
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Sistemas Distribuídos -
Aplicações de Micorsserviços

e sua Infraestrutura
Gunter Mingato de Oliveira

Relatório Técnico - IC-PFG-20-20

Projeto Final de Graduação

2020 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Sistemas Distribúıdos

Aplicações de Micorsserviços e sua Infraestrutura

Gunter Mingato de Oliveira ∗

Resumo

Foi feito um estudo para definir o que são microsserviços, para saber quando se
aplicar, saber suas definições e seus pontos negativos. E com um ponto negativo re-
lacionado ao tempo de comunicação entre os microsserviços foram feitas análises para
poder criar microsserviços que possuam tempo de respostas adequados e segurança e
autenticação de acordo com os requisitos do sistema. Algumas análises de tempo, stress
e performance foram feitas para ver quais são as melhores configurações para poder
atender um cliente de acordo com as suas exigências.

1 Introdução

Em tecnologia da informação as demandas por produtos vem aumentando muito nos últimos
anos, bem como as exigências como ter um sistema com alta escalabilidade e disponibili-
dade. Antes os sistemas eram monoĺıticos onde toda as partes do BackEnd e FrontEnd das
aplicações funcionavam em uma única máquina e em um único software, e como sistemas
monoĺıticos não atendem às exigências, uma nova forma de desenvolver sistemas começou
a surgir fazendo com que o sistema seja distribúıdo, ou seja, distribui todo o sistema em
microsserviços: uma aplicação do sistema que possui o seu próprio BackEnd e FrontEnd,
e que é posśıvel ser executada independentemente do restante do sistema. Por outro lado,
como as aplicações se comunicam através da rede de internet, surgem outros problemas:
tempo de resposta de requisição entre as aplicações, e de segurança, pois os dados estarão
trafegando pela internet, o que ocasiona uma maior vulnerabilidade dos dados.

Neste TCC será realizado um estudo mais detalhado de microsserviços e Middlewares
para entender as melhores formas de utilizá-los, baseados nos tempos de respostas das re-
quisições entre as aplicações (Microsserviços e middlewares). Para poder usar microsserviços
em um sistema também foi necessário ter conhecimentos sobre programação, computação
distribúıda e redes de computadores em sistemas de gerência de recursos distribúıdos. Os
passos para implementação de um sistema de gerência de recursos envolvem a identificação
de caracteŕısticas e modelagem de um sistema computacional distribúıdo, a identificação
de aplicações e suas caracteŕısticas para serem aplicadas ao modelo, o desenvolvimento de
poĺıticas e algoritmos de alocação de recursos para otimização de critérios do Sistema e

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Trabalho de
Conclusão de Curso: Engenharia de Computação

1



2 Gunter M. Oliveira

requisitos das aplicações. A partir da identificação e modelagem do sistema distribúıdo a
ser considerado, um estudo sobre poĺıticas de alocação de aplicações nesse tipo de sistema
será desenvolvido. Em seguida, as necessidades de um sistema de gerência de recursos
e/ou poĺıticas de alocação de recursos que levem em conta a capacidade e desempenho
computacional e os requisitos de aplicação modelados serão projetados e avaliados.

2 Conceitos Básicos

Microsserviço é uma pequena aplicação a qual pode ser colocada em produção, depurada,
testada independentemente do resto do sistema, possuindo apenas uma função, e tendo que
ser uma aplicação facilmente entendida. A função seria definida como uma função funcional
ou não, ao qual pode ser a consulta (requisição de uma mensagem), e alguns processamentos
no dado obtido da resposta de uma requisição.

Ter uma sistema baseado em microsserviços torna o sistema mais fácil de realizar ma-
nutenções, identificar problemas, por ter uma complexidade e organização mais simples.
Outra vantagem é a possibilidade do crescimento do sistema, ou seja o sistema é escalável,
tanto verticalmente como horizontalmente.Aplicações baseadas em microsserviços facilitou
no desenvolvimento de cada componente do sistema, porque cada componente pode ter
sua própria linguagem de programação, tanto quanto frontEnd como backEnd, e banco de
dados, ou seja, uma arquitetura MVC (Model View Controller) e cada uma dessas partes
também podem estar em máquinas separadas.

Por outro lado as dificuldades e o maior trabalho passou a ser na comunicação entre
cada aplicação, na segurança, autenticação e no gerenciamento dos microsserviços.

Para poder lidar bem com essas dificuldades o sistema tem que ter uma base bem
estruturada. Para lidar com dificuldade de comunicação entre as aplicações será necessário
ter as interfaces dessas comunicações bem definidas. As interfaces de comunicação são
conhecidas como API (Application Programming Interface), e a padronização para estas
interfaces são em REST (Representation State Transfer). As principais padronizações serão
de como acontecerá às requisições de GET, POST, PUT e DELETE, que são a busca,
criação, alteração e exclusão de um determinado recurso, então das requisições citadas cada
uma terá definida o que ela enviará e receberá no seu header, body, parameters, e como
será definida a uri para cada uma delas. O protocolo usado em cada requisição é HTTP
(Hypertext Transfer Protocol).

Outra forma para melhorar a comunicação entre os microsserviços, principalmente quando
um microsserviço precisa fazer uma requisição para sites de terceiros e este não está nos
padrões de comunicação, neste caso é usado um middleware que fará esta intermediação.
Com esta funcionalidade Middlewares também auxiliarão no aux́ılio de migração de siste-
mas monoĺıticos para distribúıdos, pois como o sistema monoĺıtico não foi implementado
nos padrões descritos e a migração sempre ocorre de forma gradativa, à medida que micros-
serviços vão sendo criados o sistema monoĺıtico vai perdendo suas funcionalidades, então o
middleware fará o papel de padronizar as comunicações entre as aplicações. Este processo
de migração está sendo realizado no sistema que está sendo estudado neste TCC.

Para gerenciar o sistema distribúıdo pode ser usado um coordenador (gerencia todas as



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 3

aplicações), para poder saber o status de cada aplicação de tempo em tempo é mandado
mensagens de broadcast. Neste peŕıodo do TCC não foi posśıvel implementar um coordena-
dor, mas futuramente será implementado e para isso será feito com o aux́ılio do Kubernetes
para fazer o monitoramento das aplicações e com o Docker para fazer a hospedagem das
aplicações.

Uma das maneiras de limitar o acesso externo, e assim ter uma segurança melhor de uma
sistema, é através da criação de gateways, que permite que aplicações externas enxergue
apenas um grupo de endpoints, isso permite que aplicações externas não saiba que existam
endpoints que servem para controle internos, assim uma aplicação externa só irá acessar um
grupo de endpoints definido independentemente se a permissão da aplicação externa mudar.
Também pode ser definido os endpoints que as aplicações internas poderão enxergar, isso faz
com que requisições desnecessárias sejam executadas, um tipo de configuração para limitar
o acesso aos endpoints de acordo com contextos pode ser visto na Figura 1. Para se criar
gateways será usado o WSO2 API Manager. O API Manager também será usado para
fazer a padronização das API, além disso ele possui o seu analytics que será utilizado para
realizar todas as análises de chamadas das APIs.

3 Descrição do sistema

Tecnologias usadas: Spring Boot, Node, WSO2 Identity Server, Nginx, AWS (Amazon Web
Service), Tomcat, MongoDB, JQuery, JavaScript, Docker, Kubernetes.

O sistema é da RedCompany, uma empresa de consultoria que traz soluções em TI,
através da integração com outros sistemas.

Os projetos atualmente são altamente dependente dos sistemas da TOTVS, pois o pro-
jeto é um módulo que usa a estrutura dos bancos de dados da TOTVS e esses projetos
foram desenvolvidos com tecnologias em Progres que não é muito usada no mercado, além
disso esta linguagem usada no BackEnd não é Open Code (Código aberto). Por esses mo-
tivos, tem-se problema com a alta dependência da TOTVS, e nossos produtos atualmente
só podem ser implantados em empresas que possuem a licença para Progress. Isso faz com
que perdemos muitas oportunidades, pelo fato de ter alguns impedimentos principalmente
para a implantação do sistema, e ter um sistema com dif́ıcil escalabilidade.

As aplicações são o Chat (Sistema para troca de mensagens), News (Not́ıcias) e o UP
(Assistente virtual), Consultas (Middleware para realizar consultas de cnpj, cpf, cep), Web-
Socket (Middleware para push/subscribe). Atualmente todas estas aplicações não tem um
único login e chave de acesso para acessar todas as aplicações visto na figura 2.

A replicação dos dados para manter a consistência entre os bancos será uma tarefa
simples, pois para cada aplicação sempre terá apenas um microsserviço, ou seja, não terá
duplicação de uma aplicação para distribuição de cargas. Os dados que terão de ser repli-
cados serão os os dados dos usuários e os dados de grupos (grupos de permissão de acessos
para os usuários), as alterações e criações acontecerão apenas no WSO2 Identity Server, e
estas alterações não serão frequentes. Após a alteração será disparada uma mensagem de
broadcast para todas as aplicações do sistema para elas atualizarem os seus dados.

Alguns requisitos são espećıficos de acordo com as exigências de cada cliente, então os



4 Gunter M. Oliveira

Figura 1: Exemplo de uma aplicação dos gateways [11].



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 5

requisitos que serão considerados serão requisitos comuns para todos os clientes:

• Tempo de resposta das requisições, uma quando se aplica SSO (Single Sign On) e
quando não, tento o login e autorização na máquina do EndPoint.

• Possuir tempo médio de resposta de das requisições de 1000 mili segundos.

• Ter um sistema escalável, priorizando o crescimento horizontal, ou seja a criação de
novos componentes, o crescimento vertical não acontecerá pelo número limitado de
usuários que acessam o sistema, tendo no máximo 300 usuários acessando simultane-
amente.

4 Autenticação e segurança

O Sistema está passando por uma migração que possibilitará o uso de Single Sign On (SSO),
e pode-se executar os testes necessários para as análises que serão realizadas e o sistema será
como na Figura 4. O SSO foi feito com uma ferramenta WSO2 Identity Server que oferece
soluções às empresas a flexibilidade de implantar aplicativos e serviços no local, em nuvens
privadas ou públicas ou em ambientes h́ıbridos e migrar facilmente entre eles conforme
necessário. E como todos os produtos são pré-integrados, as empresas podem se concentrar
em serviços de valor agregado e chegar ao mercado mais rapidamente. A autenticação usada
foi OAuth2. As aplicações já possúıam autenticação em OAuth2, então foi necessário passar
o endereço de onde as aplicações iriam fazer a autenticação. Houve algumas mudanças. A
arquitetura do diagrama está representado na Figura 3, onde o ClientWebApp é o FrontEnd
e o ResourceServer o BackEnd das aplicações (News, Chat, Consulta, UP), o OAuth Service
é o WSO2 Identity Server.

OAuth2 é um protocolo de autorização para API usada pelo Facebook e outras plata-
formas. O OAuth2 possui escopos para limitar o acesso de um aplicativo à conta de um
usuário, o acesso aos recursos de uma aplicação são feitos através de um token, conhecido
como access token que é uma autorização tipo Bearer. Para se obter o access token é ne-
cessário obtê-lo através de outro token (refresh token), e para isso também é necessário uma
autenticação básica, os tokens tem tempo de expiração, geralmente o access token tem em
média de 15 minutos e o refresh varia de acordo com a necessidade. Assim, caso esse token
seja roubado por um hacker, o hacker não fará muitas consultas ou alterações por causa do
tempo de expiração. O uso de tokens para acesso a recursos faz com que as credenciais do
usuário não fiquem trafegando pela rede, assim as credenciais são usadas apenas para se
obter um refresh token.. Outro benef́ıcio de usar tokens é quando uma aplicação de terceiros
que precisem acessar as API do sistema, então para se obter o acesso aos tokens, a aplicação
é direcionada para uma tela de login do próprio sistema, assim a aplicação de terceiro não
vai ter acesso às credenciais do usuário. Além disso, quando um aplicação de terceiro obtém
o token de acesso pode-se definir um escopo para limitar o acesso aos recursos do sistema.

Apesar de ter mais aplicações no sistema distribúıdo, apenas as aplicações que vão que
foram desenvolvidas por Gunter serão descritas e feitas as análises.



6 Gunter M. Oliveira

Figura 2: Esboço da Divisão atual do sistema de acordo com seus acessos. Setas representam
ações e comunicações das entidades.

Figura 3: Arquitetura do diagrama do OAuth2 [9].



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 7

Figura 4: Esboço do Sistema com SSO (Single Sign On), e cada componente sendo um
Microsserviço.



8 Gunter M. Oliveira

5 Aplicações

Assistente Virtual (UP) O assistente virtual, nomeado de UP, utiliza o DialogFlow: plata-
forma de processamento de linguagem natural que contém uma IA (Inteligência artificial)
do Google para a interpretação de frases, essa ferramenta possui uma plataforma pronta
para desenvolvimento de assistente virtual e algumas integrações com alguns aplicativos de
Chat, como Skype, Telegram e Messenger.

− Middleware (UP)

Para a comunicação entre o ChatBot (chat do UP) com o DialogFlow foi feito um
Middleware.

O Middleware foi desenvolvido com Node, usando a biblioteca Express, e esse serviço foi
disponibilizado nos servidores internos. Foi usado Node pela facilidade de desenvolvimento
de Middlewares e na comunicação com o DialogFlow. O fluxo de mensagens entre os com-
ponentes do UP são: o Middleware recebe requisição do ChatBot com um conteúdo de texto
ou áudio, envia esse conteúdo para o DialogFlow, que envia novamente para o Middleware
que interpreta a pergunta e faz a requisição para o Webmodule para obter a resposta, após
obter a resposta retorna para o DialogFlow que retornará a resposta em formato de texto
e áudio, assim retorna novamente a resposta para o ChatBot que irá interpretar a resposta
em formato JSON e mostrará para o usuário. Este Fluxo pode ser observado na Figura 5.

− News e Chat

News é uma aplicação de not́ıcias, tendo a parte administrativa, pois apenas alguns
usuários poderão criar, alterar e excluir uma not́ıcia, e a parte de timeline onde todos
usuários poderão ler as not́ıcias publicadas.

Chat é uma aplicação de comunicação entre os usuários através de troca de mensagens.

− WebSocket

WebSocket é um Middleware Push/Subscribe ao qual todas as aplicações FrontEnd se
subscrevem em um contexto e assim o BackEnd manda requisições para o FrontEnd para
mandar uma notificação ou manter o FrontEnd atualizado.

− Consultas

Consultas é um Middleware que realiza consultas de CNPJ, CPF e CEP. As consultas
após serem realizadas são guardadas no banco de dados local, e caso precise atualizar o
usuário deverá informar.

6 Testes e Análises

As análises serão divididas em quatro cenários: dois cenários terão a configuração da figura
2, e outros dois o da Figura 4. Para cada Cenário teremos um teste que simulará uma



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 9

situação diária e real, ou seja, onde teremos um número limitado de 200 usuários usando
simultaneamente o sistema e cada usuário estará fazendo no máximo duas requisições por
vez; Outros testes são testar Performance e stress da aplicação WSO2 Identity Server, e
outro para testar a capacidade das aplicações, considerando 500 usuários simultâneos (por
ser um número alto talvez não consiga simular exatamente os 500 usuários por limitações
da máquina que está realizando os testes) com um peŕıodo de 5 segundos.

As análises serão feitas nos EndPoints considerados os mais usados no sistema, algumas
aplicações serão desconsideradas também pelo fato de terem rodando em tecnologias iguais
e em servidores com as mesmas capacidades. Para os testes foi usado a ferramenta JMeter
Apache. O JMeter obedece a uma estrutura de escopos, ou seja, cada teste tem que estar
dentro de um escopo, por exemplo, o teste de requisições HTTP tem que estar dentro de
um grupo de usuários, que basicamente especifica quantas requisições serão executadas e
um determinado número de peŕıodo. Dentro dos grupos de usuários teremos uma árvore de
resultados para verificar se as requisições tiveram sucesso. Para poder analisar o desempenho
foi usado o Summary Report e o Graph Results.

− Infraestrutura computacional

A máquina que realizou os testes (Testador) com o JMeter, está separada fisicamente
das máquinas onde estão hospedadas as aplicações. Então para se ter uma boa conexão com
o mı́nimo tempo de atraso posśıvel o testador está conectado diretamente na rede, através
de um cabo de rede. O testador é uma máquina com sistema operacional Windows 10, com
16 GB de memória RAM, com um processador Intel(R) Core(TM) i7 com 2 Núcleos e 4
Processadores Lógicos.

Duas máquinas hospedarão as aplicações:

• Servidor local: a máquina está na mesma rede que o testador. Esta máquina própria
para ser um servidor, com 12 GB de memória RAM, com um processador Intel(R)
Xeon(R), 3.30GHz, 3292 Mhz, 2 Núcleos, 4 Processadores Lógicos.

• Servidor AWS: servidor da Amazon Web Services localizado no Oeste dos EUA (Ore-
gon), com uma CPU, e 2 GB de memória. Esta instância foi criada apenas para
realizar testes, como os testes feitos no servidor aws será apenas para análise de
tempo, não será necessário um máquina muito robusta.

− Cenário 1: Testes da aplicação no Servidor local

• Teste 1: Teste de tempo das requisições.

No teste 1 foi visto que o sistema obteve um bom desempenho tendo a sua média de
resposta de 430 ms como visto na figura 6. Também que a quantidade de transferência de
dados praticamente não teve influência sobre as médias. Por outro lado um erro encontrado
mostrado na figura 6 se fosse em um sistema real não aconteceria, pois o erro ocorreu pelo
acesso a dois recursos simultaneamente, e no dia a dia para este caso é um caso muito raro
de acontecer, e portanto é um erro que pode-se desprezar.



10 Gunter M. Oliveira

• Teste 2: Teste de Performance e Stress.

Neste caso o sistema não possui um bom desempenho, afetando muito os usuários pois
um tempo médio de 4 segundos para cada requisição, pode ser considerado um sistema com
mau funcionamento, visto na Figura 6. Para fazer o servidor ter um melhor desempenho
as funções de enviar mensagem e buscar mensagem, devem ser melhor implementadas, e
como visto no teste 1 as médias das requisições são ótimas, assim pode concluir que um
dos fatores que podem ter comprometido o desempenho do servidor está na sua capacidade
de processamento, e assim uma das maneiras de corrigir isso seria criar um outro servidor
para balanceamento de carga e/ou aumento da capacidade de processamento do servidor.

Como o testador é uma máquina com certas limitações, não é posśıvel mandar requisições
suficientes para quebrar o servidor, ou seja, a máquina tem um limite. Por exemplo, foi
feito um teste para tentar fazer 5000 requisições simultâneas, mas o programa JMeter parou
de funcionar.

− Cenário 2: Teste com aplicação no Servidor AWS

O tempo médio das requisições, visto na figura 6, tiveram um bom tempo, pois de acordo
com os requisitos do sistema 1,5 segundos é considerado um tempo bom, com uma diferença
para o Cenário 1 de aproximadamente 900 ms. Assim pode-se cortar gastos de hospedagem
de servidores colocando-os no Oeste dos EUA, pois os servidores da AWS em São Paulo são
mais caros.

− Cenário 3: Aplicação no servidor local, com a autorização sendo feita no WSO2
Identity Server, e hospedado no servidor local.

Os tempos de resposta foram bons, de acordo com o requisito do sistema, com um
tempo de resposta de 890 ms, visto na figura 6. Apesar de ter apenas uma função, a
aplicação News, o tempo de requisição foi maior comparado com o Cenário 1 Teste 1, pois
a autenticação não foi feita mais na própria aplicação. Com os resultados dos testes do
Cenário 2 temos um média de tempo se considerarmos a aplicação em Oregon (EUA) de
aproximadamente 900 ms + 900 ms = 1800 ms, no caso o tempo já pode ser um problema
para algumas aplicações.

− Cenário 4: Teste de Performance e Stress, da aplicação de Autenticação com o WSO2
Identity Server hospedada no servidor local.

Os resultados estão em um tempo razoavelmente bons, pois estão um pouco acima da
média esperada de 1000ms, mas caso fossem alocados em um servidor da AWS no Oeste
dos EUA os tempos podem ser bem ruins, mas alguns tempos podem ser reduzidos através
do aumento de capacidade de processamento, pois como os testes foram feitos em máquinas
locais a maior parte do tempo da requisição foi por causa de processamento da requisição
dos usuários.

Análises Gerais



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 11

Figura 5: Diagrama de fluxo do funcionamento do Assistente Virtual.

Figura 6: Gráfico do testes tempo das requisições de acordo com os cenários.



12 Gunter M. Oliveira

Os resultados dos testes de maneira geral foram bons, pois de acordo com o requisito
de ter um tempo de resposta menor que 1000 ms, e alguns que não foram tão bons também
podem ser corrigidos adicionando outros servidores para distribuição de carga (crescimento
horizontal), ou aumentar o capacidade de processamento (crescimento vertical). Assim
pode-se fazer um sistema baseado nas especificações do cliente, por exemplo, caso o cliente
deseje que os dados de seus usuários não fiquem na nuvem (Servidores da Amazon), mas
aceite que algumas aplicações como o news, que não possui dados que são mais públicos,
fique na nuvem por questões de ter uma disponibilidade alta, e principalmente pelos custos,
essa distribuição das aplicações poderiam ser realizadas com o aux́ılio do Docker e do Ku-
bernetes, que ajudam no deploy e gerenciamento das aplicações. Caso um cliente exija que
um dos requisitos do sistema seja o mais rápido posśıvel, e não considere ter custos baixos,
as aplicações podem ser hospedadas nos Servidores da AWS em São Paulo.

Assim o sistema será bem escalável e fácil manutenção, alteração, isso permite atender
melhor às exigências dos clientes de acordo com os seus requisitos.

7 Conclusão

Neste peŕıodo de Trabalho de Conclusão de Curso as mudanças que foram realizadas nas
aplicações da empresa RedCompany foram de acordo com os estudos sobre microsserviços,
e conhecimentos sobre sistemas distribúıdos, esses conhecimentos ajudaram a fazer um sis-
tema mais estruturado que possibilita ter escalabilidade, os estudos também ajudaram a
tirar dúvidas e ter um definição clara sobre esses tipos de sistemas e como separar cada
componente, pois inicialmente ao começar a desenvolver as aplicações alguns conceitos não
estavam muito claros. As análises dos tempos de requisições, preocupações com a segurança
e coordenação, são alguns ônus dos sistemas distribúıdos, mas as vantagens como escala-
bilidade, ganho em facilidade de manutenção para cada aplicação fazem compensar esses
ônus, e com as análises foi visto que o apesar do tempo das requisições este é um fator
que não afetará os usuários de forma negativa desde que o tempo esteja dentro do tempo
determinado pelos requisitos do sistema.

Referências

[1] Microservices Architecture Enables DevOps - Migration to a Cloud-Native Architecture
- Armin Balalaie and Abbas Heydarnoori, Sharif University of Technology

Pooyan Jamshidi, Imperial College London

[2] Open Issues in Scheduling Microservices in the Cloud

Maria Fazio and Antonio Celesti, University of Messina - Rajiv Ranjan and Chang
Liu, Newcastle University - Lydia Chen, IBM Research - Massimo Villari, University
of Messina

[3] Microservices - The Journey So Far and Challenges Ahead



Sistemas Distribúıdos - Aplicações de Micorsserviços e sua Infraestrutura 13

Pooyan Jamshidi, Carnegie Mellon University - Claus Pahl, Free University of Bozen-
Bolzano - Nabor C. Mendonça, University of Fortaleza - James Lewis, ThoughtWorks
- Stefan Tilkov, INNOQ

[4] Microservices: Architecting for Continuous Delivery and DevOps - 2018 IEEE Inter-
national Conference on Software Architecture

Lianping Chen - Lianping Chen Limited - Dublin, Ireland

[5] The Design and Architecture of Microservices

Alan Sill, Texas Tech University,

[6] Using Microservices for Legacy Software Modernization

Holger Knoche and Wilhelm Hasselbring, Kiel University

[7] Microservices

Johannes Thönes - Editor: Robert Blumen, Symphony Commerce

[8] WSO2 Identity Server: https://wso2.com/

[9] OAuth2: https://oauth.net/2/

https://docs.oracle.com/cd/E8208501/160023/JOS

[10] Empresa RedCompany: https://www.redcompany.com.br/

[11] Figura 1: https://igia.github.io/docs/architecture


