2

4

4

Link Visualization and
Evaluation in LOD

Vitor Kenji Uema, Julio Cesar dos Reis

Relatério Técnico - IC-PFG-20-25
Projeto Final de Graduag3o
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.

O contetdo deste relatério é de tnica responsabilidade dos autores.

Link Visualization and Evaluation in LOD

Vitor Kenji Uema, Julio Cesar dos Reis*

December 2020

Abstract

In Linked Data, data sets should include links to others by interlinking new
information with existing resources. This must improve the “discoverability”
of new and existing data in LOD (Linked Open Data) cloud. However, this is
somewhat overlooked because finding and maintaining links between different
data sets are a costly and time consuming task. In this work, we designed
and implemented an interactive system to support quality inspection of links.
This must help and incentive LOD players to find and maintain links. In our
approach, evaluating a link is based on two graphical representations: a radar
chart and a network graph. The radar chart is used to display similarity values
between the subject and the object of the link; and the network graph is used to
display the link’s subject and object. We present to which extent our proposed
interaction mechanisms help users to evaluate the correctness of a link, which
is an essential task for preserving data quality in LOD data sets.

1 Introduction

Nowadays, the web is the biggest infrastructure for sharing information. One of the
aspects that made the web such a great place to share information is the Hypertext
Transfer Protocol (HTTP), where hypertext documents can include hyperlinks to
other resources that anyone can easily access. Moreover, HTTP together with HTML
(Hyper Text Markup Language) and URL (Uniform Resource Locator) makes the
internet the greatest place to publish, retrieve and discover information, at least for
humans. HTML describes to computers how to display documents. In other words,
how to show a web page to a human being throughout a display. That is, HTML is
designed to be consumed by humans not computers, thereby different services and
applications cannot freely exchange and consume all the information available in the
web.

*Institute of Computing, University of Campinas, SP

2 Uema and Dos Reis

Tim Berners-Lee wrote it back in 2001 wrote the following: “Most of the Web’s
content today is designed for humans to read, not for computer programs to manipulate
meaningfully” [2]. A web where computers can comprehend the meaning embedded
in the web is what Tim Berners called the Semantic Web [2]. In 2011, IBM Watson
won the Jeopardy game-show and in the same year Apple release Siri the virtual
assistant. Both IBM Watson and Apple Siri share a common trait: they rely on
structured information resources such as DBpedidl] and Geonames?, In this context,
What was only accessed and consumed by humans started to be consumable by
computers. Even though these type of systems became famous in the last ten years,
in the biomedical area, the development of ontologies are dated back to 1998 when
researches started to develop the gene ontology. Since then, several other ontologies
have been developed such as the vaccine ontology, the disease ontology and the human
phenotype ontology, to name a few.

Nonetheless, all the structured datasets openly available on the web should not
remain as silos. They need to be linked as those files containing hyperlinks back in
the beginning of the web. The problem of LOD linkage presents many difficulties.
For example, the links between two different resources from different datasets need
to be semantically correct in the sense that the semantic information should be kept
intact as originally designed by its authors. Otherwise, the link may be considered
as broken or incorrect.

Several algorithms, software tools and frameworks have been developed to produce
links. For example, Silk [3], LogMap [9] and Limes [I1]. Approaches to maintain and
update links over time have also been developed [12]. Different frameworks might use
different strategies and as a result the link outcome produced may also differ.

In this work, we developed an interactive software tool that aims to provide ways
to users visualize and analyze produced links between LOD datasets. Our tool must
help to ensure data quality which is essential because several other systems need a
large amount of “good” data. One way to guarantee data quality is through manual
data validation. In this perspective, our tool help users to understand and visualize
links generated by link discovery frameworks or link maintenance frameworks. In
our approach, necessary information to evaluate links are presented in two different
formats: a radar chart and a network graph. The radar chart displays the syntactic
and semantic distance value between resources involved in the link; the network graph
displays the link’s subject and object.

At the current status, our tool supports input links from the Linked Open Data
Maintenance Framework (LODMF) [13]. This framework detects changes in RDF
datasets and their links. RDF is a model that encodes data in the form of subject,
predicate and object through URIs. The subject and the object identify the resource
and the predicate informs how they are related. For each computed change, the

Thttps://wiki.dbpedia.org/
2https://www.geonames.org/

Link Visualization and Evaluation in LOD 3

framework checks if the change “brokes” underlying links. In case of a broken link,
the LODMF suggests some amend suggestion for the link maintenance. For each
broken link, our software tool presents to the user the amend suggestions and ways
of comparing each modified link, so the user can choose the most suitable amend.

The remaining of this document is organized as follows: Section [2] presents Fun-
damental Concepts and Related Work; Section |3| details our proposed Link Evaluator
software tool; Section 4| presents implementation details of the tool; Section [5] dis-
cusses the obtained findings; finally, Section [6] presents the conclusion and summary
of the work’s contributions. Appendix [A] presents details of the Components Life
Cycle.

2 Background

This Section presents the fundamental concepts for understanding this work (cf.
Section , in addition to a synthesis of recent works developed in this line of

investigation (cf. Section [2.2)).

2.1 Fundamental Concepts

Linked Data is not just about making data available on the web, but making links
between them so they can be explored. They refer to structured information meant
for computers, in the sense that data semantics are computer interpretable. One
way to structure linked data is via RDFEI graph (Figure . RDF graph is a directed
named graph, which every triple (node, edge, node) translates to a well-structured
sentence (subject, predicate, object). For example, in Figure , the triples:

(https://dbpedia.org/resource/Wolfgang Amadeus_Mozart,
http://dbpedia.org/property/composer,
http://dbpedia.org/resource/Requiem_(Mozart))

translates to the phrase “Wolfgang Amadeus Mozart composed Requiem”.

RDF aims to make statements about resources using triples. The subject denotes
a resource and the predicate expresses a relationship between the subject and the ob-
ject. The object can be neither a resource or a literal value. A resource is a reference
to real things such as: persons, books and places. Each resource is identified by a
URI (Universal Resource Identifier). As a rule of thumb, each URI is made of two
parts. First comes the namespace then comes the resource identifier. For exam-
ple, in the URI <https://dbpedia.org/resource/Wolfgang_ Amadeus_Mozart>,
<https://dbpedia.org/resource/> denotes the Dbpedia resource namespace and
“Wolfgang_-Amadeus_Mozart” is an identifier. Usually the namespace is abbreviate,

3i.e Resource Description Framework

https://dbpedia.org/resource/Wolfgang_Amadeus_Mozart
http://dbpedia.org/property/composer
http://dbpedia.org/resource/Requiem_(Mozart)
https://dbpedia.org/resource/Wolfgang_Amadeus_Mozart
https://dbpedia.org/resource/

4 Uema and Dos Reis

Gttp:lldbpedia.orglresourceIRequiem_(Moza@

@ps://www.wikidataorg/entity/Q 253

Gﬂp://xmlns.comlfoaf/O.l/pe rsoD
http://dbpedia.org/property/lcomposer

http:/iwww.w3.0rg/2002/07/owl#sameAs http:/lwww.w3.0rg/1999/02/22-rdf-syntax-ns#type

https://dbpedia.org/resource/Wolfgang_Amadeus_Mozart
http:/fwww.w3.0rg/2000/01/rdf-schema#subclassof

http://lwww.w3.0rgl1999/02/22-rdf-syntax-ns#label
http:/lwww.w3.0rg/1999/02/22-rdf-syntax-ns#type

"Wolfgang Amadeus))
Mozart‘@en Gttps.//dbped|a.org/ontologylpersoD

Figure 1: RDF Graph example (inspired by Dbpedia [1]).

so the <https://dbpedia.org/resource/Wolfgang_Amadeus_Mozart> is normaly
seen as <dbr:Wolfgang_Amadeus_Mozart>.

Not all nodes are resources; some nodes are literal which represents concrete data
such as numbers, strings, Boolean, etc. Usually, literals are represented in rectangular
boxes, as exemplified in Figure [I] by the string “Wolfgang Amadeus Mozart” @en. All
data resources are serialized using many formats such as: N-Triples, RDF /XML,
Turtle and RDF/JSON. The Listing (1| shows the Turtle serialization of the graph in

Figure [1]

@prefix dbr: <https://dbpedia.org/resource/>

@prefix dbo: <https://dbpedia.org/ontology/>

@prefix wd: <https://www.wikidata.org/entity/>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

dbr:Wolfgang_Amadeus_Mozart rdf:type dbo:person ;
rdf : type foaf:person ;
rdf :1label "Wolfgang Amadeus Mozart"Qen ;
dbo:composer dbr:Requiem(Mozart) ;
owl:sameAs wd:Q254

dbo:person rdfs:subClass0f foaf:person

Listing 1: Turtle example.

Focusing on triples, we categorize them in two groups: literal triples and RDF
Links [§]:

1. Literal Triples have an RDF literal such as: a string or a number as the object.
Literal triples are used to describe the properties of resources.

https://dbpedia.org/resource/Wolfgang_Amadeus_Mozart

Link Visualization and Evaluation in LOD 5)

2. RDF Links describe the relationship between two resources (subject and ob-
ject). In addition, the predicate defines the type of the relationship between
the resources.

RDF links can be further distinguish based on the predicate and resources location.
For example, if links” predicate is rdf:type, the link is a type property link. If both
resources reside in the same dataset, the link is an internal link. Otherwise, it is a
external link.

Of all possible classifications, we emphasize the identity link, also know as the
instance link. The identity link are represented by the predicates: owl:sameAs,
skos:exactMatch and variations. It defines that the link’s subject and object, repre-
senting the resource, stand for the same concept. An example of an identity link is
<dbr:Wolfgang_Amadeus_Mozart owl:sameAs wd:(Q)254>. This link shows that both
resources, although in different namespaces, represent the same thing. Identity plays
an important role in LOD because it bundle related resources from multiple datasets,
improving the knowledge of a specific resource.

2.2 Related Work

Haller et al. [7] proposed an empirical linkage analysis of 430 datasets from the
LOD Cloud. They mainly analyzed the “dereferenceability” of links found in those
datasets. The authors showed that a great proportion of links are broken. Neither
the subject or object of links are not reachable through HTTP lookup.

Spanhiu et al. [14] presented a framework to profile the quality of owl:sameAs
links in the LOD Cloud. Their work used two similarity metrics: a string similarity
and a numeric similarity (e.g. how close two number are). To evaluate a instance
link, they calculate the similarly score between each property of the instance link’s
subject and object, then all similarity scores are aggregated weighting all values using
the geometric progression of 75% increase.

Ben Ellefi et al. [6] proposed a dataset recommendation approach for data link.
They profile multiple datasets in order to find two datasets that models similar con-
cepts. For example, two datasets that model geographical concepts. Then these two
datasets can be linked using an automatic link discovery framework, such as Silk [3].
To profile a dataset, they retrieve a list of literals that represent the dataset’s “theme”,
then they mesure how similar the list of literals are using a semantic metric based on
the frequency of term co-occurence in a large corpus (bag of words) combined with a
semantic distance based on WordNet.

Regarding general dataset qualities, such as re-use of existing terms, correct URI
usage and low blank node usage, Debattista et al. [5] proposed a conceptual metho-
dology to profile and assess the quality of Linked Datasets (a framework for Linked
Data Quality Assessment). It provides a graphical user interface that shows metadata

6 Uema and Dos Reis

about the quality of a dataset. Although it is not focused on instance link quality,
this contribution was used as a motivation for our work.

Regarding the maintenance of links, Regino et al. [I3] developed a Linked Open
Data Maintenance Framework (LODMF). This framework provides mechanisms to
detect evolution in RDF datasets and how to maintain link up-to-date. To this
end, the framework provides maintenance actions for links, in case it found a bro-
ken link during the evolution detection process. The maintenance actions can be
suggestions for modify the subject (ModifySub), predicate (ModifyPred) or object
(ModifyObject) of the link, remove a link (RemoveLink) or keep the link unchanged
(UnchangedLink).

Most of the literature focus on profile links with other objectives than the main-
tenance of an instance link. However, the techniques used to profile and assert the
correctness of a link can be used to solve the maintenance of an instance link. More-
over, data quality assess frameworks can be used as motivation and inspiration to
design a instance link maintenance graphical interface.

3 The Link Evaluation and Visualization Software
Tool

Our tool aims to offer a way to users visualize and compare links generated based
on link discovery or link maintenance services. In particular, we used the output
from the link maintenance service [13], which generates a list of link suggestion to fix
broken links.

The main functionality designed is the display of similarity metrics and graph
visualization, so a human can assert the correctness of a link. In order to evaluate the
correctness of a link, we need to compare the subject and the object in the context of
the predicate. For example, to evaluate the following link: <geonames:CityOfLondon
owl:sameAs dbpedia:London>, first, it is necessary to obtain prior knowledge on the
meaning of the predicate. In this case, owl:SameAs means that both subject and
object should represent the same resource. On this basis, it is necessary to assert the
properties of both subject and object. If they have similar properties, they possibly
represent the same resource.

In our tool, the evaluation can be conducted in two different ways: through a
radar chart or through a network graph. The radar chart is used to display norma-
lized syntactic or semantic similarity values. Furthermore, any other metric can be
displayed in the radar chart such as an aggregated metric composed by a syntactic
similarity metric and a semantic similarity metric. Additionally, the network graph
works as a double checker for evaluation purpose.

In the following subsection, we explain how the user interact with the software
tool occurs, starting from the initialization of the application to the evaluation of a

Link Visualization and Evaluation in LOD 7

link. Furthermore, we explain the design decision taken during the development of
the tool.

3.1 User Workflow

Figure [2] presents the main interaction flow in the software tool. When entering
the system, the user has two options: continue a task or start a new task (cf. step
A in Figure [2)). If the user chooses to start a new task, (s)he must enter all required
data. It includes the source data set V0; source data set V'1; the target data set; the
predicates list; and the background knowledge file (e.g. WordNetﬁ or BabelNetE]), a
semantic network used to calculate semantic metrics (c¢f. step B in the Figure .
These are the required files for the LODMEF. After the input phase, it is sent to the
sever, that runs all the computation. When the server finishes its computation (e.g.
finds all broken links, generates amend suggestions, calculates all similarity metrics),
it sends the results on demand to the application.

Completed the task creation phase, the user experiences the overview dashboard.
This dashboard enables the user visualize the itemized percentage (%) of verified links
and other statistics about the server output (cf. step C in the Figure .

The loop from step D to step G represents the process of evaluating each link. In
step D, the user selects one link to analyze - the list of links are itemized according to
changes in the link’s subject, predicate or object detected by the LODMF (c¢f. step D
in Figure[2). After the link selection, the user visualizes the link evolution dashboard
(cf. step E in Figure [2)) - this dashboard presents detailed information about the link
evolution along with maintenance action suggestions. Next, the user can compare all
the maintenance suggestions through the analysis of the radar chart and the network
graph (cf. step F in Figure . Finally, the user decides what is the final action on
the under analysis link, eg., choose any of the fix suggestions or remove the link (cf.
step G in Figure . From step G, the user can select another link to analyze (go
back to step D) or save the selected action.

In the following subsections, we present the tool interfaces related to each of the
steps illustrated in the interaction flow (Figure [2). For each subsection, we indicate
in the storyboarding the interface of the system which it represents.

3.1.1 Step A and B: Create New Task and Submit Input Form

First of all, the system presents to the user an welcome screen (Figure in
which (s)he can take two actions: continue a link analysis task or create a new one.
The user can continue a previous link analysis task by clicking in one of the recently
opened task or by clicking on the open task. (S)he can create a new link analysis

“4https://wordnet.princeton.edu
Shttps://babelnet.org

8 Uema and Dos Reis

B User Review Link Changes
Y
A Select a Database Set
- - 3) Select a Link to Analyze

1) Welcome screen

C

]
-_ _ | 2)Overview Status

Visualization

User analyse another link

L 4) Link Evolution _| 5)Link Suggestion _ 6) Choose an _ Save data
Visualization o Comparison | Action Command o set changes
E F G H

Figure 2: User Interaction Flow.

task by clicking to create a new task. By doing so, an upload screen appears (Figure
[BB), then the user can click cancel and go back to the welcome screen; or (s)he can
fill all input formats and click on upload. After click on upload, all data sets and the
predicates are sent to the server.

3.1.2 Step C: Overview Status Visualization

After the serve response, the system presents to the user an overview dashboard
(Figure E[) In the left side, it stays the links itemized by the changed happened. In
the right side, it appears an overview dashboard. Two pieces of information compose
the overview dashboard. First, general information about the task - which data sets
were used and overview statistics about the output (e.g., total number of unchanged
links and total number of removed links). Second, how many links the user have
verified, discarded and unchecked, presented in a donut chart type.

The main objective of the overview dashboard is to remind the user of the cur-
rent status of the task. That is why it is shown right after the initialization of the
application. In summary, the overview dashboard shows how much work has to be
done and what percentage of the work has been done. Furthermore, the progress bar
in the bottom left tracks the work completed.

3.1.3 Step D: Click on a Link in the Index

The left side of Figure 4| can be expanded to show the links (Figure [5|); then the
user can select a link to analyze. The links are divided into three groups: (1) modified

Link Visualization and Evaluation in LOD

2] Task Name

Insert Task Name

4 I Datasets

) = Source Dataset VO: choose File |no file selected
LlnkmEi\:gllgator = Source Dataset V1: choose File |nofile selected
B = Targert Dataset: choose File | nofile selected
= Background Knowledge File: choose File |nofile selected

& Create New Task

£ Open Task
o Hep = Link's Predicates @
Predicates

owl:sameAs &

New Link Predicate...

=3 3

(b) Upload Dialog.

(a) Welcome Dialog.

Figure 3: Welcome and upload dialogues.

> Modified Subject

5 Modified Predicate
O DataSets

~
> Modified Object TaSk Pr09ress = Source dataset: GeoNames
= Target dataset: DBpedia

Verified

= Number of Links

__—Discarted = Total:

= previous: 100

= actual: 100
Unchanged: 100
Removed: 100
Subject Modicated: 100
Predicate Modificated: 100
Object Modificated: 100

Unchecked

Figure 4: Overview status screen.

10 Uema and Dos Reis

subject, (2) modified predicate and (3) modified object. These are links whose the
LODMEF consider to be broken. As a form of abbreviation, the predicate of each
link is replaced by a mathematical symbol representing the semantic meaning of the
predicate.

In fact, owl:SameAs, skos:exactMatch are represented by the equal sign (=);
skos:closeMatch by the approximate sign (=) and owl:differentFrom by the diffe-
rent sign (#). The subject and object are abbreviated to the data set name followed
by a label. All these abbreviations aim to shorten the link for display reasons and to
bring semantic tips because the complete URL of a link can be quite long and hard
to understand. For example, the link:

<https://sws.geonames.org/2643743
owl:sameAs
http://dbpedia.org/resource/London>

is too long and the meaning is not obvious, therefore it is abbreviate to:

<gn:London = dbr:London>.

~ Modified Subject
gn:London = dbr:London
gn:NewYorkState # dbr:NewYork
v Modified Predicate
gn:GreatSaoPaulo = dbr:SaoPaulo

~ Modified Object

Figure 5: Index Example.

3.1.4 Step E: Link Evolution Visualization

When the user clicks at any link, specific information about the link appears in
the right side (Figure @, along with a new tab - blue indicates which tab the user is
currently seeing (item 1 in Figure @ This dashboard shows the link evolution. In
other words, how the link was in the source data set V0 and how it is at the current
version in the source data set V1 (item 3 in Figure[f]). The link evolution dashboard
shows the maintenance suggestions (item 2 in Figure @; more suggestions appear
when the user clicks on the show more suggestions. Additionally, in this dashboard,
the user can select multiple links suggestions to compare (item 4 in Figure E[)

https://sws.geonames.org/2643743
http://dbpedia.org/resource/London

Link Visualization and Evaluation in LOD 11

Link Evolution

Link from S VO: https://sws.g 0rg/2643743 owl: As http:/dbpedia.org/resource/London

L

Link from Source V1: https://sws.geonames.org/11609024 owl:sameAs http://dbpedia.org/resource/London

EL-' t links to compare

Fix Suggestions
2 selected

7
IEI Similarity Metrics @ Network Graph @

-

ra
La

venshtei...

= -&E._ -~ 7
:z WorldN jasari -“" 'h
- 1}.@

; - f
e

*

Confidence Level

laﬁ

Figure 6: Link Evaluation.

12 Uema and Dos Reis

3.1.5 Step F: Link Suggestion Comparison

The user can select multiple link amend suggestion from the selector (Figure .
All selected links appear in the chip list bellow the selector, each one with a different
color (item 5 in Figure @, matching the color used in the radar chart and network
graph. When choosing multiple amend suggestion, the user can use the radar chart
and the network graph to compare multiple amend suggestion, then s(he) can choose
the best suggestion.

In the radar chart, the user can hover through to analyze the precise metric value.
In the network graph, the user can use the mouse to navigate and zoom the graph.
Clicking on the expand icon (item 8 in Figure @, the network graph enters in full-
screen mode.

» Select links to compare

https://sws.geonames.org/11609024 ... -

[https://sws.geonames.org/3458449 o...

Figure 7: Select links to compare.

The radar chart displays three different metrics: one string similarity metric (Le-
venshtein distance [10]) and two semantic similarity metrics. One using the NASARI
semantic vector [4] representations and other using the WordNet knowledge base, the
was calculated based on how many nodes are between two terms.

In the radar chart (item 6 Figure @, the user can visualize all computed values of
metrics at once. Therefore, (s)he can decide his own aggregation function. The user
can decide which metrics are more important and mentally assign weights to each
metric and then make a decision about the correctness of an link amend suggestion
based on his own judgment. Moreover, the user Conclusively, the user Judges which
link amend suggestion is the correct one.

Depending on the information available or the lack of information, only the metrics
might not be enough to evaluate the link. Concerning the string similarity metric, two
different concepts might use the same label. For example, the Label “London” could
represent the capital of the United Kingdom or a city in Ohio, USA. Both labels would
yield the same Levenshtein distance value, even though they represent two different
things. That is, the metrics might mislead the user and additional information are
needed. Hence, the network graph aims to fill any possible gaps and doubts left by
the similarity metrics.

Link Visualization and Evaluation in LOD 13

3.1.6 Step G: Choose an Action Command

After comparing the amend links suggestion and electing one, the user can choose
what s(he) wants to do with the broken link (Figure[8). (S)he can take three actions:
keep the first suggestion, change to any other suggestion or discard the link. To
change the amend link, the user can click on show more suggestions and choose any
link from the list; the selected link appears above the list of suggestions. Furthermore,
the user can choose if (s)he wants to use one of the amend options or (s)he wants to
remove the link from the data set.

Figure 8: Select Maintenance Action.

4 Implementation

Figure [0 presents the overall system architecture. The back-end side needs to
implement a REST API and provides three services: (1) metrics and statistics cal-
culator, which calculates all the similarity metrics used in the radar chart; (2) a
database, which generates the network graph; (3) A link generator service, which
generates the link list.

4.1 Technologies

We present the main technologies explored in our development.

Angulatﬂ is currently in the 11.0.0 version. It is a popular framework also knows
as Angular 2+, which is the successor of AngularJS (Angular 14). From now and so
on, we refer to Angular 24 as Angular.

Shttps://angular.io

https://angular.io

14 Uema and Dos Reis

Server
[) | RIS
| e— —
_—
HTTP ‘
get/post
. Metrics and DataBase
Statistics

Calculator

- User interaction
The link evaluator N

(web Interface)

Silk Framework LinkEvol

o

Link generator Services

response

Figure 9: System Architecture.

An Angular application is a composition of modules. A module is a mechanism to
group components, directives, pipes and related services. A component is the main
building block of an Angular application and consists of a typescript class; HTML
files and a CSS file. Likewise, the services, pipes and directives are the connectors
that stay between components. They provide ways to components interact with each
other.

Angular Materia]ﬂ provides Ul components based on Google’s Material Design
and it was used to bootstrap and accelerate our development process.

Ngx—chartﬁﬂ based on dfﬂ ngx-charts was used to render all charts. Ngx-charts
provides a common chart which can be used out of the box, but it provides ways to
generate the custom chart. Ngx-charts was used instead of pure d3.

Vis.jﬂ: is a dynamic, browser based visualization library. The library is de-
signed to be easy to use and to enable manipulation of and interaction with the data.
The library consists of the components: DataSet, Timeline, Network, Graph2d and
Graph3d. However, only the Network component was used in our implementation.

REST APIM|is based on representational state transfer (REST), which is an
architectural style and approach to communications often used in web services de-

"https://material.angular.io
8https://swimlane.gitbook.io/ngx-charts/
Yhttps://d3js.org
Onttps://visjs.org
Uhttps://www.redhat.com/en/topics/api/what-is-a-rest-api

https://material.angular.io
https://swimlane.gitbook.io/ngx-charts/
https://d3js.org
https://visjs.org
https://www.redhat.com/en/topics/api/what-is-a-rest-api

Link Visualization and Evaluation in LOD 15

AppModule \
AppComponent
Overview \
overviewComponent [Widgets
WelcomeLayout \ .
MainLayout \ LinkCompareSelectorComponent
LinkInfoComponent
WelcomeComponent X NetworkGraphComponent
WelcomeDialogComponent MainComponent PieChartComponent
UploadbialogComponent IEEKEEEIZZB RadarChartComponent
TableComponent
LinkEvolComponent
Shared \
[AnguTarMaterial)
HeaderComponent
TabsComponent Anggé;roﬁgﬁgglal
IndexComponent B
TreeWithPartialload Used_by
ProgressOverviewBar all
modules

Figure 10: Modules Diagram.

velopment. All the requests managed through HTTP. That is, the HT'TP requests:
GET, PUT, POST and DELETE refer respectively to: reading, updating, creating
and deleting data operations.

4.2 Code Design

The front-end application contains eight modules, as shown in Figure [I0l Four
modules: Welcome Layout Module; Main Layout Module; Overview Dashboard Com-
ponent; and LinkEvol Dashboard Module deal with the organization, layout and in-
terconnection of components. Two modules: the shared module; and the widgets
module have all the components used in our development.

The AppModule contains only the AppComponent, the start point of the tool. The
SharedModule presents all the components used by the Welcome Layout Module and
Main Layout Module. All components in this model deal mostly with app navigation.
For example, the TabsComponent displays the opened tabs and it does the navigation
through the opened tabs, similar to the tabs in a web browser.

The Widgets Module has all the components used by the Overview and LinkEvol
Modules. All the components in this module neither deals with data display or action
selection. The NetworkGraphComponent, the PieChartComponent, the RadarChart-
Component and the TableComponent receive input data and displays it. Furthermore,
the LinkInfoComponent and the LinkCompareSelectorComponent receive a list of link
amend suggestions as input and output the list of selected links IDs. The output can
be passed to RadarChartComponent and NetworkGraphComponent as an input.

The Main Layout Module is responsible to anchor the OverviewComponent and

16 Uema and Dos Reis

the LinkFEvolComponent. By doing so, all components in the shared and widgets
module can be reused and a new layout (screen) can be easily created. The only
things that need to change is the routerd™ to fit the new layout into the navigation
flow. The Welcome Layout Module defines the welcome and upload dialogues, along
with the interaction between the two dialogues.

The Overview and LinkEvol Modules behave similarly. They define the position
of components from the Widgets Module. Depending on which component they use,
these modules need to handle the components’ input/output flow. For example,
the LinkCompareSelector generate a list of link IDs, which RadarChartComponent
and the NetworkGraphComponent use as input. The RadarChartComponent and the
NetworkGraphComponent use the list of link IDs to fetch data from the server.

The AngularMaterialModule keeps organized all the angular material components
used in the application. The WelcomeLayoutModule is responsible to display the first
two dialogues. More details of all components are present in Appendix [A]

5 Discussion

Data has more value if it can be connected to more data. However, many data
sets in LOD cloud show a low number of instance links due to the difficulties of the
linkage task. Despite the complexity of this task, most link discovery frameworks do
not present a way to users evaluate generated links. In addition, link maintenance
frameworks may also need to provide a way for a humans evaluate the quality of links.

This work developed a link evaluator software tool to allow users to profile the
output produced by those frameworks. In particular, a LOD data set manager or a
record linkage researcher can use our link evaluator tool to verify the correctness of
theirs links created. Our link evaluator tool can be useful in this context because
wrong links in LOD data sets can be harmful to other services, such as: a recommen-
dation service or knowledge discovery services.

The radar chart and the network graph complement each other and present infor-
mation to users rank link suggestions. Comparing two links with different predicates
might be problematic and mislead the user evaluation. For example, considering the
links: (1) <ezxample:London(UK) owl:sameAs example:London(Ohio, USA)>; and
(2) <example:London(UK) owl:differentFrom example:Londrina(Brazil)>; the user
might choose link (1) as being correct, since the radar chart could present a greater
Levenshtein distance value for link (1), however link (2) is the correct one. The radar
chart can mislead the user, because the radar chart guides the user to choose links
with greater similarity values. But in a case were a link represents how unsimilar the
subject and object are, the similarity values are low, even though the link is correct.
To maneuver around this problem, new metrics that consider the meaning of multiple

12https://angular.io/guide/router

https://angular.io/guide/router

Link Visualization and Evaluation in LOD 17

predicates should be developed or links with different predicate meaning should not
be compare.

Regarding the code quality, new components and page layout can be added to the
tool without major problems, due to the modularity that Angular provides. However,
how the routers are set to navigate through the page structure may need changes,
which can cause some difficulties. The server communication may be improved.

Only the front-end side was developed in this work. The server-side representation
are left open. How the back-end side must be arranged was not addressed in this work.
Upon the back end development, the services and the data exchange interface can be
further developed.

For improvements, a usability inspection could be performed to identify problems
in the design and learn how the users experience the implemented tool. This can
indicate improvements in how to refine the features in the tool.

6 Conclusion

Links play an essential role in LOD, especially instance links. They interconnect
different datasets thus enable the creation of larger and richer datasets. Although
several frameworks have appeared for link discovery and maintenance, we observed a
lack of tools to help users understanding, visualizing and analyzing generated links.
We designed and implemented a software tool to provide metrics, statistics and meta-
data to users evaluate and analyze the correctness of instance links. Similarity metrics
are presented in a single radar chart. This enables users to compare multiple links
and rank them for selection and curation. The tool implements a network graph
containing information on the properties of the subject and object of the link. Our
software tool was implemented in a modular way and all components are reusable,
which allows further improvements in the tool with minor changes.

Acknowledgements

We thank the Sao Paulo Research Foundation (FAPESP) (grant #2017/02325-

51

13The opinions expressed in here are not necessarily shared by the financial support agency.

18 Uema and Dos Reis

A APPENDIX: Components Life Cycle

This section explains how each component works. In summary, for each com-
ponent, we present its sequence of events, services used and interactions with other
components. Of the total 16 components presented and implemented, we discuss 6
of them.

A.1 Welcome Component Life Cycle

The welcome component takes care of steps A and B in Figure . Since these
steps are composed of two dialogues, one for the initial screen and one for the upload
screen, we have two more components to handle each dialog. The welcome dialog
components represents the Figure [3a} the upload dialog component represents the
Figure [3b| (presented in the Section .

Figure [11] shows the sequence of events from the start of the application to the
upload of the user input. When the application starts, the welcome dialog starts,
because only the creation of a task event is implemented. Figure [L1] does not show
any sequence of interactions of opening a task. The upload dialog starts right after
the user clicks on to create a task. When all inputs are fulfilled, the user can click
on upload, which triggers three events. First, the pload dialog component calls the
Links service’s upload input method. This method makes a HTTP POST to the
server with all input files. Second, it calls the Tabs Service’s addTab method to add
the overview tab. Finally, the Upload Dialog Component closes both dialogues and
calls the Router service to navigate to the overview dashboard in the main layout

(Figure [12).

A.2 Overview Component Life Cycle

The overview component takes care of the step C in Figure. Figurerepresents
the sequence of events that happens from the user upload to the presentation of the
overview dashboard. The overview component uses two services and two components.
The pie chart component is used to display the number of keep, discarded and not
verified links. The overview stats component is used to display general information
about the generated links. Since both components receive data from the overview
component, first the overview component needs to fetch all data. To do so, it uses two
services: overview stats service and saves link service. The overview stats service is
responsible to make the HTTP GET request; it returns an observable to the overview
component. The save link service returns the status of all links. In summary, how
many links should be kept, discarded or unchecked. After the return of all data, the
pie chart and the overview stats show the results to the user.

Link Visualization and Evaluation in LOD

<<html>>
welcomeDialog

X

User

<<component>>
WelcomeComponent

<<component>>
<<html>> UploadDialog
uploadDialog Component

<

LinksService

<<inj
tabsService

Router

<<http server>
Server

S(:an the apphcatidn

| Init D

Click create new Task |

Set all upload fields

| Fpen upload window

Show:fields content

Click in Upload

Upload input
——

POST input

Add overview tab

clpse all
dfalogs

[

Navigate to fain layout (overview dahsboard)

Show main layout (overview dashboard)

Figure 11: Welcome Component Sequence Diagram.

<<component>> <<component>> <<component>> <<injectable>> jectable>> *
<<html>> Overview PieChart Overvi Overvi saveLink <<http server>>
overview Component Component Component Service Service Server
s i i i i i i
[~ Jart overview
on init ' !] : : H
. getstats data ' i : :

GET stats data

observable

stats data

get pie cH:arl data

input: overview stats data

pie chaét data

input: pie chart data,

show pie chart

show overview stats

Figure 12: Overview Component Sequence Diagram.

20 Uema and Dos Reis

A.3 Index Component Life Cycle

The index component takes care of step D in Figure . Figure |13| represents the
sequence of events that happens when a user clicks on a link to evaluate it. The
index component uses the links Service to make a HT'TP GET request, then after the
server response it displays the link list. When the user clicks on the link, it triggers
two events: first a new tab is added using the tabs service, then the index component
uses the router service to navigate to the link evol tab (Figure @

<<html>> <<component>> <<|njectable>> <<|njectable>> <<injectable>> <<http server>>
index indexComponent LinksService TabsService Router Server

User

—start index

> Onlnit
|_ = get link's tree
| GET link's tree
<’6t§§é?x?éb’|é"l v S D
click on link -
add lirtk tab
navigate to link tab

show link tab

Figure 13: Index Component Sequence Diagram.

A.4 LinkEvol Component Life Cycle

The link evolution component takes care of E and F in Figure [2). Figure
represents the sequence of events that happens from the user clicks on a link in the
index to the display of all information. The link evolution component arranges the
position and the input/output of all widgets used to evaluate the correctness of the
suggested links. On start, the link evolution component uses the link service the make
a HTTP GET request to get the link information and maintenance suggestions (Figure
@ first to cards). When the server sends the response, the link evol component passes
the link information and suggestions to the link info and link compare components,
respectively. By default, the selected link to compare is the first link in the suggestions
list. This link is used to start the radar chart component and the network graph
component.

Link Visualization and Evaluation in LOD 21

In the link compare component, multiple links can be selected. When the list of
selected list change, all selected link ¢ds are sent back to the link evolution component,
which uses the output list to feed to the radar chart and network graph. When the
radar chart component and network graph receive the input, they use the radar chart
service and the network graph, respectively, to fetch data from the server. These two
services send the list of links ¢d to the server to get the radar chart data and the
network graph data. When the server sends the response, the radar chart and the
network graph are displayed.

<<component>>

<<component>> LinkCompare > inj > i
Linkinfo Selector RadarChart RadarChart NetworkGraph NetworkGraph
© Ci it Service Component Service

GET link info :]

link info data

<<Injectable>>
LinkService

<<http server>>

< >
LinkEvol
Server

Component

<<html>>
linkEvol

C

X

User

startlinkEvol__ constructor

getLinkinfo

observable T~
nput: link suggestions

input: link info and suggestions j input: links selected (default)] getnetwork

input: links CER L GET network

selected (default) —

show link info and suggestions

Data
show link compare selector <’r§é’nﬁu’f|§’&§t’a”D

| get radar chart values observable T

how radar chart =

T GET radar chart values

i observablef D

............... radar chart values

Figure 14: LinkEvol Component Sequence Diagram.

A.5 LinkInfo Component Life Cycle

The link info component is used to show the currently selected fix link. It also
shows other link suggestions along with the action the user can take (keep fix link
or discard link). On start the link info component receives the input from the link
evol component and displays the default select fix link. Then the user can take three
actions: (1) click on show more suggestions; (2) select a new link from the suggestions;
(3) decide if (s)he keeps one of the fix suggestions or discard the link. Figure|15shows
one possible permutation of the three actions mentioned.

A.6 Tabs component life cycle

The tabs component is used to change the displayed dashboard. Figure [16|shows
one one possible sequence of event. On start, the tabs component gets the list of
opened tabs from the tabs service. Then the user can choose between two actions:
(1) click to navigate to any opened tab; or (2) close a tab. The user can re-arrange
the tabs order by dragging a tab, event not shown in Figure |16}

22 Uema and Dos Reis

<<html>> <<component>> <<injectable>> *
linkinfo LinkinfoComponent saveLinkService

User

start linkinfo
T

on init(input: linksList)

click show more suggestions

show more suggestions

select link from suggestion

show selected link —

choose keep/discard

save link

show selected action

Figure 15: Keep/discard Link Sequence Diagram.

<<html>> <<component>> inj >>
tabs TabsComponent TabsService Routers
User
—— Start tabs
- » constructor
get opened tabs
L [~ opened tabs
click on tab n ey —_—
> navigate to tab n
show tab =
click on close tab n
navigate to tabn- 1 —
remove tab n
I showtabn-1 ||

Figure 16: Tabs Component Sequence Diagram.

Link Visualization and Evaluation in LOD 23

References

1]

2]

[10]

Dbpedia: About: Wolfgang amadeus moza. https://dbpedia.org/page/
Wolfgang Amadeus_Mozart. Accessed January 2021.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: a new
form of web content that is meaningful to computers will unleash a revolution of
new possibilities. 2001. Cited on, page 18, 2011.

Christian Bizer, Julius Volz, Georgi Kobilarov, and Martin Gaedke. Silk-a link
discovery framework for the web of data. In 18th International World Wide Web
Conference, volume 122, 2009.

José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli.
NASARI: a novel approach to a semantically-aware representation of items. In
Proceedings of the 2015 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
567-577, Denver, Colorado, May—June 2015. Association for Computational Lin-
guistics.

Jeremy Debattista, Soren Auer, and Christoph Lange. Luzzu-a framework for
linked data quality assessment. In 2016 IEEE Tenth International Conference
on Semantic Computing (ICSC), pages 124-131. IEEE, 2016.

Mohamed Ben Ellefi, Zohra Bellahsene, Stefan Dietze, and Konstantin Todorov.
Dataset recommendation for data linking: An intensional approach. In EFuropean
Semantic Web Conference, pages 36-51. Springer, 2016.

Armin Haller, Javier D Fernandez, Maulik R Kamdar, and Axel Polleres. What
are links in linked open data? a characterization and evaluation of links be-

tween knowledge graphs on the web. Working Papers on Information Systems,
Information Business and Operations, (2/2019), 2019.

Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data
space. Synthesis lectures on the semantic web: theory and technology, 1(1):1-136,
2011.

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and
scalable ontology matching. In International Semantic Web Conference, pages
273-288. Springer, 2011.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707-710. Soviet Union,
1966.

https://dbpedia.org/page/Wolfgang_Amadeus_Mozart
https://dbpedia.org/page/Wolfgang_Amadeus_Mozart

24

[11]

[12]

[13]

[14]

Uema and Dos Reis

Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Kleanthi Georgala,
Mofeed Mohamed Hassan, Kevin Drefliler, Klaus Lyko, Daniel Obraczka, and
Tommaso Soru. Limes-a framework for link discovery on the semantic web.
Journal of Web Semantics, 2018.

André Gomes Regino, Julio Kiyoshi Rodrigues Matsoui, Julio Cesar dos Reis,
R. Bonacin, A. Morshed, and Timos Sellis. Link maintenance for integrity in
linked open data evolution: Literature survey and open challenges. Social Work,
pages 1-25, 2020.

André Gomes Regino, Julio Cesar dos Reis, and Rodrigo Bonacin. Lodmf: A
linked open data maintenance framework. In Semantic Technologies for Smart
Information Sharing and Web Collaboration (Web2Touch) at the 30th IEEE In-
ternational Conference on Enabling Technologies: Infrastructure for Collabora-
tive Enterprise (WETICE’20) (accepted for publication), 2020.

Blerina Spahiu, Cheng Xie, Anisa Rula, Andrea Maurino, and Hongming Cai.
Profiling similarity links in linked open data. In 2016 IEEE 32nd International
Conference on Data Engineering Workshops (ICDEW), pages 103-108. IEEE,
2016.

	Introduction
	Background
	Fundamental Concepts
	Related Work

	The Link Evaluation and Visualization Software Tool
	User Workflow
	Step A and B: Create New Task and Submit Input Form
	Step C: Overview Status Visualization
	Step D: Click on a Link in the Index
	Step E: Link Evolution Visualization
	Step F: Link Suggestion Comparison
	Step G: Choose an Action Command

	Implementation
	Technologies
	Code Design

	Discussion
	Conclusion
	APPENDIX: Components Life Cycle
	Welcome Component Life Cycle
	Overview Component Life Cycle
	Index Component Life Cycle
	LinkEvol Component Life Cycle
	LinkInfo Component Life Cycle
	Tabs component life cycle

