2
<

4

Testes de Seguranca de
Aplicacoes Usando Fuzzers

F. B. Silvério E. Martins

Relatério Técnico - 1C-PFG-20-37
Projeto Final de Graduagdo
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

Testes de Seguranca de Aplicacdes Usando Fuzzers

Flavia Bertoletti Silvériot, Eliane Martins?
12 |nstituto de Computagdo Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6176
13083-970 Campinas-SP, Brasil

Resumo. Fuzz testing € um método de testes que gera e insere no programa alvo entradas
aleatorias com uma velocidade muito alta a fim de gerar e documentar crashes. Seu volume
alto de entradas e sua abordagem automatizada tém como consequéncias achar bugs que
escapam ao programador e testador.

O objetivo deste trabalho foi a analise do uso de fuzzers e sua aplicacdo em quatro estudos
de caso escritos em linguagem C, encontrando-se dois bugs apds campanhas de até 24
horas com as ferramentas AFL e honggfuzz.

Palavras-Chave: Seguranca, Fuzz testing, Fuzzing.

1. Introducéo

Seja pelas perdas financeiras acarretadas por crashes em software, ou pelo volume cada vez
maior de informacgdes importantes e privativas sendo transmitido todos os dias, a
importancia de termos sistemas de software seguros e robustos nunca foi maior do que nos

dias atuais.

Neste contexto, o fuzz testing se apresenta como uma medida complementar aos
tradicionais métodos de teste de software e analise do codigo, sendo uma alternativa
automatizada para encontrar vulnerabilidades, que sdo defeitos (bugs) passiveis de

exploracdo maliciosa.

De modo geral, o fuzz testing gera e insere no programa entradas aleatérias com uma
velocidade muito alta a fim de gerar e documentar crashes. Seu volume alto de entradas e
sua abordagem automatizada tém como consequéncias achar bugs que escapam ao
programador e testador e que podem ser severos do ponto de vista da seguranga, como

vazamentos de mem0ria.

O objetivo deste trabalho foi a analise do uso de fuzzers e sua aplicacdo em alguns estudos
de caso. A preferéncia foi para a aplicaces escritas em linguagem C, pois o objetivo é

determinar os fuzzers a serem utilizados nos testes de sistemas embarcados.

Este trabalho dividiu-se em trés principais passos: o primeiro foi dedicado a pesquisa sobre
este conceito de teste, o funcionamento das ferramentas disponiveis e a escolha daquelas
gue mais se adequaram ao que foi proposto. No segundo, foram feitas pesquisas de bons
programas-alvo para os quais utilizaram-se os dois fuzzers grey-box, honggfuzz e American
Fuzzy Lop (AFL) em campanhas de até 24 horas a fim de encontrar vulnerabilidades em 4
programas com variados propositos. No terceiro passo houve a andlise dos resultados, em

que se encontraram 2 bugs que resultaram em crashes em um programa.

Também na terceira parte houve a comparacao das ferramentas utilizadas, determinando-se
que para o contexto utilizado, o fuzzer AFL demonstrou melhores resultados quando

avaliamos o numero de bugs encontrados.

2. Fuzzing

2.1 Objetivos e passos

Embora o conceito de fuzzing seja simples, diversas etapas sdo necessarias para que 0
processo seja bem sucedido e possa atingir seu objetivo principal de encontrar falhas de
seguranga através dos testes do programa com entradas randémicas.

Com base neste conceito, podemos dividir o fluxo de execucdo em trés partes: o pré-
processo — atividades que acontecem antes da execucdo de determinada entrada-, a

execucao, e a atualizagdo da configuragéo.
2.1.1 Pré-processo

As seguintes atividades fazem parte do pré-processo, embora a presenca de algumas varie

dependendo dos parametros da campanha e ferramentas escolhidas:

- Instrumentacdo do programa: refere-se a preparacdo do programa para que
determinados parametros possam ser monitorados durante a campanha de fuzzing. A
instrumentacdo pode acontecer de forma dindmica (durante a execucdo) ou estatica (no
momento da compilacdo ou instrumentacdo do binario com auxilio de ferramentas
especificas para este fim). Esta Gltima normalmente tem menor impacto no tempo de
execucdo, embora a instrumentacdo dindmica possibilite que o teste atinja também

bibliotecas dinamicamente ligadas ao programa alvo [1].

- Selecd@o de sementes (seeds): as sementes sdo escolhidas como entradas iniciais com base
nas quais o fuzzer ira gerar as proximas entradas. A ideia é que este conjunto seja 0 menor
possivel, com casos de teste pequenos e que possam atingir diversas areas do programa
alvo. O fuzzer American Fuzzy Lop, por exemplo, pede em sua documentagdo que as
entradas iniciais sejam, de preferéncia, menores que 1Kb e que sé existam mdaltiplos
arquivos se eles forem funcionalmente diferentes entre si. Em estudos mais aprofundados,
pode-se procurar um conjunto 6timo com testes pequenos e cuja escolha maximize a

porcentagem de codigo atingido pelas execugdes.

- Criacd@o de uma aplicacdo harness: bastante Gtil quando existe uma funcdo alvo a ser
testada, a harness existe como um programa direcionador, cujo objetivo é chamar as

funcBes ou areas de interesse do codigo alvo para direcionamento da campanha.

- Geracdo de inputs: a partir das sementes selecionadas (e das configuracdes do fuzzer),

criam-se novas entradas para o programa. Mais detalhes na secéo 2.2.
2.1.2 Execucéo

A execucdo refere-se a etapa do uso dos casos de teste gerados no pré-processo como
entradas do programa alvo. Nesta etapa, a velocidade com que o fuzzer executa cada
interacdo é determinante para o sucesso dos testes, ja que pela natureza randémica das
entradas geradas, a maioria é rejeitada pelo programa sem atingir pontos chave que podem
ser origens de bugs. Desta forma, é de extrema importancia aumentar o numero de
execucdes em um determinado periodo a fim de aumentar as chances de atingir partes
criticas do alvo. Para isso, alguns fuzzers apresentam opcles de otimizagdo que visam
aumentar a velocidade utilizando o contexto de in-memory fuzzing, que consiste em tirar
uma “foto” do programa apds o processamento inicial e restaurar 0 programa para esse

estado a cada iteracdo, assim reduzindo o tempo de execuc¢do de cada entrada [1].

Além de maximizar o nimero de execucges, o fuzzer tem que identificar se as iteracoes
resultam em crashes, e se um bug foi encontrado. Para isso € necessario 0 uso de um
oraculo. Um oréaculo de teste, ou simplesmente oraculo, € um mecanismo que determina se
a saida fornecida pelo programa em teste esta de acordo com o esperado [9]. Distinguir a
resposta correta da incorreta para cada entrada € uma dificuldade, especialmente para
oraculos automatizados. Esta dificuldade é comum aos diferentes tipos de testes e €

conhecida como problema do oraculo.

A forma mais simples de oraculo em fuzzers consiste em distinguir as execugdes que dao
crashes daquelas que ndo déo. Este oraculo é simples pois prescinde da especificacao, além
do que, crashes sdo facilmente identificaveis. No entanto, o fato de ndo ter ocorrido um

crash ndo significa que o programa executa corretamente. Para melhorar o potencial do

oraculo na descoberta de bugs pode-se utilizar sanitizantes (sanitizers), que sdo assertivas

inseridas no codigo que levantam excec¢des quando um erro é detectado.

O sanitizante mais conhecido é o ASAN (Address Sanitizer), que aponta erros de acesso a
memoria, mas também existem sanitizantes para detectar comportamento indefinido (como
UBSan), casting incorreto (TypeSan), e outras funcionalidades. Apesar de muito Uteis, 0s
sanitizantes geram um aumento do tempo de execuc¢do considerével, diminuindo sua
viabilidade de uso para campanhas curtas de testes - o0 Memory Sanitizer (MSan), faz com

que as execucdes possam demorar o triplo do tempo original, por exemplo [6].

2.1.3 Atualizacdo da configuracéo

Como os fuzzers geram evidéncia da falha — isto €, para cada crash encontrado, existe a

entrada correspondente — é possivel fazer uma triagem dos resultados gerados pelo oraculo.

A primeira parte da triagem é a deduplicacdo, ou seja, identificacdo dos casos em que
varias entradas geraram crashes causados pelo mesmo bug. As razBes para isso Sao
otimizar o uso de memdria e também ter uma melhor nocdo de quantos bugs realmente
existem no programa testado. A deduplicacdo é mais comumente feita através de
rastreamento de estado da pilha utilizando-se hashing, mas também pode ser feita com base
na analise de cobertura do programa, ou através de uma andlise semantica do fluxo de
dados [1].

Os resultados da deduplicacdo podem ser usados para alimentar algoritmos evolutivos que
gerardo novas entradas e atualizar as configuracGes do fuzzer a fim de, por exemplo, usar a
informacdo sobre partes do codigo atingidas para maximizar o grau de cobertura da
campanha.

2.2 Teécnicas para geracao de entradas

A qualidade das entradas geradas tem interferéncia direta nos resultados encontrados pela

campanha de fuzzing. As técnicas utilizadas para essa etapa dependem da ferramenta,

porém, elas podem ser divididas em dois grupos: os fuzzers que geram a entrada baseados
em modelo, e 0s que geram a entrada baseados em mutagé&o.

Os fuzzers que geram a entrada baseados em modelo usam descri¢gdes das entradas aceitas
pelo programa alvo e entdo, com base nisso, geram as novas entradas utilizadas na
campanha. De modo geral, essas ferramentas dependem que o usuario as alimente com
essas descri¢es de modelo, sendo que a gramética e formato destas descri¢cdes depende do
fuzzer utilizado. Ainda nos fuzzers baseados em modelo, existem, mais raramente, também
aqueles que inferem o modelo das entradas, e, portanto, ndo precisam que esta descri¢ao
seja providenciada pelo usuério. Esta inferéncia pode acontecer tanto no pré-processamento
quanto na atualizagéo da configuragéo [1].

Aqueles baseados em mutacdo, por outro lado, mudam pequenas partes das entradas
providas pelo usuério a fim de gerar entradas randémicas que ainda mantenham parte da
estrutura daquelas esperadas - maximizando as chances de que o que foi gerado seja aceito
pelo programa - mas que seja randdémico o suficiente para cumprir os propositos da
campanha de fuzzing. Nestes casos, varias técnicas de mutacGes podem ser utilizadas, a
depender da ferramenta escolhida, tais como mutacdo aritmética (adicionar um pequeno
valor em uma sequéncia de bits do input), bit-flipping (troca do valor de certa quantidade de
bits), mutacdo baseada em dicionario (usando valores mais provaveis de serem gatilhos de
crashes, como 0 ou -1), ou mutacdo baseada em blocos (deletando, substituindo ou

adicionando um bloco a uma semente).

De modo geral, a geracdo de um modelo demanda mais recursos do que a utilizacdo de um
fuzzer baseado em mutacdo, ja que o modelo depende de uma analise profunda da sintaxe e
da semaéntica das entradas do programa. Por outro lado, os modelos garantem a geracao de
mais casos validos, capazes de respeitar a semantica das entradas e manter dependéncia de

valores entre campos, se necessario [2].

Nos dois casos, é importante que o fuzzer consiga manter equilibrio entre revisitar as
mesmas partes de um codigo com diferentes entradas a fim de tentar encontrar crashes e
explorar novas &reas, tudo isso mantendo o custo de geracdo de cada entrada baixo, j& que

as iteracdes devem acontecer de maneira muito rapida.

2.3 Desafios

Apesar do conceito de facil entendimento, os testes fuzzing acabam encontrando diversos
desafios para gerar resultados. O primeiro desafio é encontrar bons alvos, ja que ha
linguagens mais propensas a receberem esse tipo de teste (como C/C++) e linguagens com
muito menos suporte e ferramentas disponiveis para que recebam fuzz testing (como Java,

Python e Javascript).

O segundo desafio é encontrado na questdo de instrumentacdo. Embora os varios tipos de
instrumentacao tornem possivel 0 monitoramento e descoberta de diversos tipos de bugs, o
acréscimo de tempo de execucao pode fazer com que eles se tornem inviaveis para testes
com tempo reduzido (algumas horas ou um dia) e gerem muito mais timeouts em
programas complexos que provavelmente ndo sao resultado de loops infinitos no alvo, mas

sim da demora nas execucdes causadas pelas func¢des de instrumentacéo.

O terceiro desafio a ser mencionado é que muitos bugs ndo sdo apontados pelos fuzzers,
mesmo que o fuzzer atinja aquela parte especifica do codigo. Portanto, um fuzzer que faz
uma cobertura de 100% do c6digo e nao aponta nenhum crash ndo garante a inexisténcia de
bugs, ja que um acesso indevido de memaria que aponta para uma posi¢do que ndo esta
disponivel na execucdo, mas que € adjacente e valida pode ndo gerar um crash [1], mas isso
continua sendo uma falha de seguranca que pode causar 0 vazamento ou perda de
informacBes importantes. Por isso, fuzz testing pode ser usado como uma técnica
complementar de testar programas quanto a sua robustez e seguranca, mas ndo € indicado

como técnica unica.

2.4 Ferramentas existentes

Os fuzzers podem ser divididos em trés grupos, de acordo com o conhecimento que o fuzzer

tem do codigo fonte durante sua execucéo.

Fuzzers black-box, como 0 nome sugere, enxergam o programa alvo como uma caixa preta:
eles ndo tém conhecimento do cddigo fonte e seu fluxo de execucdo, e, portanto, tomam
decisbes baseadas apenas nas entradas, saidas e tempo decorrido por iteracdo. Sem o
auxilio da instrumentacdo para guiar a campanha com base na cobertura de cddigo, esse
tipo de fuzzer pode ficar preso em testes muito parecidos com as sementes usadas na
configuracdo, mas existem, no entanto, casos em que ferramentas black-box podem ser uma
boa alternativa. Nesta lista estdo o0s casos em que o resultado ndo é deterministico (ou seja,
a mesma entrada pode gerar diferentes saidas), ou quando o alvo é muito lento ou muito

grande, ja que testes black-box podem ser paralelizados com maior facilidade.

Por outro lado, fuzzers white-box sdo aqueles que tém acesso completo ao programa e
podem mapear seus fluxos de execucdo, muitas vezes através do que é chamado de
dynamic symbolic execution. Esse tipo de execucdo mapeia as possiveis entradas com
valores simbolicos e para cada condicional ou mudanca de fluxo, os novos caminhos
recebem novos simbolos, de modo que ao fim desse processo todos os caminhos presentes
no programa sdo mapeados e o fuzzer pode usar métodos matematicos para chegar a
solucBes que gerem entradas para atingir todos os fluxos possiveis [1], obtendo, em teoria,
maxima cobertura e encontrando bugs que estdo em lugares com acesso mais dificil e raro.
Esses beneficios, entretanto, vém com um grande custo: esse modo de execucdo se torna
muito mais complexo do que o modelo black-box, fazendo com que o custo operacional

seja muitas vezes inviavel [3].

Desta forma, os fuzzers grey-box sdo uma tentativa de englobar os beneficios dos fuzzers
black e white-box, sem que suas restricbes tenham tanto impacto na campanha de testes.
Essas ferramentas tém acesso a mais informagdes sobre o programa alvo que os fuzzers
black-box, e, portanto, podem tomar decisdes mais informadas sobre a geracdo de novas
entradas e a atualizacdo de configuracdes. A instrumentacdo utilizada por esse tipo de
fuzzer é mais leve que a analise profunda das ferramentas white-box, reduzindo seu impacto

no processamento de execucdo, mas ainda sendo capaz de gerar informacdes suficientes

para que o fuzzer possa entender quando atingiu uma nova area do alvo e orientar seus
esforcos para maximizar sua cobertura e encontrar bugs em areas cujo acesso é mais remoto

que as atingidas, a principio, pelos black-box.

3 Selecdo da ferramenta

3.1 Benchmarks utilizados

Entre todas as possibilidades de fuzzer citados na secdo 2.4, foi decidido que as ferramentas
selecionadas para o0s testes neste trabalho deveriam obedecer as duas seguintes

caracteristicas:

- Fuzzer grey-box: pelo tempo reduzido de testes, o uso de um fuzzer white-box se tornaria
invidvel pelos recursos necessarios, entdo o fuzzer grey-box se mostrou como uma opc¢ao
razoavel em que se € possivel encontrar resultados de interesse em campanhas curtas, mas
ainda utilizando um nivel de inteligéncia quanto ao direcionamento de esforgcos

computacionais.

- Fuzzer baseado em mutacao: essa caracteristica foi escolhida tanto pela maior facilidade
de uso quanto pela popularidade e nimero de ferramentas que utilizam essa configuracao,
aumentando-se o leque de escolhas e de benchmarks que podem ser utilizados como fonte

de informacoes.

Com base nestes, foram escolhidos dois benchmarks em que a escolha de ferramentas foi

baseada.

O primeiro benchmark ¢ o Magma [4], que avaliou seis fuzzers grey-box baseados em
mutacdo durante 26000 horas de uso de CPU. Por principio, esse benchmark utilizou
programas reais e diversos e os fuzzers foram avaliados por nimeros de bugs encontrados e

seu tempo para encontra-los.

O segundo benchmark utilizado foi o Fuzzbench [5], que é um servigo gratuito e fornecido
pelo Google para disponibilizar uma plataforma de testes de fuzzers e seus relatorios de

resultados. O Fuzzbench utiliza normalmente dez fuzzers e 24 programas alvo diversos para

seus relatorios, e sua forma de comparacdo é atraves de cobertura atingida, uma métrica que

ndo consta no relatorio gerado pelo benchmark Magma.

3.2 Critérios de selecéo

O primeiro passo da selecdo das ferramentas consistiu em utilizar os benchmarks Magma e

Fuzzbench para alguns fuzzers grey-box baseados em mutacao.

O Fuzzbench comecou a divulgar em junho de 2020 relatérios com notas de comparagdo
entre as estatisticas de cobertura (nota normalizada, quanto mais préximo de 100 melhor o
desempenho do fuzzer neste aspecto). Foram tabulados os resultados de todos os relatorios

divulgados entre os meses de junho e setembro de 2020, gerando a tabela a seguir.

Tabela 1- Média normalizada da cobertura alcangada pelos fuzzers no ano de 2020

Fuzzer ‘12/06 03/08 | 16/08 | 23/08 | 31/08 07/09 | 18/09 24/09 | 28/09

honggfuzz | 96,76 | 95,94 | 96,19 | 95,54 | 95,36 | 95,37 | 94,89 | 94,71 | 95,57 95,79

AFL++ 89,56 | 91,00 | 96,83 | 96,62 | - - 96,39 | 97,40 | 96,14 94,63
AFL 90,19 | 91,21 | 91,20 | 90,79 | 90,23 | 89,89 | 89,81 | 90,02 | 89,99 90,30
moptafl 85,96 | 90,51 | 90,80 | 90,32 | 89,82 | 89,60 | 89,51 | 89,54 | 89,70 88,69
aflfast 87,04 | 88,66 | 89,25 | 88,22 | 87,69 | 87,67 | 87,58 | 87,61 | 88,01 87,90

fairfuzz 81,55 | 85,43 | 86,65 | 85,05 | 84,88 | 84,74 | 84,67 | 84,70 | 87,89 85,16

Como nota de corte, determinou-se a nota de 90 em relacdo a cobertura como minimo para
manter o fuzzer como candidato as ferramentas escolhidas, eliminando-se assim os fuzzers
moptafl, aflfast e fairfuzz. A partir disso, a escolha final se deu com os resultados

apresentados no benchmark Magma.

Neste, duas informacOes de interesse foram selecionadas, a primeira sendo o fuzzer com
melhor desempenho para cada programa alvo. A Tabela 2 (que equivale a Tabela 3 da

referéncia [4]) apresentada a seguir contém as informacdes coletadas.

Tabela 2- Numero médio de bugs encontrados e desvio padrdo por fuzzer durante dez
campanhas. O fuzzer de melhor desempenho por programa alvo recebe realce verde.

10

Target honggfuzz afl moptafl aflfast afl++ fairfuzz
libpng 36052 16070 10000 13+048 12x042 15+053
libtaff 47+ 067 48+042 44x052 42+042 34+052 48+1.23
libxml2 50047 29+032 30x000 3.0+000 3.0+£000 2.6+052
openssl 28063 29x057 3.0x£000 26+052 30067 2.0+ 047
php 28042 30000 30x000 30+000 3.0+£000 16=+070
poppler = 38092 30x000 3.0x000 30x000 30000 2.9%+032
sqlite3 32063 08+092 12x114 12079 16+084 1.5=+053

Com base nessa tabela, vemos que entre os trés fuzzers selecionados quanto a cobertura, o
honggfuzz aparece como aquele com melhor performance em um maior numero de

programas alvo; entretanto, os outros dois candidatos (AFL e AFL++) se destacaram em

dois programas alvo cada.

A segunda informacéo de interesse é o tempo que cada um dos fuzzers levou para apontar

cada um dos bugs encontrados. Com base nesta informacdo, o numero de bugs encontrados

por ferramenta foi contabilizado, criando-se a Tabela 3.

Tabela 3- Nimero de bugs encontrados, com base Tabela 4 da Referéncia [4]

Nela, vemos que entre as ferramentas pré-selecionadas, aquelas que aparecem com melhor
resultado foram honggfuzz e AFL. Com base nisto e nas comparagdes anteriores, estes

fuzzers foram selecionados para a continuidade deste trabalho.

Fuzzer | Numero de bugs encontrados

honggfuzz 33
AFL 24
AFL++ 23
fairfuzz 23
moptafl 22
aflfast 22

3.3 Ferramentas selecionadas

11

Com base nos critérios anteriores, os dois fuzzers grey-box baseados em mutacéo que foram

selecionados para os testes foram o American Fuzzy Lop (AFL) [7] e o honggfuzz [8].

O American Fuzzy Lop é uma ferramenta bastante popular e com interface amigavel ao
usuario, funcionando através de uma instrumentacdo com baixo impacto na performance
que acontece no momento de compilacdo. A partir desta instrumentagéo, o fuzzer guia sua
campanha determinando se a entrada gerada atingiu um novo estado no programa, e se sim,
a adiciona no conjunto dindmico de sementes (chamado corpus), reduzindo-a ao menor
tamanho possivel que mantenha suas caracteristicas de cobertura. O AFL também usa uma
combinacdo das técnicas de mutagdo para gerar suas entradas — como bit-flipping, mutacéo
aritmética e baseada em dicionario-, e um de seus principios é a confiabilidade: nenhuma
nova feature que cause instabilidade na execucdo e possa causar crashes abruptas ao

usuario é bem-vinda.

O fuzzer honggfuzz, assim como o AFL, é uma ferramenta bastante popular. Por padrao,
tem caracteristicas multi-thread e multi-processo, usando todo o potencial disponivel pela
CPU. Também € um fuzzer inteligente, identificando quando uma nova area do cddigo é
atingida e adicionando a entrada ao corpus para sofrer novas mutac6es, com a possibilidade
de minimizagdo deste conjunto, assim como o AFL. Ambos os fuzzers tem modos de
campanha chamados “persistentes”, utilizando-se o in-memory fuzzing e diminuindo o

tempo de cada iteragéo.

4 Estudos de caso e resultados

4.1 Descricao dos experimentos

Neste relatorio, foram usados quatro estudos de caso variados em campanhas de até 24
horas que aconteceram em ambiente Linux, com ambas as ferramentas selecionadas. As
campanhas utilizaram, em suas respectivas se¢des, a menos que especificado o contrario, as
configuragbes padrdo de ambos os fuzzers — comparando-se assim a forma com que

atingem seus resultados com as configuragbes de entrada disponiveis em suas

12

documentagbes. Os programas utilizados sdo escritos primariamente em C, por sua
afinidade com este tipo de anélise, e compilados com os compiladores das respectivas

ferramentas — afl-gcc no caso do AFL e hfuzz-clang no caso do honggfuzz.

Quando o proprio projeto disponibilizou em seu repositério entradas variadas para teste,
estas eram utilizadas no conjunto de sementes. Caso contrario, era criado um arquivo em
formato aceito pelo programa, e este era tido como entrada inicial. O conjunto de sementes

e ordem deste foram os mesmos para ambas as ferramentas.

Consideraram-se aqui resultados relevantes o nimero de bugs apontados além do ndmero
de execucdes obtidas no modo de execucdo baseado em feedback (grey-box), uma vez que
a velocidade de execucdo € imprescindivel para o proprio conceito destas ferramentas.
Como observacao adicional temos o tamanho do corpus — conjunto dinamico de sementes
alterado durante a execucdo conforme os feedbacks recebidos — do fuzzer honggfuzz ao

final da campanha.

As subsecdes a seguir descrevem os estudos de caso utilizados nos testes.

4.2 Capstone [10]

Capstone é uma ferramenta de desmontagem de binarios para sua analise e engenharia
reversa, funcionando em diversas plataformas de hardware. Sua versatilidade e arquitetura
que prioriza baixo uso de memdria e processamento sdo 0s atrativos em que 0 projeto se

baseia para buscar sua posicdo de destaque na comunidade de seguranca.

As campanhas com esta ferramenta duraram 24 horas para cada um dos fuzzers, sendo que
neste periodo, ndo houve nenhum bug encontrado e reportado por nenhuma das ferramentas

na versao 4.0.2 do software.

O fuzzer AFL obteve, nestas 24 horas, 79,7 milhdes de execugOes, enquanto o fuzzer
honggfuzz obteve 51,2 milhdes, o que coloca 0 American Fuzzy Lop como 56% mais

rapido que seu concorrente neste estudo de caso.

13

O conjunto dindmico de sementes se manteve como um arquivo para o fuzzer honggfuzz

durante esta campanha.

4.3 Sed[11]

Esta ferramenta de andlise e edicdo de textos em sistemas Unix &€ muito conhecida e
utilizada principalmente pela sua praticidade em encontrar e editar expressoes em arquivos
sem precisar nem mesmo abri-los, e também pelas possibilidades de uso de expressdes

regulares para encontrar os padrfes desejados.

As campanhas com o Sed duraram 18h, e enquanto ambas as ferramentas ndo encontraram
nenhum bug na versdo 1.0, o fuzzer honggfuzz conseguiu gerar e executar entradas com
muito mais rapidez que a outra ferramenta estudada, sendo que o primeiro teve 50,9
milhGes de iteracdes no periodo contra 20,6 milhGes de vezes executadas pelo AFL, sendo,

portanto, cerca de 147% mais rapido.

Esta campanha terminou com o corpus do fuzzer honggfuzz diminuindo de 395 para apenas
um arquivo. Isso acontece pela funcionalidade de minimizacdo de corpus, que exclui

sementes funcionalmente redundantes.

4.4 Radare2 [12]

Radare2 é um projeto que visa a reescrita do software Radare, cujas funcionalidades
englobam desde ser um editor hexadecimal e debugger, até fungdes para desmontagem e

analise de binarios, comparacdo, visualizacdo e substituicao de dados.

Neste software, o fuzzer American Fuzzy Lop encontrou dois diferentes bugs durante sua
campanha que durou 24 horas e teve 1,46 milhdes de execucdes. Quando utilizado pelo
mesmo tempo e com suas configuracdes padrdo, o fuzzer honggfuzz ndo encontrou nenhum

bug neste software em 1,56 milhdes de execucOes, mantendo-se 0 corpus com um arquivo.

Sabendo que o programa alvo tinha bugs passiveis de serem encontrados em uma
campanha relativamente curta, foram feitos outros testes das funcionalidades do honggfuzz

a fim de descobrir se, neste estudo de caso, mudangas em suas configuracdes poderiam

14

obter os mesmos resultados mostrados pelo AFL. Desta forma, duas novas campanhas de

24 horas foram realizadas com este fuzzer.

A primeira foi realizada ativando-se 0 modo in-memory fuzzing, chamado “persistente”,
que tende a ter execucBes mais rapidas. Este modo realmente obteve mais execucgdes
durante a duragdo da campanha (16,38 milhdes), mas ainda assim n&o revelou a presenca de
nenhum bug. Neste modo, o tamanho do corpus se manteve o mesmo durante toda a

campanha.

A segunda campanha utilizou-se de uma compilacdo mais instrumentada (com a flag
fsanitize=address na compilacdo), a fim de guiar com mais propriedade a execucdo do
fuzzer. Este modo aumentou muito o tempo de execucdo de cada entrada, de modo que
apenas 158 mil execucbes foram realizadas neste periodo e novamente nenhum bug foi
identificado. O tamanho do conjunto de sementes foi de uma para 1194 ao decorrer das 24

horas.
4,5 CANOpen [13]

Este protocolo baseado no modelo produtor/consumidor estd presente em sistemas
distribuidos de controle utilizados em automacgdo, tais como equipamentos médicos,
aplicacdes maritimas e ferroviarias. Esta aplicacdo preza pela compatibilidade com outras

aplicagdes CAN por ser altamente padronizada.

O formato desta aplicacdo baseia-se numa execucdo continua, em que 0 programa se
mantém em um loop de recebimento de entradas e execucdo até que seja manualmente

encerrado.

Este formato especifico ndo é compativel com as ferramentas escolhidas, ja que todas as
execugdes superam os limites de tempo propostos e geram timeouts, mesmo que bem
sucedidas, fazendo com que o conjunto de sementes inicial ndo seja aceito como modelo de

execucao.

Desta forma, para que fosse possivel testar a aplicacdo para falhas de seguranca através do

fuzzing, foi necessario que este aspecto dela fosse modificado, editando-se o codigo fonte

15

para que encerrasse O programa apds O recebimento de uma entrada e execucdo

correspondente.

Esta modificacdo da versdo 1.3 foi testada durante 24 horas, nas quais o American Fuzzy
Lop executou 151 milhdes de iteracdes e o fuzzer honggfuzz apenas 73,7 milhdes, tornando
0 AFL cerca de 105% mais répido nesta aplicacdo, embora nenhum dos dois tenha
encontrado bugs no tempo definido de campanha.

O tamanho de corpus para o fuzzer honggfuzz, que comegou com um arquivo, terminou a

campanha com oito sementes diferentes.

4.6 Ameacas a validade dos experimentos

Alguns aspectos podem ser vistos como ameagas a validade dos experimentos anteriores. O
primeiro é que, por restricdo de recursos, muitas campanhas foram feitas em paralelo, de

forma que a capacidade computacional entre campanhas pode ter sido afetada.

O segundo ponto a ser considerado € que a escolha inicial de sementes pode néo ter sido
6tima em relacdo ao funcionamento do programa, ja que ndo houve uma analise especifica
dos cddigos fonte de forma a aumentar as areas atingidas pelo conjunto de sementes

escolhido.

O terceiro ponto acontece no estudo especifico do protocolo CANOpen e as alteracfes que
tiveram que ser feitas no codigo para que o teste fuzzing fosse possivel: embora seu
objetivo tenha sido retirar apenas o loop continuo original presente no programa, nao se

pode afirmar com certeza que esta alteracdo ndo afetou os resultados dos testes.

5 Conclusoes e trabalhos futuros

Devido a pouca disponibilidade de recursos, as campanhas realizadas foram curtas para
programas que sdo complexos e que ja tém comunidades ativas que realizam testes ha
varios anos, de forma que é compreensivel que a maioria dos testes ndo tenha encontrado
bugs nos alvos indicados. Desta forma, € sugerido para que em trabalhos futuros sejam
realizadas campanhas de duragdo mais expressiva — uma semana ou mais - para 0S

programas alvo escolhidos.

16

Especificamente para o programa CANOpen, devido a sua complexidade e importancia de
uso, seria interessante dedicar recursos para realizar testes especificos com um fuzzer
baseado em modelo. Embora a analise do cddigo para geracdo deste modelo seja custosa,
este direcionamento pode fazer com que mais entradas atinjam areas de interesse da

aplicagéo, tornando os resultados da campanha mais completos e substanciais.

Por fim, como mostrado no experimento com a aplicacdo Radare2, nem sempre 0 nimero
de execucdes equivale ao maior nimero de bugs encontrados, ja& que a qualidade das
entradas e do oraculo tém papel significante nestes resultados. A comparacdo entre oS
resultados dos fuzzers no Fuzzbench e Magma também mostra que nem sempre uma maior
cobertura é diretamente proporcional as falhas apontadas. Desta forma, para programas
alvo cujos bugs ja estdo documentados, uma andlise estatistica se torna atrativa para que se
quantifiguem os impactos que as diversas variaveis de uma campanha tém em encontrar
defeitos. Neste caso pode-se determinar, para determinado alvo, qual a relagdo entre custo
(computacional e horas analiticas) e retorno para aspectos como formacdo de um conjunto
de sementes inicial 6timo, uso de determinados tipos de sanitizantes e aplicacdo de modelos

para as entradas.

6 Referéncias bibliograficas
[1] Manes VJM, Han HS, Han C, Cha SK, Egele M, Schwartz EJ, et al. Fuzzing: Art,
Science, and Engineering [Internet]. Dezembro/2018.

[2] Payer M. The Fuzzing Hype-Train: How Random Testing Triggers Thousands of

Crashes [Internet]. Janeiro-Fevereiro/2019.

[3] Godefroid P, Levin MY, Molnar D. Automated Whitebox Fuzz Testing [Internet].
Janeiro/2008.

[4] Hazimeh A, Payer M. Magma: A Ground-Truth Fuzzing Benchmark [Internet]. 2020.

Disponivel em: https://hexhive.epfl.ch/magma/docs/preprint.pdf

17

https://hexhive.epfl.ch/magma/docs/preprint.pdf

[5] Fuzzer Benchmarking As a Service. FuzzBench. Disponivel em:
https://google.qgithub.io/fuzzbench/

[6] Clang 12 documentation. MemorySanitizer - Clang 12 documentation. Disponivel em:
https://clang.llvm.org/docs/MemorySanitizer.html

[7] Zalewski M. American Fuzzy Lop. GitHub - google/AFL. Disponivel em:
https://github.com/google/AFL

[8] honggfuzz. GitHub - google/honggfuzz. Disponivel em:
https://github.com/google/honggfuzz/

[9] Howden WE. In: Theoretical and empirical studies of program testing. Victoria, B.C.:
University of Victoria, Dept. of Mathematics; Julho/1978. p. 293-8.

[10] Capstone. The Ultimate Disassembly Framework. Disponivel em:
http://www.capstone-engine.org/

[11] GNU sed. Disponivel em: https://www.gnu.org/software/sed/

[12] Libre and Portable Reverse Engineering Framework. radare2. Disponivel em:
https://rada.re/n/

[13] CAN in Automation (CiA). CAN in Automation (CiA): CANopen. Disponivel em:
https://www.can-cia.org/canopen/

18

https://google.github.io/fuzzbench/
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/AFL
https://github.com/google/honggfuzz/
http://www.capstone-engine.org/
https://www.gnu.org/software/sed/
https://rada.re/n/
https://www.can-cia.org/canopen/

