
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Análise de dependências via
comunicação assíncrona em
arquiteturas baseadas em

microsserviços
J. P. Amorim B. B. N. França

Relatório Técnico - IC-PFG-20-41

Projeto Final de Graduação

2020 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Análise de dependências assíncronas em arquiteturas
baseadas em microsserviços

João Pedro de Amorim∗ Breno Bernard Nicolau de França∗

Resumo

Em diferentes cenários, o estilo arquitetural em microsserviços vem ganhando noto-
riedade como referência de arquitetura a ser seguida em aplicações modernas, baseadas
em núvem computacional, que buscam escalabilidade como requisito fundamental. Em-
bora essa arquitetura promova uma série de benefícios, ela também traz desafios como
o gerenciamento de sua evolução e a complexidade operacional. Nesse contexto, o
uso de frameworks baseados em sistemas de mensagens (como o Kafka, por exemplo)
tornou-se um padrão na indústria, sendo um método confiável e eficiente para estabe-
lecer dependências assíncronas entre serviços. Assim, em uma arquitetura distribuída
como a de microsserviços, é esperado um aumento de complexidade e consequentemente,
perder a referência de como os componentes do sistema se comunicam entre si, ocasio-
nando serviços com muitas dependências. Neste trabalho, visamos explorar a questão
do gerenciamento de dependências, desenvolvendo uma abordagem conceitual e uma
implementação prática dessa para mapear dependências assíncronas via Kafka no caso
do projeto SiteWhere.

Após analisar o repositorio (código-fonte) do projeto, fomos capazes de desenvolver
um algoritmo, além de realizar sua implementação e aplicação na arquitetura projeto e,
por fim, comparamos os resultados obtidos com as relações obtidas via inspeção manual
do projeto e a partir da análise de sua documentação. O algoritmo foi capaz de mapear
corretamente 12 das 16 relações previstas pela inspeção manual e pela documentação.
São apresentados também limitações e oportunidades de melhoria do algoritmo, além
de uma análise de acoplamento do próprio SiteWhere a partir dos resultados obtidos.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1



2 Amorim e de França

1 Introdução

No contexto atual de desenvolvimento de software, o estilo arquitetural baseado em micros-
serviços vem se tornando cada vez mais utilizado como uma decisão de projeto de sistemas no
intuito de prover manutenibilidade, rápida entrega e alta escalabilidade [1]. Não é por acaso
que gigantes da tecnologia adotarão esse padrão para seus sistemas e um número alto de sis-
temas considerados “monolíticos” (isto é, que funcionam apenas como uma grande unidade
lógica em um único processo) vêm sendo reestruturados em múltiplos serviços, executados
em diferentes processos, a fim de adotar esse padrão [2].

Concomitante com a alta dos microsserviços na indústria, uma solução muito adotada no
contexto da comunicação assíncrona entre serviços é a utilização de sistemas de mensageria
[3], como Apache Kafka1 e RabbitMQ2, implementando o estilo publisher-subscriber.

Devemos destacar que, ao se adotar uma estrutura inerentemente distribuída, como é o
caso do padrão de microsserviços, há um risco de um aumento significativo da complexidade
do sistema. Isso permite o surgimento de características detrimentais à manutenibilidade
do sistema - e uma dessas características é o forte acoplamento entre serviços, que possui
um impacto negativo direto na manutenção do sistema [4].

Assim, em uma arquitetura baseada em microsserviços, existe a necessidade de mapear
as interdependências entre serviços de uma forma eficaz, a fim de se ter um uma visão geral
de como se estrutura o sistema quanto à comunicação (e consequentemente, o acoplamento)
entre serviços.

Recentemente, existem soluções para identificação de dependências entre microsserviços,
como o GMAT [5] e SYMBIOTE [6], sendo este último um método capaz de analisar a
evolução do acoplamento ao longo de inúmeras liberações. Todavia, não identificamos, até
a conclusão deste trabalho, uma abordagem e/ou ferramenta de análise automatizada para
identificação de dependências assíncronas, uma vez que os trabalhos anteriormente citados
foram fundamentalmente na comunicação síncrona.

Na ausência de tal solução, torna-se complexo ter uma visão geral de como os compo-
nentes de sistema baseado em microsserviços concretamente se comunicam. Com pouca
visibilidade do sistema, é possível que problemas em nível de projeto arquitetural (como o
forte acoplamento entre serviços) passem desapercebidas e tomem proporções descontroladas
na sua evolução. Ainda, não ter uma visão clara de como os componentes de um sistema se
relacionam facilita a tomada de decisões equivocadas e/ou redundantes de desenvolvimento,
o que impacta de forma negativa o projeto.

Assim, neste trabalho, propõe-se o desenvolvimento de uma abordagem conceitual tal
como uma implementação concreta de uma ferramenta de análise estática de código capaz
de mapear dependências assíncronas entre serviços e denotar tais resultados visualmente,
por meio de um grafo de dependências.

Considerando o amplo escopo do problema, delimitamos para este trabalho o objetivo
factível de desenvolver a tal solução considerando uma ferramenta específica de mensageria,
sendo o Apache Kafka, dada sua ampla adoção no mercado e em sistemas de software livre.
Para isso, adotamos uma abordagem incremental, onde uma solução específica foi proposta

1https://kafka.apache.org
2https://www.rabbitmq.com



Análise de Dependências Assíncronas em Microsserviços 3

visando o projeto SiteWhere, uma plataforma IoT de código aberto que adota o padrão
arquitetural baseado em microsserviços e possui comunicação via Apache Kafka.

Ainda que tenhamos desenvolvido uma solução para um caso particular, o processo
de entendimento do problema em um caso específico e identificação das limitações fornecem
uma contribuiçao inicial para soluções mais genéricas de mapeamento de comunicações entre
microsserviços, uma vez que será possível utilizá-la como base para indicar o que é específico
da implementação do SiteWhere e o que pode ser considerado genérico à uma arquitetura
qualquer baseada em microsserviços.

O restante deste trabalho está organizado da seguinte forma. Na Seção 2, apresentamos
a fundamentação teórica com os principais conceitos envolvidos nesse trabalho. Em seguida,
na Seção 3, apresentamos o método utilizados para explorar o problema e encaminhar a
solução. Na Seção 4, é descrita a solução pelo viés conceitual e de implementação prática.
Na Seção 5, trazemos os resultados do nossa solução e por fim, na Seção 6, avaliamos o
desempenho obtido e denotamos pontos de gargalo e melhoras para próximas iterações.



4 Amorim e de França

2 Fundamentação Teórica

Nesta seção, apresentamos os principais conceitos no trabalho, de acordo com as subseções
a seguir.

2.1 Microsserviços

James Lewis [7] define o estilo arquitetural baseado em microsserviços como “uma abordagem
para se desenvolver uma única aplicação como um conjunto de pequenos serviços, cada um
rodando em seu próprio processo e se comunicando por mecanismos leves, comumente a
partir de uma API por meio do protocolo HTTP.”

Esse estilo arquitetural, pelo menos em relação à sua definição e categorização, é bem
recente e cada vez mais vem sendo adotado frente à abordagem monolítica, uma vez que
provê uma série de vantagens sobre a mesma. A abordagem monolítica, como o próprio nome
indica, não oferece uma modularização apropriada em serviços: nela, uma única unidade
lógica é responsável por todo o processamento pelo lado do servidor - ou seja, ela receberá
requisições de clientes, executará a lógica pertinente ao domínio da requisição, se comunicará
com um banco de dados e devolverá as informações pertinentes à cada requisição.

Um exemplo prático é de bom grado para entendermos bem a distinção entre as arqui-
teturas: considere o caso de um cliente que realiza seu cadastro e em seguida, realiza um
clique no ícone que representa seu feed de notícias em um aplicativo de uma rede social.

Em uma arquitetura monolítica, um único servidor processará tanto a requisição referente
ao cadastro quanto a referente ao feed, executará a lógica pertinente ao domínio do cadastro
(por exemplo, a autenticação do usuário, verificando se suas credenciais estão de acordo
e/ou analisando cabeçalhos da requisição, como tokens) e a lógica pertinente ao domínio do
feed (por exemplo, requisitar ao banco de dados as notícias que são recomendadas àquele
usuário em específico e para as notícias que possuem algum conteúdo de mídia, requisitar
os assets pertinentes à Content Delivery Network [8] do aplicativo), e por fim, responder à
cada requisição com as informações obtidas.

Já em uma arquitetura baseada em microsserviços, é esperado que a requisição seja
primeiramente direcionada à um API Gateway [9], que por sua vez, direciona a requisição de
cadastro para um serviço (ou conjunto de serviços) feito especificamente para o cadastro de
usuários (rodando em seu próprio servidor) e analogamente, a requisição do feed de notícias
será direcionado para um serviço feito para atender esse tipo específico de requisição.

Note que a arquitetura monolítica não possui uma segmentação de domínio (o que vai
contra o proposto pela abordagem Domain Driven Design [10]) e além disso, uma mudança
especificamente no domínio de cadastro afetar, por exemplo, o feed de notícias, uma vez que
para essa mudança ser integrada à aplicação, todo o projeto necessita ser reconstruído para
uma nova implantação.

A arquitetura baseada em microsserviços, por sua vez, promove melhorias sobre os pontos
negativos mencionados no parágrafo anterior: ela é segmentada por domínio (um serviço ou
um conjunto de serviços para cada domínio) e, em relação ao aspecto de implantação da
aplicação, é fracamente acoplada - utilizando o exemplo anterior, uma mudança no domínio
do cadastro implica na reconstrução e implantação apenas dos serviços relacionados a esse



Análise de Dependências Assíncronas em Microsserviços 5

domínio. Porém, tais vantagens vem ao custo de se manter e escalar uma aplicação que se
torna intrinsecamente distribuída, o que é notoriamente mais complexo [11].

2.2 Serviços de Mensageria e o Estilo Publisher-Subscriber

Um cenário comum em uma arquitetura baseada em microsserviços é a de que informações
contidas no domínio de um serviço impactem diretamente outros domínios e consequente-
mente, os serviços pertinentes àquele domínio. Dentro do contexto do exemplo apresentado
na subseção anterior, imagine que o usuário altere suas preferências na aplicação da rede
social, de modo que essa informação é processada pelo serviço de cadastro. Porém, essa
mesma informação é pertinente ao serviço responsável pelo feed de notícias, uma vez que
ele constrói o feed do usuário de acordo com suas preferências. É notório que precisamos
estabelecer algum mecanismo de comunicação que atenda a essa necessidade - uma solução
para tal é o estilo arquitetural publisher-subscriber [12].

O estilo arquitetural publisher-subscriber é utilizado por padrões de integração entre
sistemas chamados de Mensageria, onde os componentes publishers são responsáveis por
publicar mensagens em um canal ou tópico (comumente em um broker de mensagens ou um
barramento de eventos) e, por sua vez, os subscribers são responsáveis por se inscrever em um
tópico de acordo com suas necessidades. Assim que há uma atualização em um determinado
tópico (a partir da publicação de uma mensagem nesse pelo publisher), os subscribers são
notificados e realizam as alterações que à eles são pertinentes de acordo com o conteúdo da
mensagem publicada.

No nosso exemplo, é fácil perceber que o serviço de cadastro pode ser mapeado para um
publisher, de modo que quando o usuário alterar seus gostos/preferências, o serviço enviará
uma mensagem para um tópico designado para tal, de modo que o serviço responsável pelo
feed de notícias será notificado da atualização e realizará as alterações necessárias em seu
domínio.

Uma implementação do estilo publisher-subscriber comumente utilizada é o Apache
Kafka [13] (comumente referenciado apenas por Kafka). Desenvolvido pelo LinkedIn em
2010, trata-se de uma solução escalável, durável, robusta e com tolerância a falhas para o
padrão de publish-subscribe e também para streaming de eventos.

No Kafka, quem assume o papel dos publishers são os chamados producers (ou produ-
tores) e analogamente, o papel dos subscribers é assumido pelos chamados consumers (ou
consumidores). Logo, produtores escrevem mensagens (unidade básica de dados no Kafka)
para um Kafka cluster, que é composto por brokers - responsáveis por receber e guardar
mensagens publicadas pelos produtores em tópicos. Consumidores consomem dados de um
broker em posições específicas, correspondente aos tópicos aos quais eles se inscreveram.

Ao analisarmos uma relação entre um produtor, o tópico ao qual ele produz e um con-
sumidor que consome desse tópico, estamos estabelecendo uma relação de dependência as-
síncrona entre esses componentes. Ao analisarmos tal relação em uma arquitetura de mi-
crosserviços, em que cada serviço pode conter múltiplos produtores/consumidores Kafka,
estamos então analisando dependências entre serviços.



6 Amorim e de França

2.3 Análise Estática de Código e Reflexão Computacional

Outro conceito importante neste trabalho é o de análise estática de código. A análise estática
de código é a análise feita de modo automática no código-fonte do programa e/ou em seu
bytecode após ser compilado. Ela é utilizada majoritariamente para encontrar bugs no código
(como é, por exemplo, o caso da ferramenta FindBugs [14]), reforçar padrões de código a
fim de manter a qualidade desse (aqui, Linters [15] são o maior exemplo) e gerar métricas
baseadas em elementos detectáveis via o código fonte. Seguiremos com a última abordagem
citada, visto que queremos gerar métricas sobre a comunicação assíncrona entre serviços por
meio da análise automatizada do código fonte.

Na implementação do algoritmo que analisa as dependências entre serviços via Kafka, é
utilizado o conceito de reflexão [16]. A reflexão em linguagens de programação é a capaci-
dade dessas de modificar, realizar introspecções e modificar sua estrutura e comportamento.
No contexto da linguagem de programação Java, utilizada no trabalho, tal capacidade per-
mite a inspeção e instanciação de classes, objetos e métodos cujo os nomes são descobertos
em tempo de execução.

2.4 O Projeto SiteWhere

Neste trabalho, a análise das dependências assíncronas, via Kafka, é realizada especifica-
mente no contexto do projeto SiteWhere [17]. SiteWhere é uma plataforma de código
aberto voltada para Internet of Things (ou IoT ) totalmente estruturada em microsserviços
e que utiliza Kafka como sistema de mensageria. Em sua arquitetura 2.0, o SiteWhere utiliza
estritamente o modelo publisher-subscriber do Kafka (isto é, há uma ausência de Streams
[18]) descrito acima.

Figura 1: Arquitetura 2.0 do SiteWhere. Adaptado de [17]

Na figura 1, temos o diagrama para a arquitetura 2.0 do SiteWhere. Aqui, os microsser-
viços são delineados por quadrados e os tópicos Kafka por cilindros amarelos. Os produtores



Análise de Dependências Assíncronas em Microsserviços 7

Kafka são os microsserviços que possuem arestas que saem deles em direção à tópicos e os
consumidores Kafka são microsserviços que possuem arestas que advindas dos tópicos e di-
recionadas a ele. Vale destacar que esse diagrama é a base para a arquitetura 2.0, mas se
difere do que de fato se dá em minor releases, como é o caso da arquitetura 2.2.0.



8 Amorim e de França

3 Método de Trabalho

Para atingir o objetivo de desenvolver uma abordagem conceitual e prática para identificação
de dependências assíncronas, via Apache Kafka, no projeto SiteWhere, tomamos os seguintes
passos:

• Estudo do repositório, incluindo o código-fonte, existente do projeto em seu repositório
do GitHub. A forma que o estudo foi conduzido é descrito na Seção 4.

• Estudo das tecnologias envolvidas no projeto SiteWhere. Etapa descrita na Seção 4.

• Desenvolvimento de uma solução de análise estática capaz de inspecionar o código-
fonte do projeto e estabelecer as relações de dependências entre microsserviços. O viés
conceitual da solução é descrito na Seção 4.

• Implementação da solução descrita na etapa anterior, de modo que sua saída seja a re-
presentação visual das relações de dependência por meio de um grafo. O detalhamento
da implementação se dá na Seção 4.

• Análise dos resultados obtidos com a solução, comparando-os com as relações obtidas
na documentação oficial do projeto SiteWhere e inspeção manual do código-fonte. Esse
processo é descrito na Seção 5.



Análise de Dependências Assíncronas em Microsserviços 9

4 Solução Proposta

Primeiramente, estudamos o repositório do SiteWhere buscando identificar e relacionar ma-
nualmente produtores e consumidores Kafka, visando o reconhecer um padrão estrutural.
Concomitantemente, estudamos as tecnologias existentes no projeto, com destaque ao Apa-
che Kafka. Após isso, construímos o algoritmo representado pelo pseudocódigo descrito no
Algoritmo 1.

Antes de detalhar a implementação do algoritmo, é importante descrever sobre a escolha
da abordagem de análise estática frente à análise dinâmica. Optamos pela abordagem
estática visto a inerente dificuldade (principalmente em termos de recursos computacionais
e dependências) de fazer a implantação de um projeto da complexidade do SiteWhere. Ao
tomarmos tal decisão (de escolher uma abordagem estática), é importante denotar que aqui
passamos a analisar a arquitetura lógica do projeto no lugar de sua arquitetura concreta,
isto é, sua “real” arquitetura em tempo de execução.

Para a primeira etapa do algoritmo, há uma inicialização de Grafo com todos os tópicos
presentes na classe responsável por conter os tópicos do projeto SiteWhere, isto é, a classe
KafkaTopicNaming. Aqui, cada tópico é colocado na estrutura como “candidato” a aresta,
e o mesmo só se torna uma aresta efetiva do grafo se, durante a execução do algoritmo,
for relacionado a esse tópico algum microsserviço como vértice, isto é, a ele for relacionado
um produtor ou consumidor Kafka. Um ponto importante é que o fato dos tópicos estarem
contidos em uma classe é claramente uma decisão particular do SiteWhere- em outros pro-
jetos, é mais comum que os tópicos estejam, por exemplo, em um arquivo de configurações
e variáveis de ambiente. Portanto, ao se desenvolver uma futura abordagem genérica, é
importante que a estrutura que contenha os tópicos seja fornecida como um parâmetro do
algoritmo.

Cada microsserviço no projeto é organizado em um diretório específico. Assim, para os
microsserviços em L, buscamos seu diretório e, em seguida, o algoritmo procura um diretório
Kafka. Essa etapa do algoritmo é relativamente simples, uma vez que os diretórios de serviços
seguem o padrão service-nome-do-serviço e os diretórios Kafka que neles podem estar
contidos possuem, em seu nome, kafka. Como cada diretório de um microsserviço pode
conter vários diretórios aninhados, a busca por um diretório Kafka é feita recursivamente.

Ao detectarmos um diretório Kafka, analisamos seu arquivos por meio de uma rotina
recursiva a fim de determinar se o mesmo é, de fato, um produtor ou consumidor Kafka.
Nessa rotina, dado um arquivo, obtemos o nome de sua classe e o instanciamos via refle-
xão computacional. Em seguida, para cada propriedade nele contido, verificamos se alguma
delas é uma instância de KafkaProducer ou de KafkaConsumer (o que ocorre pelo mé-
todo Class.isAssignableFrom(), que funciona como o operador instanceof em reflexão)
classes base fornecidas pelo Kafka para implementação e produtores e consumidores, res-
pectivamente. Caso nenhuma das propriedadas da instância analisada é uma instância de
KafkaProducer ou de KafkaConsumer, chamamos a rotina recursivamente na superclasse da
instância analisada. O fato de podermos utilizar da reflexão computacional nessa rotina foi
o fator responsável pela escolha da linguagem Java para a implementação do algoritmo.

Uma vez que temos uma classe que de fato é um produtor ou consumidor Kafka, ana-
lisamos se há uma relação entre os nomes desse e de um tópico presente na estrutura do



10 Amorim e de França

Grafo como uma potencial aresta. Isso é feito ao compararmos, palavra a palavra, o nome
do produtor/consumidor com as palavras existentes no nome do tópico - e se ao menos
75% das palavras no nome do consumidor/produtor estiverem contidas no nome do tópico,
estabelecemos que há uma relação entre esses. Aqui, cada palavra possui como separador
uma letra maiúscula, assim como prevê o padrão de nomeação de classes em Java. No caso
do tópicos, o separador utilizado pelo SiteWhere foi o caractere “-”. Também não consi-
deramos o sufixo “Producer” ou “Consumer” na análise. Por exemplo, no microsserviço de
event sources, há o produtor cujo a classe é chamada DecodedEventsProducer e por sua
vez, existe o tópico chamado event-source-decoded-events - como as palavras Decoded
Events estão inteiramente contidas no nome do tópico, estabelecemos que ambos possuem
uma relação.

Estabelecida uma relação, o tópico deixa de ser um “candidato” a aresta e se torna
uma aresta de fato, uma vez que ele contém vertices associados ao mesmo. Apenas arestas
“efetivas” são consideradas na impressão do Grafo.

Por fim, para a rotina responsável por imprimir as relações do Grafo produzido pelo
algoritmo, optou-se por realizar sua implementação na linguagem DOT [19], que se trata de
uma linguagem de descrição de grafos em texto puro. Para renderizar o texto gerado em
DOT como imagens, a ferramenta GraphVIZ [20] foi escolhida.

Um ponto de destaque é que na implementação do algoritmo, optamos por realizar a
estruturação desse a partir de uma classe abstrata (AbstractParser), que contém méto-
dos que são comuns às diferentes versões arquiteturais do projeto SiteWhere e, por sua
vez, classes concretas que são responsáveis por implementar aspectos particulares à cada
versão - um exemplo é a classe ConcreteParserForSecondArchitecture, implementação
concreta de (AbstractParser utilizada para analisar a arquitetura 2.2.0 do SiteWhere, que
é a principal versão analisada no trabalho.

O código-fonte da implementação da solução e sua documentação está disponível em:
https://github.com/JPedroAmorim/pfg

https://github.com/JPedroAmorim/pfg


Análise de Dependências Assíncronas em Microsserviços 11

Entrada P : Estrutura de diretórios do projeto SiteWhere.
Entrada L : Lista de microsserviços aos quais devemos determinar as relações de

dependências.

Saída: Um grafo direcionado, no qual cada vértice representa um microsserviço que
possui alguma dependência via Kafka. Cada aresta (arco) representa o tópico pelo
qual os serviços se relacionam. Dada uma relação, um arco é direcionado de um
microsserviço x para um microsserviço y, onde x é o produtor para o tópico que o
arco representa, e y é o consumidor desse mesmo tópico.

Gera-Relações(P, L):
Grafo ← inicializado com os tópicos presentes na classe de tópicos como
candidatos à arestas;

para cada microsserviço presente em L faça
Identifique seu diretório em P;
para cada diretório existente dentro do diretório do microsserviço faça

se houver um diretório de Kafka então
para cada arquivo dentro do diretório faça

se o arquivo é um produtor ou consumidor então
se existe alguma relação entre os nomes do produtor ou
consumidor com um tópico presente como candidato a aresta
no grafo então

Grafo ← efetive o tópico como aresta do grafo ao tornar o
microsserviço um de seus vértices;

fim
fim

fim
fim

fim
fim
retorna Grafo;

fim

Imprime(P, L):
Grafo ← Gera-Relações(P, L);

para cada aresta efetiva do grafo faça
imprima a aresta e seus vértices em linguagem DOT;

fim
fim

Algoritmo 1: Geração e impressão do grafo de dependências



12 Amorim e de França

5 Avaliação

A implementação da solução descrita na seção anterior foi avaliada com base na arquitetura
2.2.0 do projeto SiteWhere. Os grafos de dependência produzidos são apresentados nas
figuras 2 e 3. A figura 2 possui os microsserviços detectados pelo algoritmo como vértices
do grafo, e as arestas são direcionadas de um produtor Kafka para um consumidor Kafka.
Já a figura 3 possui a mesma estrutura, porém, aqui as arestas são rotuladas com os nomes
dos tópicos que elas representam.

A solução, executada na IDE (Integrated Development Environment) IntelliJ Idea, utili-
zando o Gradle como gerenciador de dependências e em uma máquina MacBook Pro 2018
com 8GB de RAM DDR3 e um processador Intel i5 Quad-Core de 2,3 GHz demorou cerca
de 42 segundos, sendo esse valor uma média de três execuções. Devemos explicitar que há
uma carga considerável em termos computacionais ao realizar a compilação dos serviços do
projeto, o que é necessário para a etapa reflexiva do algoritmo.

Na tabela 1, há um resumo das relações Kafka que o algoritmo foi capaz de constatar, as
relações obtidas na inspeção manual da codebase e as relações previstas na documentação do
projeto SiteWhere. Nela, se a relação foi constatada pelo método há um símbolo de check-
mark indicando a constatação e um espaço em branco caso contrário. Há um destaque para
o serviço de Device State, cujo o algoritmo não foi capaz de constatar porém estava presente
na inspeção manual e na documentação do projeto e para o serviço de Device Management,

Serviço Solução Automatizada Inspeção Manual Documentação
SiteWhere 2.0

Asset Management
Batch Operations
Command Delivery
Device Management
Device Registration

Device State
Event Management

Event Search
Event Sources

Inbound Processing
Instance Management
Label Generation

Outbound Connectors
Rule Processing
Streaming Media

Schedule Management

Tabela 1: Tabela com as relações encontradas via inspeção manual, solução automatizada e
o que estava previsto na documentação.



Análise de Dependências Assíncronas em Microsserviços 13

eventsources

inboundprocessing

eventmanagement deviceregistration

commanddelivery

batchoperations

Figura 2: Grafo produzido pelo algoritmo com arestas não rotuladas.

in
bo

un
d-

ev
en

ts

in
bo

un
d-

un
re

gi
st

er
ed

-d
ev

ic
e-

ev
en

ts

in
bo

un
d-

de
vi

ce
-r

eg
is

tr
at

io
n-

ev
en

ts
in

bo
un

d-
re

pr
oc

es
s-

ev
en

ts

eventsources

inboundprocessing

eventmanagement deviceregistration

commanddelivery

batchoperations

event-source-decoded-events

inbound-device-registration-events

in
bo

un
d-

de
vi

ce
-r

eg
is

tr
at

io
n-

ev
en

tsinbound-device-registration-events

inbound-unregistered-device-eventsou
tb

ou
nd

-c
om

m
an

d-
in

vo
ca

ti
on

s

unprocessed-batch-operations unprocessed-batch-elements

Figura 3: Grafo produzido pelo algoritmo com arestas rotuladas com os tópicos.



14 Amorim e de França

que por sua vez, foi constatado apenas pela inspeção manual - ele não estava previsto como
um elemento Kafka na documentação e tampouco foi identificado pelo algoritmo.

Também temos que dar uma atenção aos serviços de Outbound Connectors e Rule Proces-
sing, que por sua vez, fogem do padrão verificado no resto do projeto de consumidor/produtor
(o que é constatado na própria documentação) porém ainda possuem módulos Kafka. Am-
bos serviços não foram identificados pelo algoritmo, porém foram verificados manualmente
e estavam na documentação.

Em seguida, detalhamos os casos relevantes via inspeção manual e o resultado produzido
pelo algoritmo.

Batch Operations

Inspeção do código: Possui módulo Kafka.

• Produz para Failed Batch Elements Topic. Esse tópico, pela inspeção de código,
não possui consumidores.

• Produz para Unprocessed Batch Elements Topic. Esse tópico possui um único
consumidor, sendo ele o próprio serviço de Batch Operations.

• Consome Unprocessed Batch Elements Topic. Esse tópico possui o próprio Un-
processed Batch Elements como produtor.

• Produz para Unprocessed Batch Operations Topic. Esse tópico possui um único
consumidor, sendo ele o próprio serviço de Batch Operations.

• Consome Unprocessed Batch Operations Topic. Esse tópico possui o próprio
Unprocessed Batch Elements como produtor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas que apon-
tam para ele mesmo.

Command Delivery

Inspeção do código: Possui módulo Kafka.

• Produz para Undelivered Command Invocations Topic. Esse tópico, pela inspeção
de código, não possui consumidores.

• Produz para Outbound Command Invocations Topic. Esse tópico, pela inspeção
de código, possui o serviço Event Management como consumidor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para o vértice do serviço de Event Management.



Análise de Dependências Assíncronas em Microsserviços 15

Device Management

Inspeção do código: Possui módulo Kafka.

• Produz para Inbound Events Topic. Esse tópico, pela inspeção de código, pos-
sui o serviço de Inbound Processing como outro produtor e o serviço de Event
Management como consumidor.

Resultado do algoritmo: O algoritmo não foi capaz de relacionar o nome da classe que
representa o produtor Kafka desse microsserviço com o tópico de Inbound Processing.
Portanto, ele não aparece no grafo como um vértice.

Device Registration

Inspeção do código: Possui módulo Kafka.

• Consome Device Registration Events Topic. Esse tópico, pela inspeção de có-
digo, possui o serviço de Event Sources e o serviço de Inbound Processing como
produtores.

• Consome Unregistered Device Events Topic. Esse tópico, pela inspeção de código,
possui o serviço de Inbound Processing como produtor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas vindo dos
vértices que representam os serviços de Event Sources e Inbound Processing.

Device State

Inspeção do código: Possui módulo Kafka.

• Consome Outbound Events Topic. Esse tópico, pela inspeção de código, possui
o serviço de Event Management como produtor.

Resultado do algoritmo: O algoritmo não foi capaz de relacionar o nome da classe que
representa o produtor Kafka desse microsserviço com o tópico de Outbound Events.
Portanto, ele não aparece no grafo como um vértice.

Event Management

Inspeção do código: Possui módulo Kafka.

• Consome Inbound Events Topic. Esse tópico, pela inspeção de código, possui o
serviço de Inbound Processing como outro produtor.

• Consome Inbound Reprocess Events Topic. Esse tópico, pela inspeção de código,
possui o serviço de Inbound Processing como outro produtor.

• Consome Unregistered Device Events Topic. Esse tópico, pela inspeção de código,
possui o serviço de Inbound Processing como outro produtor.



16 Amorim e de França

• Consome Device Registration Events Topic. Esse tópico, pela inspeção de có-
digo, possui o serviço de Event Sources e o serviço de Inbound Processing como
produtores.

• Consome Outbound Command Invocations Topic. Esse tópico, pela inspeção de
código, possui o serviço Command Delivery como consumidor.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas vindo dos
vértices que representam os serviços de Event Sources, Inbound Processing e Command
Delivery.

Event Sources

Inspeção do código: Possui módulo Kafka.

• Produz para Event Sources Decoded Events Topic. Esse tópico, pela inspeção de
código, possui o serviço de Inbound Processing como consumidor.

• Produz para Device Registration Events Topic. Esse tópico, pela inspeção de
código, possui os serviços de Device Registration e Event Management como
consumidores.

• Produz para Failed Decoded Events Topic. Esse tópico, pela inspeção de código,
não possui consumidores.

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para os vértices que representam os serviços de Device Registration, Event Manage-
ment e Inbound Processing.

Inbound Processing

Inspeção do código: Possui módulo Kafka.

• Produz para Inbound Events Topic. Esse tópico, pela inspeção de código, possui
o serviço de Event Management como consumidor.

• Produz para Inbound Reprocess Events Topic. Esse tópico, pela inspeção de
código, possui o serviço de Event Management como consumidor.

• Produz para Unregistered Device Events Topic. Esse tópico, pela inspeção de
código, possui os serviços de Event Management e Device Registration como
consumidores.

• Produz para Device Registration Events Topic. Esse tópico, pela inspeção de
código, possui os serviços de Device Registration e Event Management como
consumidores.

• Consome Event Sources Decoded Events Topic. Esse tópico, pela inspeção de
código, possui o serviço de Event Sources como produtor..



Análise de Dependências Assíncronas em Microsserviços 17

Resultado do algoritmo: Consta no grafo como um vértice que possui arestas apontando
para os vértices que representam os serviços de Device Registration, Event Manage-
ment. Há também uma aresta vinda do vértice que representa o serviço de Event
Sources.

Outbound Connectors

Inspeção do código: Possui módulo Kafka, porém, os arquivos neles contidos não se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Não consta no grafo como vértice.

Rule Processing

Inspeção do código: Possui módulo Kafka, porém, os arquivos neles contidos não se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Não consta no grafo como vértice.

Instance Management

Inspeção do código: Possui módulo Kafka, porém, os arquivos neles contidos não se en-
quadram estritamente como Produtores/Consumidores.

Resultado do algoritmo: Não consta no grafo como vértice.



18 Amorim e de França

6 Conclusão e Trabalhos Futuros

Podemos constatar a partir da tabela que o algoritmo foi capaz de efetivamente mapear a
maioria das dependências via Kafka contidas no SiteWhere- das 16 relações previstas pela
inspeção manual do código em conjunto com a documentação, fomos capazes de corretamente
produzir 12 delas. Todavia, ainda há espaço para melhora a fim de aprimorar o algoritmo
para que esses quatro casos passem a ser detectados.

Para os casos de falha de detecção do algoritmo nos serviços de Device Management
e Device State, a falha ocorre na etapa em que se busca relacionar, de modo sintático, o
nome do Produtor/Consumidor presente no arquivo com os tópicos existentes na classe de
resolução de tópicos do projeto. É passível de, em uma nova iteração do algoritmo, tomarmos
mais algum método de relacionar tais entidades sem ser a partir de uma simples correlação
entre os nomes das mesmas.

Temos também que o algoritmo não é capaz de identificar estruturas que fogem do
modelo Produtor/Consumidor - o que é perceptível ao analisarmos os serviços de Outbound
Connectors e Rule Processing. Esse se torna um problema grave em novas versões do
Apache Kafka, que cada vez mais vale-se da estrutura de Streams - um exemplo claro
em que o algoritmo performa mal em mapear relações é o caso da arquitetura 3.0.0 do
SiteWhere em diante, visto que a mesma pauta-se mais na análise de Streams do que o
modelo Produtor/Consumidor.

Outro ponto a ser considerado para próximas iterações é o refinamento da estrutura
Abstrata/Concreta - a estrutura abstrata, por mais que proveu genericidade entre versões
do SiteWhere, ainda está muito acoplada à própria organização do projeto, visto que a
mesma (em termos da organização de diretórios e padrão de nomeação das classes/tópicos)
não se altera drasticamente entre as versões arquiteturais do projeto.

Quanto à análise do acoplamento da versão 2.2.0 do SiteWhere, podemos constatar
que o serviço de Inbound Processing contém um número expressivo de relações - ele está
presente em 7 das 16 relações previstas. Pelo grafo gerado, é fácil perceber um alto grau de
acoplamento a esse serviço, com destaque ao serviço de Event Management - que é fortemente
dependente do consumo de tópicos produzidos pelo Inbound Processing. Tal situação é um
forte architecture smell [21] do ponto de vista do acoplamento, e deve ser considerada uma
refatoração desse serviço a fim de melhorar a manutenibilidade do sistema como um todo.



Análise de Dependências Assíncronas em Microsserviços 19

Referências

[1] Pooyan Jamshidi et al. “Microservices: The journey so far and challenges ahead”. Em:
IEEE Software 35.3 (2018), pp. 24–35.

[2] Microservices Adoption in 2020. O’Reilly. url: https://www.oreilly.com/radar/
microservices-adoption-in-2020/.

[3] Gregor Hohpe e Bobby Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

[4] Justus Bogner, S. Wagner e Alfred Zimmermann. “Automatically measuring the main-
tainability of service- and microservice-based systems: a literature review”. Em: Pro-
ceedings of 27th International Workshop on Software Measurement and 12th Interna-
tional Conference on Software Process and Product Measurement. Out. de 2017. doi:
10.1145/3143434.3143443.

[5] Shang-Pin Ma et al. “Using service dependency graph to analyze and test microser-
vices”. Em: 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). Vol. 2. IEEE. 2018, pp. 81–86.

[6] Daniel Rodrigo de Freitas Apolinário e Breno Bernard Nicolau de França. “Towards
a method for monitoring the coupling evolution of microservice-based architectures”.
Em: Proceedings of the 14th Brazilian Symposium on Software Components, Architec-
tures, and Reuse. 2020, pp. 71–80.

[7] James Lewis e Martin Flower.Microservices, a definition of this new architectural term.
Mar. de 2014. url: https://martinfowler.com/articles/microservices.html.

[8] O que é uma CDN? Cloudfare. url: https : / / www . cloudflare . com / pt - br /
learning/cdn/what-is-a-cdn/.

[9] API Gateway Pattern. Backends for Frontends. url: https://microservices.io/
patterns/apigateway.html.

[10] Martin Flower. DomainDrivenDesign. Abr. de 2020. url: https://martinfowler.
com/bliki/DomainDrivenDesign.html.

[11] Anand Ranganathan e Roy H. Campbell. “What is the complexity of a distributed
computing system?” Em: Complexity 12.6 (jul. de 2007), pp. 37–45. doi: 10.1002/
cplx.20189.

[12] What is Pub/Sub Messaging? Amazon. url: https://aws.amazon.com/pt/pub-
sub-messaging/.

[13] Apache Kafka. Apache Software Foundation. url: https://kafka.apache.org/.

[14] FindBug Static Code Analysis tool. University of Maryland. url: http://findbugs.
sourceforge.net/.

[15] What is a Linter and why your team should use it. Sourcelevel. url: https : / /
sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it.

[16] Glen McCluskey. Using Java Reflection. Oracle. Jan. de 1998. url: https://www.
oracle.com/technical-resources/articles/java/javareflection.html.

https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://doi.org/10.1145/3143434.3143443
https://martinfowler.com/articles/microservices.html
https://www.cloudflare.com/pt-br/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/pt-br/learning/cdn/what-is-a-cdn/
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://doi.org/10.1002/cplx.20189
https://doi.org/10.1002/cplx.20189
https://aws.amazon.com/pt/pub-sub-messaging/
https://aws.amazon.com/pt/pub-sub-messaging/
https://kafka.apache.org/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://sourcelevel.io/blog/what-is-a-linter-and-why-your-team-should-use-it
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html


20 Amorim e de França

[17] SiteWhere. SiteWhere LLC. url: https://sitewhere.io/en/.

[18] Kafka Streams. Apache Software Foundation. url: https://kafka.apache.org/
documentation/streams/.

[19] The DOT Language. Graphviz. url: https://graphviz.org/doc/info/lang.html.

[20] Graph Visualization Software. Graphviz. url: https://graphviz.org/.

[21] Joshua Garcia et al. “Toward a Catalogue of Architectural Bad Smells”. Em: Pro-
ceedings of the Fifth International Conference on Quality of Software Architectures:
Architectures for Adaptive Software Systems. Vol. 5581. Lecture Notes in Computer
Science. Springer International Publishing, 2009, pp. 146–162. isbn: 978-3-642-02350-
7. doi: 10.1007/978-3-642-02351-4_10.

https://sitewhere.io/en/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/
https://doi.org/10.1007/978-3-642-02351-4_10

	Introdução
	Fundamentação Teórica
	Microsserviços
	Serviços de Mensageria e o Estilo Publisher-Subscriber
	Análise Estática de Código e Reflexão Computacional
	O Projeto SiteWhere

	Método de Trabalho
	Solução Proposta
	Avaliação
	Conclusão e Trabalhos Futuros

