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An open-world first-order logic reasoner with justification
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Abstract

This paper explores the key concepts and methods towards the development of an
open-world first-order logic reasoner with step-by-step justification. It covers the funda-
ments of classical logic to theorem proving algorithms and key methods for developing

a reasoner. Lastly, it presents the reasoner’s results through logic exercises.

1 Introduction

1.1 The Project

This article is part of an ongoing project in the fields of logic, linguistics, and semantics.
The goal of the project is to build an agent capable of logical reasoning based on controlled
English statements and queries, having a problem-solution approach understandable to
readers non versed on logic, capable of interpreting sets of sentences and inferring new
knowledge based on queries. Since its logic response requires the user’s understanding, it
needs to achieve beyond discerning whether a statement is true or false. It has to achieve
a chain of entailments based on its presumed true statements leading to its answer. In this
way, it attempts to imitate a human proving an argument.

This type of agent has a broad range of applications. It can reason about policies,

describing in which conditions an action is permitted or forbidden [1], help humans to
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reflect about their morality and ethics giving logically grounded advice [2], perform formal
verification of computer systems as a quality insurance mechanism [3], reason through
ontologies finding inconsistencies and discovering new information [4] and give explanatory
information over product reviews on online marketplaces [5].

For interpreting English and being able to perform reasoning, the first step is the trans-
lation of English sentences into a proper internal representation. This translation cannot be
achieved in a single step. The Interpretation Model we propose uses four layers of structures
for translating from natural English to Logic Expressions, with the proper syntax for logical
reasoning. First, the Natural Language Parser decomposes the sentences by their syntax
into a Parsed Grammar structure. Then, the Parsed Grammar is converted to a Discourse
Representation Structure (DRS) [6], a semantic structure. Lastly, DRSs are converted to
first-order logic syntax, a representation that is finally proper for being processed by the

Logic Reasoner.

English Querics and Statements

Natural Language Parser

Parsed Grammar

DRT Construction Rules

Discourse Representation Structures

DRT to Predicate Logic

Logic Expressions

Logic
Reasoner

Figure 1: Interpretation Model

The process requires that the user first inserts input statements in controlled natural
English, with the further translation of them into first-order logic syntax, and then their
insertion into the knowledge base. Then, in the sequence, the user inputs a query, the agent
translates it into first-order logic and finally gives a step-by-step solution, based on the
knowledge base’s premises.

This article will focus only on the Logic Reasoner module, which receives expressions in

first-order logic syntax and answers queries with a step-by-step solution in first-order logic
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syntax.

First-order logic was chosen since Hans Kamp’s Discourse Representation Theory does

not have a standard reasoning algorithm but has a great affinity with predicate calculus [6].

Also, there are extensive and well-established complete and sound algorithms for first-

order logic theorem proving (e.g. Tableaux, Resolution).

Lastly, first-order logic seems a promising approach for a base system capable of adding
features extending its semantics (e.g. temporal logic, higher-order logic, generalized quan-
tifiers) [7]. It is worth mentioning that Discourse Representation Theory’s ontological com-
mitments are broader than classical logic’s, thus for holding their complete semantics the

logic system should be extended.

1.2 Classical Logic

Before pointing out the specific requirements for the project’s reasoner a brief revision in

classical logic is needed for the reader’s further comprehension.

Classical logic is a powerful tool for analyzing information. Being able to infer the
validity of new statements and answer questions starting from the premises in a formal
manner similar to mathematics. Thus, translating information to this formal system gives

the capability to perform reasoning about the provided context.

This subsection provides a brief introduction to classical logic, which includes proposi-
tional logic and first-order logic. Also, it’s worth mentioning that this is not a complete
explanation on the topic, neither on its syntax or semantics. For example, propositional
logic has more connectives and rules of inference than shown in its subsection, and functions
are not mentioned in the first-order logic’s subsection although it composes its first-order
logic’s syntax. Those decisions were made to make this introduction succinct to include

only the classical logic elements that are used in the Logic Reasoner.
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1.2.1 Propositional Logic

Propositional logic is concerned with representing facts of the world and analyzing state-
ments’ validity [8]. Syntactically, it’s composed by atomic sentences represented by letters
(e.g. A, B,C) and logical connectives (e.g. V,A,=>, ) that can be used with atomic (and
complex) sentences to form new complex sentences. All sentences assume true or false

values, representing the sentences’ validity.

Name Symbol | Usage
negation - -P
conjunction A PAQ
disjunction \Y PvQ
implication = P=qQ

Table 1: Logical Connectives

Atomic sentences are used to represent simple facts. For example C can represent it’s
cloudy and R can represent it will rain. Complex sentences add more meaning to atomic
sentences as —~C' that means it’s not cloudy and C' = R means if it’s cloudy then it will rain.
The truth-value of a complex sentence directly depends on its connective and the sentences
that compound it.

For instance, assuming that P is true, it is possible to infer that —P is false and also

that PV @ is true. A complete truth-table for the logical connections mentioned is shown

in Table 2:
P Q -P |PVQ | PANQ | P=Q
False | False | True | False False True
False | True | True | True False True

True | False | False | True False False
True | True | False | True True True

Table 2: Truth-table

With the truth-table, it is possible to derive inference rules, i.e., patterns that are
tautologies: propositions that are always true.

For instance the modus ponens inference rule: P = Q,P = @
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It states that if P = @ is true and P is true the conclusion () is also true. Note on the
truth-table that @ is necessarily true in the context where P = @ and P are both true. A

table of rules of reference with more examples is shown in Table 3:

Name Inference Rule
Modus Ponens P=Q,PEQ
Modus Tollens P=Q,~-QFE-P
Hypothetical Syllogism P=Q,Q=REP=R
Conjunction Introduction PQEPAQ
Conjunctive Syllogism PAQEPQ
Disjunction Introduction PE=PVQ
Disjunctive Syllogism PvQ@,-QEP
Material Implication P=Q&-PVQ
De Morgan’s Negation Conjunction “(PANQ)E-PV-Q
De Morgan’s Negation Disjunction ~(PVQ)E-PAN-Q

Table 3: Propositional Logic Inference Rules modified from [9]

Inference rules enables the systematic proof of statements. The pattern-matching of

sentences using inference rules derives new sentences and discovers sentences’ truth values.

For example, consider the knowledge base of sentences (1) and (2) that are assumed as

having true values and the query (Q):

1 AVB
2 -B
Q A?

Since (2): —B is true, consequently (3): B is false. Using the disjunctive syllogism
inference rule to pattern-match (1) and (3) determines (4): A is true, therefore, the query

is solved.

The example below provides a review of propositional logic, presenting how, starting
from the translation of facts from the world, we are able to answer questions, using logical

inference.
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1 If it’s sunny, then Adam will go to the beach.
2 If it’s rainy, then Adam will go to the library.

3 It’s sunny.

Q  Will Adam go to the beach?

The first step is to convert the sentences to the syntax of propositional logic. Each

simple fact is translated into an atomic sentence.
it’s sunny = S
it’s rainy = R
Adam will go to the beach = B

Adam will go to the library = L

Then, the causality relations, also known as if-then statements, are translated to use

the implication operator =

If it’s sunny, then Adam will go to the beach = S = B

If it’s rainy, then Adam will go to the library = R = L

The same statements can now be seen in propositional logic representation:

1 S=1B
2 R=1L
S

Q B?

This translated representation is now suitable to be used together with the inference
rules. We can apply modus ponens in (1) and (3) to infer that (4): B is true. Thus, the

query’s answer is: true.
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1.2.2 First-order Logic

While Propositional Logic’s ontological commitments are only concerned with facts, First-
order Logic’s ontological commitments are concerned with representing facts, objects, and
relations [8].

Syntactically, first-order logic’s basic components are either terms representing objects
of the world (e.g. Chair, John, A, Y1), or predicates, representing relations between objects
(e.g. Likes(A, B), Eats(A,(C)).

Atomic Sentences in first-order logic can be either predicates or terms. Analogous
to propositional logic, atomic sentences form complex sentences with the with the use of
connectives.

Using the first-order logic syntax, it is possible to represent natural language sentences
like Adam eats bread as Eats(Adam, Bread) and if Adam is a man, then Adam is mortal
as Man(Adam) = Mortal(Adam).

First-order logic sentences also have true or false values to indicate the sentences’ validity.

Another interesting property of first-order logic is its capability to describe collections
of objects using the V and 3 quantifiers, together with variables (e.g. x, y, z). The V
quantifier can be interpreted as for all or every and the quantifier 3 can be understood as
exists. Variables can be used in predicates as constants do, but they inherit the associated
quantifiers’ meaning expressing collections instead of specific objects. In that manner,
it is possible to describe, for example, for all things if something is a reptile, then this
thing is an animal as VxReptile(x) = Animal(z), that is semantically equivalent to every
reptile is an animal. And it is also possible to represent there exists something precious as
JzPrecious(x).

Furthermore, nested quantifiers can represent Everything is part of something as Vx3yPart(x,y).

A term with no variables is considered a ground term (e.g. Precious(Gem)).

With the addition of quantifiers and variables, first-order logic extends new inference

rules as seen in Table 4. The inference rules in propositional logic are still valid for first-
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order logic. Therefore, the sentence Reptile(T'urtle) = Animal(Turtle), Reptile(Turtle)

still derives the sentence Animal(Turtle) by modus ponens.

Name Inference Rule
Universal Instantiation VaxP(z) = P(C)
Universal Generalization | P(C) for an arbitrary ¢ = VaP(z)
Existential Instantiation | JzP(z) = P(C) for some element C
Existential Generalization | P(C) for some element ¢ = JzP(x)

Table 4: First-order Logic Inference Rules from [9]

In order to exemplify first-order logic inference, take the knowledge base and the query

below:

1 VxReptile(x) = Animal(x)
2 Reptile(Turtle)

Q  Animal(Turtle)?

Universal Instantiation can substitute the constant Turtle in the ground term (2)
for the variable z in (1), introducing the new valid sentence (3): Reptile(Turtle) =
Animal(T'urtle). And then, modus ponens is applied between (2) and (3) to produce

(4): Animal(Turtle) answering (Q) as being true.

Note that the strategy shown is to create ground terms using universal instantiation
and then perform inference rules from propositional logic. This procedure is called propo-

sitionalization and will be mentioned further in this article.

Another interesting aspect of first-order logic semantics is the ability to not only answer
whether the query is true or false but which objects hold for a true value query. As shown

in the example below:
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1 Reptile(Turtle)
2 Reptile(Lizard)

VxReptile(x) = Animal(x)

Q JyAnimal(y)

Universal instantiation is used between (1) and (3), (2) and (3), deriving respectively:
4 Reptile(Turtle) = Animal(Turtle)
5 Reptile(Lizard) = Animal(Lizard)

Modus ponens is applied between (1) and (4), and (2) and (5):

6  Animal(Turtle)
7 Animal(Lizard)

The answer to the query is true and those are two objects (constants) that can be sub-
stitutes to the variable. This substitution takes the notation of: {y/Turtle}, {y/Lizard}.

Therefore, first-order logic achieves the answer for whom or which the query stands as true.

1.3 The Logic Reasoner’s Requirements

The main objective of the Logic Reasoner is to build an algorithm capable of giving step-
by-step solutions like the ones demonstrated in the previous subsection.
This subsection describes in more detail the reasoner’s requirements and the prioritiza-

tion of the algorithm design process.

1.3.1 Open-world Assumption

In closed-world assumption, if the query does not derives from the knowledge base’s state-
ments, its validity is considered to be false, since this assumption expects the agent has

complete knowledge of the world. Therefore, if the query’s value does not entail from its
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premises it is concluded to be false.

In open-world assumption, if the query does not entail from the premises, its value is

unknown, as the example below shows:

1 Vz TaxEvasion(x) = Criminal(zx)

Q Criminal(John)?

In closed-world assumption, if there are no inference rules to entail the query, the query’s
result is considered to be false. In an open-world assumption, the query’s result is considered

to be unknown.

The open-world option was chosen for the reasoner project since we assume that the
agent has incomplete world information. Considering the same constraint for the last ex-
ample, it becomes clear that it is semantically incorrect to answer the query as false since
it is not possible to confirm that John is not a criminal without evidence to support this
statement. The information that TaxEvasion(John) could be present in the world, but

not in the agent’s knowledge base. Therefore, the query’s answer should be unknown.

1.3.2 Removed Inference Rules

Some inference rules are not intuitive for humans to understand or do not grasp the semantic
properties intended for the project. Therefore, these rules were removed from the inference
process.
De Morgan Rule:
-(AVB) & -AAN-B

~(AAB) & -AV-B

The De Morgan rule was removed because it did not seem intuitive for the non-versed

logic reader.
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Material Implication:

A= B -AVB

This rule has a similar problem to the last one. Material implication did not seem to

be understandable to the ordinary reader.

Vacuous Truth:
~AEFA=B

This rule is semantically not desirable since the implication connective represents if-then
statements, meaning the causality relation. It’s incorrect to say that if a fact is false, any

causality relation is true, taking the fact as a premise.
For example, consider the premise:
It’s not cloudy = -C
It’s not accurate to arbitrarily assume that:

if it is cloudy, then it is sunny = C = S

1.3.3 Prioritisation

Considering that the main objective of the project, as a whole, is to achieve an intelli-
gent agent capable of explaining, step by step, logic solutions to users, mimicking human
arguments, the algorithm development process prioritized the soundness of the chain of en-

tailments over completeness, since humans don’t have complete logic reasoning capabilities.

2 Related Algorithms

Before describing the Logic Reasoner’s algorithm it’s important to mention related algo-

rithms and explain why they did not commit to the requirements for this project.
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2.1 Resolution Method [10] [8]

The basis of the Resolution Method is the proof by contradiction. To demonstrate that
KB | A, the statement K B A = A must not be satisfiable. First, the sentence KB A —A is
converted to CNF (conjunctive normal form). CNF is defined as a conjunction with one or
more clauses. Each clause is composed by a disjunction of positive or negative literals.

The example below is in CNF":

(AV-BVC)A(BV-C)A(—B)

The resolution algorithm continues by creating new clauses, joining two clauses that
have a common complimentary literal (e.g. D and —D) and eliminating the complimen-
tary literals from the new clause. This process continues until one of the two possibilities

happens:

e There are no clauses to be added, therefore KB [~ A and the query’s result is false.

e An empty clause is generated, therefore KB = A and the query’s result is true.

The empty clause only happens when there are two clauses that only contain the com-
plimentary literals like (wA) and (A). Those two clauses cannot coexist as both being true,
resulting in a contradiction.

Below, there is an example of the resolution algorithm with the KB already in CNF:

1 AvV-BVC

2 Bv-C
-B

Q C?

To check if the C' query is true, its negation, (4) =C' is added.
From (1) and (2) there comes the complimentary literal B, generating (5): AV CV —C.
Also, (2) and (3) resolve B, resulting in (6): —~C.
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Note that (6) and (4) are complementary, resulting in an empty clause, a contradiction,
and then the C' query is true.

The resolution method does not commit to the project requirements, because it relies on
a closed-world assumption. To show KB |= A, it tries to demonstrate that K B A=A is not
satisfiable. In an open-world assumption, it’s possible that the value of A is not reachable
by the premises. Therefore, K B A —A would not lead to a contradiction, meaning the query
is false. But by the project’s standards, the answer should be unknown.

Another reason for not using this method is the requirement to transform sentences to
CNF. CNF conversion uses material implication to eliminate the implication connective,
which was previously mentioned as an inference rule not understandable to the common

reader.

2.2 Tableau Method [11]

Like the resolution method, the tableau also relies on proof by contradiction, therefore to
KB = A, the formula KB A =A must be not satisfiable, using material implication to
eliminate the implication connective, together with De Morgan for negative conjunctions
and negative disjunctions. Therefore, the tableau method did not commit to the Logic
Reasoner’s requirements.

But, this method is worth mentioning, since it has some key ideas used in our Logic
Reasoner algorithm, and the method by itself is very interesting, because it is visually
intuitive.

The tableau method enables the decomposition of complex sentences into simpler ones.
First, the sentence KB A —A is inserted as the root of a tree. Then, each connective
is decomposed expanding new nodes or branches until all nodes are positive or negative

literals.
e Conjunctions are eliminated by adding the conjuncts in the same branch.

e Disjunctions open a new branch and add each disjunct as the leaf of a branch.
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o Negation uses De Morgan to convert the negated disjunction into conjunction and
vice-versa, and also double negation is eliminated adding the resultant sentence and

a new node in the same branch.

e Implication is eliminated using material implication.

The complementary literals in the tree, belonging to the same branch, form a closure,
a contradiction. Since there is a contradiction in the branch, further expansions are not
necessary.

The decomposition process continues until there are only literals or closed branches. If
all branches are closed, the statement KB A —A is false, therefore KB = A.

If there are opened branches, the statement K BA—A has not been proven false, therefore
KB = A.

The tableau method uses inference rules to decompose the sentences, resulting in simpler
sentences that are also valid. This same idea is presented in the preprocessing phase of our
Logic Reasoner.

The example below demonstrates the tableau method process:

1 AVB
2 -AAB
Q B?

As the tableau method attempts a proof by contradiction, the negated query is added
in the tableau with the knowledge base sentences (Figure 2).

The first sentence is decomposed, as a disjunction, opening a branch, and each disjunct
is inserted in one of the branches (Figure 3).

Note that in the right branch, the complementary B and =B form a closure (Figure 4).
Since it’s closed, further expansions in this branch are not necessary.

Next, the conjunction of the second sentence derives two nodes on the same branch
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AVB

“AAB

- B

Figure 2: Initial Tableau

AVDB
|
—AAB
|
-B
A B

Figure 3: Disjunction Decomposition

AVB
|
—AAB
|
-B
A B

Figure 4: Closure on the right branch

(Figure 5).

The complementary A and —A close the left branch (Figure 6). Both branches are

closed, which means a contradiction, resulting that the query’s answer is true.
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AvVB
|
—ArB
|
- B
A B

Figure 6: Closure on the left branch

2.3 RACE [12]

The Attempto project [13] has similar goals to the project discussed in this article. Attempto
Controlled English (ACE) texts are also translated to Discourse Representation Structures
that can be translated to other languages such as first-order logic, OWL 2, and others.
RACE is the first-order logic reasoner used in the Attempto project, using a modification
of SATCHMO [14], a first-order logic theorem prover in Prolog. RACE has the interesting

feature of providing proof justification. While SATCHMO just answers if the query succeeds
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or fails, RACE gives the minimal subsets of the axioms that entail the query’s result for

both success and failure. Also, RACE claims to work under an open-world assumption.

But there are two reasons for RACE not reaching the Logic Reasoner’s requirements.
First, the proof justification provided by RACE is the minimal subset of axioms, which

is different from a step-by-step solution of the problem. Take the example below:

1 (SVP)=R
2 =R

Q 57

The RACE reasoner would answer: the following minimal subset of the axioms answer

the query.

1 (SVP)=R
2 -R

Note that this justification does not explains how it got to its conclusion. It only
mentions the axioms used for the proof. Following our Logic Reasoner’s justification re-

quirements, the answer should be similar to the justification below:

The query =S is true, because:
(2) is true, then (3) R is false.
(1) is true and (3) is false, then (4) SV P is false.
(4) is false, then (5) S is false.
(5)

5) is false, then (6) =S is true.

The second requirement issue is that RACE do not answers queries as false as seen in
the execution of Figure 7:

Note that the example clearly states —Pet(John) is an axiom. Therefore, Pet(John)?
should be false.
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overall time: 0.45]1 sec; RACE time: 0.001 sec

Axioms: John is not a pet.
Query: Is John a pet?

Parameters:

Query cannot be answered from axioms.
The following parts of the theorems/query could not be proved:

= proper name: John
« countable common noun: (at least 1) pet
« copula: is/are

Figure 7: RACE Query answering execution

Queries in open-world assumption should have three possible states: true, false, or
unknown. RACE treats false queries as unknown and this is undesirable when it is possible
to prove the query is false.

The careful reader will notice that the counterexamples presented in the last subsections
are in propositional logic, and not in first-order logic, but since those techniques work under

propositionalization, the issues will persist for first-order logic .

3 The Logic Reasoner

3.1 Inherited Concepts

Before describing the Logic Reasoner, it is important to point some key concepts and

algorithms that take a crucial part in the algorithm design.

3.1.1 Backward Chaining

The backward chaining algorithm deals with inferences starting from the query [8]. In fact,
it is a form of goal-directed reasoning, useful for answering specific questions. It is a re-
cursive depth-first search approach, which searches for a goal in the knowledge base, such

that this goal can be the query itself or a sentence entailing the goal. The example below
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demonstrates the backward chaining approach:

1 VaCO(z) = F(z)
2 VzP(z) = Bl(z)
3 VaF(z) = G(x)
4 VaB(z) = Y(z)
5  O(Nick)

Q G(Nick)?

Starting from query (Q) as a goal, the algorithm searches which sentences of the knowl-
edge base answer’s it, directly or indirectly. Sentence (3) is a valid sentence for this, because
if the antecedent (G-1): F(Nick)? is true, then (Q) is also true by modus ponens and uni-
versal instantiation. Then, (G-1) becomes the new goal to be answered.

The same search method results in the (G-2): C(Nick)? goal, that proves (G-1), using
modus ponens in (1).

Finally, sentence (5) proves (G-2), and consequently, query (Q) is proved recursively as
true.

Backward chaining is used in our Logic Reasoner for answering the query or its expan-
sions. For this, if the goal has a constant, it looks in the knowledge base for an equivalent
sentence, but if the goal has a variable. it looks for a valid substitution. This substitution
will be further explained in the Unification Algorithm subsection. Backward chaining also
decomposes connectives in the query, creating new goals. For example, supposing an A A B

query, backward chaining breaks the query in two goals, A and B, which together prove the

query.

3.1.2 Forward Chaining

The forward-chaining algorithm deals with inferences starting from the knowledge base’s

sentences [8]. This approach applies inference rules onto the knowledge base’s sentences,
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adding the resultant sentences to the knowledge base. Therefore, it is a form of data-

directed reasoning and a breadth-first search approach. The example below demonstrates:

1 V2C(z) = F(z)
2 VaP(z) = B(x)
3 VaF(z) > G(z)
4 VaB(z) = Y(z)

5 C(Nick)

Q-1 G(Nick)?

Starting from (1), it is possible to apply the inference rule hypothetical syllogism with
(3) resulting in (6): VzC(z) = G(z).

The same inference rule is applied between (2) and (4) to produce (7): VzP(z) = Y (z).

And finally, universal instantiation and modus ponens between (6) and (5) produce (8):
G(Nick). Therefore, the query’s answer is true.

Note that forward chaining produce sentences not related to the query’s proof as in (7).

Forward chaining is used in our Logic Reasoner to produce simpler sentences in the
knowledge base as done by the expansions in the Tableau Method. Backward chaining can
perform in a simpler manner, only searching for equivalent sentences in the knowledge base

or valid substitutions.

3.1.3 Skolem Normal Form

Skolemization is a method used for eliminating the existential quantifier, converting the

sentence to Skolem Normal Form, which is similar to Existential Instantiation.

Skolemization: Va3yL(x,y) | VeL(z, F(x))

Existential Instantiation: VYx3yL(z,C) = VaL(z,C)
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The semantic difference is that the term C' in existential instantiation is a constant, and
thus it is related to a specific object. This is not necessarily the case, since the existential
quantifier does not map to a particular entity, but a collection. Skolemization solves this
issue with a Skolem function, as exemplified by the function F, which maps to a possible
object, not a specific one [8].

The method used in our Logic Reasoner is similar to the existential instantiation, but

it keeps the skolemization semantics.

Method used: Vz3yL(z,C) | VeL(z, Skoy)

It removes the existential quantifier and flags the variable as being skolemized. There-

fore, Sko, does not map to a specific constant when first-order logic inference is applied.

3.1.4 Unification Algorithm [15]

The unification procedure returns, if possible, a substitution that makes two sentences
identical [8]:

Unify(S1,S2) = 6 where Subst(S1,0) = Subst(Sa,0)

For example, the execution of the function Unify(P(z,y), P(A, B)) where x and y in
the first argument are variables, and A and B in the second argument are constants, returns
the substitution: 0 = {x/A,y/B}

Note that using 6 to substitute the variables from the arguments results in identical
sentences:

Subst(P(z,y),0) = P(A, B)

Subst(P(A,B),0) = P(A, B)

When there is no possible substitution, for example Unify(P(A,y), P(B,C)), the uni-
fication returns ”fail”.

The unification algorithm is useful for dealing with quantified sentences. Supppose the
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universally quantified sentence VzP(x) = Q(z). The unification of its antecedent with
the ground term P(A) would result in § = {x/A}. This substitution could be used to
universally instantiate the quantified sentence, producing P(A) = @Q(A). Also, when the
query is existentially quantified, for example 3xP(z), if the query unifies with a sentence in
the knowledge base as P(A), the substitution {z/A} is found, being a valid answer to the
query.

The two examples mentioned above are exactly the case where the unification algorithm

is used in our Logic Reasoner.

3.2 Logic Reasoner Algorithm Description

Our Logic Reasoner algorithm has two phases: preprocessing and answering.

The preprocessing phase is composed by 4 stages:

1. The elimination of existential quantifiers in the knowledge base by skolemization.

2. Forward Chaining reasoning over sentences that are both universally quantified. For

example: Vo P(z) = Q(x),VyQ(y) = R(y) = VzP(z) = R(z).

3. The use of universal instantiation to the knowledge base’s sentences containing pred-

icate symbols, present in the query.

4. Forward Chaining through ground terms, analogous to propositional logic reasoning.

The answering phase uses backward chaining to decompose the query’s connectives
recursively, searching for the goal in the knowledge base or, if it is an existentially quantified
query, searching for a substitution using unification.

The data structure for the logic sentences is an abstract syntax tree (AST), where
every node is either a connective, a predicate, a variable, or a constant. The nodes have
a justification attribute. Every time an inference rule is applied, the justification attribute

from the asserted sentence is appended together with the justifications from the sentences
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triggering the inference rule. Therefore, when the query has a value different from unknown,
its justification attribute is the sequence of entailments starting from the premises.
Currently, part 2 and 3 are still under development. Thus, the program does not support
sentences with the universal quantifier in the knowledge base. The development process
works under Test-driven development (TDD). There are over 100 tests for propositional

logic and 200 for first-order logic passing.

4 Results

4.1 Propositional Logic
Test 1: A simple modus ponens example
1 Ifit’s sunny, then Adam will go to the beach.

2 If it’s rainy, then Adam will go to the library.

3 It’s sunny.

Q Will Adam go to the beach?

First, the example is converted to propositional logic.

1 S=1B
2 R=1L
3 S
Q B?

The original results from the algorithm are in prefix notation as shown below:

Query (B) is true BECAUSE:
IMP(S B) is true and S is true THEN B is true.

But since this article has classical logic notation, the results will be converted:
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The query B is true BECAUSE:

S = B is true and S is true THEN B is true.

Test 2: Autonomous Car

An autonomous vehicle obeys the following rules to navigate through the city:

If there is a person in front of the car, then brake.

If the traffic light is yellow, there is a policeman and the ground is not slippery then brake.
If there is a police car, then there is a policeman.

If it is snowing, then the ground is slippery.

If the ground is slippery, then the ground is not dry.

If the traffic light is red, then brake.

If it is winter, then it is snowing.

Its sensors are currently receiving the information below:

The traffic light is yellow.
The traffic light is not red.
It is not snowing.

The ground is dry.

There is a police car.

There is not a person in front of the car.

Will the car brake?

First, the problem is converted to propositional logic syntax:
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1 PersonInFrontOfCar = Brake
2 (YellowLight N\ Policeman A\ —~Slippery) = Brake
3 Policecar = Policeman
Snow = Slippery
5  Slippery = —Dry
6  RedLight = Brake
7 Winter = Snow
8  YellowLight
9  —RedLight
10 —Snow
11 Dry
12 Policecar
13 —PersonInFrontO fCar
Q Brake?

25

The response below is a more complex, using multiple inferences to get to the query’s

answer. Note that each line of the justification uses sentences from the knowledge base or

information proved before to generate new information.

The query Brake is true BECAUSE:

1. Policecar = Policeman is true and Policecar is true THEN Policeman is true.

2. YellowLight is true and Policeman is true THEN YellowLight A Policeman is true.

3. Dry is true THEN —Dry is false.

4. Slippery = —Dry is true and = Dry is false THEN Slippery is false.

5. Slippery is false THEN —Slippery is true.
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6. YellowLightAPoliceman is true and —Slippery is true THEN Y ellow Light A Policeman/\

=Slippery is true.

7. (YellowLightA\PolicemanA\—Slippery) = Brake is true and Yellow Light A Policeman/

=Slippery is true THEN Brake is true.

4.2 First-Order Logic

Test 1: Is Fritz green?

Suppose that the goal is to conclude the color of a pet named Fritz and that the rule

base contains the following four rules:

If X croaks and X eats flies, then X is a frog.
If X chirps and X sings, then X is a canary.
If X is a frog, then X is green

If X is a canary, then X is yellow

It is also known that Fritz croaks and eats flies.

Fritz croaks.

Fritz eats flies.

First, the problem is converted to first-order logic syntax:
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1 Va((Croaks(z) A EatFlies(z)) = Frog(z))
2 Va((Chirps(z) A Sings(z)) = Canary(z))
3 Va(Frog(z) = Green())

4 Vz(Canary(z) = Yellow())

5  Croaks(Fritz)

6 FatFlies(Fritz)

Q Green(Fritz)?

Then, our algorithm answers:

The query Green(Fritz) is true BECAUSE:

1. Vz((Croaks(x) N EatFlies(x)) = Frog(x)) is true and Vx(Frog(x) = Green(x)) is

true THEN Vz((Croaks(z) A EatFlies(z)) = Green(x)) is true.

2. Vz((Croaks(x)\NEatFlies(x)) = Green(x)) is true and {x : Fritz} THEN (Croaks(Fritz)A

EatFlies(Fritz)) = Green(Fritz) is true.

3. Croaks(Fritz) is true and EatFlies(Fritz) is true THEN Croaks(Fritz)AEatFlies(Fritz)

is true.

4. (Croaks(Fritz) A EatFlies(Fritz)) = Green(Fritz) is true and Croaks(Fritz) A

EatFlies(Fritz) is true THEN Green(Fritz) is true.

Test 2: Deans and Professors

Consider the information below:
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Lucy is a professor.

All professors are people.

Fuchs is a dean.

Deans are professors.

All professors consider the dean a friend or don’t know him.
Everyone is a friend of someone.

People only criticize people that are not their friends.

Lucy criticized Fuchs.

The question is: Does Lucy know Fuchs?

First, the information and the question are converted to first-order logic syntax:

1 prof(Lucy)
2 Va(prof(z) = person(x))
3 dean(Fuchs)
Va(dean(z) = prof(z))
5 Va,ylprof(z) Adean(y) = isFriendOf(y, z) V —knows(z,y))
Va(3y(isFriendO f(y, z)))

YV, y(person(z) A person(y) A criticize(z,y) = —isFriendOf(y,x))

co N o

ceriticize( Lucy, Fuchs)

Q knowns(Lucy, Fuchs)?

Then, our reasoner answers:

The query knowns(Lucy, Fuchs) is false BECAUSE:

1. Vz,y(prof(x)ANdean(y) = isFriendO f(y, )V —knows(z,y)) is true and {x : Lucy, y :
Fuchs} THEN prof(Lucy)Adean(Fuchs) = isFriendO f (Fuchs, Lucy)V—knows(Lucy, Fuchs)

2. prof(Lucy) is true and dean(Fuchs) is true THEN prof(Lucy) Adean(Fuchs) is true.

3. prof(Lucy) A dean(Fuchs) = isFriendO f(Fuchs, Lucy) V —~knows(Lucy, Fuchs)
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10.

11.

12.

13.

14.

is true and prof(Lucy) A dean(Fuchs) is true THEN isFriendO f(Fuchs, Lucy) V

—knows(Lucy, Fuchs) is true.

Va,y(person(x) A person(y) A criticize(x,y) = —isFriendOf(y,z) is true and {z :
Lucy,y : Fuchs} THEN person(Lucy) A person(Fuchs) A criticize(Lucy, Fuchs) =

—isFriendO f(Fuchs, Lucy) is true.

Vx(prof(x) = person(x)) is true and {x : Lucy} THEN prof(Lucy) = person(Lucy)

is true.

prof(Lucy) = person(Lucy) is true and prof(Lucy) is true THEN person(Lucy) is

tfrue.

Vz(dean(xz) = prof(z)) and Vz(prof(x) = person(z)) is true THEN Vx(dean(x) =

person(x)) is true.

Vx(dean(x) = person(z)) is true and {x : Fuchs} THEN dean(Fuchs) = person(Fuchs)

is true.

dean(Fuchs) = person(Fuchs) is true and dean(Fuchs) is true THEN person(Fuchs)

is true.

person(Lucy) is true and person(Fuchs) is true and criticize(Lucy, Fuchs) is true

THEN person(Lucy) A person(Fuchs) A criticize(Lucy, Fuchs) is true.

person(Lucy)Aperson(Fuchs)Acriticize( Lucy, Fuchs) = —isFriendO f(Fuchs, Lucy)
is true and person(Lucy) A person(Fuchs) A criticize(Lucy, Fuchs) is true THEN

—isFriendO f(Fuchs, Lucy) is true.
—isFriendO f(Fuchs, Lucy) is true THEN isFriendO f(Fuchs, Lucy) is false.

isFriendO f(Fuchs, Lucy)V—knows(Lucy, Fuchs) is true and isFriendO f (Fuchs, Lucy)

is false THEN —knows(Lucy, Fuchs) is true.

—knows(Lucy, Fuchs) is true THEN knows(Lucy, Fuchs) is false.
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4.3 Further Work

The Logic Reasoner is not fully implemented yet. It still has missing inference rules, as:
e Constructive Dillema: A= B,C = D, AV D} BVD
e Implication’s Conjunction Decomposition: A = (BAC) A= B,A=C
e Implication’s Disjunction Decomposition: (AVB)=CEFA=C,B=C

Although, it can process the existential quantifier in the knowledge base and query, but
the universal quantifier is not implemented yet. Therefore, it only performs simple For
which objects is this sentence true? queries.

After finishing the implementation of stages 2 and 3, the next step will be extending
generalized quantifiers [16] to its semantics. Generalized quantifiers ontological commit-
ments reaches more quantifier expressions present in natural language as four chairs, only
one, at least two, all but three, more than half, no...except, usually, never, each one, each

other.
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