2

4

4

MVP Limpo: Uma

Arquitetura para Aplicacoes

Android baseada no estilo
MVP e em Arquitetura
Limpa

Bernardo do Amaral Teodosio

Relatério Técnico - [IC-PFG-20-31
Projeto Final de Graduagdo
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de tnica responsabilidade dos autores.

MVP Limpo: Uma Arquitetura para Aplicagoes Android
baseada no estilo MVP e em Arquitetura Limpa

Bernardo do Amaral Teodosio

Resumo

O campus da Unicamp é um lugar diverso, onde diferentes experiéncias podem ser
vivenciadas. Cada pessoa que passa pelo campus faz o seu préprio caminho, e tem suas
préprias experiéncias.

Com base nesta tematica, o aplicativo Mapa Afetivo foi desenvolvido de forma a
permitir que as pessoas possam registrar seus caminhos, suas rotas e, principalmente,
descrever as experiéncias vividas durante seus percursos. Outras pessoas podem, assim,
descobrir novos caminhos e vivenciar sentimentos outrora nunca experienciados.

Durante o levantamento de requisitos da aplicagao, foi tomada a decisao de que a
melhor forma de colocar a ideia em pratica seria a partir do desenvolvimento de uma
aplicacao Android. Naturalmente, um aplicativo eficaz necessita de uma arquitetura
eficiente para suporta-lo, garantindo uma boa performance do mesmo e propiciando um
processo de desenvolvimento e manutengao adequado. Este trabalho trata da proposta e
desenvolvimento da arquitetura do aplicativo desenvolvido, que teve como base o estilo
arquitetural MVP (Model-View-Presenter) e adotou principios de Clean Architecture.
Com base nisso, uma arquitetura hibrida foi desenvolvida com o objetivo de apoiar
o desenvolvimento da aplicagdo, considerando um cenério evolutivo. A arquitetura
em questao foi criada de tal forma que nao esteja fortemente acoplada aos conceitos e
funcionalidades do Mapa Afetivo - suas caracteristicas e estruturas podem ser utilizadas
em outros projetos de software, académicos ou comerciais.

2 Teodosio

Sumario

11 Introducao| 3

2 Fundamentacao Teorical

2.2 Arquitetura MVP|.
221 Modell

O U U U R

E

4 A Arquitetura do Mapa Afetivo| 8
4.1 Uma Arquitetura Hibridal 8
4.2 Tres camadasl 8

421 Presentationl 10
422 Domainl 12
E2Z3 7 Datal .« o o o o 16
M43 Classes basel 17
4.4 Injecao de Dependéncias| Lo 19
4.4.1 AppApplication|. 20
[4.4.2 Injecao de dependencias na criacao derotas| 21

[A Arquitetura Proposta em Uso| 23

|6 A Arquitetura na Coleta de Pontos| 25
6.1 A criacao de um modulo externo| 26

[T Conclusoes| 27

MVP Limpo 3

1 Introducao

Diariamente, milhares de pessoas passam pela Universidade Estadual de Campinas
(UNICAMP). Cada uma destas pessoas tem seus proprios objetivos e motivagoes - cada
uma fazendo seu proprio trajeto. Frequentemente, em meio a agitacdo em que vivemos, os
caminhos sao percorridos com o foco no objetivo, sem dar muita atengao ao trajeto de fato
realizado.

Sendo o campus de Campinas da UNICAMP um lugar amplo e também diverso - com
diferentes espacos fisicos que vao desde institutos, cantinas, drvores e lugares inesperados, é
possivel que cada uma dessas pessoas, ao cruzar as diferentes localizacoes do Campus, expe-
riencie seus préprios sentimentos. Uma caminhada pode trazer consigo muitas experiéncias
- um modo de se relacionar com os ambientes [I], ou ser um simples gesto de agao estética.
Pode ainda ser desde um procedimento a um dispositivo criativo [I] - permitindo assim a
vivéncia de diferentes experiéncias.

Partindo deste pressuposto, surgiu a ideia da criacao do Mapa Afetivo - um lugar onde
as diferentes pessoas podem registrar seus caminhos percorridos e, principalmente, quais
pontos de cada caminho se destacaram. Um ponto de destaque pode ser uma &rvore na
qual o individuo parou um pouco para descansar, uma escultura admirada, uma parede com
um grafite - literalmente, qualquer localizacdo com uma latitude e longitude onde o sujeito
teve um sentimento.

No Mapa Afetivo, as rotas e pontos podem ser registradas, com os sentimentos e
memoérias salvos - com um texto ou uma imagem. Estas rotas tornam-se, entao, disponiveis
para todos os outros usudrios da comunidade da UNICAMP - que podem assim conhecer
novas rotas, descobrir novos lugares, caminhos e também sentimentos. Além de permitir a
descoberta de novos locais, o Mapa Afetivo proporciona aos seus usuarios a possibilidade
de experienciar sentimentos em lugares nunca antes imaginados.

Partindo da ideia de que um aplicativo mével seria a forma mais adequada de transfor-
mar o Mapa Afetivo num produto real, naturalmente torna-se necessaria a criagdo de uma
arquitetura para suportar o mesmo. Como a maioria dos grandes softwares, aplicativos
criados para a plataforma Android também se beneficiam de uma arquitetura adequada -
que permite que o aplicativo seja nao sé desenvolvido como também receba manutengoes
de uma forma facil e agil. Para isso, a aplicacao de boas praticas de desenvolvimento de
software é necessaria. Além disso, a arquitetura adotada deve garantir um bom funciona-
mento da aplicacdo nos mais diversos modelos de celulares Android existentes, permitindo
uma, criacao facil de novas funcionalidades por diferentes desenvolvedores, inclusive aqueles
nao envolvidos inicialmente na criacao do projeto.

Considerando o contexto e escopo inicial do projeto, buscou-se uma arquitetura capaz de
permitir o trabalho paralelizado dos desenvolvedores, incluindo padrées de cédigo, classes,
métodos e entidades do sistema que tornassem o coédigo-fonte como um todo coerente.

Dentre as diferentes arquiteturas existentes atualmente voltadas para aplicacoes méveis,
foi criada uma nova arquitetura, com base em principios da Arquitetura MVP (Model-
View-Presenter) [4] e também de Arquitetura Limpa (do inglés, Clean Architecture) [2].
A arquitetura proposta permitiu o desenvolvimento do aplicativo de forma paralelizada
entre os diferentes desenvolvedores participantes, facilitando o desenvolvimento iterativo e

4 Teodosio

incremental da aplicacao.

Ainda, é valido destacar que a arquitetura aqui descrita pode ser 1til a muitos outros
projetos além do préprio Mapa Afetivo - existindo assim a possibilidade da mesma ser 1til
a comunidade académica e também ao desenvolvimento de aplicacoes em geral.

O restante deste trabalho esta organizado da seguinte forma: a Segao [2] apresenta os
principais conceitos necessérios para a fundamentagao tedrica do trabalho. A Segao [3] des-
creve o método de trabalho utilizado para o desenvolvimento do mesmo. Na Secgao [4] estao
descritos os detalhes técnicos - conceituais e de implementagao da arquitetura. Na Segao
podemos ver um exemplo da arquitetura em uso. Na Secao 77, é descrito o comporta-
mento da arquitetura com um modulo particular, tratado como uma dependéncia externa.
Por fim, na Secdo [encontramos as conclusoes extraidas deste trabalho e do processo de
desenvolvimento realizado com a arquitetura em questao.

2 Fundamentacao Teérica

A arquitetura do Mapa Afetivo teve como base duas arquiteturas bem definidas e de
uso comum no mercado de aplicagoes moveis - mas que nao sao exclusivas deste tipo de
aplicagdo. Cada uma das arquiteturas tem suas vantagens - e a juncao de ambas resultou
na arquitetura utilizada pelo aplicativo.

2.1 Clean Architecture

A arquitetura do projeto foi criada como tendo principal base os principios de Clean
Architecture, cujo autor é Robert C. Martin [3]. Nessa abordagem, o software é separado
em diferentes camadas [2], como pode ser visto na Figura

A ideia principal é que o software siga a “Regra das Dependéncias”, que é a restrigao
de uma arquitetura cldssica em camadas [27]. Assim, cada circulo na figura representa uma
camada do software, e a regra que diz que as dependéncias entre as camadas sé podem
existir no sentido “externo” - isto é, as camadas externas podem depender das camadas
internas, mas o contrario nao pode ocorrer.

A divisao em camadas seguindo a Regra das Dependéncias traz vantagens - sendo uma
das principais a facilidade para a realizacao de testes no software. Como o software estda bem
modularizado, testar as camadas mais internas é simples - uma vez que possuem nenhuma
ou poucas dependéncias. Testar as camadas mais externas também nao é dificil - uma
vez que é simples criar dublés de teste para os objetos necessarios das camadas internas
para realizar os testes da maneira adequada. Isso também garante que os testes possam
ser feitos de forma independente e paralelizada. Para softwares grandes, onde o processo
de construcao (do inglés, build) é lento e demorado, paralelizar os testes também é uma
vantagem. Af encontramos mais um beneficio da Clean Architecture - a mesma promove
escalabilidade, e funciona bem tanto para projetos pequenos como para grandes softwares.

Ainda na Figura |1} notamos que hé quatro camadas exemplificadas - uma vez que ha
quatro circulos. A Clean Architecture nao fixa um nimero especifico de camadas - uma
vez que cada software tem suas préprias especificidades. No caso do Mapa Afetivo, foram
utilizadas trés camadas - como veremos nas subsegoes posteriores.

MVP Limpo 5

Arquitetura Limpa

1V}
]
~" Controladores -
Drivers e Frameworks ,/ \\\

Casos de Uso AY
Adaptadores de Interface 7 f \\._ I"-.
| ! 1 |
| | Entidades | |
Regras de Negéicio | \ J /
N p

\'-\ h N ‘

N /

Figura 1: Clean Architecture - uma arquitetura em camadas. Adaptado de [2].

2.2 Arquitetura MVP

A segunda principal influéncia utilizada para a arquitetura do Mapa Afetivo foi a ar-
quitetura MVP. MVP é um acronimo para Model-View-Presenter - sendo estes os trés
principais componentes da arquitetura.

A arquitetura MVP surgiu originalmente como uma variagdo da arquitetura MVC
(Model-View-Controller) [4] [5], e ganhou bastante popularidade nas ltimas décadas, es-
pecialmente com o aumento de aplicagoes méveis desenvolvidas, tornando-se muito comum
no desenvolvimento de aplicagoes Android.

2.2.1 Model

O Model é um componente responsavel pelo gerenciamento dos dados e implementagao
de regras de negoécio da aplicagao. Nesta arquitetura, todas as estruturas de dados e também
as classes e entidades que acessam fontes de dados - como repositérios, por exemplo, sao
considerados parte desse componente. Comumente, o Model é também referenciado como
sendo a camada de dados da aplicacao.

2.2.2 View

Nesta arquitetura, a View representa a interface de interacao do usudrio com a aplicagao.
Usualmente, em aplicacoes Android, as Views sao tratadas como interfaces. Tais interfaces
sao implementadas por classes que herdam de outras classes do Sistema Android que tratam
das interagoes do usudrio com a aplicagao - como Activities e Fragments.

Um dos principais pontos da Arquitetura MVP é a ideia de que as Views ndo devem

6 Teodosio

tomar agoes e/ou decisoes. As Views devem ser estritamente pontos de interagao do usudrio
com a aplicacao - e portanto nao devem possuir nenhum tipo de légica de negécios imple-
mentada.

2.2.3 Presenter

Na arquitetura MVP, o Presenter é o responsavel por fazer a ligagao entre a View e o
Model. No presenter, podem ser tomadas algumas decisoes, deve ser realizado o controle da
view e também pode ser realizado o tratamento de dados.

Em aplicagoes Android, é comum que a View repasse todos os eventos de interagao do
usuario diretamente para o Presenter, que é o responsavel por, de fato, tratar os eventos e
realizar as agOes necessarias para atender as requisicoes desejadas - fazendo uso, para isso,
da camada Model. Ao realizar o seu trabalho, o Presenter deve invocar a View para exibir
ao usudrio o resultado da sua requisicao.

Nesta estrutura, é comum que o Presenter sempre tenha uma referéncia direta para
a View - pois precisa da mesma para exibir os resultados das requisicoes realizadas pelo
usuério.

Na Figura[2] podemos observar uma ilustragao de como a Arquitetura MVP é usualmente
utilizada numa aplicacdo Android.

Arquitetura MVP - Android

View Presenter Model

Activity —» Presenter ——» Interactor —» APl

Banco de

Fragment ——® Presenter —— Interactor —» Dadna

Figura 2: Uso comum da Arquitetura MVP em uma aplicagao Android. Adaptado de [6].

MVP Limpo 7

3 Método de Trabalho

Antes de iniciar o desenvolvimento do projeto propriamente dito, foi utilizada a plata-
forma OpenDesign [11] para clarificar o problema a ser resolvido pelo aplicativo e realizar
um levantamento inicial de requisitos da aplicacao, realizando ainda a priorizacao dos mes-
mos. Nessa plataforma, foram identificados stakeholders importantes, problemas e possiveis
solugodes, além dos requisitos propriamente ditos. O OpenDesign foi 1til nesta fase inicial e,
a partir dos itens registrados na ferramenta, foi possivel utilizd-los no GitLab como issues
(itens a serem desenvolvidos) para o desenvolvimento do aplicativo. Isso é realizado de
forma automatizada, uma vez que a plataforma OpenDesign é integrada ao Gitlab.

Apés esta fase, foi realizado o setup inicial do projeto, com a criacao das classes base
da Arquitetura, junto & estrutura de entidades, camadas e pacotes definidos - de forma a
permitir que fosse possivel dar sequéncia ao desenvolvimento do aplicativo.

Sendo uma aplicagdo Android, o Mapa Afetivo foi desenvolvido utilizando a IDE padrao
de desenvolvimento Android, o Android Studio - uma ferramenta da Google desenvolvida
com base no IntelliJ.

O aplicativo foi desenvolvido utilizando a linguagem Kotlin [16]. Por ser uma linguagem
mais nova, Kotlin possui diversas funcionalidades que facilitam e agilizam o processo de
desenvolvimento [26]. Tais funcionalidades podem trazer beneficios como a criacdo de um
codigo mais limpo - o que, por sua vez, abre possibilidades para economia de tempo de
desenvolvimento e manutencgao.

> o Os| + , gl D3|+ > Closed on

Implementar servigo para obter periodicamente a

Usudrio pode criar novas rotas usando GPS Criar autenticagdo com Firebase localizag&o do usudrio a partir do GPS
criar-rota-gps e
#36 #79 (1] 2
#77
Integragédo dos pontos de paradas com Firebase Adicionar midias nas rotas Definir lib de manipulag&o de mapa
Store 5
criar-pontos-de-parada
criar-pontos-de-parada sa5 @
#73 2
#84
Integragao de tela de rota com Firebase Store Visualizar uma rota individualmente
Protétipo de adigédo de pontos de paradas na rota - .
. CULIELCLEC [Epico X visualizar-rota-individualmente
criar-pontos-de-parada X" design] .
#81 J #69

#83

Definir fluxo de interagdes do usudrio no app Setup do Projeto

Epico
[design J
#76 ’ #68

Usuario pode adicionar midias e pontos de Criar tela de visualizagdo de uma rota

paradas na rota visualizar-rota-individualmente
SemioticFramework X criar-pontos-de-parada #74 @

#38

Figura 3: Atividades A Fazer, Em Progresso e Concluidas em um determinado estado do
desenvolvimento do Mapa Afetivo

Para gerenciamento de configuragao, foi utilizado o sistema de controle de versao Git

8 Teodosio

[7] junto ao servigo GitLab [§] - ferramentas comuns para o gerenciamento do cédigo-fonte
de projetos de software. Trabalhamos em diferentes branches do repositério, de forma a
poder paralelizar o desenvolvimento, mantendo uma branch “master” como sendo a padrao
da aplicacdo, para o cédigo integrado e estavel. Ao realizar uma tarefa, realizamos a in-
tegracao do cédigo desenvolvido para a mesma com a branch master, de forma a unificar
todo o trabalho desenvolvido. O Gitlab também foi utilizado para gerenciar o progresso
do desenvolvimento, utilizando a pratica de backlog do produto, onde as tarefas a serem
desenvolvidas e seus respectivos estados (A Fazer / Em Progresso / Concluido) sao dispo-
nibilizados em um quadro Kanban, conforme a Figura O cédigo fonte [9] do projeto,
disponivel no GitLab, pode ser encontrado no enderego https://gitlab.ic.unicamp.br/
ral64468/mapa-afetivol

A ideia de utilizar a arquitetura em questao surgiu a partir de conhecimentos teéricos
[10] e praticos adquiridos a partir do trabalho realizado e observado em projetos anteriores
que fazem uso do estilo arquitetural MVP e da Arquitetura Limpa. A proposta de utilizar,
entao, uma arquitetura hibrida baseada na Arquitetura Limpa com conceitos provindos do
estilo MVP foi realizada para o grupo de desenvolvimento, que acolheu a ideia. Ao longo
do desenvolvimento, reunides de alinhamento foram realizadas com os desenvolvedores do
projeto, para que a arquitetura ficasse clara e pudesse ser respeitada por todos.

4 A Arquitetura do Mapa Afetivo

4.1 Uma Arquitetura Hibrida

Embora existam inimeros beneficios pretendidos, o estilo arquitetural MVP pode ser
insuficiente para, por si s0, garantir uma estrutura e um padrao de cédigo a ser seguido em
projetos de médio e grande porte.

E facil definir os componentes View e Presenter nessa arquitetura, mas o componente
Model - que tende a ocupar uma grande parte da base de cédigo acaba por nao ter uma estru-
tura interna bem-definida. Por este motivo, torna-se relevante a definicao de uma estrutura
minima também para este componente, de forma a garantir que o cédigo escrito por todo o
projeto siga um padrao bem-definido, mantendo as propriedades de manutenibilidade, facil
leitura e organizagao.

Com base neste cenario, uma arquitetura hibrida pode ser uma solucao interessante
- escolhida para o Mapa Afetivo. O aplicativo carrega consigo um misto entre as duas
arquiteturas previamente mencionadas - MVP e Clean Architecture.

4.2 Trés camadas

A arquitetura principal do Mapa Afetivo é dividida em trés camadas, conforme pode
ser observado na Figura [4; data, domain e presentation.

A ideia principal foi fazer com que tais camadas estejam alinhadas aos principios da
Arquitetura Limpa, respeitando a Regra das Dependéncias: a camada presentation tem
dependéncias exclusivamente da camada domain. Por sua vez, a camada domain tem
dependéncias exclusivamente da camada data.

https://gitlab.ic.unicamp.br/ra164468/mapa-afetivo
https://gitlab.ic.unicamp.br/ra164468/mapa-afetivo

MVP Limpo

| |

Data |

Domain

Figura 4: As trés camadas da arquitetura do Mapa Afetivo

10 Teodosio

No Mapa Afetivo, a divisao do aplicativo a partir das camadas foi feita utilizando o
recurso de pacotes das linguagens Kotlin e Java. A partir da raiz da estrutura do cédigo-
fonte, existem trés pastas - data, domain e presentation, que contém respectivamente o
codigo relativo as suas partes da arquitetura, como pode ser visualizado na Figura

& Android

Y I app
> manifests
v IEVE!
v com

v mapaafetivo
> data
> domain

> presentation
 AppApplication
» AppDependencylinjection.kt

Figura 5: As trés camadas divididas em pacotes a partir da interface do Android Studio

4.2.1 Presentation

Na camada presentation, estao contidos dois dos trés componentes da Arquitetura MVP:
a View e o Presenter. A ideia desta principal desta camada é abranger toda a logica presente
na interacao do usudrio com o aplicativo.

As principais classes de interagdo com componentes do Sistema Android também estao
contidos nesta camada - como as Activities, Fragments e Adapters do aplicativo.

Dentro do pacote desta camada, ha um subpacote para cada funcionalidade do aplicativo
(Figura@. E, dentro do pacote de cada funcionalidade, hé ainda dois subpacotes: um pacote
nomeado view e um pacote nomeado presenter.

Cada view representa uma interface de interacdo do usudrio com a aplicacdo. Através
da view, o usudrio pode interagir com aplicativo, adicionando dados ou mesmo visualizando.
Para cada view disponivel no aplicativo, existe um presenter associado a mesma. A ideia
aqui é que o presenter seja responsavel por controlar a view e fazer as interagdes necessarias
com a camada domain. H4 uma excecao para a criacao de presenters: quando a view pode
ser considerada trivial. Nestes casos, ha pouca ou nenhuma légica envolvida no controle da
view, o presenter pode ser omitido.

Views sao criadas como interfaces na linguagem Kotlin. Estas interfaces sao, por sua
vez, implementadas por classes que estendem classes padrao do sistema Android - como Ac-

MVP Limpo 11

¥ Iz app
> manifests
v java
v com
v mapaafetivo
> data
> domain
v presentation
authentication
base
example
presenter
view
main
routeCreation
presenter
view
routeVisualization
presenter
view
userRoutelList
> util

r AppApplication

r AppDependencylnjection.kt

Figura 6: Estrutura de pacotes dentro da camada presentation.

tivities e Fragments. No Mapa Afetivo, interfaces gréaficas individuais sao sempre Activities.
As Activities, por sua vez, sdo views que tém um presenter associado. Os presenters sdo
criados como classes, que recebem em seu construtor uma instancia da view ao qual devem
se associar.

Pela forma como o Sistema Android funciona, Activities e Fragments possuem seu
proprio ciclo de vida - que é controlado pelo Sistema de acordo com as interacoes reali-
zadas pelo usudrio com a aplicacao. Os presenters, por serem criados dentro das views e
para controld-las, estao portanto intrinsecamente atrelados aos seus ciclos de vida.

Como os eventos de interagao sao repassados pelo sistema as views, é responsabilidade do
desenvolvedor repassar tais eventos aos presenters - uma vez que o presenter deve controlar
a view, € nao o contrario. Desta forma, para todo evento de interacdo do usudrio com
uma view e para todo evento disparado pelo Sistema para uma view que é utilizado pelo
Mapa Afetivo, hd um método equivalente no Presenter da respectiva view, que deve ser
invocado pela view no momento em que o evento é recebido. Ao ter um método invocado, o
Presenter é o responsavel por realizar a operacao desejada e, apds a finalizacao da operacao,
invocar a view (através de sua instancia, recebida no construtor) para informar o resultado
da operacao. Nesse cendrio, um presenter pode invocar métodos da view diversas vezes
caso necessario, para alterar seu estado. Uma vez que a view também representa aquilo que
é “visto” pelo usudrio da aplicacao, é natural que seja necessério alterar o estado da mesma
para refletir o atual estado do aplicativo apds o usudrio solicitar a realizacdo de uma acao.

Considere o seguinte cenario como exemplo desse comportamento: ao iniciar a criagao

12 Teodosio

de uma rota, o aplicativo comeca imediatamente a coletar a localizacao do usuario, dis-
parando um servico em background que coleta a localizagao conforme o usudrio se move.
No momento do inicio da criacao, a view recebe um evento do sistema, indicando que o
botao “criar rota” foi acionado. Imediatamente, a view invoca um método do presenter -
onCreateRouteClick(Context) - para que a captura de pontos se inicie. Neste momento,
o presenter imediatamente invoca o método displayCreatingRouteLayout () da view, in-
formando a mesma que a sua exibicao deve ser alterada para exibir que uma criacdao de
rota estd em progresso. Na implementagao deste método, a view altera o seu layout para
ocultar o botao “criar rota” e exibir, em seu lugar, um circulo de loading indicando que a
criacdo de uma rota estd em progresso. A Figura [7]ilustra a situacao:

Caso de uso para inicio de criagao da rota

Usuario RouteCreationActivity RouteCreationPresenter Domain Layer

Clique no botéo "criar rota"

view.displayCreatingRouteLayout()

executa StartRouteCreationUseCase

gl	
"	
presenter.onCreateRouteClick() #I	
I	
[«	
I	
I	

Figura 7: Sequéncia de interagao entre a view (Activity) e o presenter para a criagdo de
uma rota

Assim como na Arquitetura MVP, um principio fundamental é mantido aqui: a view deve
ser passiva - isto é, nao deve “tomar iniciativas” por si prépria ou mesmo ser responsavel por
nenhuma légica. Toda a légica da aplicagao deve estar contida no presenter e nas camadas
mais profundas, sendo a wview responsavel exclusivamente pela interacdo com o usuario -
recebendo eventos e exibindo resultados.

4.2.2 Domain

As camadas domain e data formam o que seria o0 Model na Arquitetura MVP. Na camada
domain, encontramos representada toda a légica de negdcio da aplicagao. Esta légica é
primariamente representada através dos casos de uso, que sao invocados pelo presenter da
camada presentation. Por sua vez, os casos de uso fazem uso da camada data como para
obter dados e também persistir. Uma outra forma de enxergar esta camada é trata-la como
um middleware entre a view e as fontes de dados.

Nesta camada, a ideia é que nao haja mais interagoes com classes do Sistema Android.
Nem sempre é possivel manter esta restricao - quando, por exemplo, é necessaria uma
instancia de um Context na camada data, para interagao com alguma biblioteca ou moédulo
externo, é necessario que o mesmo seja passado pela camada domain - isto pode ser visto no

MVP Limpo 13

fluxo de criacao de rotas e nos casos de uso relacionados. A principal vantagem de isolar os
componentes do sistema Android na camada presentation é facilitar o uso de testes unitarios
para testar casos de uso, a camada com um todo e também a camada data. Quando nao
ha componentes do sistema envolvidos, os testes podem ser realizados com a JVM, sem a
necessidade de emular um dispositivo com sistema Android ou utilizar um dispositivo real
para a execucao dos testes. Em geral, isso poupa tempo dos responsédveis pelos testes - o
que facilita os aplicativos que seguem tal arquitetura a serem escaldveis.

A estrutura de pacotes da camada domain é apresentada na Figura[8] Esta estrutura é
simples uma vez que ha um subpacote “usecase”, que é dividido em subpacotes separados de
acordo com a funcionalidade da aplicagdo - assim como acontecia na camada presentation.
H&a também um pacote model, que agrupa algumas entidades de uso comum da aplicacao.
Tais entidades tem como funcionalidade estritamente representar dados de forma estrutu-
rada, e nao tem logica de negoécio envolvida. Por fim, ha um pacote base, que agrega a
classe base para a criacao de um caso de uso.

a4 Android ¥

¥ % app
> manifests
v JEVE]
v com
v mapaafetivo
»> data
v domain
base
r BaseUseCase.kt
model
¢ CommonStep.kt
¢ MemoryRouteStep.kt
¢ Route
r RouteStep.kt
v usecase
»> example
> routeCreation
> routeVisualization

presentation
¢ AppApplication
¢ AppDependencylnjection.kt

Figura 8: Ilustragao do fluxo de interacao entre a view e o presenter para iniciar a criagao
de uma rota

De fato, é notavel que os casos de uso sao a parte mais relevante desta parte da arqui-
tetura. Nao por menos, sao de extrema importancia, pois contém em si a légica de negécio
da aplicagao. Cada caso de uso é representado por uma classe, cujo nome é sufixado pelo
termo UseCase. O design dos casos de uso é realizado de tal forma que todo caso de uso
deve, obrigatoriamente, estender a classe pai BaseUseCase. Os nomes das classes que re-
presentam classes de uso devem ser bem descritivos, e indicar exatamente qual a funcao
do caso de uso em questao. Alguns exemplos de nomes de casos de uso encontrados no
Mapa Afetivo sao: StartRouteCreationUseCase, FinishRouteCreationUseCase, AddImage-

14 Teodosio

MediaToRoute UseCase.

Cada caso de uso também deve obrigatoriamente conter um método piblico cujo nome
é execute. A quantidade e os tipos de parametros deste método sao variaveis, especificos de
cada caso de uso. O comportamento geral deste método, no entanto, deve ser uniforme em
todos os casos de uso - ele deve executar a agao para a qual o caso de uso foi executado.

Exemplificando, para o caso de uso AddImageMediaToRouteUseCase, o método exe-
cute() deve adicionar uma imagem a rota que estd sendo criada no momento da invocagao.
Para isso, a assinatura deste método é declarada da seguinte forma:

fun execute(
title: String,
description: String,
imageMedia: File

): Completable

A assinatura do método para este caso de uso indica que ele possui trés parametros: um
titulo - que devera ser associado a midia - uma descrigao - que também devera ser associada
a midia - e por fim o arquivo de midia em si.

No exemplo anterior, pode-se observar que o método execute tem um tipo de retorno
chamado Completable. Esta é mais uma caracteristica da arquitetura implantada: todo
método execute() de um UseCase deve obrigatoriamente ter um dos trés tipos de retorno
a seguir: Observable, Single ou Completable. Tais classes sao parte da biblioteca RxJava 2
[13], que é amplamente utilizada nesta arquitetura.

A biblioteca RxJava facilita o uso de programagao reativa e a realizacdo de tarefas
assincronas [14] nas linguagens Java e Kotlin, além de adicionar fungoes de uso geral que
podem ser lteis para diversas situacées. No caso do Mapa Afetivo, ela é utilizada em todos
os UseCases, uma vez que o tipo de retorno de um UseCase deve ser obrigatoriamente
um dos trés tipos mencionados. As operacbes assincronas costumam ser executadas com
alta frequéncia em aplicacoes Android - mas no entanto, o sistema nao possui por padrao
nenhuma forma trivial de implementar tais operacoes.

Um dos principais conceitos existentes na programagao de aplicagoes Android é o da
main thread - ou Ul Thread - a thread de execugao principal de um aplicativo. Por padrao,
as operacoes de um aplicativo sdo sempre executadas nesta thread. No entanto, determi-
nadas operagoes possuem um tempo de execucao longo - como uma requisicao HTTP - e,
portanto, devem ser executadas em uma thread em background para que a execucao do
aplicativo nao fique travada. Uma das funcionalidades mais 1teis da biblioteca RxJava é
possibilitar facilmente a troca de threads para determinadas operagoes, através do uso de
Schedulers [23] [24].

Podemos tratar Observables, Singles e Completables como promessas. Imaginemos que
tais objetos contém a promessa da execugao de um determinado trecho de cédigo. Com
isso, em todo objeto que seja de um desses tipos, podemos invocar o método subscribe() -
que fard com que a promessa seja executada e o cédigo prometido seja, de fato, executado.
Desta forma, para executar um caso de uso, ndo basta invocar o método erecute() - é
necessario invocar, em seguida, o método subscribe() para que a execucao seja realizada.

MVP Limpo 15

A interagao com os Schedulers é realizada como o padrao de projeto Observer[28]. O
método subscribeOn(Scheduler) permite escolher em qual thread a promessa serd, de fato,
executada - o parametro Scheduler representa a thread de execucao. O método obser-
veOn(Scheduler) permite escolher em qual thread o resultado da execucao serd entregue.

Além da biblioteca RxJava2, fazemos uso também da biblioteca RxAndroid, que possui
um Scheduler especifico para representar a main thread do sistema Android. Assim, pode-
mos facilmente configurar a execucao de um UseCase para que seja realizada em uma thread
em background, tendo seu resultado entregue na main thread - o que é extremamente util.

O trecho de codigo abaixo mostra como um caso de uso pode ser executado, de forma
que a execucgao seja feita em uma thread em background e o resultado seja entregue na
thread main:

fun onImageFetched(title: String, description: String, image: File) {
addImageMediaToRouteUseCase
.execute(title, description, image)
.setupCommonSchedulers ()
.subscribe()

fun Completable.setupCommonSchedulers(): Completable {
return this
.subscribeOn(Schedulers.io())
.observeOn (AndroidSchedulers.mainThread())

Podemos observar a execucao do UseCase AddImageMediaToRouteUseCase, mencio-
nado anteriormente. Antes de invocar o método subscribe e efetivar a execugao, é invocado
o método setupCommonSchedulers(). Conforme pode ser visto no segundo trecho de cédigo,
este método nada mais é do que uma Extension Function [I7] criada para configurar corre-
tamente a execucao em background utilizando o Scheduler de entrada e saida, e configurar
o retorno para ser executado na main thread.

Um caso de uso deve ser sempre bem definido e ter um propdsito tinico: realizar uma
acao especifica. A acdo realizada deve estar bem descrita no nome da classe do caso de
uso, e a mesma deve ser executada a partir da invocacdo do método ezxecute() do caso de
uso. Para realizar o seu trabalho, os casos de uso utilizam a camada data da aplicacao,
acessando os repositorios e fontes de dados da aplicag@o para obter informagoes, e também
para persisti-las.

Frequentemente, veremos classes de casos de uso que terao um tamanho pequeno - estas
representam casos de uso sem muita logica de negdcio envolvida. Nesses casos, a classe
acaba por funcionar como um prozxy entre a camada data e a camada presentation. Outras
vezes, porém, os casos de uso podem ser grandes, a depender de quantos repositérios da
camada de data precisam ser acessados para que o caso de uso tenha sua acao executada. Os
casos de uso também podem atuar como mappers, cuja funcao é mapear dados da camada

16 Teodosio

de data para o formato esperado pela view. Como trabalhamos com views passivas, este
mapeamento deve ser feito pelo proprio caso de uso ou pelo presenter, conforme fizer mais
sentido.

Na Figura[d] podemos ver um exemplo de interagao entre um caso de uso, a camada data
e a camada presentation. RouteCreationActivity e RouteCreationPresenter fazem parte da
camada presentation. RouteRepositoy faz parte da camada data.

Caso de uso para finalizar a criagéo da rota

Usuario RouteCreationActivity RouteCreationPresenter FinishRouteCreationUseCase RouteRepository

Clique no botdo "Finalizar Rota" _ |
>

presenter.onFinishRouteClick() |

execute()

repository.finishRouteCreation()

Resultado do execute() recebido

view.close()

A

| |
| |
I I
I |
| |
I |
| |
I I
| |
| |
1 |

»
| |
I |
1 |
| |
I |
I I
I I
I |

b=

Figura 9: Tlustracao do fluxo de interagao entre um UseCase e as camadas data e presen-
tation.

4.2.3 Data

Com a camada data, fechamos o que seria o restante do Model numa arquitetura MVP
tradicional. Esta camada é responsavel por realizar todas interacoes da aplicacao com o
meio externo - o que inclui interagdes com o Firebase [21] Firestore [22] (servico utilizado
para persisténcia de dados) e interagoes com o servigo de coleta de pontos.

Esta camada foi desenhada para atuar com a estrutura de repositorios. Nesta estrutura,
temos diversas interfaces cujo nome ¢é sufixado com a palavra Repository. Tais interfaces
sao implementadas por classes que funcionam como entrada e saida de dados. Métodos sao
declarados nas interfaces Repository para executar as fungoes necessarias.

Os repositérios criados na camada data sao utilizados pelos casos de uso da camada
domain. No método construtor de um usecase, este deve receber como parametros todos os
repositorios necessarios para executar a sua agao.

Diferentemente dos wusecases, que tem uma a funcao de executar uma agao especifica
cada um, os repositérios - por atuarem como fonte de dados sao mais gerais. Um mesmo
repositorio pode ter diversas fungoes e, portanto, pode ser reutilizado por diferentes casos
de uso. Também por isso, os repositérios da aplicagdo sao tratados como objetos singleton
- 0 que serd visto em mais detalhes na Secao [4.4

MVP Limpo 17

No trecho de cédigo abaixo, podemos ver um exemplo da interface do repositério de rotas
da caminhada - RouteRepository. Este repositério é responsavel pelas funcoes relacionadas
a criagao de uma rota:

interface RouteRepository {
fun startRouteCreation(context: Context): Completable
fun isRouteCreationInProgress(): Single<Boolean>
fun finishRouteCreation(): Single<List<MapaAfetivoLocation>>
fun addTextMedia(title: String, text: String): Completable

fun addImageMedia(title: String, description: String,
imageMedia: File): Completable

Ao observar este repositério, podemos observar que o tipo de retorno segue um padrao.
Assim como nos casos de uso, os repositérios também devem retornar exclusivamente objetos
dos seguintes tipos: Single, Completable ou Observable. As razoes para esta restricao sao
similares as ja explicadas anteriormente em relacao aos casos de uso - facilidade de execugao
do cédigo em diferentes threads conforme a necessidade. Como os repositorios sao usados
diretamente pelos casos de uso, hd mais uma vantagem em manter os retornos limitados a
objetos destes trés tipos: é facil para um caso de uso atuar como um mapper entre a camada
de dados e a camada de apresentacao, uma vez que os tipos de retorno sao limitados. O
caso de uso deve alterar apenas alterar o tipo interno retornado (o que nao é necessério
no caso de um retorno Completable, ja que nao ha tipo interno) - e isto é algo trivial de
realizar utilizando algumas das facilidades da biblioteca RxJava, fazendo uso das funcoes
map e flatMap, disponiveis para Observables e Singles.

4.3 Classes base

Além da divisao estruturada dos pacotes anteriormente explicitada, algumas classes base
foram também desenvolvidas - de forma a garantir que, especialmente as classes da camada
presentation do aplicativo, seguissem um padrao.

Uma destas classes base é a BasePresenter, que é a base de todos os presenters da
aplicacao - todo presenter do Mapa Afetivo deve obrigatoriamente herdar desta classe.

Sempre que um UseCase é executado, é retornado um objeto do tipo Disposable [25].
Esta é uma classe padrao do RxJava, que representa uma ligacao entre o Observable, Com-
pletable ou Single observado e o observador que o executou - a partir da invocagao do
método subscribe(). Apds a execugao de um caso de uso, é necessario invocar o método
dispose() do Disposable associado, de forma a garantir que a ligagao seja desfeita - uma vez
que nao é mais necessaria, e manté-la ativa pode gerar vazamentos de memoria.

18 Teodosio

Um dos objetivos da classe BasePresenter é garantir que as ligagoes Disposable sempre
sejam propriamente encerradas - uma vez que os casos de uso sempre sao invocados a partir
de presenters, é natural que todo presenter seja responsavel por encerrar suas proprias
ligacoes.

open class BasePresenter {

private val pendingDisposable: CompositeDisposable
= CompositeDisposable()

protected fun addDisposable(disposable: Disposable) {
pendingDisposable.add(disposable)
}

fun onDestroy() {
pendingDisposable.clear()
}

Como podemos observar no cédigo da classe, exibido acima, ela garante que todo pre-
senter possua um método onDestroy(), responsavel por encerrar os Disposables ativos. O
método addDisposable existe para que, sempre que um caso de uso seja executado, os pre-
senters possam manter as referéncias das ligagoes na propriedade pendingDisposable - de
forma que todas sejam encerradas futuramente, quando o método onDestroy() for invocado.

O método onDestroy() sempre é invocado por uma view, a partir de um evento dispa-
rado pelo Sistema Android informando de sua destruigdo. Naturalmente, a view repassa a
informacao da destruigdo para o presenter - através do onDestroy(), que é responséavel por
encerrar os disposables existentes e, possivelmente, outras atividades pendentes.

Além do BasePresenter, hd também duas outras classes base importantes: BaseFrag-
ment e BaseAppCompatActivity. Ambas as classes desempenham fungées semelhantes -
sao, respectivamente, as classes base de Fragments e Activities, os dois Unicos tipos de
views presentes na arquitetura do Mapa Afetivo.

Como dito anteriormente, uma das func¢oes destas classes é receber o evento de destruicao
da view do Sistema Android e repasséd-la para presenter associado. Naturalmente, pode-
se perceber uma funcao implicita de BaseAppCompatActivity e BaseFragment: realizar a
ligacao entre o presenter e a view.

abstract class BaseFragment<T : BasePresenter> : Fragment(), KodeinAware {

private val nonGenericsPresenter by instance<BasePresenter>()
protected val presenter by lazy { nonGenericsPresenter as T }

override val kodein: Kodein = Kodein.lazy {

MVP Limpo 19

extend (AppApplication.kodein)
import (fragmentModule())

protected open fun fragmentModule(): Kodein.Module = Kodein.Module(
"General Fragment Module"

) 1

override fun omnDestroy() {
super .onDestroy ()
presenter.onDestroy ()

No trecho acima, podemos ver a implementacao da classe BaseFragment. Assim como
BaseAppCompatActivity, ela é uma classe abstrata que recebe um tipo 7T, que obrigatoria-
mente estende um BasePresenter. Isso forca com que as classes herdeiras obrigatoriamente
tenham um presenter, do tipo T - onde T é um tipo genérico que representa o presenter
da view especifica descrita pela classe concreta. Notamos que a classe disponibiliza para
suas herdeiras uma referéncia para o presenter, a partir da propriedade de mesmo nome.
Esta é a forma fundamental que uma view tem para acessar seu presenter: através desta
propriedade.

4.4 Injecao de Dependéncias

As classes base BaseFragment e BaseAppCompatActivity também desempenham outra
funcao importante: sao responsaveis por integrar parte do cédigo responsavel pela injegao
de dependéncias do projeto.

No Mapa Afetivo, a biblioteca Kodein [15] foi utilizada para realizar a injecao de de-
pendéncias - uma técnica amplamente utilizada na arquitetura para ajudar a manter o
codigo limpo e ajudar na criagao de testes unitarios, caso isto venha a ser executado no
futuro.

O Kodein funciona de maneira simples: cria-se uma instancia da classe Kodein no
Application [I§] da aplicagao, e em seguida sao adicionados médulos a esta instancia. Os
modulos sao responsaveis por descrever como deve ocorrer a instanciagao de classes
através do framework de injecdo de dependéncias. No Mapa Afetivo, foram criados médulos
de escopo global especificos para a criacao de repositérios e casos de uso.

A criagao de repositérios € realizada a partir do repositoryModule. Os repositérios da
aplicacao sao tratados como singletons - criados uma vez, quando seu uso é necessario, per-
manecem “vivos” até que o ciclo de vida da aplicagao seja encerrado. Como os repositérios
podem ser usados em diferentes pontos da aplicagao, por diferentes casos de uso, nao ha

20 Teodosio

necessidade de criar multiplas instancias de um mesmo repositorio - e aqui a construgao de
um singleton faz sentido.

Os casos de uso sao criados a partir do useCaseModule - que também ¢é global. No
entanto, os casos de uso nao sao tratados como singletons - como cada caso de uso é es-
pecifico e existe para realizar uma acao, faz mais sentido que os mesmos sejam criados como
instancias comuns. Desta forma, o useCaseModule funciona como um agrupador de fungoes
para criar casos de uso. No exemplo abaixo, podemos ver um trecho do useCaseModule,
onde é especificada a criacao do caso de uso StartRouteCreationUseCase:

val useCaseModule = Kodein.Module("Use Cases Module") {

bind<StartRouteCreationUseCase>() with provider {
StartRouteCreationUseCase(instance())

}

O StartRouteCreationUseCase recebe, em seu construtor, uma instancia de RouteRepo-
sitory. A invocacao da fungao instance() na criacao do caso de uso indica ao Kodein que uma
instancia de RouteRepository deve ser criada para ser injetada no StartRouteCreationUse-
Case. O Kodein cria esta instancia a partir de seus médulos - quando a fungao intance()
é invocada, a biblioteca procura nos médulos associados a instancia atual do Kodein uma
funcao que possa instanciar um RouteRepository. Felizmente, esta funcao é encontrada no
repositoryModule - um trecho do mesmo é exemplificado abaixo:

val repositoryModule = Kodein.Module("Repository Module") {
bind<ExampleRepository>() with singleton { ExampleDataRepository() }
bind<RouteRepository>() with singleton { AndroidRouteRepository() }
bind<UserRepository>() with singleton { LocalUserRepository(
instance("local_user_preferences"
), instance()) }

Como podemos ver, este moédulo descreve como uma instancia de RouteRepository pode
ser criada.

4.4.1 AppApplication

A instancia global do Kodein utilizada pela aplicacao é configurada na classe AppAppli-
cation - uma classe que estende Application [I8] - e é responsavel por realizar configuragoes
iniciais do aplicativo, toda vez que ele é inicializado pelo sistema. No trecho abaixo, ilustra-
mos a criacdo de uma instancia de Kodein, usando moédulos previamente citados e também
outros utilizados pela aplicacao:

MVP Limpo 21

class AppApplication : Application(), KodeinAware {

companion object {
lateinit var kodein: Kodein

¥

override val kodein: Kodein = Kodein.lazy {
import (repositoryModule)
import (useCaseModule)
import (firebaseModule)
import (generalModule (this@AppApplication))

override fun onCreate() {
super .onCreate ()
Companion.kodein = kodein

A instancia de Kodein é criada a partir da invocacao da funcdo Kodein.lazy. Nesta
funcéo, associamos os médulos previamente descritos a instancia em criacao.

4.4.2 Injecao de dependéncias na criagao de rotas

A view relativa a criag@o de rotas é uma Activity, cuja classe recebe o nome RouteCrea-
tionActivity. Esta Activity estende a classe BaseAppCompatActivity, utilizando o tipo T do
Presenter RouteCreationPresenter, e também implementa a interface RouteCreation View -
interface de comunicacao do presenter com a view.

No trecho abaixo, podemos observar um trecho da classe BaseAppCompatActivity:

abstract class BaseAppCompatActivity<T : BasePresenter>
AppCompatActivity (), KodeinAware {

private val nonGenericsPresenter by instance<BasePresenter>()
protected val presenter by lazy { nonGenericsPresenter as T }

private val applicationKodein by closestKodein()
override val kodein: Kodein = Kodein.lazy {

extend(applicationKodein)
import (activityModule())

22 Teodosio

protected open fun activityModule(): Kodein.Module =
Kodein.Module("General Activity Module") {
}

Esta classe implementa a interface KodeinAware, que faz parte também da biblioteca
Kodein. Isto indica que a classe em questao deve ter associada a mesma um objeto do tipo
Kodein. O objeto em questao é declarado na mesma classe, e é importante destacar dois
pontos.

Primeiro, a instancia de Kodein criada nesta classe terd acesso a todos os mddulos
da instancia de Kodein da classe AppApplication - e, portanto, serd capaz de prover de-
pendéncias criadas nestes médulos. Isto é feito a partir do comando extend(applicationKodein).

O segundo ponto de destaque é a insergao do comando import(activityModule()) - que
faz com que a instancia de Kodein desta classe também tenha acesso as dependéncias criadas
pelo médulo retornado pela fungao activityModule().

Pois bem, nota-se que esta funcao é declarada como open, e pode ser sobrescrita pelas
classes herdeiras de BaseAppCompatActivity. A fungdo deve, portanto, ser sobrescrita por
cada uma destas classes que necessitem de dependéncias nao providas pela instancia
global de Kodein da aplicagao.

Observa-se no trecho a seguir uma pequena parte da Activity RouteCreationActivity:

class RouteCreationActivity :
BaseAppCompatActivity<RouteCreationPresenter>(),
RouteCreationView,
OnMapReadyCallback {

override fun activityModule(): Kodein.Module =
Kodein.Module ("Route Creation Module") {
bind<BasePresenter>() with provider {
RouteCreationPresenter (
this@RouteCreationActivity,
instance(),
instance(),
instance(),
instance()

MVP Limpo 23

E possivel notar que ha uma sobrescrita do método activityModule() da BaseAppCom-
patActivity. Nesta sobrescrita, é criado um novo médulo, que indica como a criacdo de
instancias da clase RouteCreationPresenter - o presenter desta view - deve se realizada.
Nota-se novamente o uso da fungao instance(), para que o Kodein possa automaticamente
procurar as dependéncias necessédrias para os parametros do construtor do RouteCreation-
Presenter e crid-las - simplificando imensamente o trabalho do desenvolvedor, que outrora
deveria manualmente instanciar as dependéncias neste trecho do cédigo. De forma geral,
além de poupar tempo de desenvolvimento, o uso do Kodein como framework de injecao de
dependéncias ajuda massivamente a manter um cédigo limpo, de facil leitura, sem boilerplate
e de facil manutengao.

5 A Arquitetura Proposta em Uso

Nesta secao, trazemos como exemplo de uso da arquitetura a funcionalidade de Visu-
alizacao de Rota. A funcionalidade é simples, e nao chega a utilizar todos os elementos
da arquitetura - estd aqui apenas para ilustrar parte do trabalho também desenvolvido no
projeto.

A view principal relativa a esta funcionalidade é a interface ‘RouteVisualizationView*,
implementada pela Activity RouteVisualizationActivity. A Activity é instanciada pelo sis-
tema Android quando o usudrio deseja visualizar uma rota especifica. Para identificar qual
rota deve ser visualizada, a Activity deve receber, em seu Intent de criacdo, um extra no-
meado “EXTRA_ROUTE”, que deve conter uma instancia de Route, indicando a rota do
usuario. Para isso, é recomendado que a criacao do Intent seja feita através do método
newlnstance(Context, Route), pertencente ao companion object da classe Route Visualizati-
onActivity. Abaixo, podemos ver o cédigo deste método:

companion object {
const val EXTRA_ROUTE = "EXTRA_ROUTE"

fun newInstance(context: Context, route: Route): Intent {
return Intent(context, RouteVisualizationActivity::class.java)
.putExtra(EXTRA_ROUTE, route)

Quando a Activity é criada, o método onCreate da mesma é chamado, pelo Sistema An-
droid. A Activity entao, atuando como uma view passiva, repassa este evento ao método onl-
nitialize(Route) do seu presenter (RouteVisualizationPresenter). O presenter entao guarda

24 Teodosio

uma referéncia da rota recebida, e chama o método initialize() da view, para que esta possa
executar seu processo de inicializagao.

Durante sua inicializacao, a view configura seu layout e também inicializa o mapa a
ser exibido, fazendo o uso da biblioteca de mapas do Google para isso [19]. Quando a
inicializacdo do mapa é concluida, a wview avisa o presenter deste evento, invocando o
método onMapReady() do mesmo. Quando este método é invocado, o presenter toma a
decisao de exibir a rota para o usudrio. Para isso, ele invoca o método displayRoute(Route)
da wview, utilizando como argumento a rota previamente guardada em uma referéncia. No
método, a view exibe, visualmente, a rota para o usudrio. Para realizar esta exibicao, a
arquitetura novamente é utilizada. Os pontos de inicio e término da rota, além dos pontos
salvos manualmente pelo usudrio como uma lembranca tem uma exibicao especial. Para
estes pontos, uma pequena descricao é exibida na parte inferior da tela - junto com uma
imagem, nos casos de lembrancas com imagens.

Para realizar esta exibicao, foi criado um ViewPager, que utiliza instancias de Fragments
especificas - da classe RouteVisualizationMemoryFragment. Cada um destes Fragments é
responsavel por exibir ao usudrio as informagoes de uma memoria (ou dos pontos de inicio
e fim da rota). Notavelmente, cada um destes Fragments é tratado como uma View. A
classe RouteVisualizationMemoryFragment implementa a interface Route VisualizationMe-
mory View, que estd associada ao presenter RouteVisualizationMemoryPresenter, seguindo
a mesma estrutura da arquitetura. Na Figura podemos ver a estrutura de pacotes desta
funcionalidade.

routeVisualization
v presenter
 RouteVisualizationMemoryPresenter
 RouteVisualizationPresenter
view
 RouteVisualizationActivity

» RouteVisualizationMemoryAdapter

 RouteVisualizationMemoryFragment
 RouteVisualizationMemoryView
» RouteVisualizationView

Figura 10: Estrutura de pacotes da funcionalidade de visualizacao da rota

Notamos também que, como nesta funcionalidade nenhum dado é persistido e todos os
dados exibidos (a rota do usudrio) sao recebidos como parametros de entrada da RouteVi-
sualizationActivity, nao foi necessaria a criacdo de nenhum UseCase para esta feature. No

MVP Limpo 25

entanto, foi criado o UseCase FetchUserRouteListUseCase, que é usado para obter a lista
de rotas do usudrio - este caso de uso é executado antes da visualizacao da rota acontecer.

A Figura [1]] ilustra, de forma simplificada, a execucao do fluxo.

Fluxo de visualizagdao de uma rota

Sistema Android RouteVisualizationActivity RouteVisualizationPresenter

onCreate()

/

Ry Gt ey it ittt

presenter.oninitialize(Route)

view.initialize()

presenter.onMapReady()

view.displayRoute(Route)

e——d_ vy {1 _ ___ |

Figura 11: Ilustragao do fluxo de visualizagao de uma rota.

6 A Arquitetura na Coleta de Pontos

Para a coleta de pontos - parte fundamental da funcionalidade de criar rotas, foi de-
senvolvido um mdédulo a parte. Este mddulo é totalmente independente do Mapa Afetivo
- sendo inclusive construido separadamente no processo de build do projeto. Desta forma,
para que o Mapa Afetivo possa utilizé-lo, ele é importado como uma dependéncia que o
aplicativo possui.

Por ser um médulo a parte, ele é tratado pelo Mapa Afetivo como algo externo ao apli-
cativo. Desta forma, a interacdo com este médulo pelo Mapa Afetivo é feita exclusivamente
a partir da camada data da aplicagao. O repositério RouteRepository - cujo codigo da in-
terface foi exibido anteriormente - é responsédvel pela interagdo. As implementacoes de seus
métodos se comunicam com o mddulo externo e sao responsaveis por garantir a criagao da
rota.

O fluxo de Coleta de Pontos inicia na view e passa pelo presenter até a execugao do
caso de uso StartRouteCreationUseCase. Este caso de uso é responsdavel por fazer uso da
camada data - pelo RouteRepository - que, por sua vez, interage com o modulo externo para
iniciar a Coleta de Pontos.

26 Teodosio

6.1 A criagao de um médulo externo

Pela forma como os componentes do Sistema Android funcionam, um Service é adequado
para coletar a localizagdo do usudrio em plano de fundo. Dadas as caracteristicas de um
Service, nota-se que o mesmo nao se enquadra bem em nenhuma das trés camadas da
arquitetura. Este foi o principal motivo pela qual a criacdo de um méddulo externo foi
realizada. Tal moddulo é responsavel por realizar a coleta de pontos do usuario. Sendo um
moédulo externo & parte principal do Mapa Afetivo (embora interno ao aplicativo), ele segue
a sua prépria arquitetura.

A principal classe deste mdédulo é a FetchUserLocationService. Esta classe estende a
classe Service do Sistema Android, e representa um servigo que roda em plano de fundo e é
responsavel por coletar a localizagao do usuario. O funcionamento desta classe é simples: a
partir do momento em que o Service recebe o comando de inicializagao, ele passa a coletar
a localizagao atual do usudrio, com um intervalo de um segundo entre cada requisicao. Para
coletar a localizacdo, é utilizada a biblioteca de Localizagdo do Google [20].

Ao iniciar a coleta de localizacao, o Service é colocado em primeiro plano, e uma no-
tificacdo é exibida ao usudrio - indicando que uma coleta estd em andamento. A cada
um segundo, entao, a localizacdo do usudrio é obtida. O Service possui um mecanismo
observavel, criado a partir do uso de um Observable da biblioteca RzJava. Ao obter uma
localizacao, o Service emite essa localizagao utilizando o Observable, para que possiveis
clientes interessados em obté-la possam fazer uso da mesma - o que nao ocorre no Mapa
Afetivo. Ao obter a localizagao do usuario, um segundo comportamento também é tomado
pelo Service: é feito um célculo para determinar se a localizagao obtida estd dentro de um
raio de cinco metros da localizacao mais recente salva. Caso esta seja a primeira localizacao
obtida, ela é adicionada & lista de pontos percorridos do usuario. Caso nao seja a primeira
localizacao e esteja num raio de cinco metros da localizacao mais recente, esta localizacao
é descartada. No tltimo caso - em que a localizagao obtida estd a mais de cinco metros da
ultima localizacao nao descartada, esta localizacao é adicionada a lista de pontos percorridos
pelo usuario.

Quando o Service recebe o comando de finalizacao da rota - a partir de uma interacao do
usuario - a coleta de pontos é entao interrompida, e a lista com todos os pontos coletados
é retornada a camada data da arquitetura do aplicativo. O Service entao encerra o seu
funcionamento.

Caso, em algum momento durante a criagao da rota, o usudrio resolva adicionar alguma
memoria - em forma de texto ou imagem -, é utilizada uma funcao no Service para retornar
a ultima localizacao disponivel do usudrio [20]. Esta localizagao é entao obtida, e a midia
é associada ao ponto de localizagdo retornado. Os pontos de midia ficam associados ao
RouteRepository.

Ao finalizar a criacdo da rota, os pontos de memoria do usudrio sdo concatenados a lista
de pontos percorridos retornada anteriormente. E feita, entao, uma ordenacao de todos os
pontos pelo horario de captura dos mesmos - de forma a garantir que os pontos de memoria
permanecam na ordem correta. Os pontos sdo, entdo, repassados a camada domain da
aplicacao.

MVP Limpo 27

7 Conclusoes

A arquitetura proposta nao pdde ser seguida em 100%, quando observada a base de
codigo do projeto. Uma das principais razoes para este fator é a curva de aprendizado
associada a arquitetura e as tecnologias do projeto, ligada ao fator tempo relacionado ao
prazo disponivel para finalizacdo e entrega do projeto. Isto ndo é um problema, ja que as
partes fora da arquitetura podem ser adaptadas para fazerem parte da mesma caso isto faca
sentido no futuro, sem prejuizos ao funcionamento da aplicagao.

E importante salientar que a arquitetura desenvolvida possui oportunidades para melho-
rias, especialmente em pontos onde nao foram adotadas restri¢oes fortes. Um exemplo onde
este ponto chama a atencao é em relagao a localizacao das classes de modelos - cuja fungao
Unica é armazenar dados em memoria de forma estruturada - que hoje nao possuem um
lugar bem definido na arquitetura. Na implementagao atual do aplicativo, algumas classes
estdo na camada domain, enquanto que outras - mais atreladas a persisténcia e obtencao
dos dados estao na camada data. O ideal seria definir um local adequado para tais classes,
com sentido légico por trés desta decisao. Um outro ponto de melhorias esté relacionado
a organizagao dos repositorios da camada data - na implementagao atual, diversos repo-
sitérios foram criados, mas a decisao entre quais métodos devem ficar em qual repositério
nao esta semanticamente bem definida.

Por fim, é razoavel acrescentar que o desenvolvimento de algumas funcionalidades por
mim - como a Criagdo de Rotas e a Visualizagdo de Rotas - seguindo a estrutura original
da arquitetura proposta contribuiram para que o restante do projeto seguisse os mesmos
padroes previamente definidos. Os cédigos desenvolvidos para as funcionalidades em questao
- e suas respectivas estruturas - serviram como exemplo para o desenvolvimento do restante
das funcionalidades do aplicativo.

A arquitetura utilizada foi suficiente para a organizacao e estruturacao do projeto. Em-
bora a introdugao de novas tecnologias - como a linguagem Kotlin - e bibliotecas - como Rx-
Java e Kodeln - fortemente atreladas a arquitetura possam ter contribuido para a ocorréncia
de uma curva de aprendizado inicialmente ingreme a ser percorrida pelos desenvolvedores
do aplicativo, é natural que a introdugdo de qualquer arquitetura e/ou tecnologias em
um projeto causem tal efeito. O conhecimento porém adquirido no desenvolvimento da
aplicacao - e de sua arquitetura - utilizando os principios e estruturas aqui apresentados é
de valor inestimavel. Caso o projeto venha a ter futuras evolugoes, com a introdugao de
novas funcionalidades e/ou mesmo a introducao de testes unitérios, é gratificante saber que
tais desenvolvimentos estardao bem encaminhados, dada a base de codigo ja existente e a
arquitetura preparada para suportar a evolucao do projeto.

Referéncias

[1] ENNES, M., & ROMANINI Jr, M. Caminhada como prética do nao-
saber: uma reflexao sobre des-com-passos cotidianos. Disponivel em:
<https://www.publionline.iar.unicamp.br/index.php/simpac/article/download /4400,/4404>.
Acesso em 14 de jan de 2021.

28 Teodosio

[2] MARTIN, Robert C. The Clean Architecture. The Clean Code Blog, 13 de ago. de
2012. Disponivel em: <https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html>. Acesso em: 09 de jan. de 2021.

[3] MARTIN, Robert C. (2017) Clean Architecture: A Craftsman’s Guide to Software
Structure and Design : Pearson.

[4] Model-View-Presenter. Wikipédia. Disponivel em: <https://en.wikipedia.org/wiki/Model-
view-presenter>. Acesso em: 09 de jan. de 2021

[5] MVP architectural pattern. Disponivel em: <https://ducmanhphan.github.io/2019-
08-05-MVP-architectural-pattern/>. Acesso em: 09 de jan. de 2021.

[6] SORAL, Rakshit. Architectural Guidelines to follow for MVP pattern in Android. An-
droidPub, 06 de mar. de 2018. Disponivel em: <https://android.jlelse.eu/architectural-
guidelines-to-follow-for-mvp-pattern-in-android-2374848a0157>. Acesso em: 15 de jan.
de 2021.

[7] Git. Disponivel em: <https://git-scm.com/>. Acesso em: 09 de jan. de 2021.
[8] GitLab. Disponivel em: <https://about.gitlab.com/>. Acesso em: 09 de jan. de 2021.

[9] Cédigo Fonte do Mapa Afetivo. Disponivel em:
<https://gitlab.ic.unicamp.br/ral64468 /mapa-afetivo>. Acesso em: 17 de jan.
de 2021.

[10] Android-CleanArchitecture. Disponivel em: <https://github.com/android10/Android-
CleanArchitecture/>. Acesso em: 15 de jan. de 2021.

[11] OpenDesign. Disponivel em: <https://mc750.0pendesign.ic.unicamp.br/>. Acesso em:
09 de jan. de 2021.

[12] Reis, J.; Santos, A.; Duarte, E.; Gongalves, F.; Nicolau de Franca, B.; Bonacin, R.
and Baranauskas, M. (2020). Articulating Socially Aware Design Artifacts and User
Stories in the Conception of the OpenDesign Platform.In Proceedings of the 22nd
International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN
978-989-758-423-7, pages 523-532. DOI: 10.5220/0009418205230532

[13] RxJava2. Disponivel em: <https://github.com/ReactiveX/RxJava/tree/2.x>. Acesso
em: 09 de jan. de 2021.

[14] ReactiveX. Disponivel em: <http://reactivex.io/>. Acesso em: 09 de jan. de 2021.

[15] Kodein. Disponivel em: <https://github.com/Kodein-Framework/Kodein-DI>.
Acesso em: 09 de jan. de 2021.

[16] Kotlin. Disponivel em: <https://kotlinlang.org/>. Acesso em: 09 de jan. de 2021.

MVP Limpo 29

[17] Extensions - Kotlin Programming Language. Disponivel em:
<https://kotlinlang.org/docs/reference/extensions.html#extension-functions>.
Acesso em: 10 de jan. de 2021.

[18] Application — Android Developers. Disponivel em:
<https://developer.android.com /reference/android /app/Application>. Acesso em:
10 de jan. de 2021.

[19] Google Maps Android SDK. Disponivel em: <https://developers.google.com/maps
/documentation/android-sdk /overview>. Acesso em: 09 de jan. de 2021.

[20] Google Play Services. Disponivel em: <https://developers.google.com/android/guides/overview>.
Acesso em: 09 de jan. de 2021.

[21] Firebase. Disponivel em: <https://firebase.google.com/>. Acesso em: 09 de jan. de
2021.

[22] Firestore. Disponivel em: <https://firebase.google.com/docs/firestore/>. Acesso em:
09 de jan. de 2021.

[23] LEDOUX, Jacques. RxJava2: Schedulers 101 or simplified concurrency, part 1. Me-
dium, 08 de jul. de 2018. Disponivel em: <https://medium.com/@softjake/rxjava2-
schedulers-101-or-simplified-concurrency-management-40ab0Oed1celd>. Acesso em: 09
de jan. de 2021.

[24] Scheduler. Disponivel em: <http://reactivex.io/RxJava/2.x/javadoc/io/reactivex/Scheduler.html>.
Acesso em: 09 de jan. de 2021

[25] TAN, Lawrence. Working with RxJava Disposables in Kotlin. raywenderlich.com, 04
de nov. de 2019. Disponivel em: <https://www.raywenderlich.com/3983802-working-
with-rxjava-disposables-in-kotlin>. Acesso em: 09 de jan. de 2021.

[26] TEODOSIO, Bernardo do Amaral. Motivos para trocar o Java pelo Kotlin ainda
hoje. Medium, 15 de jan. de 2018. Disponivel em: <https://medium.com/movile-
tech/trocar-o-java-pelo-kotlin-8bed76014d99>. Acesso em: 09 de jan. de 2021.

[27] Shaw, Mary, and David Garlan. Software architecture. Vol. 101. Englewood Cliffs:
prentice Hall, 1996.

[28] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. “Design patterns:
Abstraction and reuse of object-oriented design.” In European Conference on Object-
Oriented Programming, pp. 406-431. Springer, Berlin, Heidelberg, 1993.

	Introdução
	Fundamentação Teórica
	Clean Architecture
	Arquitetura MVP
	Model
	View
	Presenter

	Método de Trabalho
	A Arquitetura do Mapa Afetivo
	Uma Arquitetura Híbrida
	Três camadas
	Presentation
	Domain
	Data

	Classes base
	Injeção de Dependências
	AppApplication
	Injeção de dependências na criação de rotas

	A Arquitetura Proposta em Uso
	A Arquitetura na Coleta de Pontos
	A criação de um módulo externo

	Conclusões

