
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

MVP Limpo: Uma
Arquitetura para Aplicações
Android baseada no estilo
MVP e em Arquitetura

Limpa
Bernardo do Amaral Teodosio

Relatório Técnico - IC-PFG-20-31

Projeto Final de Graduação

2020 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

MVP Limpo: Uma Arquitetura para Aplicações Android

baseada no estilo MVP e em Arquitetura Limpa

Bernardo do Amaral Teodosio

Resumo

O campus da Unicamp é um lugar diverso, onde diferentes experiências podem ser
vivenciadas. Cada pessoa que passa pelo campus faz o seu próprio caminho, e tem suas
próprias experiências.

Com base nesta temática, o aplicativo Mapa Afetivo foi desenvolvido de forma a
permitir que as pessoas possam registrar seus caminhos, suas rotas e, principalmente,
descrever as experiências vividas durante seus percursos. Outras pessoas podem, assim,
descobrir novos caminhos e vivenciar sentimentos outrora nunca experienciados.

Durante o levantamento de requisitos da aplicação, foi tomada a decisão de que a
melhor forma de colocar a ideia em prática seria a partir do desenvolvimento de uma
aplicação Android. Naturalmente, um aplicativo eficaz necessita de uma arquitetura
eficiente para suportá-lo, garantindo uma boa performance do mesmo e propiciando um
processo de desenvolvimento e manutenção adequado. Este trabalho trata da proposta e
desenvolvimento da arquitetura do aplicativo desenvolvido, que teve como base o estilo
arquitetural MVP (Model-View-Presenter) e adotou prinćıpios de Clean Architecture.
Com base nisso, uma arquitetura h́ıbrida foi desenvolvida com o objetivo de apoiar
o desenvolvimento da aplicação, considerando um cenário evolutivo. A arquitetura
em questão foi criada de tal forma que não esteja fortemente acoplada aos conceitos e
funcionalidades do Mapa Afetivo - suas caracteŕısticas e estruturas podem ser utilizadas
em outros projetos de software, acadêmicos ou comerciais.

1

2 Teodosio

Sumário

1 Introdução 3

2 Fundamentação Teórica 4
2.1 Clean Architecture . 4
2.2 Arquitetura MVP . 5

2.2.1 Model . 5
2.2.2 View . 5
2.2.3 Presenter . 6

3 Método de Trabalho 7

4 A Arquitetura do Mapa Afetivo 8
4.1 Uma Arquitetura Hı́brida . 8
4.2 Três camadas . 8

4.2.1 Presentation . 10
4.2.2 Domain . 12
4.2.3 Data . 16

4.3 Classes base . 17
4.4 Injeção de Dependências . 19

4.4.1 AppApplication . 20
4.4.2 Injeção de dependências na criação de rotas 21

5 A Arquitetura Proposta em Uso 23

6 A Arquitetura na Coleta de Pontos 25
6.1 A criação de um módulo externo . 26

7 Conclusões 27

MVP Limpo 3

1 Introdução

Diariamente, milhares de pessoas passam pela Universidade Estadual de Campinas
(UNICAMP). Cada uma destas pessoas tem seus próprios objetivos e motivações - cada
uma fazendo seu próprio trajeto. Frequentemente, em meio à agitação em que vivemos, os
caminhos são percorridos com o foco no objetivo, sem dar muita atenção ao trajeto de fato
realizado.

Sendo o campus de Campinas da UNICAMP um lugar amplo e também diverso - com
diferentes espaços f́ısicos que vão desde institutos, cantinas, árvores e lugares inesperados, é
posśıvel que cada uma dessas pessoas, ao cruzar as diferentes localizações do Campus, expe-
riencie seus próprios sentimentos. Uma caminhada pode trazer consigo muitas experiências
- um modo de se relacionar com os ambientes [1], ou ser um simples gesto de ação estética.
Pode ainda ser desde um procedimento a um dispositivo criativo [1] - permitindo assim a
vivência de diferentes experiências.

Partindo deste pressuposto, surgiu a ideia da criação do Mapa Afetivo - um lugar onde
as diferentes pessoas podem registrar seus caminhos percorridos e, principalmente, quais
pontos de cada caminho se destacaram. Um ponto de destaque pode ser uma árvore na
qual o indiv́ıduo parou um pouco para descansar, uma escultura admirada, uma parede com
um grafite - literalmente, qualquer localização com uma latitude e longitude onde o sujeito
teve um sentimento.

No Mapa Afetivo, as rotas e pontos podem ser registradas, com os sentimentos e
memórias salvos - com um texto ou uma imagem. Estas rotas tornam-se, então, dispońıveis
para todos os outros usuários da comunidade da UNICAMP - que podem assim conhecer
novas rotas, descobrir novos lugares, caminhos e também sentimentos. Além de permitir a
descoberta de novos locais, o Mapa Afetivo proporciona aos seus usuários a possibilidade
de experienciar sentimentos em lugares nunca antes imaginados.

Partindo da ideia de que um aplicativo móvel seria a forma mais adequada de transfor-
mar o Mapa Afetivo num produto real, naturalmente torna-se necessária a criação de uma
arquitetura para suportar o mesmo. Como a maioria dos grandes softwares, aplicativos
criados para a plataforma Android também se beneficiam de uma arquitetura adequada -
que permite que o aplicativo seja não só desenvolvido como também receba manutenções
de uma forma fácil e ágil. Para isso, a aplicação de boas práticas de desenvolvimento de
software é necessária. Além disso, a arquitetura adotada deve garantir um bom funciona-
mento da aplicação nos mais diversos modelos de celulares Android existentes, permitindo
uma criação fácil de novas funcionalidades por diferentes desenvolvedores, inclusive aqueles
não envolvidos inicialmente na criação do projeto.

Considerando o contexto e escopo inicial do projeto, buscou-se uma arquitetura capaz de
permitir o trabalho paralelizado dos desenvolvedores, incluindo padrões de código, classes,
métodos e entidades do sistema que tornassem o código-fonte como um todo coerente.

Dentre as diferentes arquiteturas existentes atualmente voltadas para aplicações móveis,
foi criada uma nova arquitetura, com base em prinćıpios da Arquitetura MVP (Model-
View-Presenter) [4] e também de Arquitetura Limpa (do inglês, Clean Architecture) [2].
A arquitetura proposta permitiu o desenvolvimento do aplicativo de forma paralelizada
entre os diferentes desenvolvedores participantes, facilitando o desenvolvimento iterativo e

4 Teodosio

incremental da aplicação.
Ainda, é válido destacar que a arquitetura aqui descrita pode ser útil a muitos outros

projetos além do próprio Mapa Afetivo - existindo assim a possibilidade da mesma ser útil
à comunidade acadêmica e também ao desenvolvimento de aplicações em geral.

O restante deste trabalho está organizado da seguinte forma: a Seção 2 apresenta os
principais conceitos necessários para a fundamentação teórica do trabalho. A Seção 3 des-
creve o método de trabalho utilizado para o desenvolvimento do mesmo. Na Seção 4, estão
descritos os detalhes técnicos - conceituais e de implementação da arquitetura. Na Seção
5, podemos ver um exemplo da arquitetura em uso. Na Seção ??, é descrito o comporta-
mento da arquitetura com um módulo particular, tratado como uma dependência externa.
Por fim, na Seção 7, encontramos as conclusões extráıdas deste trabalho e do processo de
desenvolvimento realizado com a arquitetura em questão.

2 Fundamentação Teórica

A arquitetura do Mapa Afetivo teve como base duas arquiteturas bem definidas e de
uso comum no mercado de aplicações móveis - mas que não são exclusivas deste tipo de
aplicação. Cada uma das arquiteturas tem suas vantagens - e a junção de ambas resultou
na arquitetura utilizada pelo aplicativo.

2.1 Clean Architecture

A arquitetura do projeto foi criada como tendo principal base os prinćıpios de Clean
Architecture, cujo autor é Robert C. Martin [3]. Nessa abordagem, o software é separado
em diferentes camadas [2], como pode ser visto na Figura 1.

A ideia principal é que o software siga a “Regra das Dependências”, que é a restrição
de uma arquitetura clássica em camadas [27]. Assim, cada ćırculo na figura representa uma
camada do software, e a regra que diz que as dependências entre as camadas só podem
existir no sentido “externo” - isto é, as camadas externas podem depender das camadas
internas, mas o contrário não pode ocorrer.

A divisão em camadas seguindo a Regra das Dependências traz vantagens - sendo uma
das principais a facilidade para a realização de testes no software. Como o software está bem
modularizado, testar as camadas mais internas é simples - uma vez que possuem nenhuma
ou poucas dependências. Testar as camadas mais externas também não é dif́ıcil - uma
vez que é simples criar dublês de teste para os objetos necessários das camadas internas
para realizar os testes da maneira adequada. Isso também garante que os testes possam
ser feitos de forma independente e paralelizada. Para softwares grandes, onde o processo
de construção (do inglês, build) é lento e demorado, paralelizar os testes também é uma
vantagem. Aı́ encontramos mais um benef́ıcio da Clean Architecture - a mesma promove
escalabilidade, e funciona bem tanto para projetos pequenos como para grandes softwares.

Ainda na Figura 1, notamos que há quatro camadas exemplificadas - uma vez que há
quatro ćırculos. A Clean Architecture não fixa um número espećıfico de camadas - uma
vez que cada software tem suas próprias especificidades. No caso do Mapa Afetivo, foram
utilizadas três camadas - como veremos nas subseções posteriores.

MVP Limpo 5

Figura 1: Clean Architecture - uma arquitetura em camadas. Adaptado de [2].

2.2 Arquitetura MVP

A segunda principal influência utilizada para a arquitetura do Mapa Afetivo foi a ar-
quitetura MVP. MVP é um acrônimo para Model-View-Presenter - sendo estes os três
principais componentes da arquitetura.

A arquitetura MVP surgiu originalmente como uma variação da arquitetura MVC
(Model-View-Controller) [4] [5], e ganhou bastante popularidade nas últimas décadas, es-
pecialmente com o aumento de aplicações móveis desenvolvidas, tornando-se muito comum
no desenvolvimento de aplicações Android.

2.2.1 Model

O Model é um componente responsável pelo gerenciamento dos dados e implementação
de regras de negócio da aplicação. Nesta arquitetura, todas as estruturas de dados e também
as classes e entidades que acessam fontes de dados - como repositórios, por exemplo, são
considerados parte desse componente. Comumente, o Model é também referenciado como
sendo a camada de dados da aplicação.

2.2.2 View

Nesta arquitetura, a View representa a interface de interação do usuário com a aplicação.
Usualmente, em aplicações Android, as Views são tratadas como interfaces. Tais interfaces
são implementadas por classes que herdam de outras classes do Sistema Android que tratam
das interações do usuário com a aplicação - como Activities e Fragments.

Um dos principais pontos da Arquitetura MVP é a ideia de que as Views não devem

6 Teodosio

tomar ações e/ou decisões. As Views devem ser estritamente pontos de interação do usuário
com a aplicação - e portanto não devem possuir nenhum tipo de lógica de negócios imple-
mentada.

2.2.3 Presenter

Na arquitetura MVP, o Presenter é o responsável por fazer a ligação entre a View e o
Model. No presenter, podem ser tomadas algumas decisões, deve ser realizado o controle da
view e também pode ser realizado o tratamento de dados.

Em aplicações Android, é comum que a View repasse todos os eventos de interação do
usuário diretamente para o Presenter, que é o responsável por, de fato, tratar os eventos e
realizar as ações necessárias para atender às requisições desejadas - fazendo uso, para isso,
da camada Model. Ao realizar o seu trabalho, o Presenter deve invocar a View para exibir
ao usuário o resultado da sua requisição.

Nesta estrutura, é comum que o Presenter sempre tenha uma referência direta para
a View - pois precisa da mesma para exibir os resultados das requisições realizadas pelo
usuário.

Na Figura 2 podemos observar uma ilustração de como a Arquitetura MVP é usualmente
utilizada numa aplicação Android.

Figura 2: Uso comum da Arquitetura MVP em uma aplicação Android. Adaptado de [6].

MVP Limpo 7

3 Método de Trabalho

Antes de iniciar o desenvolvimento do projeto propriamente dito, foi utilizada a plata-
forma OpenDesign [11] para clarificar o problema a ser resolvido pelo aplicativo e realizar
um levantamento inicial de requisitos da aplicação, realizando ainda a priorização dos mes-
mos. Nessa plataforma, foram identificados stakeholders importantes, problemas e posśıveis
soluções, além dos requisitos propriamente ditos. O OpenDesign foi útil nesta fase inicial e,
a partir dos itens registrados na ferramenta, foi posśıvel utilizá-los no GitLab como issues
(itens a serem desenvolvidos) para o desenvolvimento do aplicativo. Isso é realizado de
forma automatizada, uma vez que a plataforma OpenDesign é integrada ao Gitlab.

Após esta fase, foi realizado o setup inicial do projeto, com a criação das classes base
da Arquitetura, junto à estrutura de entidades, camadas e pacotes definidos - de forma a
permitir que fosse posśıvel dar sequência ao desenvolvimento do aplicativo.

Sendo uma aplicação Android, o Mapa Afetivo foi desenvolvido utilizando a IDE padrão
de desenvolvimento Android, o Android Studio - uma ferramenta da Google desenvolvida
com base no IntelliJ.

O aplicativo foi desenvolvido utilizando a linguagem Kotlin [16]. Por ser uma linguagem
mais nova, Kotlin possui diversas funcionalidades que facilitam e agilizam o processo de
desenvolvimento [26]. Tais funcionalidades podem trazer benef́ıcios como a criação de um
código mais limpo - o que, por sua vez, abre possibilidades para economia de tempo de
desenvolvimento e manutenção.

Figura 3: Atividades A Fazer, Em Progresso e Conclúıdas em um determinado estado do
desenvolvimento do Mapa Afetivo

Para gerenciamento de configuração, foi utilizado o sistema de controle de versão Git

8 Teodosio

[7] junto ao serviço GitLab [8] - ferramentas comuns para o gerenciamento do código-fonte
de projetos de software. Trabalhamos em diferentes branches do repositório, de forma a
poder paralelizar o desenvolvimento, mantendo uma branch “master” como sendo a padrão
da aplicação, para o código integrado e estável. Ao realizar uma tarefa, realizamos a in-
tegração do código desenvolvido para a mesma com a branch master, de forma a unificar
todo o trabalho desenvolvido. O Gitlab também foi utilizado para gerenciar o progresso
do desenvolvimento, utilizando a prática de backlog do produto, onde as tarefas a serem
desenvolvidas e seus respectivos estados (A Fazer / Em Progresso / Conclúıdo) são dispo-
nibilizados em um quadro Kanban, conforme a Figura 3. O código fonte [9] do projeto,
dispońıvel no GitLab, pode ser encontrado no endereço https://gitlab.ic.unicamp.br/

ra164468/mapa-afetivo.

A ideia de utilizar a arquitetura em questão surgiu a partir de conhecimentos teóricos
[10] e práticos adquiridos a partir do trabalho realizado e observado em projetos anteriores
que fazem uso do estilo arquitetural MVP e da Arquitetura Limpa. A proposta de utilizar,
então, uma arquitetura h́ıbrida baseada na Arquitetura Limpa com conceitos provindos do
estilo MVP foi realizada para o grupo de desenvolvimento, que acolheu a ideia. Ao longo
do desenvolvimento, reuniões de alinhamento foram realizadas com os desenvolvedores do
projeto, para que a arquitetura ficasse clara e pudesse ser respeitada por todos.

4 A Arquitetura do Mapa Afetivo

4.1 Uma Arquitetura Hı́brida

Embora existam inúmeros benef́ıcios pretendidos, o estilo arquitetural MVP pode ser
insuficiente para, por si só, garantir uma estrutura e um padrão de código a ser seguido em
projetos de médio e grande porte.

É fácil definir os componentes View e Presenter nessa arquitetura, mas o componente
Model - que tende a ocupar uma grande parte da base de código acaba por não ter uma estru-
tura interna bem-definida. Por este motivo, torna-se relevante a definição de uma estrutura
mı́nima também para este componente, de forma a garantir que o código escrito por todo o
projeto siga um padrão bem-definido, mantendo as propriedades de manutenibilidade, fácil
leitura e organização.

Com base neste cenário, uma arquitetura h́ıbrida pode ser uma solução interessante
- escolhida para o Mapa Afetivo. O aplicativo carrega consigo um misto entre as duas
arquiteturas previamente mencionadas - MVP e Clean Architecture.

4.2 Três camadas

A arquitetura principal do Mapa Afetivo é dividida em três camadas, conforme pode
ser observado na Figura 4: data, domain e presentation.

A ideia principal foi fazer com que tais camadas estejam alinhadas aos prinćıpios da
Arquitetura Limpa, respeitando a Regra das Dependências: a camada presentation tem
dependências exclusivamente da camada domain. Por sua vez, a camada domain tem
dependências exclusivamente da camada data.

https://gitlab.ic.unicamp.br/ra164468/mapa-afetivo
https://gitlab.ic.unicamp.br/ra164468/mapa-afetivo

MVP Limpo 9

Figura 4: As três camadas da arquitetura do Mapa Afetivo

10 Teodosio

No Mapa Afetivo, a divisão do aplicativo a partir das camadas foi feita utilizando o
recurso de pacotes das linguagens Kotlin e Java. A partir da raiz da estrutura do código-
fonte, existem três pastas - data, domain e presentation, que contém respectivamente o
código relativo às suas partes da arquitetura, como pode ser visualizado na Figura 5.

Figura 5: As três camadas divididas em pacotes a partir da interface do Android Studio

4.2.1 Presentation

Na camada presentation, estão contidos dois dos três componentes da Arquitetura MVP:
a View e o Presenter. A ideia desta principal desta camada é abranger toda a lógica presente
na interação do usuário com o aplicativo.

As principais classes de interação com componentes do Sistema Android também estão
contidos nesta camada - como as Activities, Fragments e Adapters do aplicativo.

Dentro do pacote desta camada, há um subpacote para cada funcionalidade do aplicativo
(Figura 6). E, dentro do pacote de cada funcionalidade, há ainda dois subpacotes: um pacote
nomeado view e um pacote nomeado presenter.

Cada view representa uma interface de interação do usuário com a aplicação. Através
da view, o usuário pode interagir com aplicativo, adicionando dados ou mesmo visualizando.
Para cada view dispońıvel no aplicativo, existe um presenter associado à mesma. A ideia
aqui é que o presenter seja responsável por controlar a view e fazer as interações necessárias
com a camada domain. Há uma exceção para a criação de presenters: quando a view pode
ser considerada trivial. Nestes casos, há pouca ou nenhuma lógica envolvida no controle da
view, o presenter pode ser omitido.

Views são criadas como interfaces na linguagem Kotlin. Estas interfaces são, por sua
vez, implementadas por classes que estendem classes padrão do sistema Android - como Ac-

MVP Limpo 11

Figura 6: Estrutura de pacotes dentro da camada presentation.

tivities e Fragments. No Mapa Afetivo, interfaces gráficas individuais são sempre Activities.
As Activities, por sua vez, são views que têm um presenter associado. Os presenters são
criados como classes, que recebem em seu construtor uma instância da view ao qual devem
se associar.

Pela forma como o Sistema Android funciona, Activities e Fragments possuem seu
próprio ciclo de vida - que é controlado pelo Sistema de acordo com as interações reali-
zadas pelo usuário com a aplicação. Os presenters, por serem criados dentro das views e
para controlá-las, estão portanto intrinsecamente atrelados aos seus ciclos de vida.

Como os eventos de interação são repassados pelo sistema às views, é responsabilidade do
desenvolvedor repassar tais eventos aos presenters - uma vez que o presenter deve controlar
a view, e não o contrário. Desta forma, para todo evento de interação do usuário com
uma view e para todo evento disparado pelo Sistema para uma view que é utilizado pelo
Mapa Afetivo, há um método equivalente no Presenter da respectiva view, que deve ser
invocado pela view no momento em que o evento é recebido. Ao ter um método invocado, o
Presenter é o responsável por realizar a operação desejada e, após a finalização da operação,
invocar a view (através de sua instância, recebida no construtor) para informar o resultado
da operação. Nesse cenário, um presenter pode invocar métodos da view diversas vezes
caso necessário, para alterar seu estado. Uma vez que a view também representa aquilo que
é “visto” pelo usuário da aplicação, é natural que seja necessário alterar o estado da mesma
para refletir o atual estado do aplicativo após o usuário solicitar a realização de uma ação.

Considere o seguinte cenário como exemplo desse comportamento: ao iniciar a criação

12 Teodosio

de uma rota, o aplicativo começa imediatamente a coletar a localização do usuário, dis-
parando um serviço em background que coleta a localização conforme o usuário se move.
No momento do ińıcio da criação, a view recebe um evento do sistema, indicando que o
botão “criar rota” foi acionado. Imediatamente, a view invoca um método do presenter -
onCreateRouteClick(Context) - para que a captura de pontos se inicie. Neste momento,
o presenter imediatamente invoca o método displayCreatingRouteLayout() da view, in-
formando a mesma que a sua exibição deve ser alterada para exibir que uma criação de
rota está em progresso. Na implementação deste método, a view altera o seu layout para
ocultar o botão “criar rota” e exibir, em seu lugar, um ćırculo de loading indicando que a
criação de uma rota está em progresso. A Figura 7 ilustra a situação:

Figura 7: Sequência de interação entre a view (Activity) e o presenter para a criação de
uma rota

Assim como na Arquitetura MVP, um prinćıpio fundamental é mantido aqui: a view deve
ser passiva - isto é, não deve “tomar iniciativas” por si própria ou mesmo ser responsável por
nenhuma lógica. Toda a lógica da aplicação deve estar contida no presenter e nas camadas
mais profundas, sendo a view responsável exclusivamente pela interação com o usuário -
recebendo eventos e exibindo resultados.

4.2.2 Domain

As camadas domain e data formam o que seria o Model na Arquitetura MVP. Na camada
domain, encontramos representada toda a lógica de negócio da aplicação. Esta lógica é
primariamente representada através dos casos de uso, que são invocados pelo presenter da
camada presentation. Por sua vez, os casos de uso fazem uso da camada data como para
obter dados e também persistir. Uma outra forma de enxergar esta camada é tratá-la como
um middleware entre a view e as fontes de dados.

Nesta camada, a ideia é que não haja mais interações com classes do Sistema Android.
Nem sempre é posśıvel manter esta restrição - quando, por exemplo, é necessária uma
instância de um Context na camada data, para interação com alguma biblioteca ou módulo
externo, é necessário que o mesmo seja passado pela camada domain - isto pode ser visto no

MVP Limpo 13

fluxo de criação de rotas e nos casos de uso relacionados. A principal vantagem de isolar os
componentes do sistema Android na camada presentation é facilitar o uso de testes unitários
para testar casos de uso, a camada com um todo e também a camada data. Quando não
há componentes do sistema envolvidos, os testes podem ser realizados com a JVM, sem a
necessidade de emular um dispositivo com sistema Android ou utilizar um dispositivo real
para a execução dos testes. Em geral, isso poupa tempo dos responsáveis pelos testes - o
que facilita os aplicativos que seguem tal arquitetura a serem escaláveis.

A estrutura de pacotes da camada domain é apresentada na Figura 8. Esta estrutura é
simples uma vez que há um subpacote “usecase”, que é dividido em subpacotes separados de
acordo com a funcionalidade da aplicação - assim como acontecia na camada presentation.
Há também um pacote model, que agrupa algumas entidades de uso comum da aplicação.
Tais entidades tem como funcionalidade estritamente representar dados de forma estrutu-
rada, e não tem lógica de negócio envolvida. Por fim, há um pacote base, que agrega a
classe base para a criação de um caso de uso.

Figura 8: Ilustração do fluxo de interação entre a view e o presenter para iniciar a criação
de uma rota

De fato, é notável que os casos de uso são a parte mais relevante desta parte da arqui-
tetura. Não por menos, são de extrema importância, pois contém em si a lógica de negócio
da aplicação. Cada caso de uso é representado por uma classe, cujo nome é sufixado pelo
termo UseCase. O design dos casos de uso é realizado de tal forma que todo caso de uso
deve, obrigatoriamente, estender a classe pai BaseUseCase. Os nomes das classes que re-
presentam classes de uso devem ser bem descritivos, e indicar exatamente qual a função
do caso de uso em questão. Alguns exemplos de nomes de casos de uso encontrados no
Mapa Afetivo são: StartRouteCreationUseCase, FinishRouteCreationUseCase, AddImage-

14 Teodosio

MediaToRouteUseCase.

Cada caso de uso também deve obrigatoriamente conter um método público cujo nome
é execute. A quantidade e os tipos de parâmetros deste método são variáveis, espećıficos de
cada caso de uso. O comportamento geral deste método, no entanto, deve ser uniforme em
todos os casos de uso - ele deve executar a ação para a qual o caso de uso foi executado.

Exemplificando, para o caso de uso AddImageMediaToRouteUseCase, o método exe-
cute() deve adicionar uma imagem à rota que está sendo criada no momento da invocação.
Para isso, a assinatura deste método é declarada da seguinte forma:

fun execute(

title: String,

description: String,

imageMedia: File

): Completable

A assinatura do método para este caso de uso indica que ele possui três parâmetros: um
t́ıtulo - que deverá ser associado à mı́dia - uma descrição - que também deverá ser associada
à mı́dia - e por fim o arquivo de mı́dia em si.

No exemplo anterior, pode-se observar que o método execute tem um tipo de retorno
chamado Completable. Esta é mais uma caracteŕıstica da arquitetura implantada: todo
método execute() de um UseCase deve obrigatoriamente ter um dos três tipos de retorno
a seguir: Observable, Single ou Completable. Tais classes são parte da biblioteca RxJava 2
[13], que é amplamente utilizada nesta arquitetura.

A biblioteca RxJava facilita o uso de programação reativa e a realização de tarefas
asśıncronas [14] nas linguagens Java e Kotlin, além de adicionar funções de uso geral que
podem ser úteis para diversas situações. No caso do Mapa Afetivo, ela é utilizada em todos
os UseCases, uma vez que o tipo de retorno de um UseCase deve ser obrigatoriamente
um dos três tipos mencionados. As operações asśıncronas costumam ser executadas com
alta frequência em aplicações Android - mas no entanto, o sistema não possui por padrão
nenhuma forma trivial de implementar tais operações.

Um dos principais conceitos existentes na programação de aplicações Android é o da
main thread - ou UI Thread - a thread de execução principal de um aplicativo. Por padrão,
as operações de um aplicativo são sempre executadas nesta thread. No entanto, determi-
nadas operações possuem um tempo de execução longo - como uma requisição HTTP - e,
portanto, devem ser executadas em uma thread em background para que a execução do
aplicativo não fique travada. Uma das funcionalidades mais úteis da biblioteca RxJava é
possibilitar facilmente a troca de threads para determinadas operações, através do uso de
Schedulers [23] [24].

Podemos tratar Observables, Singles e Completables como promessas. Imaginemos que
tais objetos contém a promessa da execução de um determinado trecho de código. Com
isso, em todo objeto que seja de um desses tipos, podemos invocar o método subscribe() -
que fará com que a promessa seja executada e o código prometido seja, de fato, executado.
Desta forma, para executar um caso de uso, não basta invocar o método execute() - é
necessário invocar, em seguida, o método subscribe() para que a execução seja realizada.

MVP Limpo 15

A interação com os Schedulers é realizada como o padrão de projeto Observer [28]. O
método subscribeOn(Scheduler) permite escolher em qual thread a promessa será, de fato,
executada - o parâmetro Scheduler representa a thread de execução. O método obser-
veOn(Scheduler) permite escolher em qual thread o resultado da execução será entregue.

Além da biblioteca RxJava2, fazemos uso também da biblioteca RxAndroid, que possui
um Scheduler espećıfico para representar a main thread do sistema Android. Assim, pode-
mos facilmente configurar a execução de um UseCase para que seja realizada em uma thread
em background, tendo seu resultado entregue na main thread - o que é extremamente útil.

O trecho de código abaixo mostra como um caso de uso pode ser executado, de forma
que a execução seja feita em uma thread em background e o resultado seja entregue na
thread main:

fun onImageFetched(title: String, description: String, image: File) {

addImageMediaToRouteUseCase

.execute(title, description, image)

.setupCommonSchedulers()

.subscribe()

}

. . .

fun Completable.setupCommonSchedulers(): Completable {

return this

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread())

}

Podemos observar a execução do UseCase AddImageMediaToRouteUseCase, mencio-
nado anteriormente. Antes de invocar o método subscribe e efetivar a execução, é invocado
o método setupCommonSchedulers(). Conforme pode ser visto no segundo trecho de código,
este método nada mais é do que uma Extension Function [17] criada para configurar corre-
tamente a execução em background utilizando o Scheduler de entrada e sáıda, e configurar
o retorno para ser executado na main thread.

Um caso de uso deve ser sempre bem definido e ter um propósito único: realizar uma
ação espećıfica. A ação realizada deve estar bem descrita no nome da classe do caso de
uso, e a mesma deve ser executada a partir da invocação do método execute() do caso de
uso. Para realizar o seu trabalho, os casos de uso utilizam a camada data da aplicação,
acessando os repositórios e fontes de dados da aplicação para obter informações, e também
para persisti-las.

Frequentemente, veremos classes de casos de uso que terão um tamanho pequeno - estas
representam casos de uso sem muita lógica de negócio envolvida. Nesses casos, a classe
acaba por funcionar como um proxy entre a camada data e a camada presentation. Outras
vezes, porém, os casos de uso podem ser grandes, a depender de quantos repositórios da
camada de data precisam ser acessados para que o caso de uso tenha sua ação executada. Os
casos de uso também podem atuar como mappers, cuja função é mapear dados da camada

16 Teodosio

de data para o formato esperado pela view. Como trabalhamos com views passivas, este
mapeamento deve ser feito pelo próprio caso de uso ou pelo presenter, conforme fizer mais
sentido.

Na Figura 9, podemos ver um exemplo de interação entre um caso de uso, a camada data
e a camada presentation. RouteCreationActivity e RouteCreationPresenter fazem parte da
camada presentation. RouteRepositoy faz parte da camada data.

Figura 9: Ilustração do fluxo de interação entre um UseCase e as camadas data e presen-
tation.

4.2.3 Data

Com a camada data, fechamos o que seria o restante do Model numa arquitetura MVP
tradicional. Esta camada é responsável por realizar todas interações da aplicação com o
meio externo - o que inclui interações com o Firebase [21] Firestore [22] (serviço utilizado
para persistência de dados) e interações com o serviço de coleta de pontos.

Esta camada foi desenhada para atuar com a estrutura de repositórios. Nesta estrutura,
temos diversas interfaces cujo nome é sufixado com a palavra Repository. Tais interfaces
são implementadas por classes que funcionam como entrada e sáıda de dados. Métodos são
declarados nas interfaces Repository para executar as funções necessárias.

Os repositórios criados na camada data são utilizados pelos casos de uso da camada
domain. No método construtor de um usecase, este deve receber como parâmetros todos os
repositórios necessários para executar a sua ação.

Diferentemente dos usecases, que tem uma a função de executar uma ação espećıfica
cada um, os repositórios - por atuarem como fonte de dados são mais gerais. Um mesmo
repositório pode ter diversas funções e, portanto, pode ser reutilizado por diferentes casos
de uso. Também por isso, os repositórios da aplicação são tratados como objetos singleton
- o que será visto em mais detalhes na Seção 4.4.

MVP Limpo 17

No trecho de código abaixo, podemos ver um exemplo da interface do repositório de rotas
da caminhada - RouteRepository. Este repositório é responsável pelas funções relacionadas
à criação de uma rota:

interface RouteRepository {

fun startRouteCreation(context: Context): Completable

fun isRouteCreationInProgress(): Single<Boolean>

fun finishRouteCreation(): Single<List<MapaAfetivoLocation>>

fun addTextMedia(title: String, text: String): Completable

fun addImageMedia(title: String, description: String,

imageMedia: File): Completable

}

Ao observar este repositório, podemos observar que o tipo de retorno segue um padrão.
Assim como nos casos de uso, os repositórios também devem retornar exclusivamente objetos
dos seguintes tipos: Single, Completable ou Observable. As razões para esta restrição são
similares às já explicadas anteriormente em relação aos casos de uso - facilidade de execução
do código em diferentes threads conforme a necessidade. Como os repositórios são usados
diretamente pelos casos de uso, há mais uma vantagem em manter os retornos limitados a
objetos destes três tipos: é fácil para um caso de uso atuar como um mapper entre a camada
de dados e a camada de apresentação, uma vez que os tipos de retorno são limitados. O
caso de uso deve alterar apenas alterar o tipo interno retornado (o que não é necessário
no caso de um retorno Completable, já que não há tipo interno) - e isto é algo trivial de
realizar utilizando algumas das facilidades da biblioteca RxJava, fazendo uso das funções
map e flatMap, dispońıveis para Observables e Singles.

4.3 Classes base

Além da divisão estruturada dos pacotes anteriormente explicitada, algumas classes base
foram também desenvolvidas - de forma a garantir que, especialmente as classes da camada
presentation do aplicativo, seguissem um padrão.

Uma destas classes base é a BasePresenter, que é a base de todos os presenters da
aplicação - todo presenter do Mapa Afetivo deve obrigatoriamente herdar desta classe.

Sempre que um UseCase é executado, é retornado um objeto do tipo Disposable [25].
Esta é uma classe padrão do RxJava, que representa uma ligação entre o Observable, Com-
pletable ou Single observado e o observador que o executou - a partir da invocação do
método subscribe(). Após a execução de um caso de uso, é necessário invocar o método
dispose() do Disposable associado, de forma a garantir que a ligação seja desfeita - uma vez
que não é mais necessária, e mantê-la ativa pode gerar vazamentos de memória.

18 Teodosio

Um dos objetivos da classe BasePresenter é garantir que as ligações Disposable sempre
sejam propriamente encerradas - uma vez que os casos de uso sempre são invocados a partir
de presenters, é natural que todo presenter seja responsável por encerrar suas próprias
ligações.

open class BasePresenter {

private val pendingDisposable: CompositeDisposable

= CompositeDisposable()

protected fun addDisposable(disposable: Disposable) {

pendingDisposable.add(disposable)

}

fun onDestroy() {

pendingDisposable.clear()

}

}

Como podemos observar no código da classe, exibido acima, ela garante que todo pre-
senter possua um método onDestroy(), responsável por encerrar os Disposables ativos. O
método addDisposable existe para que, sempre que um caso de uso seja executado, os pre-
senters possam manter as referências das ligações na propriedade pendingDisposable - de
forma que todas sejam encerradas futuramente, quando o método onDestroy() for invocado.

O método onDestroy() sempre é invocado por uma view, a partir de um evento dispa-
rado pelo Sistema Android informando de sua destruição. Naturalmente, a view repassa a
informação da destruição para o presenter - através do onDestroy(), que é responsável por
encerrar os disposables existentes e, possivelmente, outras atividades pendentes.

Além do BasePresenter, há também duas outras classes base importantes: BaseFrag-
ment e BaseAppCompatActivity. Ambas as classes desempenham funções semelhantes -
são, respectivamente, as classes base de Fragments e Activities, os dois únicos tipos de
views presentes na arquitetura do Mapa Afetivo.

Como dito anteriormente, uma das funções destas classes é receber o evento de destruição
da view do Sistema Android e repassá-la para presenter associado. Naturalmente, pode-
se perceber uma função impĺıcita de BaseAppCompatActivity e BaseFragment : realizar a
ligação entre o presenter e a view.

abstract class BaseFragment<T : BasePresenter> : Fragment(), KodeinAware {

private val nonGenericsPresenter by instance<BasePresenter>()

protected val presenter by lazy { nonGenericsPresenter as T }

override val kodein: Kodein = Kodein.lazy {

MVP Limpo 19

extend(AppApplication.kodein)

import(fragmentModule())

}

protected open fun fragmentModule(): Kodein.Module = Kodein.Module(

"General Fragment Module"

) {

}

override fun onDestroy() {

super.onDestroy()

presenter.onDestroy()

}

}

No trecho acima, podemos ver a implementação da classe BaseFragment. Assim como
BaseAppCompatActivity, ela é uma classe abstrata que recebe um tipo T, que obrigatoria-
mente estende um BasePresenter. Isso força com que as classes herdeiras obrigatoriamente
tenham um presenter, do tipo T - onde T é um tipo genérico que representa o presenter
da view espećıfica descrita pela classe concreta. Notamos que a classe disponibiliza para
suas herdeiras uma referência para o presenter, a partir da propriedade de mesmo nome.
Esta é a forma fundamental que uma view tem para acessar seu presenter : através desta
propriedade.

4.4 Injeção de Dependências

As classes base BaseFragment e BaseAppCompatActivity também desempenham outra
função importante: são responsáveis por integrar parte do código responsável pela injeção
de dependências do projeto.

No Mapa Afetivo, a biblioteca Kodein [15] foi utilizada para realizar a injeção de de-
pendências - uma técnica amplamente utilizada na arquitetura para ajudar a manter o
código limpo e ajudar na criação de testes unitários, caso isto venha a ser executado no
futuro.

O Kodein funciona de maneira simples: cria-se uma instância da classe Kodein no
Application [18] da aplicação, e em seguida são adicionados módulos a esta instância. Os
módulos são responsáveis por descrever como deve ocorrer a instanciação de classes
através do framework de injeção de dependências. No Mapa Afetivo, foram criados módulos
de escopo global espećıficos para a criação de repositórios e casos de uso.

A criação de repositórios é realizada a partir do repositoryModule. Os repositórios da
aplicação são tratados como singletons - criados uma vez, quando seu uso é necessário, per-
manecem “vivos” até que o ciclo de vida da aplicação seja encerrado. Como os repositórios
podem ser usados em diferentes pontos da aplicação, por diferentes casos de uso, não há

20 Teodosio

necessidade de criar múltiplas instâncias de um mesmo repositório - e aqui a construção de
um singleton faz sentido.

Os casos de uso são criados a partir do useCaseModule - que também é global. No
entanto, os casos de uso não são tratados como singletons - como cada caso de uso é es-
pećıfico e existe para realizar uma ação, faz mais sentido que os mesmos sejam criados como
instâncias comuns. Desta forma, o useCaseModule funciona como um agrupador de funções
para criar casos de uso. No exemplo abaixo, podemos ver um trecho do useCaseModule,
onde é especificada a criação do caso de uso StartRouteCreationUseCase:

val useCaseModule = Kodein.Module("Use Cases Module") {

...

bind<StartRouteCreationUseCase>() with provider {

StartRouteCreationUseCase(instance())

}

...

}

O StartRouteCreationUseCase recebe, em seu construtor, uma instância de RouteRepo-
sitory. A invocação da função instance() na criação do caso de uso indica ao Kodein que uma
instância de RouteRepository deve ser criada para ser injetada no StartRouteCreationUse-
Case. O Kodein cria esta instância a partir de seus módulos - quando a função intance()
é invocada, a biblioteca procura nos módulos associados à instância atual do Kodein uma
função que possa instanciar um RouteRepository. Felizmente, esta função é encontrada no
repositoryModule - um trecho do mesmo é exemplificado abaixo:

val repositoryModule = Kodein.Module("Repository Module") {

bind<ExampleRepository>() with singleton { ExampleDataRepository() }

bind<RouteRepository>() with singleton { AndroidRouteRepository() }

bind<UserRepository>() with singleton { LocalUserRepository(

instance("local_user_preferences"

), instance()) }

}

Como podemos ver, este módulo descreve como uma instância de RouteRepository pode
ser criada.

4.4.1 AppApplication

A instância global do Kodein utilizada pela aplicação é configurada na classe AppAppli-
cation - uma classe que estende Application [18] - e é responsável por realizar configurações
iniciais do aplicativo, toda vez que ele é inicializado pelo sistema. No trecho abaixo, ilustra-
mos a criação de uma instância de Kodein, usando módulos previamente citados e também
outros utilizados pela aplicação:

MVP Limpo 21

class AppApplication : Application(), KodeinAware {

companion object {

lateinit var kodein: Kodein

}

override val kodein: Kodein = Kodein.lazy {

import(repositoryModule)

import(useCaseModule)

import(firebaseModule)

import(generalModule(this@AppApplication))

}

override fun onCreate() {

super.onCreate()

Companion.kodein = kodein

}

...

}

A instância de Kodein é criada a partir da invocação da função Kodein.lazy. Nesta
função, associamos os módulos previamente descritos à instância em criação.

4.4.2 Injeção de dependências na criação de rotas

A view relativa à criação de rotas é uma Activity, cuja classe recebe o nome RouteCrea-
tionActivity. Esta Activity estende a classe BaseAppCompatActivity, utilizando o tipo T do
Presenter RouteCreationPresenter, e também implementa a interface RouteCreationView -
interface de comunicação do presenter com a view.

No trecho abaixo, podemos observar um trecho da classe BaseAppCompatActivity :

abstract class BaseAppCompatActivity<T : BasePresenter> :

AppCompatActivity(), KodeinAware {

private val nonGenericsPresenter by instance<BasePresenter>()

protected val presenter by lazy { nonGenericsPresenter as T }

private val applicationKodein by closestKodein()

override val kodein: Kodein = Kodein.lazy {

extend(applicationKodein)

import(activityModule())

}

22 Teodosio

protected open fun activityModule(): Kodein.Module =

Kodein.Module("General Activity Module") {

}

...

}

Esta classe implementa a interface KodeinAware, que faz parte também da biblioteca
Kodein. Isto indica que a classe em questão deve ter associada à mesma um objeto do tipo
Kodein. O objeto em questão é declarado na mesma classe, e é importante destacar dois
pontos.

Primeiro, a instância de Kodein criada nesta classe terá acesso a todos os módulos
da instância de Kodein da classe AppApplication - e, portanto, será capaz de prover de-
pendências criadas nestes módulos. Isto é feito a partir do comando extend(applicationKodein).

O segundo ponto de destaque é a inserção do comando import(activityModule()) - que
faz com que a instância de Kodein desta classe também tenha acesso às dependências criadas
pelo módulo retornado pela função activityModule().

Pois bem, nota-se que esta função é declarada como open, e pode ser sobrescrita pelas
classes herdeiras de BaseAppCompatActivity. A função deve, portanto, ser sobrescrita por
cada uma destas classes que necessitem de dependências não providas pela instância
global de Kodein da aplicação.

Observa-se no trecho a seguir uma pequena parte da Activity RouteCreationActivity :

class RouteCreationActivity :

BaseAppCompatActivity<RouteCreationPresenter>(),

RouteCreationView,

OnMapReadyCallback {

...

override fun activityModule(): Kodein.Module =

Kodein.Module("Route Creation Module") {

bind<BasePresenter>() with provider {

RouteCreationPresenter(

this@RouteCreationActivity,

instance(),

instance(),

instance(),

instance()

)

}

}

MVP Limpo 23

...

}

É posśıvel notar que há uma sobrescrita do método activityModule() da BaseAppCom-
patActivity. Nesta sobrescrita, é criado um novo módulo, que indica como a criação de
instâncias da clase RouteCreationPresenter - o presenter desta view - deve se realizada.
Nota-se novamente o uso da função instance(), para que o Kodein possa automaticamente
procurar as dependências necessárias para os parâmetros do construtor do RouteCreation-
Presenter e criá-las - simplificando imensamente o trabalho do desenvolvedor, que outrora
deveria manualmente instanciar as dependências neste trecho do código. De forma geral,
além de poupar tempo de desenvolvimento, o uso do Kodein como framework de injeção de
dependências ajuda massivamente a manter um código limpo, de fácil leitura, sem boilerplate
e de fácil manutenção.

5 A Arquitetura Proposta em Uso

Nesta seção, trazemos como exemplo de uso da arquitetura a funcionalidade de Visu-
alização de Rota. A funcionalidade é simples, e não chega a utilizar todos os elementos
da arquitetura - está aqui apenas para ilustrar parte do trabalho também desenvolvido no
projeto.

A view principal relativa a esta funcionalidade é a interface ‘RouteVisualizationView‘,
implementada pela Activity RouteVisualizationActivity. A Activity é instanciada pelo sis-
tema Android quando o usuário deseja visualizar uma rota espećıfica. Para identificar qual
rota deve ser visualizada, a Activity deve receber, em seu Intent de criação, um extra no-
meado “EXTRA ROUTE”, que deve conter uma instância de Route, indicando a rota do
usuário. Para isso, é recomendado que a criação do Intent seja feita através do método
newInstance(Context, Route), pertencente ao companion object da classe RouteVisualizati-
onActivity. Abaixo, podemos ver o código deste método:

companion object {

const val EXTRA_ROUTE = "EXTRA_ROUTE"

fun newInstance(context: Context, route: Route): Intent {

return Intent(context, RouteVisualizationActivity::class.java)

.putExtra(EXTRA_ROUTE, route)

}

}

Quando a Activity é criada, o método onCreate da mesma é chamado, pelo Sistema An-
droid. A Activity então, atuando como uma view passiva, repassa este evento ao método onI-
nitialize(Route) do seu presenter (RouteVisualizationPresenter). O presenter então guarda

24 Teodosio

uma referência da rota recebida, e chama o método initialize() da view, para que esta possa
executar seu processo de inicialização.

Durante sua inicialização, a view configura seu layout e também inicializa o mapa a
ser exibido, fazendo o uso da biblioteca de mapas do Google para isso [19]. Quando a
inicialização do mapa é conclúıda, a view avisa o presenter deste evento, invocando o
método onMapReady() do mesmo. Quando este método é invocado, o presenter toma a
decisão de exibir a rota para o usuário. Para isso, ele invoca o método displayRoute(Route)
da view, utilizando como argumento a rota previamente guardada em uma referência. No
método, a view exibe, visualmente, a rota para o usuário. Para realizar esta exibição, a
arquitetura novamente é utilizada. Os pontos de ińıcio e término da rota, além dos pontos
salvos manualmente pelo usuário como uma lembrança tem uma exibição especial. Para
estes pontos, uma pequena descrição é exibida na parte inferior da tela - junto com uma
imagem, nos casos de lembranças com imagens.

Para realizar esta exibição, foi criado um ViewPager, que utiliza instâncias de Fragments
espećıficas - da classe RouteVisualizationMemoryFragment. Cada um destes Fragments é
responsável por exibir ao usuário as informações de uma memória (ou dos pontos de ińıcio
e fim da rota). Notavelmente, cada um destes Fragments é tratado como uma View. A
classe RouteVisualizationMemoryFragment implementa a interface RouteVisualizationMe-
moryView, que está associada ao presenter RouteVisualizationMemoryPresenter, seguindo
a mesma estrutura da arquitetura. Na Figura 10, podemos ver a estrutura de pacotes desta
funcionalidade.

Figura 10: Estrutura de pacotes da funcionalidade de visualização da rota

Notamos também que, como nesta funcionalidade nenhum dado é persistido e todos os
dados exibidos (a rota do usuário) são recebidos como parâmetros de entrada da RouteVi-
sualizationActivity, não foi necessária a criação de nenhum UseCase para esta feature. No

MVP Limpo 25

entanto, foi criado o UseCase FetchUserRouteListUseCase, que é usado para obter a lista
de rotas do usuário - este caso de uso é executado antes da visualização da rota acontecer.

A Figura 11 ilustra, de forma simplificada, a execução do fluxo.

Figura 11: Ilustração do fluxo de visualização de uma rota.

6 A Arquitetura na Coleta de Pontos

Para a coleta de pontos - parte fundamental da funcionalidade de criar rotas, foi de-
senvolvido um módulo a parte. Este módulo é totalmente independente do Mapa Afetivo
- sendo inclusive constrúıdo separadamente no processo de build do projeto. Desta forma,
para que o Mapa Afetivo possa utilizá-lo, ele é importado como uma dependência que o
aplicativo possui.

Por ser um módulo a parte, ele é tratado pelo Mapa Afetivo como algo externo ao apli-
cativo. Desta forma, a interação com este módulo pelo Mapa Afetivo é feita exclusivamente
a partir da camada data da aplicação. O repositório RouteRepository - cujo código da in-
terface foi exibido anteriormente - é responsável pela interação. As implementações de seus
métodos se comunicam com o módulo externo e são responsáveis por garantir a criação da
rota.

O fluxo de Coleta de Pontos inicia na view e passa pelo presenter até a execução do
caso de uso StartRouteCreationUseCase. Este caso de uso é responsável por fazer uso da
camada data - pelo RouteRepository - que, por sua vez, interage com o módulo externo para
iniciar a Coleta de Pontos.

26 Teodosio

6.1 A criação de um módulo externo

Pela forma como os componentes do Sistema Android funcionam, um Service é adequado
para coletar a localização do usuário em plano de fundo. Dadas as caracteŕısticas de um
Service, nota-se que o mesmo não se enquadra bem em nenhuma das três camadas da
arquitetura. Este foi o principal motivo pela qual a criação de um módulo externo foi
realizada. Tal módulo é responsável por realizar a coleta de pontos do usuário. Sendo um
módulo externo à parte principal do Mapa Afetivo (embora interno ao aplicativo), ele segue
a sua própria arquitetura.

A principal classe deste módulo é a FetchUserLocationService. Esta classe estende a
classe Service do Sistema Android, e representa um serviço que roda em plano de fundo e é
responsável por coletar a localização do usuário. O funcionamento desta classe é simples: a
partir do momento em que o Service recebe o comando de inicialização, ele passa a coletar
a localização atual do usuário, com um intervalo de um segundo entre cada requisição. Para
coletar a localização, é utilizada a biblioteca de Localização do Google [20].

Ao iniciar a coleta de localização, o Service é colocado em primeiro plano, e uma no-
tificação é exibida ao usuário - indicando que uma coleta está em andamento. A cada
um segundo, então, a localização do usuário é obtida. O Service possui um mecanismo
observável, criado a partir do uso de um Observable da biblioteca RxJava. Ao obter uma
localização, o Service emite essa localização utilizando o Observable, para que posśıveis
clientes interessados em obtê-la possam fazer uso da mesma - o que não ocorre no Mapa
Afetivo. Ao obter a localização do usuário, um segundo comportamento também é tomado
pelo Service: é feito um cálculo para determinar se a localização obtida está dentro de um
raio de cinco metros da localização mais recente salva. Caso esta seja a primeira localização
obtida, ela é adicionada à lista de pontos percorridos do usuário. Caso não seja a primeira
localização e esteja num raio de cinco metros da localização mais recente, esta localização
é descartada. No último caso - em que a localização obtida está a mais de cinco metros da
última localização não descartada, esta localização é adicionada à lista de pontos percorridos
pelo usuário.

Quando o Service recebe o comando de finalização da rota - a partir de uma interação do
usuário - a coleta de pontos é então interrompida, e a lista com todos os pontos coletados
é retornada à camada data da arquitetura do aplicativo. O Service então encerra o seu
funcionamento.

Caso, em algum momento durante a criação da rota, o usuário resolva adicionar alguma
memória - em forma de texto ou imagem -, é utilizada uma função no Service para retornar
a última localização dispońıvel do usuário [20]. Esta localização é então obtida, e a mı́dia
é associada ao ponto de localização retornado. Os pontos de mı́dia ficam associados ao
RouteRepository.

Ao finalizar a criação da rota, os pontos de memória do usuário são concatenados à lista
de pontos percorridos retornada anteriormente. É feita, então, uma ordenação de todos os
pontos pelo horário de captura dos mesmos - de forma a garantir que os pontos de memória
permaneçam na ordem correta. Os pontos são, então, repassados à camada domain da
aplicação.

MVP Limpo 27

7 Conclusões

A arquitetura proposta não pôde ser seguida em 100%, quando observada a base de
código do projeto. Uma das principais razões para este fator é a curva de aprendizado
associada à arquitetura e às tecnologias do projeto, ligada ao fator tempo relacionado ao
prazo dispońıvel para finalização e entrega do projeto. Isto não é um problema, já que as
partes fora da arquitetura podem ser adaptadas para fazerem parte da mesma caso isto faça
sentido no futuro, sem prejúızos ao funcionamento da aplicação.

É importante salientar que a arquitetura desenvolvida possui oportunidades para melho-
rias, especialmente em pontos onde não foram adotadas restrições fortes. Um exemplo onde
este ponto chama a atenção é em relação à localização das classes de modelos - cuja função
única é armazenar dados em memória de forma estruturada - que hoje não possuem um
lugar bem definido na arquitetura. Na implementação atual do aplicativo, algumas classes
estão na camada domain, enquanto que outras - mais atreladas à persistência e obtenção
dos dados estão na camada data. O ideal seria definir um local adequado para tais classes,
com sentido lógico por trás desta decisão. Um outro ponto de melhorias está relacionado
à organização dos repositórios da camada data - na implementação atual, diversos repo-
sitórios foram criados, mas a decisão entre quais métodos devem ficar em qual repositório
não está semanticamente bem definida.

Por fim, é razoável acrescentar que o desenvolvimento de algumas funcionalidades por
mim - como a Criação de Rotas e a Visualização de Rotas - seguindo a estrutura original
da arquitetura proposta contribúıram para que o restante do projeto seguisse os mesmos
padrões previamente definidos. Os códigos desenvolvidos para as funcionalidades em questão
- e suas respectivas estruturas - serviram como exemplo para o desenvolvimento do restante
das funcionalidades do aplicativo.

A arquitetura utilizada foi suficiente para a organização e estruturação do projeto. Em-
bora a introdução de novas tecnologias - como a linguagem Kotlin - e bibliotecas - como Rx-
Java e KodeIn - fortemente atreladas à arquitetura possam ter contribúıdo para a ocorrência
de uma curva de aprendizado inicialmente ı́ngreme a ser percorrida pelos desenvolvedores
do aplicativo, é natural que a introdução de qualquer arquitetura e/ou tecnologias em
um projeto causem tal efeito. O conhecimento porém adquirido no desenvolvimento da
aplicação - e de sua arquitetura - utilizando os prinćıpios e estruturas aqui apresentados é
de valor inestimável. Caso o projeto venha a ter futuras evoluções, com a introdução de
novas funcionalidades e/ou mesmo a introdução de testes unitários, é gratificante saber que
tais desenvolvimentos estarão bem encaminhados, dada a base de código já existente e a
arquitetura preparada para suportar a evolução do projeto.

Referências

[1] ENNES, M., & ROMANINI Jr, M. Caminhada como prática do não-
saber: uma reflexão sobre des-com-passos cotidianos. Dispońıvel em:
<https://www.publionline.iar.unicamp.br/index.php/simpac/article/download/4400/4404>.
Acesso em 14 de jan de 2021.

28 Teodosio

[2] MARTIN, Robert C. The Clean Architecture. The Clean Code Blog, 13 de ago. de
2012. Dispońıvel em: <https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html>. Acesso em: 09 de jan. de 2021.

[3] MARTIN, Robert C. (2017) Clean Architecture: A Craftsman’s Guide to Software
Structure and Design : Pearson.

[4] Model-View-Presenter. Wikipédia. Dispońıvel em: <https://en.wikipedia.org/wiki/Model-
view-presenter>. Acesso em: 09 de jan. de 2021

[5] MVP architectural pattern. Dispońıvel em: <https://ducmanhphan.github.io/2019-
08-05-MVP-architectural-pattern/>. Acesso em: 09 de jan. de 2021.

[6] SORAL, Rakshit. Architectural Guidelines to follow for MVP pattern in Android. An-
droidPub, 06 de mar. de 2018. Dispońıvel em: <https://android.jlelse.eu/architectural-
guidelines-to-follow-for-mvp-pattern-in-android-2374848a0157>. Acesso em: 15 de jan.
de 2021.

[7] Git. Dispońıvel em: <https://git-scm.com/>. Acesso em: 09 de jan. de 2021.

[8] GitLab. Dispońıvel em: <https://about.gitlab.com/>. Acesso em: 09 de jan. de 2021.

[9] Código Fonte do Mapa Afetivo. Dispońıvel em:
<https://gitlab.ic.unicamp.br/ra164468/mapa-afetivo>. Acesso em: 17 de jan.
de 2021.

[10] Android-CleanArchitecture. Dispońıvel em: <https://github.com/android10/Android-
CleanArchitecture/>. Acesso em: 15 de jan. de 2021.

[11] OpenDesign. Dispońıvel em: <https://mc750.opendesign.ic.unicamp.br/>. Acesso em:
09 de jan. de 2021.

[12] Reis, J.; Santos, A.; Duarte, E.; Gonçalves, F.; Nicolau de França, B.; Bonacin, R.
and Baranauskas, M. (2020). Articulating Socially Aware Design Artifacts and User
Stories in the Conception of the OpenDesign Platform.In Proceedings of the 22nd
International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN
978-989-758-423-7, pages 523-532. DOI: 10.5220/0009418205230532

[13] RxJava2. Dispońıvel em: <https://github.com/ReactiveX/RxJava/tree/2.x>. Acesso
em: 09 de jan. de 2021.

[14] ReactiveX. Dispońıvel em: <http://reactivex.io/>. Acesso em: 09 de jan. de 2021.

[15] Kodein. Dispońıvel em: <https://github.com/Kodein-Framework/Kodein-DI>.
Acesso em: 09 de jan. de 2021.

[16] Kotlin. Dispońıvel em: <https://kotlinlang.org/>. Acesso em: 09 de jan. de 2021.

MVP Limpo 29

[17] Extensions - Kotlin Programming Language. Dispońıvel em:
<https://kotlinlang.org/docs/reference/extensions.html#extension-functions>.
Acesso em: 10 de jan. de 2021.

[18] Application — Android Developers. Dispońıvel em:
<https://developer.android.com/reference/android/app/Application>. Acesso em:
10 de jan. de 2021.

[19] Google Maps Android SDK. Dispońıvel em: <https://developers.google.com/maps
/documentation/android-sdk/overview>. Acesso em: 09 de jan. de 2021.

[20] Google Play Services. Dispońıvel em: <https://developers.google.com/android/guides/overview>.
Acesso em: 09 de jan. de 2021.

[21] Firebase. Dispońıvel em: <https://firebase.google.com/>. Acesso em: 09 de jan. de
2021.

[22] Firestore. Dispońıvel em: <https://firebase.google.com/docs/firestore/>. Acesso em:
09 de jan. de 2021.

[23] LEDOUX, Jacques. RxJava2: Schedulers 101 or simplified concurrency, part 1. Me-
dium, 08 de jul. de 2018. Dispońıvel em: <https://medium.com/@softjake/rxjava2-
schedulers-101-or-simplified-concurrency-management-40ab0ed1ce1d>. Acesso em: 09
de jan. de 2021.

[24] Scheduler. Dispońıvel em: <http://reactivex.io/RxJava/2.x/javadoc/io/reactivex/Scheduler.html>.
Acesso em: 09 de jan. de 2021

[25] TAN, Lawrence. Working with RxJava Disposables in Kotlin. raywenderlich.com, 04
de nov. de 2019. Dispońıvel em: <https://www.raywenderlich.com/3983802-working-
with-rxjava-disposables-in-kotlin>. Acesso em: 09 de jan. de 2021.

[26] TEODOSIO, Bernardo do Amaral. Motivos para trocar o Java pelo Kotlin ainda
hoje. Medium, 15 de jan. de 2018. Dispońıvel em: <https://medium.com/movile-
tech/trocar-o-java-pelo-kotlin-8bed76014d99>. Acesso em: 09 de jan. de 2021.

[27] Shaw, Mary, and David Garlan. Software architecture. Vol. 101. Englewood Cliffs:
prentice Hall, 1996.

[28] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. “Design patterns:
Abstraction and reuse of object-oriented design.” In European Conference on Object-
Oriented Programming, pp. 406-431. Springer, Berlin, Heidelberg, 1993.

	Introdução
	Fundamentação Teórica
	Clean Architecture
	Arquitetura MVP
	Model
	View
	Presenter

	Método de Trabalho
	A Arquitetura do Mapa Afetivo
	Uma Arquitetura Híbrida
	Três camadas
	Presentation
	Domain
	Data

	Classes base
	Injeção de Dependências
	AppApplication
	Injeção de dependências na criação de rotas

	A Arquitetura Proposta em Uso
	A Arquitetura na Coleta de Pontos
	A criação de um módulo externo

	Conclusões

