
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Testes de Segurança de
Aplicações Usando Fuzzers

F. B. Silvério E. Martins

Relatório Técnico - IC-PFG-20-37

Projeto Final de Graduação

2020 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

 1

Testes de Segurança de Aplicações Usando Fuzzers

Flávia Bertoletti Silvério1, Eliane Martins2

1,2 Instituto de Computação Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6176

13083-970 Campinas-SP, Brasil

Resumo. Fuzz testing é um método de testes que gera e insere no programa alvo entradas

aleatórias com uma velocidade muito alta a fim de gerar e documentar crashes. Seu volume

alto de entradas e sua abordagem automatizada têm como consequências achar bugs que

escapam ao programador e testador.

O objetivo deste trabalho foi a análise do uso de fuzzers e sua aplicação em quatro estudos

de caso escritos em linguagem C, encontrando-se dois bugs após campanhas de até 24

horas com as ferramentas AFL e honggfuzz.

Palavras-Chave: Segurança, Fuzz testing, Fuzzing.

 2

1. Introdução

Seja pelas perdas financeiras acarretadas por crashes em software, ou pelo volume cada vez

maior de informações importantes e privativas sendo transmitido todos os dias, a

importância de termos sistemas de software seguros e robustos nunca foi maior do que nos

dias atuais.

Neste contexto, o fuzz testing se apresenta como uma medida complementar aos

tradicionais métodos de teste de software e análise do código, sendo uma alternativa

automatizada para encontrar vulnerabilidades, que são defeitos (bugs) passíveis de

exploração maliciosa.

De modo geral, o fuzz testing gera e insere no programa entradas aleatórias com uma

velocidade muito alta a fim de gerar e documentar crashes. Seu volume alto de entradas e

sua abordagem automatizada têm como consequências achar bugs que escapam ao

programador e testador e que podem ser severos do ponto de vista da segurança, como

vazamentos de memória.

O objetivo deste trabalho foi a análise do uso de fuzzers e sua aplicação em alguns estudos

de caso. A preferência foi para a aplicações escritas em linguagem C, pois o objetivo é

determinar os fuzzers a serem utilizados nos testes de sistemas embarcados.

Este trabalho dividiu-se em três principais passos: o primeiro foi dedicado à pesquisa sobre

este conceito de teste, o funcionamento das ferramentas disponíveis e a escolha daquelas

que mais se adequaram ao que foi proposto. No segundo, foram feitas pesquisas de bons

programas-alvo para os quais utilizaram-se os dois fuzzers grey-box, honggfuzz e American

Fuzzy Lop (AFL) em campanhas de até 24 horas a fim de encontrar vulnerabilidades em 4

programas com variados propósitos. No terceiro passo houve a análise dos resultados, em

que se encontraram 2 bugs que resultaram em crashes em um programa.

Também na terceira parte houve a comparação das ferramentas utilizadas, determinando-se

que para o contexto utilizado, o fuzzer AFL demonstrou melhores resultados quando

avaliamos o número de bugs encontrados.

 3

2. Fuzzing

2.1 Objetivos e passos

Embora o conceito de fuzzing seja simples, diversas etapas são necessárias para que o

processo seja bem sucedido e possa atingir seu objetivo principal de encontrar falhas de

segurança através dos testes do programa com entradas randômicas.

Com base neste conceito, podemos dividir o fluxo de execução em três partes: o pré-

processo – atividades que acontecem antes da execução de determinada entrada-, a

execução, e a atualização da configuração.

2.1.1 Pré-processo

As seguintes atividades fazem parte do pré-processo, embora a presença de algumas varie

dependendo dos parâmetros da campanha e ferramentas escolhidas:

- Instrumentação do programa: refere-se à preparação do programa para que

determinados parâmetros possam ser monitorados durante a campanha de fuzzing. A

instrumentação pode acontecer de forma dinâmica (durante a execução) ou estática (no

momento da compilação ou instrumentação do binário com auxílio de ferramentas

específicas para este fim). Esta última normalmente tem menor impacto no tempo de

execução, embora a instrumentação dinâmica possibilite que o teste atinja também

bibliotecas dinamicamente ligadas ao programa alvo [1].

- Seleção de sementes (seeds): as sementes são escolhidas como entradas iniciais com base

nas quais o fuzzer irá gerar as próximas entradas. A ideia é que este conjunto seja o menor

possível, com casos de teste pequenos e que possam atingir diversas áreas do programa

alvo. O fuzzer American Fuzzy Lop, por exemplo, pede em sua documentação que as

entradas iniciais sejam, de preferência, menores que 1Kb e que só existam múltiplos

arquivos se eles forem funcionalmente diferentes entre si. Em estudos mais aprofundados,

pode-se procurar um conjunto ótimo com testes pequenos e cuja escolha maximize a

porcentagem de código atingido pelas execuções.

 4

- Criação de uma aplicação harness: bastante útil quando existe uma função alvo a ser

testada, a harness existe como um programa direcionador, cujo objetivo é chamar as

funções ou áreas de interesse do código alvo para direcionamento da campanha.

- Geração de inputs: a partir das sementes selecionadas (e das configurações do fuzzer),

criam-se novas entradas para o programa. Mais detalhes na seção 2.2.

2.1.2 Execução

A execução refere-se à etapa do uso dos casos de teste gerados no pré-processo como

entradas do programa alvo. Nesta etapa, a velocidade com que o fuzzer executa cada

interação é determinante para o sucesso dos testes, já que pela natureza randômica das

entradas geradas, a maioria é rejeitada pelo programa sem atingir pontos chave que podem

ser origens de bugs. Desta forma, é de extrema importância aumentar o número de

execuções em um determinado período a fim de aumentar as chances de atingir partes

críticas do alvo. Para isso, alguns fuzzers apresentam opções de otimização que visam

aumentar a velocidade utilizando o contexto de in-memory fuzzing, que consiste em tirar

uma “foto” do programa após o processamento inicial e restaurar o programa para esse

estado a cada iteração, assim reduzindo o tempo de execução de cada entrada [1].

Além de maximizar o número de execuções, o fuzzer tem que identificar se as iterações

resultam em crashes, e se um bug foi encontrado. Para isso é necessário o uso de um

oráculo. Um oráculo de teste, ou simplesmente oráculo, é um mecanismo que determina se

a saída fornecida pelo programa em teste está de acordo com o esperado [9]. Distinguir a

resposta correta da incorreta para cada entrada é uma dificuldade, especialmente para

oráculos automatizados. Esta dificuldade é comum aos diferentes tipos de testes e é

conhecida como problema do oráculo.

A forma mais simples de oráculo em fuzzers consiste em distinguir as execuções que dão

crashes daquelas que não dão. Este oráculo é simples pois prescinde da especificação, além

do que, crashes são facilmente identificáveis. No entanto, o fato de não ter ocorrido um

crash não significa que o programa executa corretamente. Para melhorar o potencial do

 5

oráculo na descoberta de bugs pode-se utilizar sanitizantes (sanitizers), que são assertivas

inseridas no código que levantam exceções quando um erro é detectado.

O sanitizante mais conhecido é o ASAN (Address Sanitizer), que aponta erros de acesso à

memória, mas também existem sanitizantes para detectar comportamento indefinido (como

UBSan), casting incorreto (TypeSan), e outras funcionalidades. Apesar de muito úteis, os

sanitizantes geram um aumento do tempo de execução considerável, diminuindo sua

viabilidade de uso para campanhas curtas de testes - o Memory Sanitizer (MSan), faz com

que as execuções possam demorar o triplo do tempo original, por exemplo [6].

2.1.3 Atualização da configuração

Como os fuzzers geram evidência da falha – isto é, para cada crash encontrado, existe a

entrada correspondente – é possível fazer uma triagem dos resultados gerados pelo oráculo.

A primeira parte da triagem é a deduplicação, ou seja, identificação dos casos em que

várias entradas geraram crashes causados pelo mesmo bug. As razões para isso são

otimizar o uso de memória e também ter uma melhor noção de quantos bugs realmente

existem no programa testado. A deduplicação é mais comumente feita através de

rastreamento de estado da pilha utilizando-se hashing, mas também pode ser feita com base

na análise de cobertura do programa, ou através de uma análise semântica do fluxo de

dados [1].

Os resultados da deduplicação podem ser usados para alimentar algoritmos evolutivos que

gerarão novas entradas e atualizar as configurações do fuzzer a fim de, por exemplo, usar a

informação sobre partes do código atingidas para maximizar o grau de cobertura da

campanha.

2.2 Técnicas para geração de entradas

A qualidade das entradas geradas tem interferência direta nos resultados encontrados pela

campanha de fuzzing. As técnicas utilizadas para essa etapa dependem da ferramenta,

 6

porém, elas podem ser divididas em dois grupos: os fuzzers que geram a entrada baseados

em modelo, e os que geram a entrada baseados em mutação.

Os fuzzers que geram a entrada baseados em modelo usam descrições das entradas aceitas

pelo programa alvo e então, com base nisso, geram as novas entradas utilizadas na

campanha. De modo geral, essas ferramentas dependem que o usuário as alimente com

essas descrições de modelo, sendo que a gramática e formato destas descrições depende do

fuzzer utilizado. Ainda nos fuzzers baseados em modelo, existem, mais raramente, também

aqueles que inferem o modelo das entradas, e, portanto, não precisam que esta descrição

seja providenciada pelo usuário. Esta inferência pode acontecer tanto no pré-processamento

quanto na atualização da configuração [1].

Aqueles baseados em mutação, por outro lado, mudam pequenas partes das entradas

providas pelo usuário a fim de gerar entradas randômicas que ainda mantenham parte da

estrutura daquelas esperadas - maximizando as chances de que o que foi gerado seja aceito

pelo programa - mas que seja randômico o suficiente para cumprir os propósitos da

campanha de fuzzing. Nestes casos, várias técnicas de mutações podem ser utilizadas, a

depender da ferramenta escolhida, tais como mutação aritmética (adicionar um pequeno

valor em uma sequência de bits do input), bit-flipping (troca do valor de certa quantidade de

bits), mutação baseada em dicionário (usando valores mais prováveis de serem gatilhos de

crashes, como 0 ou -1), ou mutação baseada em blocos (deletando, substituindo ou

adicionando um bloco a uma semente).

De modo geral, a geração de um modelo demanda mais recursos do que a utilização de um

fuzzer baseado em mutação, já que o modelo depende de uma análise profunda da sintaxe e

da semântica das entradas do programa. Por outro lado, os modelos garantem a geração de

mais casos válidos, capazes de respeitar a semântica das entradas e manter dependência de

valores entre campos, se necessário [2].

Nos dois casos, é importante que o fuzzer consiga manter equilíbrio entre revisitar as

mesmas partes de um código com diferentes entradas a fim de tentar encontrar crashes e

explorar novas áreas, tudo isso mantendo o custo de geração de cada entrada baixo, já que

as iterações devem acontecer de maneira muito rápida.

 7

2.3 Desafios

Apesar do conceito de fácil entendimento, os testes fuzzing acabam encontrando diversos

desafios para gerar resultados. O primeiro desafio é encontrar bons alvos, já que há

linguagens mais propensas a receberem esse tipo de teste (como C/C++) e linguagens com

muito menos suporte e ferramentas disponíveis para que recebam fuzz testing (como Java,

Python e Javascript).

O segundo desafio é encontrado na questão de instrumentação. Embora os vários tipos de

instrumentação tornem possível o monitoramento e descoberta de diversos tipos de bugs, o

acréscimo de tempo de execução pode fazer com que eles se tornem inviáveis para testes

com tempo reduzido (algumas horas ou um dia) e gerem muito mais timeouts em

programas complexos que provavelmente não são resultado de loops infinitos no alvo, mas

sim da demora nas execuções causadas pelas funções de instrumentação.

O terceiro desafio a ser mencionado é que muitos bugs não são apontados pelos fuzzers,

mesmo que o fuzzer atinja aquela parte específica do código. Portanto, um fuzzer que faz

uma cobertura de 100% do código e não aponta nenhum crash não garante a inexistência de

bugs, já que um acesso indevido de memória que aponta para uma posição que não está

disponível na execução, mas que é adjacente e válida pode não gerar um crash [1], mas isso

continua sendo uma falha de segurança que pode causar o vazamento ou perda de

informações importantes. Por isso, fuzz testing pode ser usado como uma técnica

complementar de testar programas quanto à sua robustez e segurança, mas não é indicado

como técnica única.

2.4 Ferramentas existentes

 8

Os fuzzers podem ser divididos em três grupos, de acordo com o conhecimento que o fuzzer

tem do código fonte durante sua execução.

Fuzzers black-box, como o nome sugere, enxergam o programa alvo como uma caixa preta:

eles não têm conhecimento do código fonte e seu fluxo de execução, e, portanto, tomam

decisões baseadas apenas nas entradas, saídas e tempo decorrido por iteração. Sem o

auxílio da instrumentação para guiar a campanha com base na cobertura de código, esse

tipo de fuzzer pode ficar preso em testes muito parecidos com as sementes usadas na

configuração, mas existem, no entanto, casos em que ferramentas black-box podem ser uma

boa alternativa. Nesta lista estão os casos em que o resultado não é determinístico (ou seja,

a mesma entrada pode gerar diferentes saídas), ou quando o alvo é muito lento ou muito

grande, já que testes black-box podem ser paralelizados com maior facilidade.

Por outro lado, fuzzers white-box são aqueles que têm acesso completo ao programa e

podem mapear seus fluxos de execução, muitas vezes através do que é chamado de

dynamic symbolic execution. Esse tipo de execução mapeia as possíveis entradas com

valores simbólicos e para cada condicional ou mudança de fluxo, os novos caminhos

recebem novos símbolos, de modo que ao fim desse processo todos os caminhos presentes

no programa são mapeados e o fuzzer pode usar métodos matemáticos para chegar a

soluções que gerem entradas para atingir todos os fluxos possíveis [1], obtendo, em teoria,

máxima cobertura e encontrando bugs que estão em lugares com acesso mais difícil e raro.

Esses benefícios, entretanto, vêm com um grande custo: esse modo de execução se torna

muito mais complexo do que o modelo black-box, fazendo com que o custo operacional

seja muitas vezes inviável [3].

Desta forma, os fuzzers grey-box são uma tentativa de englobar os benefícios dos fuzzers

black e white-box, sem que suas restrições tenham tanto impacto na campanha de testes.

Essas ferramentas têm acesso a mais informações sobre o programa alvo que os fuzzers

black-box, e, portanto, podem tomar decisões mais informadas sobre a geração de novas

entradas e a atualização de configurações. A instrumentação utilizada por esse tipo de

fuzzer é mais leve que a análise profunda das ferramentas white-box, reduzindo seu impacto

no processamento de execução, mas ainda sendo capaz de gerar informações suficientes

 9

para que o fuzzer possa entender quando atingiu uma nova área do alvo e orientar seus

esforços para maximizar sua cobertura e encontrar bugs em áreas cujo acesso é mais remoto

que as atingidas, à princípio, pelos black-box.

3 Seleção da ferramenta

3.1 Benchmarks utilizados

Entre todas as possibilidades de fuzzer citados na seção 2.4, foi decidido que as ferramentas

selecionadas para os testes neste trabalho deveriam obedecer às duas seguintes

características:

- Fuzzer grey-box: pelo tempo reduzido de testes, o uso de um fuzzer white-box se tornaria

inviável pelos recursos necessários, então o fuzzer grey-box se mostrou como uma opção

razoável em que se é possível encontrar resultados de interesse em campanhas curtas, mas

ainda utilizando um nível de inteligência quanto ao direcionamento de esforços

computacionais.

- Fuzzer baseado em mutação: essa característica foi escolhida tanto pela maior facilidade

de uso quanto pela popularidade e número de ferramentas que utilizam essa configuração,

aumentando-se o leque de escolhas e de benchmarks que podem ser utilizados como fonte

de informações.

Com base nestes, foram escolhidos dois benchmarks em que a escolha de ferramentas foi

baseada.

O primeiro benchmark é o Magma [4], que avaliou seis fuzzers grey-box baseados em

mutação durante 26000 horas de uso de CPU. Por princípio, esse benchmark utilizou

programas reais e diversos e os fuzzers foram avaliados por números de bugs encontrados e

seu tempo para encontrá-los.

O segundo benchmark utilizado foi o Fuzzbench [5], que é um serviço gratuito e fornecido

pelo Google para disponibilizar uma plataforma de testes de fuzzers e seus relatórios de

resultados. O Fuzzbench utiliza normalmente dez fuzzers e 24 programas alvo diversos para

 10

seus relatórios, e sua forma de comparação é através de cobertura atingida, uma métrica que

não consta no relatório gerado pelo benchmark Magma.

3.2 Critérios de seleção

O primeiro passo da seleção das ferramentas consistiu em utilizar os benchmarks Magma e

Fuzzbench para alguns fuzzers grey-box baseados em mutação.

O Fuzzbench começou a divulgar em junho de 2020 relatórios com notas de comparação

entre as estatísticas de cobertura (nota normalizada, quanto mais próximo de 100 melhor o

desempenho do fuzzer neste aspecto). Foram tabulados os resultados de todos os relatórios

divulgados entre os meses de junho e setembro de 2020, gerando a tabela a seguir.

Tabela 1- Média normalizada da cobertura alcançada pelos fuzzers no ano de 2020

Fuzzer 12/06 03/08 16/08 23/08 31/08 07/09 18/09 24/09 28/09 Total

honggfuzz 96,76 95,94 96,19 95,54 95,36 95,37 94,89 94,71 95,57 95,79

AFL++ 89,56 91,00 96,83 96,62 - - 96,39 97,40 96,14 94,63

AFL 90,19 91,21 91,20 90,79 90,23 89,89 89,81 90,02 89,99 90,30

moptafl 85,96 90,51 90,80 90,32 89,82 89,60 89,51 89,54 89,70 88,69

aflfast 87,04 88,66 89,25 88,22 87,69 87,67 87,58 87,61 88,01 87,90

fairfuzz 81,55 85,43 86,65 85,05 84,88 84,74 84,67 84,70 87,89 85,16

Como nota de corte, determinou-se a nota de 90 em relação à cobertura como mínimo para

manter o fuzzer como candidato às ferramentas escolhidas, eliminando-se assim os fuzzers

moptafl, aflfast e fairfuzz. A partir disso, a escolha final se deu com os resultados

apresentados no benchmark Magma.

Neste, duas informações de interesse foram selecionadas, a primeira sendo o fuzzer com

melhor desempenho para cada programa alvo. A Tabela 2 (que equivale à Tabela 3 da

referência [4]) apresentada a seguir contém as informações coletadas.

Tabela 2- Número médio de bugs encontrados e desvio padrão por fuzzer durante dez

campanhas. O fuzzer de melhor desempenho por programa alvo recebe realce verde.

 11

Com base nessa tabela, vemos que entre os três fuzzers selecionados quanto à cobertura, o

honggfuzz aparece como aquele com melhor performance em um maior número de

programas alvo; entretanto, os outros dois candidatos (AFL e AFL++) se destacaram em

dois programas alvo cada.

A segunda informação de interesse é o tempo que cada um dos fuzzers levou para apontar

cada um dos bugs encontrados. Com base nesta informação, o número de bugs encontrados

por ferramenta foi contabilizado, criando-se a Tabela 3.

Tabela 3- Número de bugs encontrados, com base Tabela 4 da Referência [4]

Fuzzer Número de bugs encontrados

honggfuzz 33

AFL 24

AFL++ 23

fairfuzz 23

moptafl 22

aflfast 22

Nela, vemos que entre as ferramentas pré-selecionadas, aquelas que aparecem com melhor

resultado foram honggfuzz e AFL. Com base nisto e nas comparações anteriores, estes

fuzzers foram selecionados para a continuidade deste trabalho.

3.3 Ferramentas selecionadas

 12

Com base nos critérios anteriores, os dois fuzzers grey-box baseados em mutação que foram

selecionados para os testes foram o American Fuzzy Lop (AFL) [7] e o honggfuzz [8].

O American Fuzzy Lop é uma ferramenta bastante popular e com interface amigável ao

usuário, funcionando através de uma instrumentação com baixo impacto na performance

que acontece no momento de compilação. A partir desta instrumentação, o fuzzer guia sua

campanha determinando se a entrada gerada atingiu um novo estado no programa, e se sim,

a adiciona no conjunto dinâmico de sementes (chamado corpus), reduzindo-a ao menor

tamanho possível que mantenha suas características de cobertura. O AFL também usa uma

combinação das técnicas de mutação para gerar suas entradas – como bit-flipping, mutação

aritmética e baseada em dicionário-, e um de seus princípios é a confiabilidade: nenhuma

nova feature que cause instabilidade na execução e possa causar crashes abruptas ao

usuário é bem-vinda.

O fuzzer honggfuzz, assim como o AFL, é uma ferramenta bastante popular. Por padrão,

tem características multi-thread e multi-processo, usando todo o potencial disponível pela

CPU. Também é um fuzzer inteligente, identificando quando uma nova área do código é

atingida e adicionando a entrada ao corpus para sofrer novas mutações, com a possibilidade

de minimização deste conjunto, assim como o AFL. Ambos os fuzzers tem modos de

campanha chamados “persistentes”, utilizando-se o in-memory fuzzing e diminuindo o

tempo de cada iteração.

4 Estudos de caso e resultados

4.1 Descrição dos experimentos

Neste relatório, foram usados quatro estudos de caso variados em campanhas de até 24

horas que aconteceram em ambiente Linux, com ambas as ferramentas selecionadas. As

campanhas utilizaram, em suas respectivas seções, a menos que especificado o contrário, as

configurações padrão de ambos os fuzzers – comparando-se assim a forma com que

atingem seus resultados com as configurações de entrada disponíveis em suas

 13

documentações. Os programas utilizados são escritos primariamente em C, por sua

afinidade com este tipo de análise, e compilados com os compiladores das respectivas

ferramentas – afl-gcc no caso do AFL e hfuzz-clang no caso do honggfuzz.

Quando o próprio projeto disponibilizou em seu repositório entradas variadas para teste,

estas eram utilizadas no conjunto de sementes. Caso contrário, era criado um arquivo em

formato aceito pelo programa, e este era tido como entrada inicial. O conjunto de sementes

e ordem deste foram os mesmos para ambas as ferramentas.

Consideraram-se aqui resultados relevantes o número de bugs apontados além do número

de execuções obtidas no modo de execução baseado em feedback (grey-box), uma vez que

a velocidade de execução é imprescindível para o próprio conceito destas ferramentas.

Como observação adicional temos o tamanho do corpus – conjunto dinâmico de sementes

alterado durante a execução conforme os feedbacks recebidos – do fuzzer honggfuzz ao

final da campanha.

As subseções a seguir descrevem os estudos de caso utilizados nos testes.

4.2 Capstone [10]

Capstone é uma ferramenta de desmontagem de binários para sua análise e engenharia

reversa, funcionando em diversas plataformas de hardware. Sua versatilidade e arquitetura

que prioriza baixo uso de memória e processamento são os atrativos em que o projeto se

baseia para buscar sua posição de destaque na comunidade de segurança.

As campanhas com esta ferramenta duraram 24 horas para cada um dos fuzzers, sendo que

neste período, não houve nenhum bug encontrado e reportado por nenhuma das ferramentas

na versão 4.0.2 do software.

O fuzzer AFL obteve, nestas 24 horas, 79,7 milhões de execuções, enquanto o fuzzer

honggfuzz obteve 51,2 milhões, o que coloca o American Fuzzy Lop como 56% mais

rápido que seu concorrente neste estudo de caso.

 14

O conjunto dinâmico de sementes se manteve como um arquivo para o fuzzer honggfuzz

durante esta campanha.

4.3 Sed [11]

Esta ferramenta de análise e edição de textos em sistemas Unix é muito conhecida e

utilizada principalmente pela sua praticidade em encontrar e editar expressões em arquivos

sem precisar nem mesmo abri-los, e também pelas possibilidades de uso de expressões

regulares para encontrar os padrões desejados.

As campanhas com o Sed duraram 18h, e enquanto ambas as ferramentas não encontraram

nenhum bug na versão 1.0, o fuzzer honggfuzz conseguiu gerar e executar entradas com

muito mais rapidez que a outra ferramenta estudada, sendo que o primeiro teve 50,9

milhões de iterações no período contra 20,6 milhões de vezes executadas pelo AFL, sendo,

portanto, cerca de 147% mais rápido.

Esta campanha terminou com o corpus do fuzzer honggfuzz diminuindo de 395 para apenas

um arquivo. Isso acontece pela funcionalidade de minimização de corpus, que exclui

sementes funcionalmente redundantes.

4.4 Radare2 [12]

Radare2 é um projeto que visa a reescrita do software Radare, cujas funcionalidades

englobam desde ser um editor hexadecimal e debugger, até funções para desmontagem e

análise de binários, comparação, visualização e substituição de dados.

Neste software, o fuzzer American Fuzzy Lop encontrou dois diferentes bugs durante sua

campanha que durou 24 horas e teve 1,46 milhões de execuções. Quando utilizado pelo

mesmo tempo e com suas configurações padrão, o fuzzer honggfuzz não encontrou nenhum

bug neste software em 1,56 milhões de execuções, mantendo-se o corpus com um arquivo.

Sabendo que o programa alvo tinha bugs passíveis de serem encontrados em uma

campanha relativamente curta, foram feitos outros testes das funcionalidades do honggfuzz

a fim de descobrir se, neste estudo de caso, mudanças em suas configurações poderiam

 15

obter os mesmos resultados mostrados pelo AFL. Desta forma, duas novas campanhas de

24 horas foram realizadas com este fuzzer.

A primeira foi realizada ativando-se o modo in-memory fuzzing, chamado “persistente”,

que tende a ter execuções mais rápidas. Este modo realmente obteve mais execuções

durante a duração da campanha (16,38 milhões), mas ainda assim não revelou a presença de

nenhum bug. Neste modo, o tamanho do corpus se manteve o mesmo durante toda a

campanha.

A segunda campanha utilizou-se de uma compilação mais instrumentada (com a flag

fsanitize=address na compilação), a fim de guiar com mais propriedade a execução do

fuzzer. Este modo aumentou muito o tempo de execução de cada entrada, de modo que

apenas 158 mil execuções foram realizadas neste período e novamente nenhum bug foi

identificado. O tamanho do conjunto de sementes foi de uma para 1194 ao decorrer das 24

horas.

4.5 CANOpen [13]

Este protocolo baseado no modelo produtor/consumidor está presente em sistemas

distribuídos de controle utilizados em automação, tais como equipamentos médicos,

aplicações marítimas e ferroviárias. Esta aplicação preza pela compatibilidade com outras

aplicações CAN por ser altamente padronizada.

O formato desta aplicação baseia-se numa execução contínua, em que o programa se

mantém em um loop de recebimento de entradas e execução até que seja manualmente

encerrado.

Este formato específico não é compatível com as ferramentas escolhidas, já que todas as

execuções superam os limites de tempo propostos e geram timeouts, mesmo que bem

sucedidas, fazendo com que o conjunto de sementes inicial não seja aceito como modelo de

execução.

Desta forma, para que fosse possível testar a aplicação para falhas de segurança através do

fuzzing, foi necessário que este aspecto dela fosse modificado, editando-se o código fonte

 16

para que encerrasse o programa após o recebimento de uma entrada e execução

correspondente.

Esta modificação da versão 1.3 foi testada durante 24 horas, nas quais o American Fuzzy

Lop executou 151 milhões de iterações e o fuzzer honggfuzz apenas 73,7 milhões, tornando

o AFL cerca de 105% mais rápido nesta aplicação, embora nenhum dos dois tenha

encontrado bugs no tempo definido de campanha.

O tamanho de corpus para o fuzzer honggfuzz, que começou com um arquivo, terminou a

campanha com oito sementes diferentes.

4.6 Ameaças à validade dos experimentos

Alguns aspectos podem ser vistos como ameaças à validade dos experimentos anteriores. O

primeiro é que, por restrição de recursos, muitas campanhas foram feitas em paralelo, de

forma que a capacidade computacional entre campanhas pode ter sido afetada.

O segundo ponto a ser considerado é que a escolha inicial de sementes pode não ter sido

ótima em relação ao funcionamento do programa, já que não houve uma análise específica

dos códigos fonte de forma a aumentar as áreas atingidas pelo conjunto de sementes

escolhido.

O terceiro ponto acontece no estudo específico do protocolo CANOpen e as alterações que

tiveram que ser feitas no código para que o teste fuzzing fosse possível: embora seu

objetivo tenha sido retirar apenas o loop contínuo original presente no programa, não se

pode afirmar com certeza que esta alteração não afetou os resultados dos testes.

5 Conclusões e trabalhos futuros

Devido à pouca disponibilidade de recursos, as campanhas realizadas foram curtas para

programas que são complexos e que já têm comunidades ativas que realizam testes há

vários anos, de forma que é compreensível que a maioria dos testes não tenha encontrado

bugs nos alvos indicados. Desta forma, é sugerido para que em trabalhos futuros sejam

realizadas campanhas de duração mais expressiva – uma semana ou mais - para os

programas alvo escolhidos.

 17

Especificamente para o programa CANOpen, devido a sua complexidade e importância de

uso, seria interessante dedicar recursos para realizar testes específicos com um fuzzer

baseado em modelo. Embora a análise do código para geração deste modelo seja custosa,

este direcionamento pode fazer com que mais entradas atinjam áreas de interesse da

aplicação, tornando os resultados da campanha mais completos e substanciais.

Por fim, como mostrado no experimento com a aplicação Radare2, nem sempre o número

de execuções equivale ao maior número de bugs encontrados, já que a qualidade das

entradas e do oráculo têm papel significante nestes resultados. A comparação entre os

resultados dos fuzzers no Fuzzbench e Magma também mostra que nem sempre uma maior

cobertura é diretamente proporcional às falhas apontadas. Desta forma, para programas

alvo cujos bugs já estão documentados, uma análise estatística se torna atrativa para que se

quantifiquem os impactos que as diversas variáveis de uma campanha têm em encontrar

defeitos. Neste caso pode-se determinar, para determinado alvo, qual a relação entre custo

(computacional e horas analíticas) e retorno para aspectos como formação de um conjunto

de sementes inicial ótimo, uso de determinados tipos de sanitizantes e aplicação de modelos

para as entradas.

6 Referências bibliográficas

[1] Manes VJM, Han HS, Han C, Cha SK, Egele M, Schwartz EJ, et al. Fuzzing: Art,

Science, and Engineering [Internet]. Dezembro/2018.

[2] Payer M. The Fuzzing Hype-Train: How Random Testing Triggers Thousands of

Crashes [Internet]. Janeiro-Fevereiro/2019.

[3] Godefroid P, Levin MY, Molnar D. Automated Whitebox Fuzz Testing [Internet].

Janeiro/2008.

[4] Hazimeh A, Payer M. Magma: A Ground-Truth Fuzzing Benchmark [Internet]. 2020.

Disponível em: https://hexhive.epfl.ch/magma/docs/preprint.pdf

https://hexhive.epfl.ch/magma/docs/preprint.pdf

 18

[5] Fuzzer Benchmarking As a Service. FuzzBench. Disponível em:

https://google.github.io/fuzzbench/

[6] Clang 12 documentation. MemorySanitizer - Clang 12 documentation. Disponível em:

https://clang.llvm.org/docs/MemorySanitizer.html

[7] Zalewski M. American Fuzzy Lop. GitHub - google/AFL. Disponível em:

https://github.com/google/AFL

[8] honggfuzz. GitHub - google/honggfuzz. Disponível em:

https://github.com/google/honggfuzz/

[9] Howden WE. In: Theoretical and empirical studies of program testing. Victoria, B.C.:

University of Victoria, Dept. of Mathematics; Julho/1978. p. 293–8.

[10] Capstone. The Ultimate Disassembly Framework. Disponível em:

http://www.capstone-engine.org/

[11] GNU sed. Disponível em: https://www.gnu.org/software/sed/

[12] Libre and Portable Reverse Engineering Framework. radare2. Disponível em:

https://rada.re/n/

[13] CAN in Automation (CiA). CAN in Automation (CiA): CANopen. Disponível em:

https://www.can-cia.org/canopen/

https://google.github.io/fuzzbench/
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/AFL
https://github.com/google/honggfuzz/
http://www.capstone-engine.org/
https://www.gnu.org/software/sed/
https://rada.re/n/
https://www.can-cia.org/canopen/

