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Resumo. Fuzz testing é um método de testes que gera e insere no programa alvo entradas 

aleatórias com uma velocidade muito alta a fim de gerar e documentar crashes. Seu volume 

alto de entradas e sua abordagem automatizada têm como consequências achar bugs que 

escapam ao programador e testador.  

O objetivo deste trabalho foi a análise do uso de fuzzers e sua aplicação em quatro estudos 

de caso escritos em linguagem C, encontrando-se dois bugs após campanhas de até 24 

horas com as ferramentas AFL e honggfuzz. 
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1. Introdução 

Seja pelas perdas financeiras acarretadas por crashes em software, ou pelo volume cada vez 

maior de informações importantes e privativas sendo transmitido todos os dias, a 

importância de termos sistemas de software seguros e robustos nunca foi maior do que nos 

dias atuais. 

Neste contexto, o fuzz testing se apresenta como uma medida complementar aos 

tradicionais métodos de teste de software e análise do código, sendo uma alternativa 

automatizada para encontrar vulnerabilidades, que são defeitos (bugs) passíveis de 

exploração maliciosa. 

De modo geral, o fuzz testing gera e insere no programa entradas aleatórias com uma 

velocidade muito alta a fim de gerar e documentar crashes. Seu volume alto de entradas e 

sua abordagem automatizada têm como consequências achar bugs que escapam ao 

programador e testador e que podem ser severos do ponto de vista da segurança, como 

vazamentos de memória. 

O objetivo deste trabalho foi a análise do uso de fuzzers e sua aplicação em alguns estudos 

de caso. A preferência foi para a aplicações escritas em linguagem C, pois o objetivo é 

determinar os fuzzers a serem utilizados nos testes de sistemas embarcados. 

Este trabalho dividiu-se em três principais passos: o primeiro foi dedicado à pesquisa sobre 

este conceito de teste, o funcionamento das ferramentas disponíveis e a escolha daquelas 

que mais se adequaram ao que foi proposto. No segundo, foram feitas pesquisas de bons 

programas-alvo para os quais utilizaram-se os dois fuzzers grey-box, honggfuzz e American 

Fuzzy Lop (AFL) em campanhas de até 24 horas a fim de encontrar vulnerabilidades em 4 

programas com variados propósitos. No terceiro passo houve a análise dos resultados, em 

que se encontraram 2 bugs que resultaram em crashes em um programa. 

Também na terceira parte houve a comparação das ferramentas utilizadas, determinando-se 

que para o contexto utilizado, o fuzzer AFL demonstrou melhores resultados quando 

avaliamos o número de bugs encontrados. 
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2. Fuzzing 

2.1 Objetivos e passos 

Embora o conceito de fuzzing seja simples, diversas etapas são necessárias para que o 

processo seja bem sucedido e possa atingir seu objetivo principal de encontrar falhas de 

segurança através dos testes do programa com entradas randômicas. 

Com base neste conceito, podemos dividir o fluxo de execução em três partes: o pré-

processo – atividades que acontecem antes da execução de determinada entrada-, a 

execução, e a atualização da configuração. 

2.1.1 Pré-processo 

As seguintes atividades fazem parte do pré-processo, embora a presença de algumas varie 

dependendo dos parâmetros da campanha e ferramentas escolhidas: 

- Instrumentação do programa: refere-se à preparação do programa para que 

determinados parâmetros possam ser monitorados durante a campanha de fuzzing. A 

instrumentação pode acontecer de forma dinâmica (durante a execução) ou estática (no 

momento da compilação ou instrumentação do binário com auxílio de ferramentas 

específicas para este fim). Esta última normalmente tem menor impacto no tempo de 

execução, embora a instrumentação dinâmica possibilite que o teste atinja também 

bibliotecas dinamicamente ligadas ao programa alvo [1]. 

- Seleção de sementes (seeds): as sementes são escolhidas como entradas iniciais com base 

nas quais o fuzzer irá gerar as próximas entradas. A ideia é que este conjunto seja o menor 

possível, com casos de teste pequenos e que possam atingir diversas áreas do programa 

alvo. O fuzzer American Fuzzy Lop, por exemplo, pede em sua documentação que as 

entradas iniciais sejam, de preferência, menores que 1Kb e que só existam múltiplos 

arquivos se eles forem funcionalmente diferentes entre si. Em estudos mais aprofundados, 

pode-se procurar um conjunto ótimo com testes pequenos e cuja escolha maximize a 

porcentagem de código atingido pelas execuções. 
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- Criação de uma aplicação harness: bastante útil quando existe uma função alvo a ser 

testada, a harness existe como um programa direcionador, cujo objetivo é chamar as 

funções ou áreas de interesse do código alvo para direcionamento da campanha. 

- Geração de inputs: a partir das sementes selecionadas (e das configurações do fuzzer), 

criam-se novas entradas para o programa. Mais detalhes na seção 2.2. 

2.1.2 Execução 

A execução refere-se à etapa do uso dos casos de teste gerados no pré-processo como 

entradas do programa alvo. Nesta etapa, a velocidade com que o fuzzer executa cada 

interação é determinante para o sucesso dos testes, já que pela natureza randômica das 

entradas geradas, a maioria é rejeitada pelo programa sem atingir pontos chave que podem 

ser origens de bugs. Desta forma, é de extrema importância aumentar o número de 

execuções em um determinado período a fim de aumentar as chances de atingir partes 

críticas do alvo. Para isso, alguns fuzzers apresentam opções de otimização que visam 

aumentar a velocidade utilizando o contexto de in-memory fuzzing, que consiste em tirar 

uma “foto” do programa após o processamento inicial e restaurar o programa para esse 

estado a cada iteração, assim reduzindo o tempo de execução de cada entrada [1]. 

Além de maximizar o número de execuções, o fuzzer tem que identificar se as iterações 

resultam em crashes, e se um bug foi encontrado. Para isso é necessário o uso de um 

oráculo. Um oráculo de teste, ou simplesmente oráculo, é um mecanismo que determina se 

a saída fornecida pelo programa em teste está de acordo com o esperado [9]. Distinguir a 

resposta correta da incorreta para cada entrada é uma dificuldade, especialmente para 

oráculos automatizados. Esta dificuldade é comum aos diferentes tipos de testes e é 

conhecida como problema do oráculo.   

A forma mais simples de oráculo em fuzzers consiste em distinguir as execuções que dão 

crashes daquelas que não dão. Este oráculo é simples pois prescinde da especificação, além 

do que, crashes são facilmente identificáveis. No entanto, o fato de não ter ocorrido um 

crash não significa que o programa executa corretamente. Para melhorar o potencial do 
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oráculo na descoberta de bugs pode-se utilizar sanitizantes (sanitizers), que são assertivas 

inseridas no código que levantam exceções quando um erro é detectado.   

O sanitizante mais conhecido é o ASAN (Address Sanitizer), que aponta erros de acesso à 

memória, mas também existem sanitizantes para detectar comportamento indefinido (como 

UBSan), casting incorreto (TypeSan), e outras funcionalidades. Apesar de muito úteis, os 

sanitizantes geram um aumento do tempo de execução considerável, diminuindo sua 

viabilidade de uso para campanhas curtas de testes - o Memory Sanitizer (MSan), faz com 

que as execuções possam demorar o triplo do tempo original, por exemplo [6]. 

2.1.3 Atualização da configuração 

Como os fuzzers geram evidência da falha – isto é, para cada crash encontrado, existe a 

entrada correspondente – é possível fazer uma triagem dos resultados gerados pelo oráculo.  

A primeira parte da triagem é a deduplicação, ou seja, identificação dos casos em que 

várias entradas geraram crashes causados pelo mesmo bug. As razões para isso são 

otimizar o uso de memória e também ter uma melhor noção de quantos bugs realmente 

existem no programa testado. A deduplicação é mais comumente feita através de 

rastreamento de estado da pilha utilizando-se hashing, mas também pode ser feita com base 

na análise de cobertura do programa, ou através de uma análise semântica do fluxo de 

dados [1]. 

Os resultados da deduplicação podem ser usados para alimentar algoritmos evolutivos que 

gerarão novas entradas e atualizar as configurações do fuzzer a fim de, por exemplo, usar a 

informação sobre partes do código atingidas para maximizar o grau de cobertura da 

campanha. 

 

2.2 Técnicas para geração de entradas 

A qualidade das entradas geradas tem interferência direta nos resultados encontrados pela 

campanha de fuzzing. As técnicas utilizadas para essa etapa dependem da ferramenta, 
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porém, elas podem ser divididas em dois grupos: os fuzzers que geram a entrada baseados 

em modelo, e os que geram a entrada baseados em mutação. 

Os fuzzers que geram a entrada baseados em modelo usam descrições das entradas aceitas 

pelo programa alvo e então, com base nisso, geram as novas entradas utilizadas na 

campanha. De modo geral, essas ferramentas dependem que o usuário as alimente com 

essas descrições de modelo, sendo que a gramática e formato destas descrições depende do 

fuzzer utilizado. Ainda nos fuzzers baseados em modelo, existem, mais raramente, também 

aqueles que inferem o modelo das entradas, e, portanto, não precisam que esta descrição 

seja providenciada pelo usuário. Esta inferência pode acontecer tanto no pré-processamento 

quanto na atualização da configuração [1].  

Aqueles baseados em mutação, por outro lado, mudam pequenas partes das entradas 

providas pelo usuário a fim de gerar entradas randômicas que ainda mantenham parte da 

estrutura daquelas esperadas - maximizando as chances de que o que foi gerado seja aceito 

pelo programa - mas que seja randômico o suficiente para cumprir os propósitos da 

campanha de fuzzing. Nestes casos, várias técnicas de mutações podem ser utilizadas, a 

depender da ferramenta escolhida, tais como mutação aritmética (adicionar um pequeno 

valor em uma sequência de bits do input), bit-flipping (troca do valor de certa quantidade de 

bits), mutação baseada em dicionário (usando valores mais prováveis de serem gatilhos de 

crashes, como 0 ou -1), ou mutação baseada em blocos (deletando, substituindo ou 

adicionando um bloco a uma semente). 

De modo geral, a geração de um modelo demanda mais recursos do que a utilização de um 

fuzzer baseado em mutação, já que o modelo depende de uma análise profunda da sintaxe e 

da semântica das entradas do programa. Por outro lado, os modelos garantem a geração de 

mais casos válidos, capazes de respeitar a semântica das entradas e manter dependência de 

valores entre campos, se necessário [2]. 

Nos dois casos, é importante que o fuzzer consiga manter equilíbrio entre revisitar as 

mesmas partes de um código com diferentes entradas a fim de tentar encontrar crashes e 

explorar novas áreas, tudo isso mantendo o custo de geração de cada entrada baixo, já que 

as iterações devem acontecer de maneira muito rápida. 
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2.3 Desafios  

Apesar do conceito de fácil entendimento, os testes fuzzing acabam encontrando diversos 

desafios para gerar resultados. O primeiro desafio é encontrar bons alvos, já que há 

linguagens mais propensas a receberem esse tipo de teste (como C/C++) e linguagens com 

muito menos suporte e ferramentas disponíveis para que recebam fuzz testing (como Java, 

Python e Javascript). 

O segundo desafio é encontrado na questão de instrumentação. Embora os vários tipos de 

instrumentação tornem possível o monitoramento e descoberta de diversos tipos de bugs, o 

acréscimo de tempo de execução pode fazer com que eles se tornem inviáveis para testes 

com tempo reduzido (algumas horas ou um dia) e gerem muito mais timeouts em 

programas complexos que provavelmente não são resultado de loops infinitos no alvo, mas 

sim da demora nas execuções causadas pelas funções de instrumentação. 

O terceiro desafio a ser mencionado é que muitos bugs não são apontados pelos fuzzers, 

mesmo que o fuzzer atinja aquela parte específica do código. Portanto, um fuzzer que faz 

uma cobertura de 100% do código e não aponta nenhum crash não garante a inexistência de 

bugs, já que um acesso indevido de memória que aponta para uma posição que não está 

disponível na execução, mas que é adjacente e válida pode não gerar um crash [1], mas isso 

continua sendo uma falha de segurança que pode causar o vazamento ou perda de 

informações importantes. Por isso, fuzz testing pode ser usado como uma técnica 

complementar de testar programas quanto à sua robustez e segurança, mas não é indicado 

como técnica única. 

 

2.4 Ferramentas existentes 
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Os fuzzers podem ser divididos em três grupos, de acordo com o conhecimento que o fuzzer 

tem do código fonte durante sua execução. 

Fuzzers black-box, como o nome sugere, enxergam o programa alvo como uma caixa preta: 

eles não têm conhecimento do código fonte e seu fluxo de execução, e, portanto, tomam 

decisões baseadas apenas nas entradas, saídas e tempo decorrido por iteração. Sem o 

auxílio da instrumentação para guiar a campanha com base na cobertura de código, esse 

tipo de fuzzer pode ficar preso em testes muito parecidos com as sementes usadas na 

configuração, mas existem, no entanto, casos em que ferramentas black-box podem ser uma 

boa alternativa. Nesta lista estão os casos em que o resultado não é determinístico (ou seja, 

a mesma entrada pode gerar diferentes saídas), ou quando o alvo é muito lento ou muito 

grande, já que testes black-box podem ser paralelizados com maior facilidade. 

Por outro lado, fuzzers white-box são aqueles que têm acesso completo ao programa e 

podem mapear seus fluxos de execução, muitas vezes através do que é chamado de 

dynamic symbolic execution. Esse tipo de execução mapeia as possíveis entradas com 

valores simbólicos e para cada condicional ou mudança de fluxo, os novos caminhos 

recebem novos símbolos, de modo que ao fim desse processo todos os caminhos presentes 

no programa são mapeados e o fuzzer pode usar métodos matemáticos para chegar a 

soluções que gerem entradas para atingir todos os fluxos possíveis [1], obtendo, em teoria, 

máxima cobertura e encontrando bugs que estão em lugares com acesso mais difícil e raro. 

Esses benefícios, entretanto, vêm com um grande custo: esse modo de execução se torna 

muito mais complexo do que o modelo black-box, fazendo com que o custo operacional 

seja muitas vezes inviável [3]. 

Desta forma, os fuzzers grey-box são uma tentativa de englobar os benefícios dos fuzzers 

black e white-box, sem que suas restrições tenham tanto impacto na campanha de testes. 

Essas ferramentas têm acesso a mais informações sobre o programa alvo que os fuzzers 

black-box, e, portanto, podem tomar decisões mais informadas sobre a geração de novas 

entradas e a atualização de configurações. A instrumentação utilizada por esse tipo de 

fuzzer é mais leve que a análise profunda das ferramentas white-box, reduzindo seu impacto 

no processamento de execução, mas ainda sendo capaz de gerar informações suficientes 
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para que o fuzzer possa entender quando atingiu uma nova área do alvo e orientar seus 

esforços para maximizar sua cobertura e encontrar bugs em áreas cujo acesso é mais remoto 

que as atingidas, à princípio, pelos black-box. 

 

3 Seleção da ferramenta 

3.1 Benchmarks utilizados 

Entre todas as possibilidades de fuzzer citados na seção 2.4, foi decidido que as ferramentas 

selecionadas para os testes neste trabalho deveriam obedecer às duas seguintes 

características: 

- Fuzzer grey-box: pelo tempo reduzido de testes, o uso de um fuzzer white-box se tornaria 

inviável pelos recursos necessários, então o fuzzer grey-box se mostrou como uma opção 

razoável em que se é possível encontrar resultados de interesse em campanhas curtas, mas 

ainda utilizando um nível de inteligência quanto ao direcionamento de esforços 

computacionais. 

- Fuzzer baseado em mutação: essa característica foi escolhida tanto pela maior facilidade 

de uso quanto pela popularidade e número de ferramentas que utilizam essa configuração, 

aumentando-se o leque de escolhas e de benchmarks que podem ser utilizados como fonte 

de informações. 

Com base nestes, foram escolhidos dois benchmarks em que a escolha de ferramentas foi 

baseada. 

O primeiro benchmark é o Magma [4], que avaliou seis fuzzers grey-box baseados em 

mutação durante 26000 horas de uso de CPU. Por princípio, esse benchmark utilizou 

programas reais e diversos e os fuzzers foram avaliados por números de bugs encontrados e 

seu tempo para encontrá-los. 

O segundo benchmark utilizado foi o Fuzzbench [5], que é um serviço gratuito e fornecido 

pelo Google para disponibilizar uma plataforma de testes de fuzzers e seus relatórios de 

resultados. O Fuzzbench utiliza normalmente dez fuzzers e 24 programas alvo diversos para 
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seus relatórios, e sua forma de comparação é através de cobertura atingida, uma métrica que 

não consta no relatório gerado pelo benchmark Magma. 

3.2 Critérios de seleção  

O primeiro passo da seleção das ferramentas consistiu em utilizar os benchmarks Magma e 

Fuzzbench para alguns fuzzers grey-box baseados em mutação.  

O Fuzzbench começou a divulgar em junho de 2020 relatórios com notas de comparação 

entre as estatísticas de cobertura (nota normalizada, quanto mais próximo de 100 melhor o 

desempenho do fuzzer neste aspecto). Foram tabulados os resultados de todos os relatórios 

divulgados entre os meses de junho e setembro de 2020, gerando a tabela a seguir. 

Tabela 1- Média normalizada da cobertura alcançada pelos fuzzers no ano de 2020 

Fuzzer 12/06 03/08 16/08 23/08 31/08 07/09 18/09 24/09 28/09 Total 

honggfuzz 96,76 95,94 96,19 95,54 95,36 95,37 94,89 94,71 95,57 95,79 

AFL++ 89,56 91,00 96,83 96,62  -  -  96,39 97,40 96,14 94,63 

AFL 90,19 91,21 91,20 90,79 90,23 89,89 89,81 90,02 89,99 90,30 

moptafl 85,96 90,51 90,80 90,32 89,82 89,60 89,51 89,54 89,70 88,69 

aflfast 87,04 88,66 89,25 88,22 87,69 87,67 87,58 87,61 88,01 87,90 

fairfuzz 81,55 85,43 86,65 85,05 84,88 84,74 84,67 84,70 87,89 85,16 

 

Como nota de corte, determinou-se a nota de 90 em relação à cobertura como mínimo para 

manter o fuzzer como candidato às ferramentas escolhidas, eliminando-se assim os fuzzers 

moptafl, aflfast e fairfuzz. A partir disso, a escolha final se deu com os resultados 

apresentados no benchmark Magma. 

Neste, duas informações de interesse foram selecionadas, a primeira sendo o fuzzer com 

melhor desempenho para cada programa alvo. A Tabela 2 (que equivale à Tabela 3 da 

referência [4]) apresentada a seguir contém as informações coletadas. 

Tabela 2- Número médio de bugs encontrados e desvio padrão por fuzzer durante dez 

campanhas. O fuzzer de melhor desempenho por programa alvo recebe realce verde. 
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Com base nessa tabela, vemos que entre os três fuzzers selecionados quanto à cobertura, o 

honggfuzz aparece como aquele com melhor performance em um maior número de 

programas alvo; entretanto, os outros dois candidatos (AFL e AFL++) se destacaram em 

dois programas alvo cada. 

A segunda informação de interesse é o tempo que cada um dos fuzzers levou para apontar 

cada um dos bugs encontrados. Com base nesta informação, o número de bugs encontrados 

por ferramenta foi contabilizado, criando-se a Tabela 3. 

Tabela 3- Número de bugs encontrados, com base Tabela 4 da Referência [4] 

Fuzzer Número de bugs encontrados 

honggfuzz 33 

AFL 24 

AFL++ 23 

fairfuzz 23 

moptafl 22 

aflfast 22 

  

Nela, vemos que entre as ferramentas pré-selecionadas, aquelas que aparecem com melhor 

resultado foram honggfuzz e AFL. Com base nisto e nas comparações anteriores, estes 

fuzzers foram selecionados para a continuidade deste trabalho. 

 

3.3 Ferramentas selecionadas 
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Com base nos critérios anteriores, os dois fuzzers grey-box baseados em mutação que foram 

selecionados para os testes foram o American Fuzzy Lop (AFL) [7] e o honggfuzz [8]. 

O American Fuzzy Lop é uma ferramenta bastante popular e com interface amigável ao 

usuário, funcionando através de uma instrumentação com baixo impacto na performance 

que acontece no momento de compilação. A partir desta instrumentação, o fuzzer guia sua 

campanha determinando se a entrada gerada atingiu um novo estado no programa, e se sim, 

a adiciona no conjunto dinâmico de sementes (chamado corpus), reduzindo-a ao menor 

tamanho possível que mantenha suas características de cobertura. O AFL também usa uma 

combinação das técnicas de mutação para gerar suas entradas – como bit-flipping, mutação 

aritmética e baseada em dicionário-, e um de seus princípios é a confiabilidade: nenhuma 

nova feature que cause instabilidade na execução e possa causar crashes abruptas ao 

usuário é bem-vinda. 

O fuzzer honggfuzz, assim como o AFL, é uma ferramenta bastante popular. Por padrão, 

tem características multi-thread e multi-processo, usando todo o potencial disponível pela 

CPU. Também é um fuzzer inteligente, identificando quando uma nova área do código é 

atingida e adicionando a entrada ao corpus para sofrer novas mutações, com a possibilidade 

de minimização deste conjunto, assim como o AFL. Ambos os fuzzers tem modos de 

campanha chamados “persistentes”, utilizando-se o in-memory fuzzing e diminuindo o 

tempo de cada iteração. 

 

4 Estudos de caso e resultados 

4.1 Descrição dos experimentos 

Neste relatório, foram usados quatro estudos de caso variados em campanhas de até 24 

horas que aconteceram em ambiente Linux, com ambas as ferramentas selecionadas. As 

campanhas utilizaram, em suas respectivas seções, a menos que especificado o contrário, as 

configurações padrão de ambos os fuzzers – comparando-se assim a forma com que 

atingem seus resultados com as configurações de entrada disponíveis em suas 
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documentações. Os programas utilizados são escritos primariamente em C, por sua 

afinidade com este tipo de análise, e compilados com os compiladores das respectivas 

ferramentas – afl-gcc no caso do AFL e hfuzz-clang no caso do honggfuzz. 

Quando o próprio projeto disponibilizou em seu repositório entradas variadas para teste, 

estas eram utilizadas no conjunto de sementes. Caso contrário, era criado um arquivo em 

formato aceito pelo programa, e este era tido como entrada inicial. O conjunto de sementes 

e ordem deste foram os mesmos para ambas as ferramentas. 

Consideraram-se aqui resultados relevantes o número de bugs apontados além do número 

de execuções obtidas no modo de execução baseado em feedback (grey-box), uma vez que 

a velocidade de execução é imprescindível para o próprio conceito destas ferramentas. 

Como observação adicional temos o tamanho do corpus – conjunto dinâmico de sementes 

alterado durante a execução conforme os feedbacks recebidos – do fuzzer honggfuzz ao 

final da campanha. 

As subseções a seguir descrevem os estudos de caso utilizados nos testes. 

 

4.2  Capstone [10] 

Capstone é uma ferramenta de desmontagem de binários para sua análise e engenharia 

reversa, funcionando em diversas plataformas de hardware. Sua versatilidade e arquitetura 

que prioriza baixo uso de memória e processamento são os atrativos em que o projeto se 

baseia para buscar sua posição de destaque na comunidade de segurança. 

As campanhas com esta ferramenta duraram 24 horas para cada um dos fuzzers, sendo que 

neste período, não houve nenhum bug encontrado e reportado por nenhuma das ferramentas 

na versão 4.0.2 do software. 

O fuzzer AFL obteve, nestas 24 horas, 79,7 milhões de execuções, enquanto o fuzzer 

honggfuzz obteve 51,2 milhões, o que coloca o American Fuzzy Lop como 56% mais 

rápido que seu concorrente neste estudo de caso. 
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O conjunto dinâmico de sementes se manteve como um arquivo para o fuzzer honggfuzz 

durante esta campanha. 

4.3 Sed [11] 

Esta ferramenta de análise e edição de textos em sistemas Unix é muito conhecida e 

utilizada principalmente pela sua praticidade em encontrar e editar expressões em arquivos 

sem precisar nem mesmo abri-los, e também pelas possibilidades de uso de expressões 

regulares para encontrar os padrões desejados. 

As campanhas com o Sed duraram 18h, e enquanto ambas as ferramentas não encontraram 

nenhum bug na versão 1.0, o fuzzer honggfuzz conseguiu gerar e executar entradas com 

muito mais rapidez que a outra ferramenta estudada, sendo que o primeiro teve 50,9 

milhões de iterações no período contra 20,6 milhões de vezes executadas pelo AFL, sendo, 

portanto, cerca de 147% mais rápido. 

Esta campanha terminou com o corpus do fuzzer honggfuzz diminuindo de 395 para apenas 

um arquivo. Isso acontece pela funcionalidade de minimização de corpus, que exclui 

sementes funcionalmente redundantes. 

4.4 Radare2 [12] 

Radare2 é um projeto que visa a reescrita do software Radare, cujas funcionalidades 

englobam desde ser um editor hexadecimal e debugger, até funções para desmontagem e 

análise de binários, comparação, visualização e substituição de dados. 

Neste software, o fuzzer American Fuzzy Lop encontrou dois diferentes bugs durante sua 

campanha que durou 24 horas e teve 1,46 milhões de execuções. Quando utilizado pelo 

mesmo tempo e com suas configurações padrão, o fuzzer honggfuzz não encontrou nenhum 

bug neste software em 1,56 milhões de execuções, mantendo-se o corpus com um arquivo. 

Sabendo que o programa alvo tinha bugs passíveis de serem encontrados em uma 

campanha relativamente curta, foram feitos outros testes das funcionalidades do honggfuzz 

a fim de descobrir se, neste estudo de caso, mudanças em suas configurações poderiam 
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obter os mesmos resultados mostrados pelo AFL. Desta forma, duas novas campanhas de 

24 horas foram realizadas com este fuzzer. 

A primeira foi realizada ativando-se o modo in-memory fuzzing, chamado “persistente”, 

que tende a ter execuções mais rápidas. Este modo realmente obteve mais execuções 

durante a duração da campanha (16,38 milhões), mas ainda assim não revelou a presença de 

nenhum bug. Neste modo, o tamanho do corpus se manteve o mesmo durante toda a 

campanha.   

A segunda campanha utilizou-se de uma compilação mais instrumentada (com a flag 

fsanitize=address na compilação), a fim de guiar com mais propriedade a execução do 

fuzzer. Este modo aumentou muito o tempo de execução de cada entrada, de modo que 

apenas 158 mil execuções foram realizadas neste período e novamente nenhum bug foi 

identificado. O tamanho do conjunto de sementes foi de uma para 1194 ao decorrer das 24 

horas. 

4.5 CANOpen [13] 

Este protocolo baseado no modelo produtor/consumidor está presente em sistemas 

distribuídos de controle utilizados em automação, tais como equipamentos médicos, 

aplicações marítimas e ferroviárias. Esta aplicação preza pela compatibilidade com outras 

aplicações CAN por ser altamente padronizada. 

O formato desta aplicação baseia-se numa execução contínua, em que o programa se 

mantém em um loop de recebimento de entradas e execução até que seja manualmente 

encerrado. 

Este formato específico não é compatível com as ferramentas escolhidas, já que todas as 

execuções superam os limites de tempo propostos e geram timeouts, mesmo que bem 

sucedidas, fazendo com que o conjunto de sementes inicial não seja aceito como modelo de 

execução. 

Desta forma, para que fosse possível testar a aplicação para falhas de segurança através do 

fuzzing, foi necessário que este aspecto dela fosse modificado, editando-se o código fonte 



 16 

para que encerrasse o programa após o recebimento de uma entrada e execução 

correspondente. 

Esta modificação da versão 1.3 foi testada durante 24 horas, nas quais o American Fuzzy 

Lop executou 151 milhões de iterações e o fuzzer honggfuzz apenas 73,7 milhões, tornando 

o AFL cerca de 105% mais rápido nesta aplicação, embora nenhum dos dois tenha 

encontrado bugs no tempo definido de campanha. 

O tamanho de corpus para o fuzzer honggfuzz, que começou com um arquivo, terminou a 

campanha com oito sementes diferentes. 

4.6 Ameaças à validade dos experimentos 

Alguns aspectos podem ser vistos como ameaças à validade dos experimentos anteriores. O 

primeiro é que, por restrição de recursos, muitas campanhas foram feitas em paralelo, de 

forma que a capacidade computacional entre campanhas pode ter sido afetada. 

O segundo ponto a ser considerado é que a escolha inicial de sementes pode não ter sido 

ótima em relação ao funcionamento do programa, já que não houve uma análise específica 

dos códigos fonte de forma a aumentar as áreas atingidas pelo conjunto de sementes 

escolhido. 

O terceiro ponto acontece no estudo específico do protocolo CANOpen e as alterações que 

tiveram que ser feitas no código para que o teste fuzzing fosse possível: embora seu 

objetivo tenha sido retirar apenas o loop contínuo original presente no programa, não se 

pode afirmar com certeza que esta alteração não afetou os resultados dos testes. 

5 Conclusões e trabalhos futuros 

Devido à pouca disponibilidade de recursos, as campanhas realizadas foram curtas para 

programas que são complexos e que já têm comunidades ativas que realizam testes há 

vários anos, de forma que é compreensível que a maioria dos testes não tenha encontrado 

bugs nos alvos indicados. Desta forma, é sugerido para que em trabalhos futuros sejam 

realizadas campanhas de duração mais expressiva – uma semana ou mais - para os 

programas alvo escolhidos. 
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Especificamente para o programa CANOpen, devido a sua complexidade e importância de 

uso, seria interessante dedicar recursos para realizar testes específicos com um fuzzer 

baseado em modelo. Embora a análise do código para geração deste modelo seja custosa, 

este direcionamento pode fazer com que mais entradas atinjam áreas de interesse da 

aplicação, tornando os resultados da campanha mais completos e substanciais. 

Por fim, como mostrado no experimento com a aplicação Radare2, nem sempre o número 

de execuções equivale ao maior número de bugs encontrados, já que a qualidade das 

entradas e do oráculo têm papel significante nestes resultados. A comparação entre os 

resultados dos fuzzers no Fuzzbench e Magma também mostra que nem sempre uma maior 

cobertura é diretamente proporcional às falhas apontadas. Desta forma, para programas 

alvo cujos bugs já estão documentados, uma análise estatística se torna atrativa para que se 

quantifiquem os impactos que as diversas variáveis de uma campanha têm em encontrar 

defeitos. Neste caso pode-se determinar, para determinado alvo, qual a relação entre custo 

(computacional e horas analíticas) e retorno para aspectos como formação de um conjunto 

de sementes inicial ótimo, uso de determinados tipos de sanitizantes e aplicação de modelos 

para as entradas. 
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