w2}. This definition
differs slightly from linguistics, which would define clauses, phrases and sentences as different and
would attribute value to ideas such as verbs and subjects being present.

• For a more concise notation, hereinafter we will refer to sentences as any large sequence of words, or
simply S =

⋃k
i=1Wi.

• An agent is any being (human or otherwise) capable of producing sentences, sentences created by
agents are marked as Sa.

• A text is an ordered finite sequence of sentences such that T = {S0,S1,S2, ...,Sm} separated by punc-
tuation marks and spaces. Note that texts can contain sentences from multiple agents. Texts created
by a single agent are called a monologue and texts with two or more agents are called a dialogue. Per
our definition, there can be no text without an agent.

• A message is an uninterrupted, ordered finite sequence of sentences in a text T = {S0,S1,S2, ...,Sm}
created by the same agent. In monologues, we have that there is a single message M = T , in dialogues,
however, messages from different agents take the form of Ma = {Sia ,Si+1a , ...,Ska} where 0 ≤ i ≤ k
and i ≤ k ≤ m.

With these definitions in mind, we can now help define what annotation is. For the purposes of limiting
our scope, we will focus on the entity, intention and topic annotations. An annotation is the act of mapping
a word, sentence or message, depending on the situation, to an equivalent semantic label - such as shown in
Figure 1. Note that these functions/relations are not necessarily injective or surjective.

Intention Annotation: An intention refers to the underlying goal or purpose expressed by any agent
in a sentence or message. In a semantic analysis, intents are usually correlated to action verbs, such as
“question”, “greet”, “inform”. We will call the specific label that defines the a certain purpose as intention
label. Intent Annotation is the act of mapping any sentence or message S to one or more intentions i in a list
of IL labels using an mapping relation fintent(S, IL) : S → i. Note that fintent(S) is a relation, not necessarily a
function, because a single sentence can map to multiple intents.

Finally, Intent(T, IL) is an unordered set of tuples that contain the a sentence Si and a intention label i j

in a text T . Take the following example of a dialogue between two agents:

• S0: [Agent 1] “Hello. Can you hear me?”
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Figure 1: Example of Entity Annotation and Intention Annotation.

• S1: [Agent 2] “Hello. Yes.”

• S2: [Agent 1] “Can you close the door?”

And the the following intents:

• ia: Greet

• ib: Inquire

• ic: Answer

In this case, the final unordered set of tuples representing the messages and its corresponding intents is
Intent(T, IL) = {(S0, ia),(S0, ib),(S1, ia),(S1, ic),(S3, ib)}.

Annotation systems that allow for a single intention per sentence/messages are called single-intention
annotations, while annotation systems that allow for a sentences or messages to have multiple intents are
called multi-intention annotations. As are all the tools in the literature review and the tool developed in this
project, most systems available are multi-intention.

Entity Annotation: A named entity, or simply entity, is any specific type of object, concept, or “thing”
that is mentioned and identifiable in a sequence of words. In most cases, entities are nouns. Conversely, we
can state that a single entity label is a concept that can group multiple disparaging semantic words. Thus, an
Entity Annotation is the act of mapping a word or a short sequence of words W = wa,wa+1, ...wb within a
sentence to the corresponding Entity e of a list of EL labels using an mapping function fentity(W,EL) : W → e.

Finally, Entity(S,EL) is an unordered set of tuples that contain the each sequence of words Wi and a
entity label e j in a sentence. Take the following sentence S:

• w0: “Julio”
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• w1: “went”

• w2: “to”

• w3: “São”

• w4: “Paulo.”

Consider that for convenience, we can join w3 and w4 in the sequence of words W3,4 = {w3,w4}. Now,
consider the following entities:

• ea: Person

• eb: City

Thus, we have that Entity(S,EL) = {(w0,ea),(W3,4,eb)}. For convenience, we may also simply write
Entity(S) = {(“Julio”,Person),(“São Paulo”,City)}.

Topics Annotation: A textual topic is a the underlying goal or context of a group of texts, which can
be from one or many agents. Topics are a species of grouping of intents in sequential messages. Topics
represent, for example, a certain part of a conversation that refers to a specific context that may not comprise
the entire text: two users talking about the climate, before changing the conversation to their plans to the next
day. Per our definition, we also consider that entities are consistent inside a topic - that is, if a certain noun
is tagged to an entity, every following message in the topic will know that if the entity label is mentioned,
it may content the semantic context of the noun. This is a powerful concept for annotation methodologies
because in NLP we may train language models to “remember” facts and information inside a context.

We call vocabulary V (T ) the list of lists of entity labels, intention labels, and topic labels of a given
text. In our current definition. V (T ) = (IL,EL,TL).

Disconsidering topics (for a briefer notation), with this definitions, we can create the notation Annotate(T,V ),
that is an unordered list of two sets: all mappings of every sentence to the existing intents, and every se-
quence of words that represents an entity to the existing entities. Mathematically:

Annotate(T,V ) =

(⋃
S∈T

Intention(S, IL),
⋃
S∈T

(⋃
W∈S

Entity(W,EL)

))
(1)

An annotator can use the mapping functions/relations to annotate texts. When the annotator is human,
we refer the the act of annotation as manual annotation. When there are multiple human annotators capable
of annotating the same text in an incremental, automatic manner (that is, there is no need for a human
operator to solve conflicts and merge annotations), it is called collaborative annotation. If there is one or
more human annotators and one or more computer scripts (thus, machine annotator - be they simple codes
to Large Language Models) annotating togheter, but the bulk of annotations is made by the humans, it is
called assisted annotation - if the bulk of annotations is made by the computer scripts, it is called automatic
annotation.

Annotation time, error and fatigue: Consider that to complete an annotation task, an annotator needs
to take a n number of actions a, such as opening a program, clicking a button, writing in his keyboard, etc...
Consider A(T ) the set of actions needed to fully annotate a text.

The main objective of any annotation tool is reduce the number of actions taken by a human annotator
as much as possible. That is, the objective of annotation tools is always to reduce the burden of annotation
on human users. Thus, we can finally call a tool a more efficient than tool b when |Aa|< |Ab|.

The most simple and practical way of calculating a tool efficiency is by simply running a background
script to count the number of clicks from the beggining of an annotation to its end.
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Now, consider that total annotation time, or simple total time T , is the measure of time from the moment
a user starts an annotation task to its end. It includes time to configure a tool (if needs be), open a text,
create entities and intentions. Depending on the current need, different methodologies may create different
definitions: for example Td for download and configuration time, Tv for the creation of vocabulary, Ta for
annotation time, etc...

Finally, we can say that a tool 1 is faster than another tool 2 if T1 < T2.
Now, consider that given a vocabulary V (T ) of a text T , we have always the same complete out-

put/mappings. That is, we can say that a completely annotated text is that which all mappings have been
done.

We define a annotation error when an annotation maps incompletely T . That can happen, for example,
when an entity was not mapped to its label, or a sentence was not labelled to its intent, or when two an-
notations of the same vocabulary and same text yield different results. We may define Error between two
anotations a and b as the different between unordered sets:

Error = Annotatea(T,V )−Annotateb(T,V ) (2)

If Error =∅, we can simply say there is no error/difference in annotations.
Finally, consider the concept of annotation fatigue: We propose the more actions A that human annota-

tors has to execute, the more propense an annotation is to have errors:

|A1| ≤ |A2| ⇒ |Error1| ≤ |Error2| and |A1| ≥ |A2| ⇒ |Error1| ≥ |Error2| (3)

3.2 Dialog Annotation Blueprint (DAB) Methodology

The literature review addresses the need to annotate large volumes of dialogues and highlights the lack of
accessibility and standardization in existing annotation tools. Here, we introduces a unified methodology
called Dialog Annotation Blueprint (DAB) based on various case studies. Furthermore, this methodology
has served as the foundation for developing two free software tools designed for creating and annotating
data in dialogues. This aims to streamline the annotation process and promote greater automatic integration
between systems, making it more accessible to non-technical users.

As defined previously, we define as a annotation methodology the detailed procedures and steps of
completely annotating a given text. DAB serves as one of the possible methodologies that could be created
with this definition. DAB is divided into macrosteps, As shown by Figure 2.

Figure 2: Macrosteps of the Dialog Annotation Process in the DAB methodology.

The Data Input/Creation step is responsible for connecting to data creation tools such as MCCD [26],
as shown in Figure 3. At first, it reqquests from the user if they would like to configure a Data Input
Endpoint (DIE). If added, the system will make a test request. If the test request has worked, the next step
in the annotation process is to retrieve data schemas, configurations, metadata, and vocabularies from the
endpoint.
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Figure 3: Data Input/Creation Step

Figure 4 shows the second step: the API Configuration Step. This step is important for any tool using
the methodology to configure automatic annotation, server imports, and dialogs data.

Figure 4: API Configuration step

Figure 5 represents the Data Load step: It is a sanity check of the loaded dialog data and configuration of
vocabulary. It should also be in this step that any visual interface is set with the loaded data, and the dialog
control data (i.e., the annotation metadata) is created.

Figure 5: Dialog Load Step

The Vocabulary Creation Loop is shown in Figure 6. This loop begins after loading the dialog data
and remains in loop until the dialog is marked as finished by the user. This is the step which creates and
manages the vocabulary (intents, intentions, topics). When finished, it should automatically save and export
vocabularies.

Figure 7 presents the Dialog Annotation Loop, which contains the Manual Annotation and Automatic
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Figure 6: Dialog annotation step/loop
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Annotation Modules. This loop repeats until the user marks the dialog as finished. The manual annotation
module should be capable of accepting User input in marking the dialog with the available vocabulary.
Meanwhile, the Automatic Annotation Module is responsible for the Machine Learning/LLMs that annotate
dialogs in the Automatic Annotation Endpoint (AAE). The tool then returns the annotation data to the
Manual Annotation Module.

Figure 7: Dialog annotation step/loop

Finally, the Export Step is presented in Figure 8. The export step is responsible for exporting files and
saving configured data and metadata in the endpoints.

4 Assis Software Tool

Standardized Formatting with MultiWoZ Data
The MultiWoz dataset stands out as a reference in the field of textual data due to the quantity and diversity

of texts, dialogues, and domains. This dataset consists of ten thousand fully annotated dialogues distributed
across seven different domains inserted in a general context of customer service. In addition to providing a
significant amount of structured and annotated data on a larger scale than previously available, it establishes
a useful structure of organization and annotation for conversations that can be applied in the construction of
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Figure 8: Export Step

other datasets [27]. Therefore, the Assis tool was designed in such a way that the entire process uses the
JSON format structure of MultiWoz.

In summary, the JSON data format of MultiWoz contains two main types of data: vocabulary (often
referred in by MultiWoz as “ontology”), which functions as a dictionary of all types of intentions and
entities (and their respective values); and dialogues, a set of all dialogue data. Each dialogue represents a
conversation between a user and the system (AI or Oz); it is identified by an id and the domain it implies
(what the conversation was about). Each exchanged message is called a turn. The property of dialogues in
the JSON file is the part of the data that will be annotated, filled, and manipulated, while the ontology will
present the annotations created in a categorized manner.

This approach not only eliminates the need for conversion scripts but also allows interoperability be-
tween tools since it is a well-known and well-defined format - enabling other dialogue generation or AI
tools to be easily integrated with Assis. Another advantage created by this usage is the ability to import data
since the ontology serves as a dictionary of possible annotations.

In general, the Assis annotator allows tolerance in the format of input data. Although the model is
structured with inspiration from the MultiWoZ format, a JSON file that has the dialogue format but lacks all
the properties will still be accepted (for example, ids, agent/user identifiers, and ontology may be missing
without major consequences in the system).

Text Editing, Topics, and Entity Propagation
Chatbot AIs are typically oriented towards two tasks: identifying the user’s message intentions (whether

to demand or provide information, notify events, among others), and identifying the entities contained in the
message (companies, organizations, people, and other Figures that can be described by their name or value).
The MultiWoZ format for dialogues already provides for both types of annotation.

However, one of the innovative concepts implemented by the Assis Tool is the concept of topics. Topics
exist to describe a broad part of a dialogue and help developers choose only relevant parts for their AI
learning: It is a group of turns and functions as a general intention. For example, a long dialogue may
sometimes cause the user and the system to switch between various topics (i.e., asking for basic information,
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inquiring about specific products, and asking about delivery times).
Assis has a non-invasive architecture for manipulating MultiWoz data, allowing the user to use topics or

not. Another consequence of this implementation and a unique feature of Assis is allowing the user to make
changes to the text (via the pencil icon, next to the name) and restore the original version if there are errors.
The editing tool is capable of maintaining the already annotated intentions and topics in a message.

Finally, another innovation of Assis is entity and intention propagation, created after verifying this need
during use cases. Propagation means that when exporting files, the user can allow certain entities or inten-
tions to “appear” in later messages. That is, if in the first message the customer provides, for example, the
CPF (considered an entity), it is useful for this data to be stored so that in later messages the AI model still
knows the given value.

Figure 9 shows an example of annotated dialogues in the tool with entities, intentions, and topics.

Figure 9: Example with entities: company and attendant; intentions: greeting, req name, resolved outside,
and farewell; and topics: topic1

Integration with Other Tools
Figure 2 also presents another important feature of the Assis tool: by being designed with an interoper-

able methodology in mind, Assis can be integrated with other tools. The main goal is to allow companies
and users to create or adapt tools as they see fit, avoiding one of the main problems of related works: the
difficulty of adapting/integrating all desired functionalities into the tools.

The architecture of Assis is designed in two separate modules: the frontend (which includes manual
annotation and management tools with other tools) and the backend (with automatic annotation tools using
BERT), communicating through APIs.

Since the input and output of both parts of the tool are APIs, they can be used separately. One case study
was the creation of a dialogue data generation tool that allowed the Assis frontend to automatically collect
data via API. The same applies to automatic tools: just configure the endpoint on the tool’s options page for
Assis to start sending data for automatic annotation (Figure 10 shows an example of using the implemented
BERT from Assis (Vanilla) and a specialized BERT from an example company: ’CompanyXY’).

Easy Access
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Figure 10: Example of configuration of endpoints in the tool

One of the major problems identified with other tools is the lengthy process of installing the program
and/or deploying it on the company’s own server. This means that even small use cases will take a consid-
erable amount of time and cannot be done by teams without technical knowledge.

The Assis tool circumvents this problem by having its file management module and manual annotation
tools in the frontend module, programmed in React (JavaScript) for use as a static page. This means that the
main functionalities (except those involving artificial intelligence) are available for online use in the current
version of the tool. Users can also use the project on their own GitHub with just a few button clicks, allowing
for a high level of modifications and different uses.

Following the philosophy of single-page application with React Hooks, each item on the screen is man-
aged by JS functions, allowing a developer to use the project as a base and add a new page or a new annota-
tion button without having to change the rest of the system. The tool has a significant number of fail-safes
to ensure the continuous execution of the program, even in case of failures (e.g., in the JSON format).

Quick and Intuitive Visual Annotation
The purpose of annotation tools is to reduce the exhaustive annotation process - which is usually the

bottleneck of Natural Language Processing technology development. Therefore, a fast, intuitive UI that
facilitates visual annotation is essential.

The tool was based on the philosophy of the MUI (Material UI) library, used by various companies such
as Spotify, Netflix, and NASA. The focus of the tool is to create an easy and agile interface for the user,
allowing high freedom, speed, and configurability (it is the only tool so far capable of being used entirely
in mobile applications without visual bugs or compromising usage time, as shown in Figure 11). The user
can create and configure the vocabulary created. By clicking next to the name of the speaker (Agent or
Client), the user can edit the text in the message or add a topic/domain. The user is free to navigate between
dialogues.

The annotation tool in the frontend (in its current version) has a floating action button for dialogue
management (select for annotation, mark as deleted, mark as complete). And three floating action buttons
for each annotation vocabulary, domains (or topics), intentions, and entities. It is the only tool where the
user can select all three at the same time and annotate them in parallel (since each annotation has a different
scope, the tool knows which one to use), meaning the user does not need to open the menu to re-select an
entity or intention.

Import and Export of Vocabulary
Another major contributor to the excessive data annotation time is the vocabulary creation phase (re-
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Figure 11: Example of the tool on a tablet screen

ferred to in the MultiWoZ format as “ontology”). Every time there is a new file to be annotated, the user
needs to create the entities and intentions they want to use - even if they have used them before. This also
tends to cause annotation errors since different users (working under the same file) may name variables
differently (e.g., “accepts card” and “ac card”), causing incorrect learning for AI. In general, the larger the
file, the more time will be spent creating entities.

Following the idea of tool inter-compatibility and the MultiWoz format, the tool has a function to import
the ontology field (vocabulary) from MultiWoz - typically complete with all possible entities and intentions
for a given topic. This data can come from the MultiWoz dataset, created by the client, imported by JSON,
or an endpoint from a server. The tool has an agnostic input approach: if the ontology is empty or does not
exist, it will create the vocabulary based on existing annotations. Similarly, the tool by default will always
export the ontology in the MultiWoz format, allowing annotated files to be reused as vocabulary for new
files.

The backend module can also store a copy of the vocabulary used. It is also possible to limit users to only
use existing vocabularies on the server. The tool is also capable of annotating metadata for annotation (extra
variables in the MultiWoz format that are normally used by the tool to store less important information, such
as the color of each entity or intention).

4.1 Active Learning and Backend Module

As explained in the integration with other tools, each person or organization can implement their own module
on a server and communicate through API calls with the module. Consider a dialogue with size |D|, that is,
the |D| all the sentences in a dialogue, and N represents the number of sentences sent to an computer agent
to be annotated.

Per our previous definition in Section 3.2, a fully manual annotation, is one that does not have a config-
ured endpoint, and all annotation will be done by the user (N = 0). Semi-automatic a backend which only
annotates small parts of the text (a conversation or a message) whenever there is input from the user to do
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so (0 ≤ N ≤ |D|).
On the other hand, a fully automatic server is one which already receives the entirety of data (N = |D|)

when after the user has uploaded, and starts the annotation process using computer scripts and machine
learning models. By contrast, a fully automatic server doesn’t require initial user input to start annotating,
and will try to annotate as much data is possible. The annotated data is returned to the user, which will now
verify and correct the annotation. The final corrected annotated text is returned to the server.

Both semi-automatic and fully-automatic options can have multiple pre-trained models, such BERT,
BERTimbau, or even simpler models such as Multilayer Perceptrons. In our experiments, we used BERTim-
bau for entity annotation and a MLP for intention annotation. These models are stored and saved in internal
folders, and will be loaded and be ready to use after initialization. Note that for the annotation studied by
this work, both entity and intention models are always Machine Learning Classifiers.

The proposed “standard” backend server was developed in Python with language models like BERT
using the Flask microframework, which allows web development in python with a simple but extensible
core. The active learning approach [28] employed in the developed backend module allows the models to
function, initially, as annotation assistants and later, when performing well enough, as complete annotators.
This approach takes into account continuous feedback of dialogues annotated by humans in the model and
consists of three stages. When an API endpoint address is configured by the frontend module on the API
configuration step (Figure 4 and Figure 10), the following actions are taken:

1. Frontend sends a GET request to address index.

2. Backend returns metadata regarding current run (which model is loaded, how many data has been
annotatted, vocabulary size, and others) and a dictionary of actions and endpoints.

3. Frontend sends a GET requesting the vocabulary and checks if there is any discrepancy (different
sizes).

The frontend module can request a few actions to the backend, a few are:

• Load Model. When initialized, the backend server already loads an annotation model. This request
exists if the the frontend/user desires another model or a new instance of the model.

• Save Model. This requests flags the server to save the current model being executed in the model
folder. This action exists should some users desire to “overwrite” older models, or save the models
with retrained data.

• Annotate Data. This action sends a number of dialogs (as explained previously, a fully automatic
server will request from the frontend ALL available dialog data) to the server, which will now be
delivered to the Machine Learning models to be annotated. The resulting annotated data is returned
to the frontend.

• Retrain Model. This action sends a number of annotated dialogs to be used to retrain the models.
Depending on how the Machine Learning model is implemented, either the server will retrain using
only the new dialogs, or using the new dialogs and old stored dialogs. This is the action that defines
the Active Learning loop.

• Request Metadata. This request demands for all the available metadata in the server (current loaded
model, existing saved vocabulary, and others), and servers mainly to inform the user of the backend
status via the frontend module.
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• Request Vocabulary. This request demands for the saved vocabulary in the server. This is used to
verify if the vocabulary has been changed, or if the imported vocabulary from the file matches the
vocabulary existing in the server.

• Upload Vocabulary. This action uploads a new vocabulary to the server, overwriting the previous
one. This is used when new entities, intentions or topics are created.

As seen previously in Figure 7, the first stage is model training, where they receive dialogues with
their respective annotations and learn recognized annotation patterns in these examples. The second stage
is semi-automatic annotation of dialogues by models (recommendation of entities and intentions), where
they receive non-annotated dialogues and, based on previous training, predict possible annotations. This
annotation is more prone to errors, so it is treated as a suggestion to be confirmed or corrected by an anno-
tator, i.e., a person. The third stage is refinement of manual annotation. In this stage, an annotator must
receive dialogues with suggestions for annotation made automatically by models and correct or accept such
suggestions.

Each server can have a configured “minimum confidence” treshold, that warns the user when an anno-
tated sentence has an a low annotation confidence. For BERT, models, for example, the return of a certain
entity is always an array of the probability of each entity. We assume the entity with the highest probabiity
is the correct one, and should this probability still be lower than the treshold, the frotend can display a small
warning sign at the side of the dialog, giving the user the visual indication to verify annotation. This is
important for selecting useful data for the active learning procedure.

It is also possible to separate the N annotated messages in smaller annotation “batches” of size x, this
reduces serve roverhead and creates a more iterative process. A part of x will be sent back to the application
for the user to check. The user’s correction and verification are then sent back to the AI and used for learning.
In the case of the proposed BERT, the recommended values for the batch is 5 dialogues.

The chosen method for training annotator models takes into account a technique of incremental and
active learning. This means that the models are constantly classifying dialogues regarding their annotations
and training. Learning is incremental because training examples are provided gradually in each cycle and
is active because it takes into account continuous human action in the teaching and improvement process of
the models. A pseudocode of this process is shown in Algorithm 1

It is also possible to created Large-Language Model annotation modules for the backend, changing
the traditional backend model for a LLM model such as ChatGPT. The gain created by such a module is
eliminating the need to train and retrain models, and the high accuracy provided. However, a disadvantage of
doing so is increasing the time and cost (if using a paid API) of automatic annotation. In this configuration,
it is necessary to create a “Staging Server”, which manages the Frontend calls and prepares the prompts for
the Large Language Model. An abstraction of these two possible approaches are shown in Figure 12.

One of the ideas explored by Assis is combining the LLM automatic annotation module with the tradi-
tional automatic annotation module as shown in Figure 13. In this case, the Selection Server is responsible
for sending all the dialog to the automatic annotation, and instead of returning the low confidence annota-
tions directly to the user, the selection server sends them to the LLM server, for correction before returning
to the user. This mixed approach combines the speed and low-cost of the automatic annotation and the high
accuracy of the LLM annotation.

Finally, an approach that maximizes accuracy (but increases annotation time and cost) is found in Figure
14. This is an approach with multiple annotation modules working in parallel, and for each sentence, the
staging server selects the annotations in a “majority voting” procedure, where the annotations that match the
most with others are selected. While this experimental procedure was tested and is now documented, the
time consuming parallel annotations proved to be too high to be practical at the moment.
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Algorithm 1 Dialog Annotation and Model Update
1: Load classifier from models folder, pre-trained with previous data
2: Load the new dialog/batch data
3: while the dialog has not been marked as finished do
4: Select sentence and annotate with entities and/or intentions
5: Calculate maximum probability for the annotation
6: if maximum probability < minimum confidence threshold then
7: Mark sentence as low confidence
8: end if
9: end while

10: Return the annotated dialog to the user
11: for every dialog do
12: if user changed dialog in frontend module after annotation then
13: Replace changed dialogs in backend
14: end if
15: end for
16: Re-train the model
17: Re-calculate model accuracy

Figure 12: Flow diagram of the interaction betwen the Manual Annotation Module and two possible mod-
ules, LLM and Automatic ML module.
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Figure 13: Example of a low-cost low-confidence mixed backend.

Figure 14: Flow diagram of a possible (but process-heavy) backend of voting classifiers.
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5 Evaluation

The Assis tool was used during its development to annotate real datasets from companies, where its utility
as a dialogue annotation accelerator was confirmed. Two case studies and a third validation battery were
conducted, annotating data in three different ways: using Brat[13], Manual Annotation, and Assis, totaling
over 96 dialogues with an average of 7 turns each, comprising almost 800 annotated messages from clients
and agents.

• Case Study 1 (toll company): 13 company partner users. 6 university users. All familiar with
Information Systems (working or researching in the field). In this first study, only 1 declared having
basic experience with annotation tools before.

• Case Study 2 (customer service): 15 company partner users, 8 of them from the previous team. 10
university users, 6 of them from the previous team, now with basic experience with annotation tools.

• Validation: After the case studies were completed, to evaluate the metrics, two sets of dialogues from
the first case study and 2 sets from the second case study were anonymized (had information such
as names, addresses, monetary values, locations replaced with other fictional information) and left as
test data, denoted as A1, A2, B1, B2. Then, 26 volunteers were called among university students.
None of them had previous experience, with 11 having basic knowledge in Information Systems, 8
with medium knowledge, and 7 with advanced knowledge (having previously developed tools in I.S.).

The 26 volunteers were placed in an online call with an evaluator (from the tool development team to
observe the usage times of each tool but without the power to intervene in the user’s journey) and with access
to the 4 anonymized sets and a list of intentions and entities.

They had the tasks of:

1. Access the tools (in the case of Assis, connect to the website; in the case of Brat, connect to the
website and install it; and in the case of manual annotation, choose the preferred native tool).

2. A first test was performed, and the task was to open a dialogue set in the tool.

3. Annotate the dialogues with intentions and entities (in this case, there is no evaluation of the “correct-
ness” of the annotation. The user decides when they believe they have finished annotating). Repeating
the same process for the three tools, varying which tool would be the first and which the last (to mit-
igate the speed gain that users have by “getting used to” the package data). The 4 sets were also
presented in different orders to users (for example [A1, B1, A2, B2] or [B1, B2, A1, A2], etc.), to
avoid favoring a tool with an “easier” package.

(a) The first set was done in the following order: Manual Annotation, Brat, Assis.

(b) The second set was done in the order: Brat, Assis, Manual Annotation.

(c) The third set was done in the order: Assis, Manual Annotation, Brat.

(d) The fourth set was done in the order: Manual Annotation, Assis, Brat.

The end of annotation was recorded by the user notifying the evaluator, for example, by opening the
microphone and saying “finished.”

To evaluate the time gain, the following tasks were used:

• Installation/opening time: Time from task 1 to the end of task 2.
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• Annotation time: Time from uploading/opening a dialogue in the tool until the end of annotation.

While the average time to open files was 25 seconds for both Assis and Manual Annotation, the average
time for users with Brat was 36 minutes - since users who are not used to running Python files (especially
the 11 volunteers with little knowledge in I.S.) need to read the instructions manual, look for how to open
the command prompt, try to understand errors until they can execute.

Table 2: Average annotation time for dialogue sets

Assis (min) Manual (min)
Set A1 13:12 26:09
Set A2 21:29 34:05
Set B1 19:11 39:32
Set B2 31:26 45:16

Table 2 demonstrates that the results of both Brat and Assis tools are much faster than manual anno-
tation. A satisfaction questionnaire with 11 questions was applied for the three case studies, evaluating
user experience aspects, with 37 responses. While Brat and Assis obtained similar results in certain ques-
tions (For “This tool helps reduce annotation time significantly” and “This tool helps reduce the number of
annotation errors”, both tools received about 90% of “yes” responses).

On the other hand, all evaluated users (37) stated that they would use Assis for daily work if needed for
annotating data, while only 18 claimed the same for Brat. Finally, out of the 37 users, 33 preferred Assis
over all the analyzed tools.

6 Discussion

The target users of Assis are those who would typically configure a similar annotation tool, so the technical
skills required to use Assis should not be a problem for its target users. There are other annotation tools that
incorporate active learning, providing a user interface through which settings can be changed and actively
selected batches of annotations can be generated [29]. A study states that user and system action annotations
provide a semantic representation of their respective utterances. Simple checks on data annotation help
prevent typographical errors and value paraphrase issues, requiring the creation of an ontology or schema
before data collection, listing the interface for all domains and APIs. This form should identify categorical
slots, which have a fixed set of possible values, and the annotation interface should enforce the accuracy of
these slots [30]. [31]

Pre-annotation has been shown to increase annotation speed without introducing bias [32], and data
annotation where pre-annotation was successfully applied [33]. There are also cases where high-quality pre-
annotations have proven generally successful, with an increase in annotation speed and overall annotation
quality, but where pre-annotations reduced annotator attention and resulted in bias. The contribution of this
research establishes prerequisites and prepares for the creation of fully annotated datasets that can be used
in training NLP models in different contexts and languages.

One of the main limitations in the study is the lack of a more robust evaluative methodology. One
existing bias is the selection bias since a function (propagation of entities/intentions) was created between
case studies 1 and 2, based on the feedback from case study 1. Another existing bias is the fact that Assis is
a tool with support in Portuguese, so even though all volunteers declared being comfortable using a tool in
English - the ease of the native language ends up giving an advantage in understanding the instructions’ time.
Another problem is that the metrics/tasks used (installation time, annotation time using 4 randomly ordered
dialogues) were created by the Assis team. This can generate selection biases in the observed characteristics.
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An example would be a company with shared computers whose users do not need to complete the installation
task.

Active Learning is an area prone to expansion. In the current methodology, we did not evaluate the
“correctness” of the suggestions given by the annotating Artificial Intelligence (for example, the ratio of
suggestions accepted by the operator compared to those rejected) because this evaluation is not essential for
the tool’s use - but it is definitely of interest for future work.

A potential application of the ASSIS tool is in annotating conversations obtained from Internet forums.
This includes dialogues from different domains mined from publicly available websites on the network
[34]. Training language models requires large amounts of data. Specifically, for conversational models, the
demand for data is even greater.

In the process of specializing these models in particular tasks, data is expected to be annotated with
respect to intentions and entities. Thus, a suitable methodology and software tool for annotation are crucial.
This can be achieved effortlessly through the DAB methodology, as it is oriented towards dialogues. The
implemented software tool allows annotation focused on this specific type of data.

The Assis tool can modularly implement existing features in other tools without local deployment and
innovating annotating using topics and propagation. It demonstrates potential for future innovations, such
as new backend modules for Active Learning. Finally, the Assis tool and its documentation are available
under the open-source MIT license.

7 Conclusion

Addressing the challenge of generating well-annotated conversational datasets, especially in non-English
languages like Portuguese, remains a significant research gap. In response to limitations identified in ex-
isting tools, we developed a comprehensive software tool to aid manual human annotation of written di-
alogues. Our solution incorporates an active learning module, refining annotation suggestions over time.
The software tool was then applied in practical scenarios to annotate conversations recorded in Portuguese,
contributing valuable datasets for future Natural Language Processing (NLP) applications. Quantitatively,
the tool demonstrated enhanced annotation speeds, and qualitatively, user satisfaction with the provided
tools was confirmed. Moving forward, our research aims to utilize these annotated datasets to train new
models and refine existing language models, with the ultimate goal of applying and evaluating such models
in constructing customer service chatbots.
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A User Evaluation Questionnaire

For the case studies, the form presented in Table 3 was applied to compare different tools. For user accuracy,
previous experience was explained as:

• Low proficiency: “For example, casual use of computer tools without understanding or developing
systems”

• Knowledge and/or intermediate proficiency: “For example, I’ve studied programming, but I don’t
consider myself to have complete knowledge in the field”

• Advanced proficiency: “For example, I study or work in the field of computing and find it easy to
understand how tools operate”

The form is presented in its original portuguese language.

Table 3: Questionário de avaliação de ferramentas anotadoras

Pergunta Respostas
1. Como você avalia sua experiência prévia com in-
formática, usando ferramentas ou plataformas:*

Baixo /
Médio /
Avançado

2. Você tem experiência prévia com ferramentas ano-
tadoras (seja de texto, imagem, etc. . . ) para fins de In-
teligência Artificial?

Sim / Não

3. As informações disponı́veis no site satisfatórias para
instalar e/ou entender o funcionamento da ferramenta

Sim / Não

4. Instalar/acessar a ferramenta é amigável e fácil e foi
feito sem maiores dúvidas

Sim / Não

5. A interface da ferramenta é amigável e é fácil de
entender

Sim / Não

6. Não tive problemas navegando entre os diferentes
menus para visualizar os dados dos dialogos

Sim / Não

7. Criar novas entidades e/ou intenções é fácil e intu-
itivo.

Sim / Não

8. Essa ferramenta ajuda a reduzir o tempo de anotação
de forma significativa

Sim / Não

9. Essa ferramenta ajuda a reduzir a quantidade de erros
de anotação

Sim / Não

10. Se eu trabalhasse com anotação, eu consideraria
essa ferramenta para meu uso diário

Sim / Não

11. Ao final da avaliação, você prefere esta ferramenta
do que as outras testadas.

Sim / Não
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