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Abstract

Infrastructure as Code (IaC) is widely embraced for its ability to facilitate system
infrastructure management, ensuring ease of modification and reproducibility. However,
the inherent susceptibility of IaC configurations to security vulnerabilities necessitates
specialized tools for code analysis. Building upon the work of Rahman et al., who
identified 7 security smells present in IaC scripts and introduced SLIC, a static analysis
tool for identifying security smells in Puppet scripts, this paper presents SLiTer — a tool
designed to detect the same security smells in Terraform files. By doing so, we developed
two Rule Engines to serve distinct purposes: the first faithfully translated SLIC rules to
establish a baseline, while the second incorporated modifications to enhance accuracy
when applied to Terraform configurations. Evaluating SLiTer on 105 Terraform files
from 15 directories revealed the most prevalent security smell as ”Hard-coded secret,”
aligning with findings in the original work. SLiTer may prove valuable for practitioners
seeking to identify general security smells in Terraform configurations, complementing
other tools like Sonar or tfparse for provider-specific issues.

1 Introduction

Infrastructure as Code (IaC) is an approach to infrastructure automation based on software
development practices [1]. Keeping all definitions for an application’s infrastructure in con-
figuration files makes the infrastructure more visible, allows for quick changes and testing,
and, most importantly, makes the infrastructure reproducible. Practitioners consider IaC
as a fundamental pillar to implement DevOps practices [2], and it is especially useful in
deploying cloud-based infrastructures, which are ever more prevalent in Industry since they
require reproducible and easily changeable configuration.

The IaC technology ecosystem is currently populated by a myriad of tools, often with
overlapping purposes, with no single tool dominating the market [3]. Some of the most used
IaC tools include Docker, Kubernetes, Chef, Ansible, Puppet, Terraform, AWS CloudFor-
mation, and others. Some of these tools have more specific purposes, such as CloudForma-
tion, which is specific for provisioning AWS services, while others aim to be expansible and
deal with a wide range of use cases, such as Terraform. In summary, they all have their
focuses, strengths, and weaknesses.

Although interest in IaC has been steadily growing, with technology giants such as
Netflix and Mozilla adopting IaC in their products [4], there is still little research done
regarding good security practices in IaC [2] [5]. IaC configurations can be susceptible to a
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few types of security vulnerabilities that demand special attention [5], and thus it may be
beneficial to use software tools to help verify that an infrastructure is secure.

In their work titled The Seven Sins: Security Smells in Infrastructure as Code Scripts
[5], Rahman et al. identified seven types of security smells that frequently appear in IaC
scripts, and developed a static analysis tool called Security Linter for Infrastructure as Code
scripts (SLIC) that aims to detect such smells in Puppet scripts. However, since their tool
is specifically built for the Puppet syntax, it cannot support IaC scripts made for other
tools.

This project aims to develop a tool called Security Linter for Terraform (SLiTer), a static
analysis tool for Terraform configurations that detects the same smells identified in [5]. We
analyzed the original solution, adapted it for the Terraform technology, and performed tests
based on open-source repositories, including Terraform configuration files.

The remaining sections of this work are organized as follows. Section 2 presents the
background to IaC, Terraform, and security vulnerabilities. Section 3 presents the method-
ology used to build SLiTer. Section 4 describes SLiTer and how the detection rules were
implemented. Section 5 details how we evaluated SLiTer and what results were obtained.
Finally, Section 6 concludes this work.

2 Background

2.1 Infrastructure as Code

Infrastructure as Code (IaC) is the practice of describing deployments by means of machine-
readable code [3]. That code can then be programmatically translated into infrastructure
provisioning in a specific configuration. Interest in IaC has steadily grown, as shown in figure
1. This growth in the usage of IaC is mainly enabled by the popularization of public cloud
computing, which allows practitioners to quickly provision and change the infrastructure of
systems, with no concerns over the physical hardware involved.

The usage of IaC goes hand-in-hand with DevOps principles, which dictate a closer rela-
tionship between the development and operation of software, advocating for quick iterations
and continuous integration.

2.2 Terraform

Terraform is an open source IaC tool created by HashiCorp [6]. It uses a declarative language
called HashiCorp Configuration Language (HCL) to describe a desired infrastructure. One
of its key features is the use of different providers that enable the expansion of Terraform
to manage infrastructure across multiple public and private cloud providers, as well as
virtualization platforms and on-premises servers.

Terraform projects are comprised of one or more Terraform (.tf) files. The basic unit in
a Terraform file is a resource declaration, which specifies the state of a resource that must be
provisioned and managed using Terraform providers. The files may also specify variables
that may be changed upon applying the configuration to change certain parameters in
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Figure 1: Google Trends data for the subject ”Infrastructure as Code”. Interest has been
steadily rising since 2018.

deployed resources. They may also define output variables, which are values created during
the execution of the configuration and must be given back to users.

Listing 1 shows an example of a Terraform project that provisions an Elastic Compute
Cloud (EC2) instance on AWS. Lines 2 to 4 show the configuration of the AWS provider,
specifying the region in which the instance will be provisioned. Lines 7 to 11 create an input
variable called instance type with the default value “t2.micro”. Lines 14 to 17 effectively
create the instance, specifying a name, an Amazon Machine Image (AMI), and using the
value of the instance type variable as one of the attributes. Finally, lines 20 to 22 define an
output variable to inform the user about the public IP of the created instance.

1 # Define the AWS provider and specify your credentials and region
2 provider "aws" {
3 region = "us-east -1"
4 }
5
6 # Input variables
7 variable "instance_type" {
8 description = "The EC2 instance type"
9 type = string

10 default = "t2.micro" # Default instance type
11 }
12
13 # Create an EC2 instance
14 resource "aws_instance" "example" {
15 ami = "ami -0 dbc3d7bc646e8516"
16 instance_type = var.instance_type
17 }
18
19 # Output variable to display the public IP address of the created instance
20 output "public_ip" {
21 value = aws_instance.example.public_ip
22 }

Listing 1: Terraform configuration example
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2.3 Code smells

Martin Fowler and Kent Beck introduced the concept of code smells in 1999 [7]. A code
smell is a recurring coding pattern that does not necessarily cause an error but may indicate
problems in the code that should be further investigated.

A security smell, as Rahman et al. described in their paper [5], is a recurring coding
pattern indicative of security weakness and requires further inspection. A security smell
may indicate the existence of a vulnerability in the software that malicious users could
exploit.

An example of a security smell is the usage of HTTP without the Transport Layer
Security (TLS). Without TLS, HTTP is susceptible to man-in-the-middle attacks, since the
communication is unencrypted. However, the data may have already been encrypted before
the transmission, so there would not be a security breach. Therefore, while the usage of
HTTP without TLS does not necessarily mean a vulnerability, it should be handled carefully
and may indicate the presence of a security issue.

2.4 Terraform Security Analysis Tools

Many tools in the market aim to find security issues in Terraform code via static analysis.
Two of the most prominent solutions are Aqua Security’s tfsec [8] and Sonar’s [9] solution
suite (SonarQube, SonarLint, and SonarCloud). Both solutions offer a wide range of rules
that will be statically checked against input code, searching for security issues in several
types of Terraform resources from different providers.

While these tools are excellent at finding more specific potential issues, SLiTer is more
generalistic, and searches for issues that are not specific to Terraform but could be present
in basically any IaC framework. tfsec, for example, has several rules searching for spe-
cific configuration problems in 36 AWS services, 14 Azure Cloud services, 9 Google Cloud
Platform services, as well as CloudStack, Digital Ocean, Kubernetes, GitHub, OpenStack,
and Oracle Cloud rules [10]. The only rule not related to a specific provider is a check for
plaintext exposure of sensitive information [11], similar to the “Hard-coded secret” smell in
SLIC and SLiTer.

Sonar has 51 rules used in static analysis for Terraform [12], most of which are also
specific to a provider. However, there is a rule called “Track uses of ‘TODO’ tags”, which is
similar to the “Suspicious comments” smell in SLIC and SLiTer, and another called “Using
clear-text protocols is security-sensitive”, which is similar to the “Use of HTTP without
TLS” smell. Other rules may have similar ideas to SLIC/SLiTer smells, but with very
different and often provider-specific implementations, such as “Allowing public network
access to cloud resources is security-sensitive,” which is, in principle, similar to the “Invalid
IP address binding” smell, but is implemented very differently and searches for specific
resources from certain providers.
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3 Methods

3.1 Understanding The Seven Sins

According to the authors of the baseline approach, the point of The Seven Sins: Security
Smells in Infrastructure as Code Scripts [5] is to answer the following research questions:

• RQ1: What security smells occur in infrastructure as code scripts?

• RQ2: How frequently do security smells occur in infrastructure as code scripts?

• RQ3: What is the lifetime of the identified security smell occurrences for infrastruc-
ture as code scripts?

• RQ4: How do practitioners perceive the identified security smell occurrences?

To answer RQ1, they applied a qualitative analysis technique called descriptive coding
[13] over 1726 Puppet configuration files, listing security smells present in those files and
associating them with weaknesses defined in the Common Weakness Enumeration (CWE)
[14]. The smells encountered in this step were separated into categories, each associated
with a few CWE weaknesses. This process produced seven different smell categories: Admin
by default, Empty password, Hard-coded secret, Invalid IP address binding, Suspicious
comment, Use of HTTP without TLS, and Use of weak cryptography algorithms. The
definitions of each smell are further detailed in Section 4.3.

To answer RQ2, the authors built SLIC, their static analysis tool. SLIC first uses a
parser to turn the Puppet scripts into tokens, which are then fed through a Rule Engine
that detects the presence of each smell. The Rule Engine uses syntactic information from
the parser, describing what kind of tokens are present and the presence of certain string
patterns within those tokens, to detect smells. The specific rules and string patterns will
be detailed in section 4.3.

To evaluate SLIC, the authors built a test dataset of 140 scripts which were manu-
ally checked for smells by students. SLIC’s results were then compared to the student’s
evaluation yielding an average precision and recall of 0.99.

The authors then applied SLIC on 4 datasets, containing Puppet scripts from GitHub,
Mozilla, OpenStack, and Wikimedia repositories, respectively, adding up to a total of 15232
scripts from 293 repositories. The scripts were sourced from open source software (OSS)
projects that followed specific criteria, such as a minimum number of contributors, commits
per month, and proportion of IaC scripts relative to other content in the repository.

As a sanity check, the authors manually checked 250 of those scripts for smells and
then compared their results to SLIC. The tool generated a few false positives and one false
negative, especially in the “Hard-coded secret” and “Suspicious comment” smells, which
presented 0.78 and 0.73 precision, respectively.

SLIC found occurrences of smells across all datasets, with 21202 total occurrences. The
GitHub dataset had the largest density of smells per line of code and the largest proportion
of scripts containing at least one smell. The most prevalent smell across all datasets was
“Hard-coded secret”, amounting to 80% of total occurrences, followed by “HTTP without



6 Fernandes, França

TLS” and “Suspicious comments” with about 8% of occurrences each. The other 4 smells
combine to only about 4% of occurrences.

To answer RQ3, the authors applied SLIC on the same repositories over commits span-
ning several years and determined for how long the same smell with the same values would
remain in the codebase. They determined that a smell can persist for as long as 98 months,
allowing attackers to exploit potential security problems.

Finally, to answer RQ4, the authors randomly selected 1000 of the smells detected by
SLIC and submitted a bug report explaining the smell and asking if contributors of the
repository agreed to fix the smell instances. They received only 212 responses, and 69.8%
agreed to fix the reported smells. “Use of weak cryptography algorithms” had the highest
agreement ratio.

3.2 Attempts to Reproduce SLIC Results

The source code to SLIC was made available by the authors in a figshare repository [15].
The repository contains a ZIP file with the source code and 4 CSV files, one for each dataset
used to answer RQ2, RQ3, and RQ4 of their work. However, the actual datasets, containing
the Puppet scripts, are not available: the CSV files contain only the local names of the script
files in the author’s computer and how many occurrences of each smell there are in that
file. There is also no easy way to find the original repositories, as there is no link in the
CSV files, and the names have been altered. This made it, unfortunately, impossible to try
to replicate the results described in the original work.

There were also issues in trying to run SLIC. The program is written in Python 2,
which makes it much more difficult to correctly install and manage dependencies since pip
no longer supports it as of version 20.3 [16]. It also depends on puppet-lint [17], which is a
standalone tool that requires external installation, making the code even less portable.

Despite these issues, we ran SLIC on a few scripts and got the expected results. The
program could identify a few smells on these test scripts, but we could not replicate the
original authors’ results without the original test repositories. The main utility of the SLIC
source code was as a reference to how exactly the rules for smell checking were implemented
so that we could replicate them in SLiTer.

The Python code checks files in the input directory, and all Puppet files detected are
passed through the Rule Engine. There is code suggesting that at some point, the authors
intended to also inspect Chef files using foodcritic [18], as shown in Listing 2, but for
some reason decided not to include it in the final paper. The Puppet files are fed through
puppet-lint, passing the custom rules defined in a ruby file as a parameter. The output
from puppet-lint is then parsed and converted into the CSV outputs describing the number
of occurrences and their locations.

1 #### CHEF ZONE
2 ### PUPPET LINT AND ITS RULES
3 CHEF_LINT_TOOL = ’foodcritic -I’
4 # CHEF_RULE_HARDCODE = ’../ SPrules4pupp/no_hardcode_key.rb’
5 CHEF_ALL_RULES = ’../ SPrules4chef/my-rules/my_rules.rb’
6 CHEF_SWITCH_RULE = ’../ SPrules4chef/my -rules/special_missing_case.rb’

Listing 2: Lines 30-35 in the constants.py from the SLIC source, showing chef-related code.
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3.3 Translating the Seven Sins to Terraform

After fully understanding the baseline solution, we developed SLiTer using Python 3.11.
It follows the same basic premise as SLIC, feeding the scripts through a parser and then
using a Rule Engine to detect smells. More details about how SLiTer works are explained
in Section 4. The idea was to “translate” the rules considering Terraform specifications.

3.4 Mining Terraform Repositories

To test and evaluate SLiTer, we created a dataset of Terraform directories. The dataset
comprises 15 directories sourced from 12 different OSS repositories, adding up to 105 Ter-
raform files. The repositories were chosen based on the premise of using code from real-world
projects, avoiding repositories with educational purposes and toy projects. Many reposito-
ries are from Terraform modules available on the Terraform Registry [19], while others are
from open-source applications such as GitLab.

For acquiring the relevant Terraform directories from the repositories, we developed a
Bash script called git sparse clone.sh that leverages the Git sparse-checkout feature [20] that
makes it possible to clone only a specific directory in a repository. The script is available
along with the SLiTer source code on GitHub [21].

3.5 Improving Original Rules

As the tool was being developed, it became clear that some changes could be made to
improve the performance of the rules compared to the baseline. We then decided to make 2
Rule Engines: one, called the baseline, replicates the SLIC rules as closely as is reasonable
given the language differences. The other has a few differences in the keywords used to
detect rules and specific built-in cases that improve the overall accuracy, especially by
lowering the number of false positives. Further details about the differences between the
rule engines are available in section 4.

4 SLiTer

SLiTer (Security Linter for Terraform) is written in Python 3.11. The full SLiTer source
code is available on GitHub [21]. It is composed of 4 modules:

• main.py: The program entry point, is responsible for listing the input directories,
instantiating the Rule Engines, and generating the output files.

• baseline ruleengine.py: Contains the Baseline_RuleEngine class, which imple-
ments the basic parse tree traversal functionality and the baseline rules, meant to
follow the SLIC rules as closely as is reasonable.

• sliter ruleengine.py: Contains the SLiTer_RuleEngine class, which inherits from
the Baseline_RuleEngine and applies changes to improve the tool effectiveness.
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REPO SMELL LOCATION

./terraform/gl-infra-packagecloud ADMIN BY DEFAULT cloudsql.tf.module.mysql[0].user name

Table 1: Example of log entry for an Admin by Default smell occurrence.

• hclparser.py: Contains the HCLParser class, which takes a Terraform directory and
returns to the Rule Engines the parse trees of all files in the form of dictionaries, as
well as the comments extracted from the files.

The only dependencies of SLiTer outside of the Python Standard Library [22] are Docker
[23] and the docker-py Python library [24]. The HCLParser uses Docker to run hcl2json [25],
which converts the Terraform files into a JSON format which is then turned into a Python
dictionary using Python’s json module, to be verified by the Rule Engines. If unavailable in
the local system, the hcl2json Docker image will be automatically pulled from DockerHub.

SLiTer currently sees all subdirectories within the terraform/ directory in the reposi-
tory as input. It will run through every file with the .tf extension in each of those subdi-
rectories and produce four CSV files as output:

• output sliter.csv and output baseline.csv: How many occurrences of each smell
are present in each input directory, as per the SLiTer Rule Engine and the Baseline
Rule Engine, respectively. Each column corresponds to a smell type, and each line
corresponds to an input directory.

• log sliter.csv and log baseline.csv: Where, in the parse tree, each smell occurrence
was found, for the SLiTer Rule Engine and the Baseline Rule Engine, respectively.
Each line corresponds to a smell occurrence and contains the input directory where
the smell was found, the smell type, and the path to the smell location.

Table 1 and listing 3 show an example of how a smell may appear in a Terraform
configuration, and how it shows in the log files when detected by SLiTer. In line 8, the
code sets the default user as ”admin“, characterizing the Admin by Default smell. Thus,
the path to the user_name attribute shows in the log file, as shown in table 1.

1 module "mysql" {
2 source = "GoogleCloudPlatform/sql -db/google // modules/mysql"
3 version = "16.1.0"
4
5 name = "packagecloud"
6 random_instance_name = true
7
8 user_name = "admin"
9

10 db_name = "packages_onpremise"
11 db_charset = "utf8mb4"
12 db_collation = "utf8mb4_general_ci"
13 disk_size = var.cloudsql_disk_size
14
15 ...
16
17 }

Listing 3: Example of the Admin by Default smell found in the cloudsql.tf file in the
gl-infra-packagecloud test repository.
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4.1 Parsing Terraform Files

The HCLParser class receives a Terraform directory with one or more .tf files, and its main
purpose is to return two dictionaries via the HCLParser.parse(): one containing the parse
tree for each file and another containing the comments extracted from the files.

The comments are extracted using regular expressions, with Python’s re module. The
expression detects all comment syntaxes allowed by Terraform [26]: both single-line com-
ments beginning with # or // and multiline comments beginning with /* and ending with
*/. If one of the comment starting sequences is inside a string literal in the Terraform code,
delimited by double quotes ("), then it does not initiate a comment.

Through a two-step process, the HCLParser generates the parse trees from the Terraform
files. First, it runs the files through hcl2json, creating a Docker container for each file. The
output of those containers, a JSON file with the same structure as the original Terraform,
is then transformed into a Python dictionary using Python’s json module.

4.2 Traversing the Parse Tree

The Rule Engines, after using the HCLParser to get the comments and parse trees from
the Terraform files, need to traverse those structures to search for smells. This is done
in the get_smells() method. This process is done in two parts: first, the comments
are traversed, searching for the Suspicious Comment smell, and then the parse trees are
traversed, to find the other smell types. Comments are traversed sequentially and tested
with the rules described in Section 4.3.5 to detect Suspicious Comments.

The parse trees are traversed using a recursive, depth-first approach. The nodes in the
parse tree can be a dictionary, a list, or a leaf value (usually a string or number). The
Baseline_RuleEngine class implements a method called visit(), which receives a node
and, depending on the node type, calls either the visit_dict(), the visit_list() or the
visit_leaf() method. Both visit_dict() and visit_list() recursively call visit()
on their inner values while keeping track of the current path traversed in the tree with an
attribute called current_key. When the algorithm reaches a leaf node, it tests its values
to search for all 6 of the remaining smell types, and, if a smell is detected, the current_key
is added to the list of occurrences of that smell. These methods can be seen in Listing 4.

4.3 Smells and Detection Rules

Rahman et al. identified seven types of security smells widely present in IaC scripts and
developed their SLIC tool to detect them in Puppet scripts [5]. The smells are detected
using custom rules passed to puppet-lint [17], using Ruby files. Several Ruby files are
present in the source code made available by the authors, with names that suggest each file
would contain one rule. However, the actual code only passes one file to puppet-lint, named
all in one.rb, which contains the final version of the rules used in their work.

The rules in this file are not a one-to-one match with the smell types; sometimes, more
than one rule composes a single smell. They also do not perfectly match the rules described
in Section IV of the original paper [5], and the differences will be explained for each smell.
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1 def visit(self , node):
2 if isinstance(node , dict):
3 self.visit_dict(node)
4 elif isinstance(node , list):
5 self.visit_list(node)
6 else:
7 self.visit_leaf(node)
8
9 def visit_dict(self , node):

10 for key , value in node.items():
11 previous_key = self.current_key
12 self.current_key += "." + key
13 self.visit(value)
14 self.current_key = previous_key
15
16 def visit_list(self , node):
17 previous_key = self.current_key
18 for i, item in enumerate(node):
19 self.current_key = previous_key + f"[{i}]"
20 self.visit(item)
21
22 def visit_leaf(self , node):
23 location = self.current_key
24
25 if isinstance(node , str):
26 # Test for smell occurrences

Listing 4: Baseline RuleEngine class methods implementing the tree traversal functionality

4.3.1 Admin by Default

This smell is the recurring pattern of default users as administrative users [5]. The authors
associate this smell with CWE-250: Execution with Unnecessary Privileges. The authors
claim this smell is detected by checking for the following pattern:

(isParameter(x)) ∧ (isAdmin(x.name) ∧ isUser(x.name)),

where x.name is the name of the parameter (not the value), isAdmin(x.name) checks
whether the name contains the substring “admin” and isUser(x.name) checks whether the
name contains the substring “user”. In practice, the actual logic in the no_admin_by_default
check in the all in one.rb file is quite similar, however, it also triggers if the name of the
parameter includes “user” as a substring and the value includes “admin” as a substring.

The rule for this smell in the Baseline Rule Engine follows this same idea, checking for
the name to be a user and either the name or the value to be an admin, as in Listing 5.

1 def test_admin_by_default(self , s: str) -> bool:
2 latest_key = self.latest_key ()
3 constant_s = self.remove_variables(s).lower()
4 return self.is_user(latest_key) and (self.is_admin(constant_s) or self.

is_admin(latest_key))

Listing 5: Baseline Rule Engine check for the Admin by default smell.

The is_admin() method is the same as the original, merely checking for the ”admin”
substring. The is_user() method, however, returns true if the string contains “user” but
does not contain the substring “provider”, as shown in Table 2. This is done using the same
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User substrings Negative user substrings Admin substrings

SLIC “user” None “admin”

Baseline Rule Engine “user” “provider” “admin”

SLiTer Rule Engine ”user” “provider” “adm”, “root”, “superuser”

Table 2: Positive and negative substrings used to detect “user” and “admin” occurrences
for the Admin by default smell in each Rule Engine.

is_user() method for both this smell and the Hard-coded secret smell, which makes this
added check. In the 15 repositories used to test SLiTer, this addition does not change the
occurrences found for this smell.

The SLiTer Rule Engine adds some extra words that may characterize the string as
administrative: instead of only “admin”, the list is now “adm”, “root”, and “superuser”.
The “adm” word also makes “admin” be detected, so this is, in fact, a superset of the
original solution.

4.3.2 Empty Password

This smell is the recurring pattern of using a string of length zero for a password [5], making
it very easy to guess. It is different from using no passwords, as other forms of authentication
may be available that do not require a password. The authors relate this smell to CWE-258:
Empty Password in Configuration File. The paper claims that the following rule detects
this smell:

(isAttribute(x) ∨ isV ariable(x)) ∧ (length(x.value) == 0 ∧ isPassword(x.name)),

where isPassword(x.name) is true if the name (not the value) of the attribute or vari-
able contains one of the following substrings: “pwd”, “pass”, “password”. The actual
no_empty_pass check used by SLIC actually works not only with strings of length zero but
also with a string containing only a single space character (“ ”).

The rule for this smell in our Baseline Rule Engine works similarly, working with zero
length or single space strings, as shown in listing 6. The isPassword() method, similarly
to the isUser() method explained in section 4.3.1, returns True if one of the password
substrings appears in the value, and the substrings ”provider” and ”passive” do not appear
in it, as shown in table 3.

1 def test_empty_password(self , s: str) -> bool:
2 latest_key = self.latest_key ()
3 if self.is_password(latest_key):
4 return (len(s) == 0) or (s == " ")
5 else:
6 return False

Listing 6: Baseline Rule Engine check for the Empty password smell.

The SLiTer rule engine slightly reworks this function so that, instead of only a single
whitespace, any amount of whitespace is recognized as an empty string.
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Password substrings Negative password substrings

SLIC “pwd”, “password”, “pass” None

Baseline Rule Engine “pwd”, “password”, “pass” “provider”, “passive”

SLiTer Rule Engine “pwd”, “password”, “pass” “provider”, “passive”

Table 3: Positive and negative substrings used to detect the empty password smell in each
Rule Engine.

4.3.3 Hard-coded Secret

This smell is the recurring pattern of revealing sensitive information such as usernames
and passwords as configurations in IaC scripts [5]. The authors consider three types of
hard-coded secrets: passwords, user names, and private cryptography keys. The authors
acknowledge that user names and SSH keys may be left in configuration files intentionally,
and may not be sufficient to cause a security vulnerability, which makes these practices a
security smell, and not an outright vulnerability. This smell is related to CWE-798: Use of
Hard-coded Credentials and CWE-259: Use of Hard-coded Password. The paper uses the
following rule to explain the detection of hard-coded secrets:

((isAttribute(x) ∨ isV ariable(x))

∧(isUser(x.name) ∨ isPassword(x.name) ∨ isPvtKey(x.name))

∧(length(x.value) > 0))

where isUser(x.name) would work as described in section 4.3.1, searching for the “user”
substring; isPassword(x.name) would work as described in section 4.3.2, searching for the
“password”, “pwd” or “pass” substrings; and isPvtKey(x.name) would search for either
“pvt” or “priv” followed by either “cert”, “key”, “rsa”, “secret” or “ssl”.

In practice, there is a total of 5 different checks implemented in the all in one.rb file
related to this smell.

• no hardcode secret v1: This check tests the following criteria:

– The name of the variable contains one of the following substrings: “pwd”, “pass-
word”, “pass”, “key”, “crypt”, “secret”, “certificate”, “cert”, “ssh key”, “md5”,
“rsa”, “ssl”, “dsa”, “user”.

– The variable’s name does not contain the substrings “passive” or “provider.

– The value of the variable has a length greater than 1.

• no hardcode secret v2: Checks if the value of the variable contains the substring
“ssh-rsa”, likely checking for SSH private keys, as well as a length greater than zero.

• no hardcode secret uname: Checks if the variable’s name contains “user”, does
not contain “provider”, and the value has a length greater than 1.

• no hardcode secret password: Checks if the name of the variable contains “pwd”,
“pass” or “password”, and does not contain “provider” or ”passive”, and the value
has a length greater than 1.
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• no hardcode secret key: Checks if:

– The name of the variable contains one of the following substrings: “key”, “crypt”,
“secret”, “certificate”, “cert”, “ssh key”, “md5”, “rsa”, “ssl”, “dsa”.

– The variable’s name does not contain the substring “provider”.

– The value of the variable has a length greater than 1.

It appears the no hardcode secret v1 check was meant to encompass all secret types,
while no hardcode secret v2 is an inclusion to detect SSH keys by the value, and the other
three checks are meant to break down the findings of the first main check. However, if the
source code made available is the final version actually used to get to the findings in the
paper, all of the checks are contributing to the ”Hardcoded secret” count equally, which
would make most of the occurrences counted twice.

In the Baseline Rule Engine for SLiTer, the check combines no hardcode secret v1 and
no hardcode secret v2, checking for the same substrings. The logic for the rule is shown in
Listing 7.

1 def test_hard_coded_secret(self , s: str) -> bool:
2 latest_key = self.latest_key ()
3 constant_s = self.remove_variables(s).lower()
4 if len(constant_s) > 0:
5 is_secret = self.is_user(latest_key) or self.is_password(latest_key)
6 is_secret = is_secret or self.is_pvt_key(latest_key) or ("ssh -rsa"

in constant_s)
7 return is_secret
8 else:
9 return False

Listing 7: Baseline Rule Engine check for the Hard-coded secret smell.

The SLiTer Rule Engine makes key changes to this smell’s detection. First, the sub-
strings used to detect private keys are changed, with the most relevant change being re-
moving the substring “key”, which generated too many false positives. Also, a Terraform-
specific condition was added: SLiTer checks for the usage of the tls_private_key resource
type. This resource is a quick way to create a PEM formatted private key, meant for easily
bootstrapping throwaway development environments, and should not be used in production
environments [27]. Therefore, it fits well within this smell, possibly exposing a private key in
production. Lastly, the check will discard an occurrence if the latest part of the path to the
scanned value is “description”. This is to avoid the descriptions of variables in Terraform,
stating that “this is a private SSH key”, for example, triggering the smell.

4.3.4 Invalid IP Address Binding

This smell is the recurring pattern of assigning the IP address 0.0.0.0 for a database server or
a cloud service/instance [5]. This may cause issues by allowing the instances to be accessible
from any network. The authors correlate this smell to CWE-284: Improper Access Control.
The rule presented in the paper for this smell is the following:

((isV ariable(x) ∨ isAttribute(x)) ∧ isInvalidBind(x.value)),
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where isInvalidBind(x.value) simply checks if “0.0.0.0” is a substring of the value. The
actual no_full_binding check passed to puppet-lint by SLIC flags every occurrence of the
“0.0.0.0” string found by the linter.

The rule for detecting this smell works the same in the Baseline and SLiTer Rule Engines,
which flags every time the substring “0.0.0.0” appears in a value, as shown in listing 8.

1 def test_invalid_IP_binding(self , s: str) -> bool:
2 return ("0.0.0.0" in s.lower ())

Listing 8: Baseline Rule Engine check for the Invalid IP address binding smell.

4.3.5 Suspicious comment

This smell is the recurring pattern of putting information in comments about defects, miss-
ing functionality, or system weakness [5]. This may give hints to malicious users about
possible vulnerabilities. These are indicated by keywords such as “TODO” or “FIXME” at
the beginning of comments. The paper claims the following rule is used for this smell:

(isComment(x) ∧ (hasWrongWord(x) ∨ hasBugInfo(x))),

where hasWrongWord(x) searches for the substrings “bug”, “hack”, “fixme”, “later”,
“later2” and “todo”; and hasBugInfo(x) searches for the patterns “bug[#nt]*[0-9]+” and
“show bug\.cgi?id=[0-9]+”. In the actual no_susp_comments check, the list of keywords
is slightly expanded to include “ticket”, “launchpad” and “to-do”, and the check does not
consider comments with the word ”debug”. The patterns from hasBugInfor(x) are not
present, but since they both contain the word “bug” they are already detected anyway.

The check in the Baseline Rule Engine is the same, containing the same keywords and
logic. The SLiTer Rule Engine changes the word list, removing duplicates (such as “later2”,
which is already detected by “later”) and including “pending”, “missing” and “note”.

4.3.6 Use of HTTP without TLS

This smell is the recurring pattern of using HTTP without the Transport Layer Security
(TLS) [5]. This may make the communication susceptible to man-in-the-middle attacks.
The authors correlate this smell to CWE-319: Cleartext Transmission of Sensitive Informa-
tion. The rule described in the paper for this smell is as follows:

((isAttribute(x) ∨ isV ariable(x)) ∧ isHTTP (x.value)),

where isHTTP (x.value) checks for the presence of substring “http:”. The actual no_http
check used by SLIC, however, checks for the substring “http://”, with two slashes in the
end. The rules in the Baseline and the SLiTer Rule Engines work the same way, searching
for “http://”, as shown in Listing 9.

1 def test_HTTP_without_TLS(self , s: str) -> bool:
2 return ("http ://" in s.lower ())

Listing 9: Baseline Rule Engine check for the HTTP without TLS smell.
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4.3.7 Use of Weak Cryptography Algorithms

This smell is the recurring pattern of using weak cryptography algorithms, such as MD5 and
SHA-1, for encryption purposes [5]. Those algorithms are not appropriate for encryption
and are susceptible to attacks. The authors associate this smell with CWE-327: Use of a
Broken or Risky Cryptographic Algorithm and CWE-326: Inadequate Encryption Strength.
The rule presented in the paper for this smell is the following:

(isFunction(x) ∧ usesWeakAlgo(x.name)),

where usesWeakAlgo(x.name) searches for the substrings “md5” and “sha1”. This is
accurate to check no_md5 used by SLIC, which uses those same keywords.

The Baseline Rule Engine implements the rule similarly to SLIC, using only those two
keywords. The SLiTer Rule Engine, however, expands that list based on the Open World-
wide Application Security Project’s (OWASP) recommendations for testing for weak encryp-
tion [28]. The expanded list is: “md4”, “md5”, “rc4”, “rc2”, “blowfish”, “sha1”, “sha-1”,
“sha 1”, “ des ”, “ des ”, “-des-”. Some variations of the names were added to account for
ways they may appear in code, to avoid false positives, and other algorithms were added.

4.4 Implementation Challenges

One of the biggest challenges in developing SLiTer was finding an appropriate parser for
Terraform. Early in development, we used tfparse [29], since it seems like a well-used parser
and is directly available as a Python module. However, using this parser brought several
problems. tfparse performs variable resolution wherever it can, so if a smell is present in the
default value of a variable, it will also be present in every location where this variable is used.
Also, if a resource is declared with a “count” meta-argument, determining that multiple
instances of this resource should be created, tfparse displays that quantity of resources
in the parse tree, instead of simply representing a single node with a “count” attribute.
Combining those two features means that, if a variable contains a smell, and that variable
is used in a resource definition with a “count” of 1000, that will make this same smell, with
a single point of origin, appear 1000 times in the parse tree. This creates too much noise
and makes it difficult to accurately identify how many smells are present in a project.

Our solution was to adopt hcl2json, which despite not being available directly as a
Python module, requiring the extra step of running it through Docker (or installing it
locally), makes an accurate and simple translation of the Terraform files into JSON. It
simply represents variable references without resolving them and does not create multiple
instances of a resource with a “count” meta-argument.

Another issue encountered was finding a way to parse the comments in Terraform.
Many tools easily available to extract comments from source code, such as comment parser
[30], only support a few specific languages, and HCL/Terraform is usually unavailable.
Comment detection is also not so simple due to the existence of both single-line and multi-
line comments, and the fact that characters that would typically begin a comment do not
do so if they are inside a literal string. Ultimately, our solution of using different groupings
of regular expressions to match string literals and match comments was inspired by the
solution employed in comment parser ’s source code to extract C-style comments.
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5 Evaluation

5.1 Overview of the Test Repositories

The 105 Terraform files used to test and evaluate SLiTer are divided into 15 Terraform
directories, which come from 12 different repositories. Eight are hosted on GitHub and the
other four on GitLab. All the repositories hosted on GitLab are from the GitLab company
production infrastructure. Four of the GitHub projects are Terraform modules available on
the Terraform Registry, and the other four are from other open-source projects. Figure 2
shows the source distribution.

GitLab infra
4

Terraform
modules

7

OSS projects
4

Figure 2: Distribution of the origins of the Terraform test directories.

5.2 Results

Tables 4 and 5 show the Baseline and SLiTer Rule Engines’ outputs for the 15 directories.
For both engines, at least one occurrence of each smell was found, except for the “Empty
Password” smell. The most frequent smell was “Hard-coded Secret”. For the Baseline,
there were six directories in which zero smells were detected; for the SLiTer, there were 7.

These results are in line with the original work, which also found “Hard-coded secrets”
to be the most prevalent smell. However, SLiTer found a much higher proportion of “Invalid
IP Bindings”, and a smaller proportion of “HTTP without TLS” than SLIC.

The only difference between the engines’ results is that the SLiTer Rule Engine found
four less hard-coded secrets and four more suspicious comments than the Baseline. The
hard-coded secret differences are all due to removing the keyword “key” from the list of
words used to detect private keys. All of the hard-coded secrets that are no longer detected
were false positives, as exemplified in Listing 10, in which the Baseline Rule Engine detected
line 8 as a hard-coded secret due to the “key” keyword.

The suspicious comments the SLiTer Rule Engine detected, but the Baseline did not,
are all due to the inclusion of the keyword “note” as one of the possible words that indicate
a suspicious comment. An example can also be found in Listing 10, at line 3.
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lacework-terraform-aws-iam-role/ 0 0 0 0 0 0 0

gl-infra-aws-nessus-scanner/ 0 0 0 1 0 0 0

terraform-aws-modules-terraform-aws-eks/ 0 0 2 2 3 0 3

grafana-loki/ 0 0 0 0 0 0 0

gl-infra-packagecloud/ 1 0 1 0 0 0 0

apache-pulsar/ 0 0 0 7 0 1 0

gruntwork-io-internal-lb/ 0 0 0 0 0 0 0

babbel-terraform-aws-lambda-with-inline-code/ 0 0 2 1 0 0 1

samuelclay-NewsBlur/ 0 0 1 0 0 0 0

jpetazzo-ampernetacle/ 0 0 2 5 1 0 0

gl-infra-dns-record/ 0 0 0 0 0 0 0

gl-infra-vault/ 0 0 20 0 0 1 0

gruntwork-io-network-lb/ 0 0 0 0 0 0 0

gruntwork-io-http-lb/ 0 0 0 0 0 0 0

gruntwork-io-google-lb/ 0 0 2 0 0 0 0

Total 1 0 30 16 4 2 4

Table 4: Output for the Baseline Rule Engine, showing the number of occurrences for each
smell in each test repository.
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lacework-terraform-aws-iam-role/ 0 0 0 0 0 0 0

gl-infra-aws-nessus-scanner/ 0 0 0 1 0 0 0

terraform-aws-modules-terraform-aws-eks/ 0 0 1 2 7 0 3

grafana-loki/ 0 0 0 0 0 0 0

gl-infra-packagecloud/ 1 0 1 0 0 0 0

apache-pulsar/ 0 0 0 7 0 1 0

gruntwork-io-internal-lb/ 0 0 0 0 0 0 0

babbel-terraform-aws-lambda-with-inline-code/ 0 0 1 1 0 0 1

samuelclay-NewsBlur/ 0 0 0 0 0 0 0

jpetazzo-ampernetacle/ 0 0 2 5 1 0 0

gl-infra-dns-record/ 0 0 0 0 0 0 0

gl-infra-vault/ 0 0 20 0 0 1 0

gruntwork-io-network-lb/ 0 0 0 0 0 0 0

gruntwork-io-http-lb/ 0 0 0 0 0 0 0

gruntwork-io-google-lb/ 0 0 1 0 0 0 0

Total 1 0 26 16 8 2 4

Table 5: Output for the SLiTer Rule Engine, showing the number of occurrences in each
test repository.
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1 module "kms" {
2 source = "terraform -aws -modules/kms/aws"
3 version = "1.1.0" # Note - be mindful of Terraform/provider version

compatibility between modules
4
5 create = local.create && var.create_kms_key && local.

enable_cluster_encryption_config # not valid on Outposts
6
7 description = coalesce(var.kms_key_description , "${var.

cluster_name} cluster encryption key")
8 key_usage = "ENCRYPT_DECRYPT"
9 deletion_window_in_days = var.kms_key_deletion_window_in_days

10
11 ...
12
13 }

Listing 10: False positive for the “Hard-coded Secret” smell found by the Baseline Engine
in the terraform-aws-modules-terraform-aws-eks directory, line 8 due to the “key” keyword.

5.3 Limitations

The dataset used to achieve these results is relatively small and comes from various sources.
This may impact the generalizability of these findings, and it could prove beneficial for
future works to apply SLiTer to larger and more diverse datasets.

Although SLiTer was developed based on SLIC and the findings in The Seven Sins
[5], comparing their results is difficult because of two main factors. First, the simple fact
of switching to a different domain of IaC, from Puppet to Terraform, can already cause
inherent changes in the way that practitioners deal with security issues, and so different
problems may appear more or less frequently. Also, the dataset used to achieve the results
in this paper is much smaller than the original, which may cause the results to be more
biased.

The idea of searching for smells based on certain patterns with keywords is also some-
what restrictive, and other, more sophisticated approaches that take more context into
consideration may lead to better results. SLiTer could also benefit from further investi-
gation on optimizing the keywords used to improve its accuracy. Also, as Rahman et al.
explained in their work, there may be other relevant smells besides the 7 detected by SLIC
and SLiTer.

SLiTer is also subject to the limitations of its dependencies, most notably hcl2json [25],
which, as its creator states, may not always create a perfect translation of the Terraform
file into JSON, especially if the target files use static analysis.

6 Conclusion

IaC is a great tool for ensuring that a system’s infrastructure is easy to change and repro-
ducible. However, IaC configurations are susceptible to vulnerabilities that demand specific
attention, making it beneficial to use specialized tools to check the code for possible security
issues. In The Seven Sins: Security Smells in Infrastructure as Code Scripts, Rahman et
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al. developed SLIC, a static analysis tool that aims to identify 7 different types of security
smells in Puppet scripts. Based on their work, we created SLiTer, a static analysis tool that
detects the same smells in Terraform files. We developed two Rule Engines: one to serve as
a baseline, faithfully translating the SLIC rules, and another with modifications to improve
the tool’s accuracy on Terraform. We mined 15 Terraform directories for testing SLiTer,
adding up to 105 Terraform files. We found that the most prevalent smell in our test files
was “Hard-coded secret”, following the results found in the original work.

SLiTer could be very useful for practitioners in checking for these more generalistic
security smells in Terraform configurations, while also using another tool like Sonar or
tfparse for searching for provider-specific issues.

Future work on SLiTer could investigate other improvements that could be made to
improve its accuracy, by testing it on a larger dataset. Other smells could also be added,
as SLiTer is built, so changing the rules and adding new ones is fairly simple.
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