2
W

Analise de dependéncias via

comunicacao assincrona em
arquiteturas baseadas em
mMICTroSServicos

J. P. Amorim B. B. N. Franca

Relatério Técnico - IC-PFG-20-41
Projeto Final de Graduagdo
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteido deste relatério é de tnica responsabilidade dos autores.




Analise de dependéncias assincronas em arquiteturas
baseadas em microsservicos

Joao Pedro de Amorim* Breno Bernard Nicolau de Franga*

Resumo

Em diferentes cenérios, o estilo arquitetural em microsservigos vem ganhando noto-
riedade como referéncia de arquitetura a ser seguida em aplicagoes modernas, baseadas
em nuvem computacional, que buscam escalabilidade como requisito fundamental. Em-
bora essa arquitetura promova uma série de beneficios, ela também traz desafios como
o gerenciamento de sua evolugao e a complexidade operacional. Nesse contexto, o
uso de frameworks baseados em sistemas de mensagens (como o Kafka, por exemplo)
tornou-se um padrao na industria, sendo um método confidvel e eficiente para estabe-
lecer dependéncias assincronas entre servicos. Assim, em uma arquitetura distribuida
como a de microsservigos, é esperado um aumento de complexidade e consequentemente,
perder a referéncia de como os componentes do sistema se comunicam entre si, ocasio-
nando servigos com muitas dependéncias. Neste trabalho, visamos explorar a questao
do gerenciamento de dependéncias, desenvolvendo uma abordagem conceitual e uma
implementacao pratica dessa para mapear dependéncias assincronas via Kafka no caso
do projeto Site Where.

Ap6s analisar o repositorio (codigo-fonte) do projeto, fomos capazes de desenvolver
um algoritmo, além de realizar sua implementagao e aplicacao na arquitetura projeto e,
por fim, comparamos os resultados obtidos com as relagoes obtidas via inspe¢ao manual
do projeto e a partir da anélise de sua documentacao. O algoritmo foi capaz de mapear
corretamente 12 das 16 relagoes previstas pela inspecao manual e pela documentagao.
Sao apresentados também limita¢oes e oportunidades de melhoria do algoritmo, além
de uma anélise de acoplamento do proprio Site Where a partir dos resultados obtidos.

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.



2 Amorim e de Franca

1 Introducao

No contexto atual de desenvolvimento de software, o estilo arquitetural baseado em micros-
servigos vem se tornando cada vez mais utilizado como uma decisao de projeto de sistemas no
intuito de prover manutenibilidade, rapida entrega e alta escalabilidade [1]. N&ao é por acaso
que gigantes da tecnologia adotarao esse padrao para seus sistemas e um nimero alto de sis-
temas considerados “monoliticos” (isto ¢, que funcionam apenas como uma grande unidade
logica em um tnico processo) vém sendo reestruturados em multiplos servigos, executados
em diferentes processos, a fim de adotar esse padrao [2].

Concomitante com a alta dos microsservigos na industria, uma solugao muito adotada no
contexto da comunicacao assincrona entre servicos é a utilizacao de sistemas de mensageria
[3], como Apache Kafka' e RabbitMQ?, implementando o estilo publisher-subscriber.

Devemos destacar que, ao se adotar uma estrutura inerentemente distribuida, como é o
caso do padrao de microsservigos, hé um risco de um aumento significativo da complexidade
do sistema. Isso permite o surgimento de caracteristicas detrimentais a manutenibilidade
do sistema - e uma dessas caracteristicas é o forte acoplamento entre servigos, que possui
um impacto negativo direto na manutencao do sistema [4].

Assim, em uma arquitetura baseada em microsservigos, existe a necessidade de mapear
as interdependéncias entre servigos de uma forma eficaz, a fim de se ter um uma visao geral
de como se estrutura o sistema quanto & comunicagao (e consequentemente, o acoplamento)
entre servicos.

Recentemente, existem solugoes para identificacdo de dependéncias entre microsservigos,
como o GMAT [5] e SYMBIOTE 6], sendo este ultimo um método capaz de analisar a
evolugao do acoplamento ao longo de inameras liberagdes. Todavia, nao identificamos, até
a conclusao deste trabalho, uma abordagem e/ou ferramenta de anélise automatizada para
identificagdo de dependéncias assincronas, uma vez que os trabalhos anteriormente citados
foram fundamentalmente na comunicacao sincrona.

Na auséncia de tal solugado, torna-se complexo ter uma visao geral de como os compo-
nentes de sistema baseado em microsservigos concretamente se comunicam. Com pouca
visibilidade do sistema, é possivel que problemas em nivel de projeto arquitetural (como o
forte acoplamento entre servigos) passem desapercebidas e tomem proporgoes descontroladas
na sua evolucado. Ainda, ndo ter uma visdo clara de como os componentes de um sistema se
relacionam facilita a tomada de decisoes equivocadas e/ou redundantes de desenvolvimento,
o que impacta de forma negativa o projeto.

Assim, neste trabalho, propoe-se o desenvolvimento de uma abordagem conceitual tal
como uma implementacao concreta de uma ferramenta de andalise estatica de cédigo capaz
de mapear dependéncias assincronas entre servigos e denotar tais resultados visualmente,
por meio de um grafo de dependéncias.

Considerando o amplo escopo do problema, delimitamos para este trabalho o objetivo
factivel de desenvolver a tal solu¢do considerando uma ferramenta especifica de mensageria,
sendo o Apache Kafka, dada sua ampla ado¢ao no mercado e em sistemas de software livre.
Para isso, adotamos uma abordagem incremental, onde uma solugao especifica foi proposta

"https://kafka.apache.org
Zhttps:/ /www.rabbitmq.com



Anélise de Dependéncias Assincronas em Microsservigos 3

visando o projeto SiteWhere, uma plataforma loT de codigo aberto que adota o padrao
arquitetural baseado em microsservigos e possui comunicacao via Apache Kafka.

Ainda que tenhamos desenvolvido uma solugdo para um caso particular, o processo
de entendimento do problema em um caso especifico e identificagao das limitagoes fornecem
uma contribuigao inicial para solugoes mais genéricas de mapeamento de comunicagoes entre
microsservigos, uma vez que seré possivel utiliza-la como base para indicar o que é especifico
da implementacao do SiteWhere e o que pode ser considerado genérico & uma arquitetura
qualquer baseada em microsservigos.

O restante deste trabalho esta organizado da seguinte forma. Na Segao 2, apresentamos
a fundamentacao tedrica com os principais conceitos envolvidos nesse trabalho. Em seguida,
na Segdo 3, apresentamos o método utilizados para explorar o problema e encaminhar a
solucao. Na Secao 4, é descrita a solugao pelo viés conceitual e de implementagao pratica.
Na Secgao 5, trazemos os resultados do nossa solucao e por fim, na Secao 6, avaliamos o
desempenho obtido e denotamos pontos de gargalo e melhoras para proximas iteragoes.



4 Amorim e de Franca

2 Fundamentacao Teoérica

Nesta secao, apresentamos os principais conceitos no trabalho, de acordo com as subsec¢oes
a seguir.

2.1 Microsservigos

James Lewis [7] define o estilo arquitetural baseado em microsservigos como “uma abordagem
para se desenvolver uma unica aplicacdo como um conjunto de pequenos servicos, cada um
rodando em seu proprio processo e se comunicando por mecanismos leves, comumente a
partir de uma API por meio do protocolo HT'TP.”

Esse estilo arquitetural, pelo menos em relagao a sua definicdo e categorizagao, é bem
recente e cada vez mais vem sendo adotado frente & abordagem monolitica, uma vez que
prové uma série de vantagens sobre a mesma. A abordagem monolitica, como o proprio nome
indica, nao oferece uma modularizacao apropriada em servicos: nela, uma tnica unidade
logica é responsavel por todo o processamento pelo lado do servidor - ou seja, ela recebera
requisigoes de clientes, executara a légica pertinente ao dominio da requisi¢ao, se comunicara
com um banco de dados e devolveré as informagoes pertinentes & cada requisigao.

Um exemplo pratico é de bom grado para entendermos bem a distingao entre as arqui-
teturas: considere o caso de um cliente que realiza seu cadastro e em seguida, realiza um
clique no icone que representa seu feed de noticias em um aplicativo de uma rede social.

Em uma arquitetura monolitica, um tnico servidor processara tanto a requisicao referente
ao cadastro quanto a referente ao feed, executaré a logica pertinente ao dominio do cadastro
(por exemplo, a autenticagdo do usuéario, verificando se suas credenciais estdao de acordo
e/ou analisando cabegalhos da requisigao, como tokens) e a logica pertinente ao dominio do
feed (por exemplo, requisitar ao banco de dados as noticias que sao recomendadas aquele
usuario em especifico e para as noticias que possuem algum conteido de midia, requisitar
os assets pertinentes & Content Delivery Network [8] do aplicativo), e por fim, responder a
cada requisicao com as informacoes obtidas.

Ja em uma arquitetura baseada em microsservicos, é esperado que a requisicao seja
primeiramente direcionada & um API Gateway [9], que por sua vez, direciona a requisi¢ao de
cadastro para um servigo (ou conjunto de servigos) feito especificamente para o cadastro de
usuérios (rodando em seu proprio servidor) e analogamente, a requisi¢do do feed de noticias
serd direcionado para um servico feito para atender esse tipo especifico de requisicao.

Note que a arquitetura monolitica ndo possui uma segmentagao de dominio (o que vai
contra o proposto pela abordagem Domain Driven Design [10]) e além disso, uma mudanga
especificamente no dominio de cadastro afetar, por exemplo, o feed de noticias, uma vez que
para essa mudanca ser integrada a aplicacao, todo o projeto necessita ser reconstruido para
uma nova implantagao.

A arquitetura baseada em microsservicos, por sua vez, promove melhorias sobre os pontos
negativos mencionados no paragrafo anterior: ela é segmentada por dominio (um servigo ou
um conjunto de servigos para cada dominio) e, em relagdo ao aspecto de implantacao da
aplicacao, é fracamente acoplada - utilizando o exemplo anterior, uma mudanc¢a no dominio
do cadastro implica na reconstrugao e implantacao apenas dos servigos relacionados a esse



Anélise de Dependéncias Assincronas em Microsservigos 5

dominio. Porém, tais vantagens vem ao custo de se manter e escalar uma aplicagdo que se
torna intrinsecamente distribuida, o que é notoriamente mais complexo [11].

2.2 Servigos de Mensageria e o Estilo Publisher-Subscriber

Um cendrio comum em uma arquitetura baseada em microsservigos é a de que informacoes
contidas no dominio de um servico impactem diretamente outros dominios e consequente-
mente, os servigos pertinentes aquele dominio. Dentro do contexto do exemplo apresentado
na subsegao anterior, imagine que o usudario altere suas preferéncias na aplicagao da rede
social, de modo que essa informacao é processada pelo servico de cadastro. Porém, essa
mesma informagao é pertinente ao servigo responsavel pelo feed de noticias, uma vez que
ele constroi o feed do usuério de acordo com suas preferéncias. E notorio que precisamos
estabelecer algum mecanismo de comunicacao que atenda a essa necessidade - uma solugao

para tal é o estilo arquitetural publisher-subscriber [12].

O estilo arquitetural publisher-subscriber é utilizado por padroes de integracao entre
sistemas chamados de Mensageria, onde os componentes publishers sao responsaveis por
publicar mensagens em um canal ou to6pico (comumente em um broker de mensagens ou um
barramento de eventos) e, por sua vez, os subscribers sao responsaveis por se inscrever em um
tépico de acordo com suas necessidades. Assim que h& uma atualizagdo em um determinado
topico (a partir da publicagdo de uma mensagem nesse pelo publisher), os subscribers sao
notificados e realizam as alteragoes que a eles sdo pertinentes de acordo com o contetido da
mensagem publicada.

No nosso exemplo, é facil perceber que o servigo de cadastro pode ser mapeado para um
publisher, de modo que quando o usuéario alterar seus gostos/preferéncias, o servigo enviara
uma mensagem para um toépico designado para tal, de modo que o servigo responsavel pelo
feed de noticias sera notificado da atualizagao e realizard as alteracoes necessarias em seu
dominio.

Uma implementagao do estilo publisher-subscriber comumente utilizada é o Apache
Kafka [13] (comumente referenciado apenas por Kafka). Desenvolvido pelo LinkedIn em
2010, trata-se de uma solugao escalavel, duréavel, robusta e com tolerancia a falhas para o
padrao de publish-subscribe e também para streaming de eventos.

No Kafka, quem assume o papel dos publishers sdo os chamados producers (ou produ-
tores) e analogamente, o papel dos subscribers é assumido pelos chamados consumers (ou
consumidores). Logo, produtores escrevem mensagens (unidade bésica de dados no Kafka)
para um Kafka cluster, que é composto por brokers - responsaveis por receber e guardar
mensagens publicadas pelos produtores em tépicos. Consumidores consomem dados de um
broker em posicoes especificas, correspondente aos tépicos aos quais eles se inscreveram.

Ao analisarmos uma relacdo entre um produtor, o topico ao qual ele produz e um con-
sumidor que consome desse tépico, estamos estabelecendo uma relagao de dependéncia as-
stncrona entre esses componentes. Ao analisarmos tal relacdo em uma arquitetura de mi-
crosservigos, em que cada servigo pode conter multiplos produtores/consumidores Kafka,
estamos entao analisando dependéncias entre servigos.



6 Amorim e de Franga

2.3 Analise Estatica de Codigo e Reflexao Computacional

Outro conceito importante neste trabalho é o de analise estéatica de codigo. A analise estatica
de codigo ¢é a analise feita de modo automatica no codigo-fonte do programa e/ou em seu
bytecode apés ser compilado. Ela é utilizada majoritariamente para encontrar bugs no cédigo
(como é, por exemplo, o caso da ferramenta FindBugs [14]), reforgar padroes de codigo a
fim de manter a qualidade desse (aqui, Linters [15] sdo o maior exemplo) e gerar métricas
baseadas em elementos detectaveis via o cédigo fonte. Seguiremos com a tltima abordagem
citada, visto que queremos gerar métricas sobre a comunicacao assincrona entre servigos por
meio da anélise automatizada do codigo fonte.

Na implementagao do algoritmo que analisa as dependéncias entre servigos via Kafka, é
utilizado o conceito de reflexao [16]. A reflexdo em linguagens de programacao ¢ a capaci-
dade dessas de modificar, realizar introspeccoes e modificar sua estrutura e comportamento.
No contexto da linguagem de programacao Java, utilizada no trabalho, tal capacidade per-
mite a inspecao e instanciagao de classes, objetos e métodos cujo os nomes sao descobertos
em tempo de execugao.

2.4 O Projeto Site Where

Neste trabalho, a analise das dependéncias assincronas, via Kafka, é realizada especifica-
mente no contexto do projeto Site Where [17]. SiteWhere ¢ uma plataforma de codigo
aberto voltada para Internet of Things (ou IoT') totalmente estruturada em microsservigos
e que utiliza Kafka como sistema de mensageria. Em sua arquitetura 2.0, o Site Where utiliza
estritamente o modelo publisher-subscriber do Kafka (isto é, ha uma auséncia de Streams
[18]) descrito acima.

Global Microservices

Instance

Batch Device Event Presence Label
Operations Registration Search Management Generation

User
Management

Tenant Persistence Microservices

Outbound Connectors Microservices

Device Event
Tenant Management Management

Management Apache Azure Others

Soir EventHub Connectors

Asset Schedule
Management Management

Web/Rest

Rule Command Streaming
i Processing Delivery Media

Event Inbound T T T

Sources Processing

Figura 1: Arquitetura 2.0 do SiteWhere. Adaptado de [17]

Na figura 1, temos o diagrama para a arquitetura 2.0 do Site Where. Aqui, os microsser-
vigos sao delineados por quadrados e os topicos Kafka por cilindros amarelos. Os produtores



Anélise de Dependéncias Assincronas em Microsservigos 7

Kafka sao os microsservigos que possuem arestas que saem deles em dire¢ao a topicos e os
consumidores Kafka sao microsservigos que possuem arestas que advindas dos topicos e di-
recionadas a ele. Vale destacar que esse diagrama é a base para a arquitetura 2.0, mas se
difere do que de fato se d4 em minor releases, como € o caso da arquitetura 2.2.0.



8 Amorim e de Franga

3 Meétodo de Trabalho

Para atingir o objetivo de desenvolver uma abordagem conceitual e pratica para identificagao
de dependéncias assincronas, via Apache Kafka, no projeto SiteWhere, tomamos os seguintes
passos:

e Estudo do repositorio, incluindo o codigo-fonte, existente do projeto em seu repositorio
do GitHub. A forma que o estudo foi conduzido é descrito na Segao 4.

e Estudo das tecnologias envolvidas no projeto Site Where. Etapa descrita na Segao 4.

e Desenvolvimento de uma solucao de analise estatica capaz de inspecionar o codigo-
fonte do projeto e estabelecer as relagoes de dependéncias entre microsservigos. O viés
conceitual da solugao é descrito na Segao 4.

e Implementacao da solucao descrita na etapa anterior, de modo que sua saida seja a re-
presentagao visual das relagoes de dependéncia por meio de um grafo. O detalhamento
da implementacao se d4 na Segao 4.

e Analise dos resultados obtidos com a solugao, comparando-os com as relagdes obtidas
na documentagao oficial do projeto Site Where e inspegao manual do cédigo-fonte. Esse
processo é descrito na Segao 5.



Anélise de Dependéncias Assincronas em Microsservigos 9

4 Solucao Proposta

Primeiramente, estudamos o repositorio do Site Where buscando identificar e relacionar ma-
nualmente produtores e consumidores Kafka, visando o reconhecer um padrao estrutural.
Concomitantemente, estudamos as tecnologias existentes no projeto, com destaque ao Apa-
che Kafka. Apos isso, construimos o algoritmo representado pelo pseudocodigo descrito no
Algoritmo 1.

Antes de detalhar a implementagao do algoritmo, é importante descrever sobre a escolha
da abordagem de anélise estatica frente & andlise dindmica. Optamos pela abordagem
estatica visto a inerente dificuldade (principalmente em termos de recursos computacionais
e dependéncias) de fazer a implantacao de um projeto da complexidade do Site Where. Ao
tomarmos tal decis@o (de escolher uma abordagem estética), é importante denotar que aqui
passamos a analisar a arquitetura légica do projeto no lugar de sua arquitetura concreta,
isto é, sua ‘“real” arquitetura em tempo de execugao.

Para a primeira etapa do algoritmo, h& uma inicializagado de Gra fo com todos os topicos
presentes na classe responsével por conter os tépicos do projeto Site Where, isto é, a classe
KafkaTopicNaming. Aqui, cada tdpico é colocado na estrutura como “candidato” a aresta,
e 0 mesmo s6 se torna uma aresta efetiva do grafo se, durante a execugao do algoritmo,
for relacionado a esse topico algum microsservigo como vértice, isto €, a ele for relacionado
um produtor ou consumidor Kafka. Um ponto importante é que o fato dos tépicos estarem
contidos em uma classe é claramente uma decisdo particular do Site Where- em outros pro-
jetos, é mais comum que os topicos estejam, por exemplo, em um arquivo de configuracoes
e variaveis de ambiente. Portanto, ao se desenvolver uma futura abordagem genérica, é
importante que a estrutura que contenha os topicos seja fornecida como um parametro do
algoritmo.

Cada microsservigo no projeto é organizado em um diretorio especifico. Assim, para os
microsservigos em L, buscamos seu diretério e, em seguida, o algoritmo procura um diretério
Kafka. Essa etapa do algoritmo é relativamente simples, uma vez que os diretérios de servigos
seguem o padrao service-nome-do-servigo e os diretérios Kafka que neles podem estar
contidos possuem, em seu nome, kafka. Como cada diretério de um microsservico pode
conter varios diretérios aninhados, a busca por um diretério Kafka é feita recursivamente.

Ao detectarmos um diretério Kafka, analisamos seu arquivos por meio de uma rotina
recursiva a fim de determinar se o mesmo é, de fato, um produtor ou consumidor Kafka.
Nessa rotina, dado um arquivo, obtemos o nome de sua classe e o instanciamos via refle-
xao computacional. Em seguida, para cada propriedade nele contido, verificamos se alguma
delas é uma instancia de KafkaProducer ou de KafkaConsumer (o que ocorre pelo mé-
todo Class.isAssignableFrom(), que funciona como o operador instanceof em reflexao)
classes base fornecidas pelo Kafka para implementagao e produtores e consumidores, res-
pectivamente. Caso nenhuma das propriedadas da instancia analisada é uma instancia de
KafkaProducer ou de KafkaConsumer, chamamos a rotina recursivamente na superclasse da
instancia analisada. O fato de podermos utilizar da reflexao computacional nessa rotina foi
o fator responsavel pela escolha da linguagem Java para a implementacao do algoritmo.

Uma vez que temos uma classe que de fato é um produtor ou consumidor Kafka, ana-
lisamos se hd uma relagao entre os nomes desse e de um topico presente na estrutura do



10 Amorim e de Franga

Grafo como uma potencial aresta. Isso é feito ao compararmos, palavra a palavra, o nome
do produtor/consumidor com as palavras existentes no nome do topico - e se a0 menos
75% das palavras no nome do consumidor /produtor estiverem contidas no nome do topico,
estabelecemos que h& uma relagdo entre esses. Aqui, cada palavra possui como separador
uma letra maidscula, assim como prevé o padrao de nomeagao de classes em Java. No caso
do topicos, o separador utilizado pelo SiteWhere foi o caractere “-”. Também néo consi-
deramos o sufixo “Producer” ou “Consumer” na anélise. Por exemplo, no microsservigo de
event sources, ha o produtor cujo a classe é chamada DecodedEventsProducer e por sua
vez, existe o topico chamado event-source-decoded-events - como as palavras Decoded
Events estao inteiramente contidas no nome do tépico, estabelecemos que ambos possuem
uma relacao.

Estabelecida uma relacao, o topico deixa de ser um “candidato” a aresta e se torna
uma aresta de fato, uma vez que ele contém vertices associados ao mesmo. Apenas arestas
“efetivas” sao consideradas na impressao do Grafo.

Por fim, para a rotina responsével por imprimir as relacdes do Grafo produzido pelo
algoritmo, optou-se por realizar sua implementagao na linguagem DOT [19], que se trata de
uma linguagem de descricao de grafos em texto puro. Para renderizar o texto gerado em
DOT como imagens, a ferramenta GraphVIZ [20] foi escolhida.

Um ponto de destaque é que na implementacao do algoritmo, optamos por realizar a
estruturagao desse a partir de uma classe abstrata (AbstractParser), que contém méto-
dos que sdo comuns as diferentes versdes arquiteturais do projeto SiteWhere e, por sua
vez, classes concretas que sao responsaveis por implementar aspectos particulares a cada
versao - um exemplo é a classe ConcreteParserForSecondArchitecture, implementacao
concreta de (AbstractParser utilizada para analisar a arquitetura 2.2.0 do Site Where, que
é a principal versao analisada no trabalho.

O codigo-fonte da implementagdo da solugdo e sua documentacao estéd disponivel em:
https://github.com/JPedroAmorim/pfg


https://github.com/JPedroAmorim/pfg

Analise de Dependéncias Assincronas em Microsservicos

Entrada P: Estrutura de diretérios do projeto Site Where.
Entrada L: Lista de microsservigos aos quais devemos determinar as relagoes de
dependéncias.

Saida: Um grafo direcionado, no qual cada vértice representa um microsservico que
possui alguma dependéncia via Kafka. Cada aresta (arco) representa o topico pelo
qual os servicos se relactonam. Dada uma relagao, um arco é direcionado de um
MICTOSSETVICO T PATA UM MIcTosservico y, onde x € o produtor para o topico que o
arco representa, ey € o consumidor desse mesmo topico.

Gera-Relagdes (P, L):
Grafo < inicializado com os topicos presentes na classe de topicos como
candidatos a arestas;

para cada microsservigo presente em L faga

Identifique seu diretério em P;

para cada diretdrio existente dentro do diretério do microsservico faga

se houver um diretorio de Kafka entao

para cada arquivo dentro do diretorio faga

se o arquivo € um produtor ou consumidor entao

se existe alguma relagdo entre os nomes do produtor ou
consumidor com um topico presente como candidato a aresta
no grafo entao

Grafo « efetive o topico como aresta do grafo ao tornar o

microsservigco um de seus vértices;
fim

fim

fim
fim

fim
fim
retorna Grafo;

fim

Imprime (P, L):
Grafo + Gera-Relagdes (P, L);

para cada aresta efetiva do grafo faga
‘ imprima a aresta e seus vértices em linguagem DOT;
fim
fim
Algoritmo 1: Geragao e impressao do grafo de dependéncias

11



12 Amorim e de Franca

5 Avaliacao

A implementacgao da solucao descrita na se¢ao anterior foi avaliada com base na arquitetura
2.2.0 do projeto SiteWhere. Os grafos de dependéncia produzidos sao apresentados nas
figuras 2 e 3. A figura 2 possui os microsservigos detectados pelo algoritmo como vértices
do grafo, e as arestas sao direcionadas de um produtor Kafka para um consumidor Kafka.
Jé& a figura 3 possui a mesma estrutura, porém, aqui as arestas sao rotuladas com os nomes
dos tépicos que elas representam.

A solugao, executada na IDE (Integrated Development Environment) IntelliJ Idea, utili-
zando o Gradle como gerenciador de dependéncias e em uma maquina MacBook Pro 2018
com 8GB de RAM DDR3 e um processador Intel i5 Quad-Core de 2,3 GHz demorou cerca
de 42 segundos, sendo esse valor uma média de trés execugoes. Devemos explicitar que ha
uma carga consideravel em termos computacionais ao realizar a compilagao dos servigos do
projeto, o que é necessario para a etapa reflexiva do algoritmo.

Na tabela 1, ha um resumo das relagoes Kafka que o algoritmo foi capaz de constatar, as
relagoes obtidas na inspecao manual da codebase e as relagoes previstas na documentacao do
projeto SiteWhere. Nela, se a relacao foi constatada pelo método ha um simbolo de check-
mark indicando a constatagao e um espago em branco caso contrario. Ha um destaque para
o servico de Device State, cujo o algoritmo nao foi capaz de constatar porém estava presente
na inspecao manual e na documentacao do projeto e para o servigo de Device Management,

Documentagao

Servigo Solucao Automatizada Inspecao Manual SiteWhere 2.0

Asset Management

Batch Operations v’ v’ v’
Command Delivery v’ v’ v’
Device Management v’

Device Registration v’ v’ v’
Device State v’ v’
Event Management v’ v’ v’
Event Search
Event Sources v’ v’ v’
Inbound Processing v’ v’ v’
Instance Management
Label Generation
Outbound Connectors v’ v’
Rule Processing v’ v’

Streaming Media

Schedule Management

Tabela 1: Tabela com as relacoes encontradas via inspecao manual, solucao automatizada e
0 que estava previsto na documentacao.



13

Analise de Dependéncias Assincronas em Microsservicos

batchoperations

commanddelivery inboundprocessing
eventmanagement deviceregistration

Figura 2: Grafo produzido pelo algoritmo com arestas nao rotuladas.

eventsources

unprocessed-batch-elements

unprocessed-batch-operations

batchoperations

eventsources

inbound-device-registration-events

event-source-decoded-events

commanddelivery inboundprocessing
2
=
L
®
=
3=t
=
1 'E
< o0
:
g v
2 K
2 =
Q =)
£ E
2 g

deviceregistration

eventmanagement

com arestas rotuladas com os topicos.

Figura 3: Grafo produzido pelo algoritmo



14 Amorim e de Franca

que por sua vez, foi constatado apenas pela inspe¢ao manual - ele ndo estava previsto como
um elemento Kafka na documentacao e tampouco foi identificado pelo algoritmo.

Também temos que dar uma atengao aos servigos de Outbound Connectors e Rule Proces-
sing, que por sua vez, fogem do padrao verificado no resto do projeto de consumidor /produtor
(o que é constatado na propria documentagao) porém ainda possuem modulos Kafka. Am-
bos servigos nao foram identificados pelo algoritmo, porém foram verificados manualmente
e estavam na documentacao.

Em seguida, detalhamos os casos relevantes via inspecao manual e o resultado produzido
pelo algoritmo.

Batch Operations

Inspecgao do coédigo: Possui médulo Kafka.

Produz para Failed Batch Elements Topic. Esse tépico, pela inspegao de codigo,
nao possui consumidores.

e Produz para Unprocessed Batch Elements Topic. Esse tépico possui um tnico
consumidor, sendo ele o proprio servigo de Batch Operations.

e Consome Unprocessed Batch Elements Topic. Esse topico possui o proprio Un-
processed Batch Elements como produtor.

e Produz para Unprocessed Batch Operations Topic. Esse topico possui um tnico
consumidor, sendo ele o proprio servigo de Batch Operations.

e Consome Unprocessed Batch Operations Topic. Esse topico possui o proprio
Unprocessed Batch Elements como produtor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas que apon-
tam para ele mesmo.

Command Delivery

Inspecao do cédigo: Possui médulo Kafka.

e Produz para Undelivered Command Invocations Topic. Esse tépico, pela inspecao
de cé6digo, nao possui consumidores.

e Produz para Outbound Command Invocations Topic. Esse topico, pela inspecao
de coédigo, possui o servigo Event Management como consumidor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para o vértice do servico de Event Management.



Anélise de Dependéncias Assincronas em Microsservigos 15

Device Management

Inspecao do coédigo: Possui modulo Kafka.

e Produz para Inbound Events Topic. Esse topico, pela inspecao de codigo, pos-
sui o servico de Inbound Processing como outro produtor e o servigo de Event
Management como consumidor.

Resultado do algoritmo: O algoritmo nao foi capaz de relacionar o nome da classe que
representa o produtor Kafka desse microsservigo com o topico de Inbound Processing.
Portanto, ele nao aparece no grafo como um vértice.

Device Registration

Inspecao do coédigo: Possui médulo Kafka.

e Consome Device Registration Events Topic. Esse topico, pela inspecao de co-
digo, possui o servigo de Event Sources e o servigo de Inbound Processing como
produtores.

e Consome Unregistered Device Events Topic. Esse topico, pela inspegao de codigo,
possui o servico de Inbound Processing como produtor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas vindo dos
vértices que representam os servicos de Event Sources e Inbound Processing.

Device State

Inspecgao do coédigo: Possui modulo Kafka.

e Consome Outbound Events Topic. Esse topico, pela inspegao de codigo, possui
o servigo de Event Management como produtor.

Resultado do algoritmo: O algoritmo nao foi capaz de relacionar o nome da classe que
representa o produtor Kafka desse microsservigo com o tépico de Outbound Events.
Portanto, ele nao aparece no grafo como um vértice.

Event Management

Inspecgao do coédigo: Possui médulo Kafka.

e Consome Inbound Events Topic. Esse topico, pela inspecao de codigo, possui o
servico de Inbound Processing como outro produtor.

e Consome Inbound Reprocess Events Topic. Esse topico, pela inspegao de codigo,
possui o servico de Inbound Processing como outro produtor.

e Consome Unregistered Device Events Topic. Esse topico, pela inspegao de codigo,
possui o servico de Inbound Processing como outro produtor.



16 Amorim e de Franga

e Consome Device Registration Events Topic. Esse topico, pela inspe¢ao de co-
digo, possui o servigo de Event Sources e o servigo de Inbound Processing como
produtores.

e Consome Outbound Command Invocations Topic. Esse topico, pela inspegao de
c6digo, possui o servigo Command Delivery como consumidor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas vindo dos
vértices que representam os servigos de Event Sources, Inbound Processing e Command
Delivery.

Event Sources

Inspecao do cédigo: Possui médulo Kafka.

e Produz para Event Sources Decoded Events Topic. Esse topico, pela inspecao de
codigo, possui o servigo de Inbound Processing como consumidor.

e Produz para Device Registration Events Topic. Esse topico, pela inspecao de
c6digo, possui os servigos de Device Registration e Event Management como
consumidores.

e Produz para Failed Decoded Events Topic. Esse topico, pela inspecao de codigo,
nao possui consumidores.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para os vértices que representam os servigos de Device Registration, Event Manage-
ment e Inbound Processing.

Inbound Processing

Inspecao do cédigo: Possui médulo Kafka.

Produz para Inbound Events Topic. Esse tépico, pela inspegao de coédigo, possui
o servigo de Event Management como consumidor.

e Produz para Inbound Reprocess Events Topic. Esse topico, pela inspegao de
codigo, possui o servigo de Event Management como consumidor.

e Produz para Unregistered Device Events Topic. Esse toépico, pela inspecao de
c6digo, possui os servicos de Event Management e Device Registration como
consumidores.

e Produz para Device Registration Events Topic. Esse toépico, pela inspecao de
co6digo, possui os servicos de Device Registration e Event Management como
consumidores.

e Consome Event Sources Decoded Events Topic. Esse topico, pela inspecao de
codigo, possui o servigo de Event Sources como produtor..



Anélise de Dependéncias Assincronas em Microsservigos 17

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para os vértices que representam os servigos de Device Registration, Event Manage-
ment. H& também uma aresta vinda do vértice que representa o servigo de Event
Sources.

Outbound Connectors

Inspecao do coédigo: Possui moédulo Kafka, porém, os arquivos neles contidos nao se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Nao consta no grafo como vértice.

Rule Processing

Inspecao do cédigo: Possui médulo Kafka, porém, os arquivos neles contidos nao se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Nao consta no grafo como vértice.

Instance Management

Inspecao do cédigo: Possui médulo Kafka, porém, os arquivos neles contidos nao se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Nao consta no grafo como vértice.



18 Amorim e de Franga

6 Conclusao e Trabalhos Futuros

Podemos constatar a partir da tabela que o algoritmo foi capaz de efetivamente mapear a
maioria das dependéncias via Kafka contidas no Site Where- das 16 relagbes previstas pela
inspecao manual do cédigo em conjunto com a documentagao, fomos capazes de corretamente
produzir 12 delas. Todavia, ainda ha espago para melhora a fim de aprimorar o algoritmo
para que esses quatro casos passem a ser detectados.

Para os casos de falha de deteccao do algoritmo nos servigos de Device Management
e Device State, a falha ocorre na etapa em que se busca relacionar, de modo sintético, o
nome do Produtor/Consumidor presente no arquivo com os topicos existentes na classe de
resolucao de topicos do projeto. E passivel de, em uma nova iteracio do algoritmo, tomarmos
mais algum método de relacionar tais entidades sem ser a partir de uma simples correlagao
entre os nomes das mesmas.

Temos também que o algoritmo nao é capaz de identificar estruturas que fogem do
modelo Produtor/Consumidor - o que é perceptivel ao analisarmos os servigos de Outbound
Connectors e Rule Processing. Esse se torna um problema grave em novas versoes do
Apache Kafka, que cada vez mais vale-se da estrutura de Streams - um exemplo claro
em que o algoritmo performa mal em mapear relagées é o caso da arquitetura 3.0.0 do
SiteWhere em diante, visto que a mesma pauta-se mais na andlise de Streams do que o
modelo Produtor/Consumidor.

Outro ponto a ser considerado para proximas iteragoes é o refinamento da estrutura
Abstrata/Concreta - a estrutura abstrata, por mais que proveu genericidade entre versoes
do SiteWhere, ainda estd muito acoplada & propria organizagao do projeto, visto que a
mesma (em termos da organizagao de diretorios e padrao de nomeagao das classes/topicos)
nao se altera drasticamente entre as versoes arquiteturais do projeto.

Quanto & analise do acoplamento da versao 2.2.0 do Site Where, podemos constatar
que o servigo de Inbound Processing contém um nimero expressivo de relacgoes - ele esta
presente em 7 das 16 relagoes previstas. Pelo grafo gerado, é facil perceber um alto grau de
acoplamento a esse servigo, com destaque ao servigo de Event Management - que é fortemente
dependente do consumo de tépicos produzidos pelo Inbound Processing. Tal situacao é um
forte architecture smell [21] do ponto de vista do acoplamento, e deve ser considerada uma
refatoragao desse servico a fim de melhorar a manutenibilidade do sistema como um todo.



Anélise de Dependéncias Assincronas em Microsservigos 19

Referéncias

1]
2]
3]
4]

[5]

6]

7]
8]
19]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

Pooyan Jamshidi et al. “Microservices: The journey so far and challenges ahead”. Em:
IEEFE Software 35.3 (2018), pp. 24-35.

Microservices Adoption in 2020. O’Reilly. URL: https://www.oreilly. com/radar/
microservices-adoption-in-2020/.

Gregor Hohpe e Bobby Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

Justus Bogner, S. Wagner e Alfred Zimmermann. “ Automatically measuring the main-
tainability of service- and microservice-based systems: a literature review”. Em: Pro-
ceedings of 27th International Workshop on Software Measurement and 12th Interna-
tional Conference on Software Process and Product Measurement. Out. de 2017. DOTI:
10.1145/3143434.3143443.

Shang-Pin Ma et al. “Using service dependency graph to analyze and test microser-
vices”. Em: 2018 IEEFE }2nd Annual Computer Software and Applications Conference
(COMPSAC). Vol. 2. IEEE. 2018, pp. 81-86.

Daniel Rodrigo de Freitas Apolinario e Breno Bernard Nicolau de Franga. “Towards
a method for monitoring the coupling evolution of microservice-based architectures”.
Em: Proceedings of the 14th Brazilian Symposium on Software Components, Architec-
tures, and Reuse. 2020, pp. 71-80.

James Lewis e Martin Flower. Microservices, a definition of this new architectural term.
Mar. de 2014. URL: https://martinfowler.com/articles/microservices.html.

O que é uma CDN? Cloudfare. URL: https : //www . cloudflare . com/pt - br/
learning/cdn/what-is-a-cdn/.

API Gateway Pattern. Backends for Frontends. URL: https://microservices.io/
patterns/apigateway.html.

Martin Flower. DomainDrivenDesign. Abr. de 2020. URL: https://martinfowler.
com/bliki/DomainDrivenDesign.html.

Anand Ranganathan e Roy H. Campbell. “What is the complexity of a distributed
computing system?” Em: Complexity 12.6 (jul. de 2007), pp. 37-45. DOL: 10.1002/
cplx.20189.

What is Pub/Sub Messaging? Amazon. URL: https://aws.amazon . com/pt/pub-
sub-messaging/.
Apache Kafka. Apache Software Foundation. URL: https://kafka.apache.org/.

FindBug Static Code Analysis tool. University of Maryland. URL: http://findbugs.
sourceforge.net/.

What is a Linter and why your team should use it. Sourcelevel. URL: https://
sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it.

Glen McCluskey. Using Java Reflection. Oracle. Jan. de 1998. URL: https://www .
oracle.com/technical-resources/articles/java/javareflection.html.


https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://doi.org/10.1145/3143434.3143443
https://martinfowler.com/articles/microservices.html
https://www.cloudflare.com/pt-br/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/pt-br/learning/cdn/what-is-a-cdn/
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://doi.org/10.1002/cplx.20189
https://doi.org/10.1002/cplx.20189
https://aws.amazon.com/pt/pub-sub-messaging/
https://aws.amazon.com/pt/pub-sub-messaging/
https://kafka.apache.org/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html

20

[17]
[18]

[19]
[20]
[21]

Amorim e de Franca

Site Where. SiteWhere LLC. URL: https://sitewhere.io/en/.

Kafka Streams. Apache Software Foundation. URL: https://kafka . apache.org/
documentation/streams/.

The DOT Language. Graphviz. URL: https://graphviz.org/doc/info/lang.html.
Graph Visualization Software. Graphviz. URL: https://graphviz.org/.

Joshua Garcia et al. “Toward a Catalogue of Architectural Bad Smells”. Em: Pro-
ceedings of the Fifth International Conference on Quality of Software Architectures:
Architectures for Adaptive Software Systems. Vol. 5581. Lecture Notes in Computer
Science. Springer International Publishing, 2009, pp. 146—162. 1SBN: 978-3-642-02350-
7. DOI: 10.1007/978-3-642-02351-4_10.


https://sitewhere.io/en/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/
https://doi.org/10.1007/978-3-642-02351-4_10

	Introdução
	Fundamentação Teórica
	Microsserviços
	Serviços de Mensageria e o Estilo Publisher-Subscriber
	Análise Estática de Código e Reflexão Computacional
	O Projeto SiteWhere

	Método de Trabalho
	Solução Proposta
	Avaliação
	Conclusão e Trabalhos Futuros

