
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Ascon on 64-bit RISC-V:
Software implementation on
the Allwinner D1 processor

Paulo Pacitti Julio López

Technical Report - IC-PFG-23-41 - Relatório Técnico

February - 2024 - Fevereiro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Ascon on 64-bit RISC-V:

Software implementation on the Allwinner D1 processor

Paulo Pacitti∗ Julio López†

Abstract

RISC-V is a promising ISA and soon will be the architecture of many chips, specially em-
bedded systems. It’s necessary to guarantee that applications that run in systems designed with
RISC-V will be at the same time secure and cryptographically fast. The NIST Lightweight
Cryptography competition selected the finalist: Ascon, a family of cryptography algorithms
designed to run in devices with low computational power. This research explores the Ascon
family of algorithms on the RISC-V 64-bit architecture, analysing the Ascon permutation and
the Ascon-128 algorithm, and whether it’s possible to optimize it for riscv64, proposing a new
technique regarding the decryption implementation. The implementation developed in this re-
search was benchmarked in the Allwinner D1 chip, a RISC-V 64-bit 1 GHz single-issue CPU
supporting the RV64GC ISA, and compared with other implementations. Finally, it’s discussed
that new microarchitectures, and, the future of the RISC-V ISA with new instructions exten-
sions recently ratified, could improve the performance of the Ascon family of algorithms and
other cryptographic algorithms.

1 Introduction

Inspired by the works of the UNICAMP’s Laboratory of Security and Cryptography in the optimiza-
tion of cryptographic algorithms for the ARM architecture [1], the NIST Lightweight Cryptography
competition finalist algorithm [2], and the RISC-V open architecture, this research aims to explore
the Ascon family of algorithms [3] on the RISC-V 64-bit architecture and whether it’s possible
to optimize it for this architecture. There are other works that have explored the Ascon fam-
ily of algorithms on RISC-V, but in the 32-bit architecture and benchmarking in an FPGA chip.
This research was done in the 64-bit RISC-V architecture and benchmarking it in a real chip, the
Allwinner D1.

The approach was to analyse the Ascon algorithm design for three different implementations.
All the implementations tested are written in C. The first implementation ref is the reference
implementation of Ascon, written by Ascon team [4]. The second one is opt64, an optimized im-
plementation for a generic 64-bit architecture system, also developed by the Ascon team. The third
implementation was the main objective of this research, named ascon-v [5], this implementation is
focused on producing an optimized version for the RISC-V 64-bit architecture, more specific, using
only the instruction set RV64GC. The research was focused on trying to improve the basic blocks
of the Ascon family of algorithms. Because of that, the analysis, optimizations, and results are
focused on the Ascon-128, which is the de facto authenticated encryption with associated data
(AEAD) standard of the Ascon family.

∗Institute of Computing, UNICAMP. p185447@dac.unicamp.br
†Associate Professor, Institute of Computing, UNICAMP. jlopez@ic.unicamp.br

1

2 Pacitti, López

2 Ascon

Ascon is a family of algorithms for lightweight cryptography, designed to be used in constrained
environments, like embedding computing. Designed by cryptographers from Graz University of
Technology, Infineon Technologies, Intel Labs, and Radboud University, Ascon has been selected as
the new standard for lightweight cryptography in the 2019–2023 NIST Lightweight Cryptography
competition. The Ascon family is mainly composed by 4 algorithms: Ascon-128, Ascon-128a,
Ascon-Hash andAscon-Hasha. There’s also variantsAscon-80pq, Ascon-Xof, Ascon-Xofa,
where the first it’s a version of AEAD with an increased key size of 160 bits and the latter two are
versions of the hash algorithm, but they produce hash outputs of arbitrary length.

Table 1 shows the parameters of the recommended AEAD schemes from the Ascon family
of algorithms, where this work will focus on the Ascon-128. The algorithms use the encryption
function Ek,r,a,b and the decryption function Dk,r,a,b where k is the key size, r is the rate (data block)
size, a and b are the number of rounds used in pa and pb permutations used across the algorithms.
The encryption Ek,r,a,b(K,A,N, P) = (C, T) receives a key K, an associated data A, a nonce N
and a plaintext P and returns a ciphertext C and a tag T . The decryption Dk,r,a,b(K,A,N,C, T) ∈
{P,⊥} receives a key K, an associated data A, a nonce N , a ciphertext C and a tag T and returns
the plaintext P if the verification of the tag is correct, otherwise it returns the ⊥ error.

Name Algorithms key nonce tag data block pa pb

Ascon-128 E, D128,64,12,6 128 128 128 64 12 6

Ascon-128a E, D128,128,12,8 128 128 128 128 12 8

Table 1: Ascon AEAD scheme parameters

Ascon lightweight properties comes from using the simple bitwise operations that majority of
microcontrollers have, like XOR, AND, OR, NOT, and bitwise rotations. The algorithm is based in
the sponge construction, which is a cryptographic primitive that can be used to build cryptographic
hash, encryption, and pseudorandom functions. The most known example of a cryptographic
scheme that uses the sponge function is SHA-3 (also known as “Keccak”) [6] algorithm. The
sponge construction consists in keeping a finite internal state that takes input streams (absorb) to
update the state and output streams (squeeze) to produce the output from the internal state. The
Ascon state is composed by five 64-bit words, also named as Ascon words, resulting in a 320-bit
internal state. This internal state is then manipulated using the Ascon permutation procedure.

2.1 Permutation

The Ascon permutation is the main building block of the Ascon family of algorithms and consists
in 3 stages: round constant addition, a substitution-layer (S-Box) and a linear diffusion layer. It’s
then used in the AEAD encryption and decryption procedures in the form of pa and pb, where p is
the permutation and a and b are the number of rounds used in different stages of the algorithm.
The parameters a and b are different for each algorithm of the Ascon family, but the permutation
is the same for all of them, as it’s displayed in Table 1.

As the Ascon state has five 64-bit words, the round constant addition consists in XORing the
round constant with the third Ascon word. The round constant is a 64-bit value that is different
for each round. The substitution-layer consists in applying an S-Box to the Ascon state. The 5-bit
S-Box updates the state with 64 parallel applications of substitutions to the five Ascon words, as
seen in Figure 1a. The linear diffusion layer consists in the linear diffusion function xi ← Σi(xi)

Ascon on 64-bit RISC-V: Software implementation on the Allwinner D1 processor 3

x0

x1

x2

x3

x4

1
1
1
1
1

1

x0

x1

x2

x3

x4

(a) Ascon permutation S-box.

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x0 ⊕ (x1 ≫ 61)⊕ (x0 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon linear diffusion layer

Figure 1: S-box and linear diffusion layers in the Ascon permutation.

applied to each Ascon word xi, where each word has a specific function definition Σi(xi). The linear
diffusion function is shown in Figure 1b.

2.2 Encryption

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1
r

c
pb

Pt−1 Ct−1
r

c
pb

Plaintext

Pt Ct
r

c

K‖0∗

pa

Finalization

K

T

128

Figure 2: Ascon-128 encryption scheme.

The AEAD encryption procedure in Ascon consists of three parts: initialization, associated
data, plaintext processing and finalization. It’s represented in Figure 2. In the initialization part,
the Ascon state is defined by the bit string composed of the initialization vector, a key, and a nonce.
The initialization vector is a combination of the parameters of the selected AEAD scheme. In the
case of Ascon-128, IV ← 0x80400c0600000000. After that, the Ascon pa permutation is applied
and the Ascon state is XORed with the key K padded with zeros in the beginning.

The associated data part consists in absorbing the associated data into the Ascon state. The
associated data is absorbed in r-bit data blocks, where each block is XORed with the Ascon state
and then the pb permutation is applied. The last block of the associated data is padded with the
value 1 followed by zeros at the end, until it reaches the r-bits. At the end of the associated data
processing part, the Ascon state absorbs a 320-bitstring of the value 1.

The plaintext processing part is where the ciphertext is generated. The plaintext is absorbed
in the data blocks of size r, specified by the scheme parameters, where each block is XORed with
the Ascon state, the state squeezes a ciphertext of same size, and, then, the Ascon pb permutation
is applied. The last block of the plaintext P̃t is also XORed with the Ascon state, but the squeezed
ciphertext is C̃t ← ⌊Sr⌋|P | mod r.

The finalization part comprises the state being XORed with the key padded in the beginning
with r zeros and at the end with the remaining zeros to complete a 320-bit bit string, then applying

4 Pacitti, López

the Ascon pa permutation to the Ascon state. To finish, the tag T is generated by T ← ⌈S⌉128 ⊕
⌈S⌉128, and the algorithm returns the ciphertext C and the tag T .

2.3 Decryption

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1
r

c
pb

Pt−1 Ct−1
r

c
pb

Ciphertext

Pt Ct
r

c

K‖0∗

pa

Finalization

K

T

128

Figure 3: Ascon-128 decryption scheme.

The Ascon-128 decryption has almost the same structure as seen in the encryption. The
initialization and the associated data stages are the same as in the encryption. The ciphertext
processing stage consists in absorbing (XORing with the first Ascon word) a ciphertext block Ci,
squeeze a block of the decrypted plaintext Pi, replace the first Ascon word x0 with the current
ciphertext block Ci, and then, permutate the Ascon state with pb. The last block of the ciphertext
C̃t is also absorbed in the Ascon state, but the squeezed plaintext is P̃t ← ⌊Sr⌋|C| mod r. After this,
the first r bits of the Ascon state is XORred with the bit string of the last deciphered plaintext
concatenated with the value 1 and padded with zeros until it reaches the r bits. In mathematical
terms, these both operations can be seen in Equation (1) and Equation (2).

The finalization stage is expressed by XORing the Ascon state with the key padded with r
zeros in the beginning and the remaining zeros at the end to complete a 320-bit bit string, then
applying the Ascon pa permutation to the Ascon state. At the end, the tag T is generated by
T ← ⌈S⌉128 ⊕ ⌈K⌉128, and the algorithm returns the plaintext P if the verification of the tag is
correct, otherwise it returns the ⊥ error.

3 Implementation and Optimizations

The device used for this research is the MangoPi MQ-Pro, an SBC powered with an Allwinner D1
chip, 1 GB of DDR3 RAM, Wi-Fi, Bluetooth and HDMI video output. The Allwinner D1 chip
contains a T-Head Xuantie C906 core, a RISC-V 64-bit 1 GHz single-issue CPU supporting RV64GC
ISA. The instruction set RV64GC is equivalent to the RV64IMAFDCZicsr Zifencei set of extensions,
where I stand for the Integer instruction set, M for multiplication, A for atomic, F for Single-
Precision Floating-Point, D for Double-Precision Floating-Point, C for compressed, Zicsr for Control
and Status Register (CSR), and Zifencei for Instruction-Fetch Fence. The board runs Ubuntu Server
23.04, running the 6.2.0-36-generic version of the Linux kernel. For compiling the implementation
in C, it was used the RISC-V GNU Compiler Collection (GCC) version 12.2.0 [7] through cross-
compilation with Newlib, using a MacBook Pro with an Apple M1 chip. The implementation
techniques that are going to be described next were used in the asconv implementation to attempt
to overcome the performance of ref and opt64 implementations.

Since it’s a 64-bit architecture, it’s possible to store each of the five 64-bit Ascon words in one
register at a time. The use of the library <stdint> becomes very useful since it’s possible to define
exactly the bit string size representation, not being dependent on what the C types long long

and unsigned long long translates to in a given machine. The Ascon permutation S-box seen in

Ascon on 64-bit RISC-V: Software implementation on the Allwinner D1 processor 5

Figure 1a translates to what it can be seen in the Listing 1, as well the round constant addition
and linear diffusion stages (Figure 1b).

// Ascon state with 5 64-bit words.

typedef struct {

uint64_t x[5];

} ascon_state_t;

// Bitwise rotation to the right.

static inline uint64_t ROR(uint64_t x, int n) {

return x >> n | x << (-n & 63);

}

// Ascon permutation round function.

static inline void ROUND(ascon_state_t *s, const uint8_t C) {

ascon_state_t t;

/* round constant layer */

s->x[2] ^= C;

/* substitution layer */

s->x[0] ^= s->x[4];

s->x[4] ^= s->x[3];

s->x[2] ^= s->x[1];

t.x[0] = s->x[0] ^ (~s->x[1] & s->x[2]);

t.x[1] = s->x[1] ^ (~s->x[2] & s->x[3]);

t.x[2] = s->x[2] ^ (~s->x[3] & s->x[4]);

t.x[3] = s->x[3] ^ (~s->x[4] & s->x[0]);

t.x[4] = s->x[4] ^ (~s->x[0] & s->x[1]);

t.x[1] ^= t.x[0];

t.x[0] ^= t.x[4];

t.x[3] ^= t.x[2];

t.x[2] = ~t.x[2];

/* linear diffusion layer */

s->x[0] = t.x[0] ^ ROR(t.x[0], 19) ^ ROR(t.x[0], 28);

s->x[1] = t.x[1] ^ ROR(t.x[1], 61) ^ ROR(t.x[1], 39);

s->x[2] = t.x[2] ^ ROR(t.x[2], 1) ^ ROR(t.x[2], 6);

s->x[3] = t.x[3] ^ ROR(t.x[3], 10) ^ ROR(t.x[3], 17);

s->x[4] = t.x[4] ^ ROR(t.x[4], 7) ^ ROR(t.x[4], 41);

}

Listing 1: Ascon permutation used in ref, op64 and asconv implementations.

The Ascon words, used to maintain the state in the sponge construct, are big endian. However,
RISC-V, as like most other ISAs, is little endian, making bitwise operations slower than it could be
if the architecture had the same endianness as the algorithm. The reference implementation merges
data to these words by loading and storing bytes using big-endian, requiring operations to fill the
right-side with zeros. It is possible to implement an optimization considering this issue by handling
the data as little-endian in the implementation and reversing the endianness when merging data to
the Ascon words [8]. This turns out to be way more effective than manipulating data in big-endian,

6 Pacitti, López

since loading bytes and other bitwise operations does not need to fill the right-side of the bit string
with zeros, as it is in big-endian. That way, the cost of reversing the endianness of a little-endian
64-bit bit string is lower than the cost of loading data in big-endian.

Another improvement is done in the finalization of the ciphertext processing, in the decryption
procedure, an hypothesis conceive during this research. After retrieving the last section of the
deciphered plaintext, the algorithm specification defines Equation (1) and Equation (2) where P̃t is
the last piece of plaintext, Sr is the first r bits of the Ascon state, C̃t is the last piece of ciphertext,
and 0∗ is a bit string of zeros until the concatenated bit string P̃t||1||0 reaches r bits:

P̃t ← ⌊Sr⌋|C̃t| ⊕ C̃t (1)

Sr ← Sr ⊕ (P̃t||1||0∗) (2)

The ref and opt64 implementations do this operation by cleaning the first (in big-endian
representation) |C̃t| bytes of Sr, ORing with C̃t to load these bytes into Sr, and then XORing
with a padded bit string. The load is made with memcpy, which adds time to the execution of the
algorithm since a memory read is being done. Since Sr ⊕ P̃t = Sr ⊕ (⌊Sr⌋|C̃t| ⊕ C̃t) is equivalent to

Sr | C̃t, after the first |C̃t| bytes of Sr are cleared, the approach that the reference implementation
takes is compliant with the specification. In asconv, in the purpose of trying to improve the
performance, the operations done in Equation (1) and Equation (2) are done with bitwise shift
instructions, as it’s displayed in Equation (3) and Equation (4):

d← (Sr ⊕ C̃t)≫ (r − |C̃t|)≪ (r − |C̃t|) | (1||0∗) (3)

Sr ← Sr ⊕ d (4)

It was used optimization techniques to improve the performance of the implementation by
using compile-time optimizations. Because many of the operations used in the Ascon are called
very often, it’s faster to implement them as inline functions, so the compiler can optimize the
code by inlining the function calls. The ROUND function, used in the Ascon permutation, is a good
example of this, as it’s used in every round of the permutation. The permutations p6 and p12, used
in Ascon-128, instead of retrieving the value of their round constants in runtime, implement as
inline functions calls with constant arguments to eliminate the time of loading the specific round
constant value from the memory. Compilation flags were also used to improve the performance,
using -O2 optimization, -march=rv64gc to enable the RV64GC ISA, and -mtune=thead-c906 to
enable the compiler to optimize the code for the C906 CPU core inside the Allwinner D1 chip.

4 Results

All the implementations (ref, opt64 and asconv) were then benchmarked to compare the perfor-
mance of each code. To benchmark, it was measured the elapsed time, the clock cycle, of operations
encryption and decryption for each implementation, with different message sizes. Considering t the
elapsed time to run encryption/decryption of a plaintext/ciphertext, the resolution R of the timer
used to measure the time of the C906 core to be 45 nanoseconds [9], F the CPU frequency, the
formula to get the clock count can be calculated with Equation (5):

C = t×R× F × 109

60
(5)

Ascon on 64-bit RISC-V: Software implementation on the Allwinner D1 processor 7

The CPU time was measure using the RISC-V instruction rdtime, which is read from a CSR
register, and then used in Equation (5) as t. The reason it was used rdcycle instead of rdcycle
was that the current Ubuntu 23.04 version targeted for the Allwinner D1 chip, replaces the retrieved
value with a constant one, not representing the actual cycle count. This might be due to security
reasons to avoid malicious clock counting on side-channel attacks. In Table 2 and Table 3, it is
possible to see the benchmark of the asconv implementation of Ascon-128 of the encryption and
the decryption operations with progressively increasing message sizes. The cycle count per byte
decays along with the message size, as expected.

Implementation Message size (B) Cycles Cycles/B Time (s)

asconv 8 66 9 0.000003960

asconv 32 89 3 0.000005355

asconv 64 120 2 0.000007245

Table 2: Benchmark of asconv implementation of Ascon-128 of the encryption operation with
different message sizes.

Implementation Message size (B) Cycles Cycles/B Time (s)

asconv 8 60 9 0.000004140

asconv 32 82 3 0.000005580

asconv 64 112 2 0.000007470

Table 3: Benchmark of asconv implementation of Ascon-128 of the decryption operation with
different message sizes.

The benchmark displayed in Table 4 compares the asconv implementation of Ascon-128 with
ref and opt64 implementations, using a message of 4 MB. The asconv implementation is 11% faster
than the ref implementation when encrypting and 10% faster when decrypting. Still, the opt64

is the fastest implementation, being 16% faster than the ref implementation when encrypting and
18% faster when decrypting, placing asconv in the middle of the ref and opt64 implementations.

Implementation Encrypt cycles Decrypt cycles Encrypt speed Decrypt speed

ref 4417 4431 1.00 1.00

opt64 3819 3820 1.16 1.16

asconv 3996 4016 1.11 1.10

Table 4: Comparison and relative speeds of different implementations of Ascon-128 when com-
pared with the reference implementation (ref). The benchmark was done considering a message
of 4 MB.

Due to asconv not containing all the optimizations of the opt64 implementation and the res-
olution of the rdtime being not large enough to test only a few instructions, the shift-register
optimization on the finalization of the decryption algorithm in Equation (3) couldn’t be bench-
marked. That way, it is not possible to know if the hypothesis of the optimization is correct, and,
if it is, how much it would improve the performance of the algorithm. Still, the shift-register tech-
nique implemented in the asconv can be a greater opportunity for improvement in the performance
of the algorithm in future works.

8 Pacitti, López

5 Conclusions

As seen in Section 4, the RV64GC instructions do not allow great optimizations from the architecture
itself, since it does not have any special instructions to accelerate operations of the Ascon-128.
However, the implementation done in this research could provide some insights for future works,
like the 64-bit RISC-V constraints and benefits when implementing cryptographic algorithms and
the use of the shift-register technique in the finalization of the decryption algorithm, that could
improve the performance of the algorithm.

The Ascon permutation proposed in the specification, shown in Listing 1, also allows the use
of parallelism that could accelerate the performance. Unfortunately, the Allwinner D1 lacks sup-
port for vectorial instructions and the XuanTie C906 microarchitecture is single-issue only, so the
analysis of the use of parallelism for increasing the algorithm performance will be left for future
work.

RISC-V does have instructions extensions that were recently ratified, that could improve the
performance of Ascon, allowing great optimizations using hardware accelerated instructions. Such
cryptographic specialized instruction extensions are divided in scalar [10] and vectorial [11] instruc-
tions. The Scalar Cryptography set of extensions (Zbkb, Zbkc, Zbkx, Zknd, Zkne, Zknh, Zksed,
Zksh, Zkn, Zks, Zkt, Zk, Zkr) provide instructions that could accelerate operations of the Ascon
permutation. The Zbkb extension provides bit manipulation instructions for cryptographic opera-
tions. Such operations are bit rotations (rori), and, bitwise logical AND operation between a value
a and the bitwise inversion of a value b (andn), that could accelerate the Ascon permutation as
seen in Listing 1. This same extension also provides a byte-reverse register instruction (rev8) that
could be used to reverse the endianness of the Ascon words, making the work with little-endian
data loading first and then reversing to big-endian way faster. The Zkn extension introduces an
entropy source within a dedicated CSR register. Utilizing this feature, the algorithm gains the
ability to generate random numbers for both nonce and key, thereby significantly enhancing the
security protocols within the algorithm. There is also the Vectorial Cryptography set of extensions
(Zvbb, Zvbc, Zvkb, Zvkg, Zvkned, Zknh[ad], Zvksed, Zvksh, Zvkn, Zvknc, Zvkng, Zvks, Zvksc, Zvksg,
Zvkt), which consists in the vectorial versions of the Scalar Cryptography instructions, allowing
even more the use of parallelism.

References

[1] H. Fujii and D. F. Aranha. “Curve25519 for the Cortex-M4 and beyond”. In: June 2017. url:
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf.

[2] Meltem Sönmez Turan et al. “Status Report on the Final Round of the NIST Lightweight
Cryptography Standardization Process”. In: (2023).

[3] Christoph Dobraunig et al. Ascon v1.2. Submission to Round 1 of the NIST Lightweight
Cryptography project. 2019. url: https : / / csrc . nist . gov / CSRC / media / Projects /

Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf.

[4] Ascon Team. ascon-c: Reference and optimized implementations of Ascon. https://github.
com/ascon/ascon-c. 2023.

[5] Paulo Pacitti. ascon-v: Ascon lightweight cryptographic algorithm implementation for im-
proved performance on RISC-V. https://github.com/paulopacitti/ascon-v. 2023.

[6] Guido Bertoni et al. “Keccak”. In: Cryptology ePrint Archive (2015).

http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/paulopacitti/ascon-v

Ascon on 64-bit RISC-V: Software implementation on the Allwinner D1 processor 9

[7] RISC-V Collaboration. riscv-gnu-toolchain: GNU toolchain for RISC-V, including GCC. https:
//github.com/riscv-collab/riscv-gnu-toolchain. 2023.

[8] Lars Jellema. “Optimizing ascon on RISC-V”. In: Bachelor Thesis, Radboud University (2019).

[9] Lukas Gerlach et al. “A Security RISC: Microarchitectural Attacks on Hardware RISC-V
CPUs”. In: 2023 IEEE Symposium on Security and Privacy (SP). 2023, pp. 2321–2338. doi:
10.1109/SP46215.2023.10179399.

[10] RISC-V Foundation. RISC-V Cryptography Extensions Volume I: Scalar & Entropy Source
Instructions (v1.0.1). https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-
scalar. 2023.

[11] RISC-V Foundation. RISC-V Cryptography Extensions Volume II: Vector Instructions (v1.0.0).
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0. 2023.

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://doi.org/10.1109/SP46215.2023.10179399
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0

	Introduction
	Ascon
	Permutation
	Encryption
	Decryption

	Implementation and Optimizations
	Results
	Conclusions

