2
W

Sistemas Distribuidos -
Aplicacoes de Micorsservicos
e sua Infraestrutura

Gunter Mingato de Oliveira

Relatério Técnico - 1C-PFG-20-20
Projeto Final de Graduagdo
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.




Sistemas Distribuidos
Aplicacoes de Micorsservicos e sua Infraestrutura

Gunter Mingato de Oliveira *

Resumo

Foi feito um estudo para definir o que sao microsservicos, para saber quando se
aplicar, saber suas defini¢oes e seus pontos negativos. E com um ponto negativo re-
lacionado ao tempo de comunicacao entre os microsservigos foram feitas andalises para
poder criar microsservicos que possuam tempo de respostas adequados e seguranca e
autenticacao de acordo com os requisitos do sistema. Algumas andlises de tempo, stress
e performance foram feitas para ver quais s@o as melhores configuragoes para poder
atender um cliente de acordo com as suas exigéncias.

1 Introducao

Em tecnologia da informagao as demandas por produtos vem aumentando muito nos iltimos
anos, bem como as exigéncias como ter um sistema com alta escalabilidade e disponibili-
dade. Antes os sistemas eram monoliticos onde toda as partes do BackEnd e FrontEnd das
aplicagbes funcionavam em uma Unica maquina e em um unico software, e como sistemas
monoliticos ndo atendem as exigéncias, uma nova forma de desenvolver sistemas comecou
a surgir fazendo com que o sistema seja distribuido, ou seja, distribui todo o sistema em
microsservigos: uma aplicacao do sistema que possui o seu préoprio BackEnd e FrontEnd,
e que é possivel ser executada independentemente do restante do sistema. Por outro lado,
como as aplicagoes se comunicam através da rede de internet, surgem outros problemas:
tempo de resposta de requisicao entre as aplicagoes, e de seguranca, pois os dados estarao
trafegando pela internet, o que ocasiona uma maior vulnerabilidade dos dados.

Neste TCC sera realizado um estudo mais detalhado de microsservicos e Middlewares
para entender as melhores formas de utiliza-los, baseados nos tempos de respostas das re-
quisigoes entre as aplicagoes (Microsservicos e middlewares). Para poder usar microsservicos
em um sistema também foi necessario ter conhecimentos sobre programagao, computagao
distribuida e redes de computadores em sistemas de geréncia de recursos distribuidos. Os
passos para implementacao de um sistema de geréncia de recursos envolvem a identificacao
de caracteristicas e modelagem de um sistema computacional distribuido, a identificacao
de aplicacoes e suas caracteristicas para serem aplicadas ao modelo, o desenvolvimento de
politicas e algoritmos de alocag@o de recursos para otimizacao de critérios do Sistema e

*Instituto de Computacdo, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Trabalho de
Conclusao de Curso: Engenharia de Computagao



2 Gunter M. Oliveira

requisitos das aplicagoes. A partir da identificagdo e modelagem do sistema distribuido a
ser considerado, um estudo sobre politicas de alocacao de aplicagoes nesse tipo de sistema
serd desenvolvido. Em seguida, as necessidades de um sistema de geréncia de recursos
e/ou politicas de alocagao de recursos que levem em conta a capacidade e desempenho
computacional e os requisitos de aplicacdo modelados serao projetados e avaliados.

2 Conceitos Basicos

Microsservigo é uma pequena aplicacao a qual pode ser colocada em producao, depurada,
testada independentemente do resto do sistema, possuindo apenas uma funcao, e tendo que
ser uma aplicagao facilmente entendida. A fungao seria definida como uma fungao funcional
ou nao, ao qual pode ser a consulta (requisigdo de uma mensagem), e alguns processamentos
no dado obtido da resposta de uma requisigao.

Ter uma sistema baseado em microsservicos torna o sistema mais facil de realizar ma-
nutengoes, identificar problemas, por ter uma complexidade e organizagao mais simples.
Outra vantagem é a possibilidade do crescimento do sistema, ou seja o sistema é escalavel,
tanto verticalmente como horizontalmente. AplicacGes baseadas em microsservigos facilitou
no desenvolvimento de cada componente do sistema, porque cada componente pode ter
sua prépria linguagem de programacao, tanto quanto frontEnd como backEnd, e banco de
dados, ou seja, uma arquitetura MVC (Model View Controller) e cada uma dessas partes
também podem estar em maquinas separadas.

Por outro lado as dificuldades e o maior trabalho passou a ser na comunicacao entre
cada aplicacao, na segurancga, autenticagao e no gerenciamento dos microsservigos.

Para poder lidar bem com essas dificuldades o sistema tem que ter uma base bem
estruturada. Para lidar com dificuldade de comunicacao entre as aplicagoes serd necessario
ter as interfaces dessas comunicacoes bem definidas. As interfaces de comunicagdo sao
conhecidas como API (Application Programming Interface), e a padronizagdo para estas
interfaces sao em REST (Representation State Transfer). As principais padronizagoes serao
de como acontecerd as requisicoes de GET, POST, PUT e DELETE, que sao a busca,
criagao, alteracao e exclusao de um determinado recurso, entao das requisicoes citadas cada
uma tera definida o que ela enviara e recebera no seu header, body, parameters, e como
serd definida a uri para cada uma delas. O protocolo usado em cada requisicao é HT'TP
(Hypertext Transfer Protocol).

Outra forma para melhorar a comunicagao entre os microsservicos, principalmente quando
um microsservigo precisa fazer uma requisicao para sites de terceiros e este nao estd nos
padroes de comunicacao, neste caso é usado um middleware que fard esta intermediagao.
Com esta funcionalidade Middlewares também auxiliarao no auxilio de migracao de siste-
mas monoliticos para distribuidos, pois como o sistema monolitico ndo foi implementado
nos padroes descritos e a migracao sempre ocorre de forma gradativa, a medida que micros-
servicos vao sendo criados o sistema monolitico vai perdendo suas funcionalidades, entao o
middleware fard o papel de padronizar as comunicagoes entre as aplicaces. Este processo
de migracao esta sendo realizado no sistema que estd sendo estudado neste TCC.

Para gerenciar o sistema distribuido pode ser usado um coordenador (gerencia todas as



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura 3

aplicagoes), para poder saber o status de cada aplicacdo de tempo em tempo é mandado
mensagens de broadcast. Neste periodo do TCC nao foi possivel implementar um coordena-
dor, mas futuramente serd implementado e para isso serd feito com o auxilio do Kubernetes
para fazer o monitoramento das aplicagoes e com o Docker para fazer a hospedagem das
aplicagoes.

Uma das maneiras de limitar o acesso externo, e assim ter uma seguranga melhor de uma
sistema, é através da criacao de gateways, que permite que aplicagoes externas enxergue
apenas um grupo de endpoints, isso permite que aplicacoes externas nao saiba que existam
endpoints que servem para controle internos, assim uma aplicacao externa sé ird acessar um
grupo de endpoints definido independentemente se a permissao da aplicagao externa mudar.
Também pode ser definido os endpoints que as aplicacoes internas poderao enxergar, isso faz
com que requisi¢oes desnecessarias sejam executadas, um tipo de configuragao para limitar
0 acesso aos endpoints de acordo com contextos pode ser visto na Figura 1. Para se criar
gateways serd usado o WSO2 API Manager. O API Manager também serd usado para
fazer a padronizacao das API, além disso ele possui o seu analytics que sera utilizado para
realizar todas as andlises de chamadas das APIs.

3 Descricao do sistema

Tecnologias usadas: Spring Boot, Node, WSO2 Identity Server, Nginx, AWS (Amazon Web
Service), Tomcat, MongoDB, JQuery, JavaScript, Docker, Kubernetes.

O sistema é da RedCompany, uma empresa de consultoria que traz solucées em TI,
através da integracao com outros sistemas.

Os projetos atualmente sao altamente dependente dos sistemas da TOTVS, pois o pro-
jeto é um moédulo que usa a estrutura dos bancos de dados da TOTVS e esses projetos
foram desenvolvidos com tecnologias em Progres que nao é muito usada no mercado, além
disso esta linguagem usada no BackEnd nao é Open Code (Cddigo aberto). Por esses mo-
tivos, tem-se problema com a alta dependéncia da TOTVS, e nossos produtos atualmente
s6 podem ser implantados em empresas que possuem a licenga para Progress. Isso faz com
que perdemos muitas oportunidades, pelo fato de ter alguns impedimentos principalmente
para a implantacao do sistema, e ter um sistema com dificil escalabilidade.

As aplicagoes sdo o Chat (Sistema para troca de mensagens), News (Noticias) e o UP
(Assistente virtual), Consultas (Middleware para realizar consultas de cnpj, cpf, cep), Web-
Socket (Middleware para push/subscribe). Atualmente todas estas aplicagoes nao tem um
unico login e chave de acesso para acessar todas as aplicagoes visto na figura 2.

A replicacdo dos dados para manter a consisténcia entre os bancos serd uma tarefa
simples, pois para cada aplicacao sempre terd apenas um microsservico, ou seja, nao tera
duplicacao de uma aplicacao para distribui¢ao de cargas. Os dados que terdo de ser repli-
cados serao os os dados dos usuédrios e os dados de grupos (grupos de permissao de acessos
para os usudrios), as alteragoes e criagoes acontecerao apenas no WSO2 Identity Server, e
estas alteracbes ndo serdo frequentes. Apéds a alteracdo serd disparada uma mensagem de
broadcast para todas as aplicacoes do sistema para elas atualizarem os seus dados.

Alguns requisitos sao especificos de acordo com as exigéncias de cada cliente, entao os



Gunter M. Oliveira

Third party .

Y \4

\ 4

Public API Mobile App Web App
Microgateway Microgateway Microgateway
Core Services Domain Services Application services

Figura 1: Exemplo de uma aplicacao dos gateways [11].



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura 5

requisitos que serao considerados serao requisitos comuns para todos os clientes:

e Tempo de resposta das requisi¢coes, uma quando se aplica SSO (Single Sign On) e
quando nao, tento o login e autorizacdao na maquina do EndPoint.

e Possuir tempo médio de resposta de das requisigcoes de 1000 mili segundos.

e Ter um sistema escalavel, priorizando o crescimento horizontal, ou seja a criacao de
novos componentes, o crescimento vertical nao acontecerd pelo nimero limitado de
usuarios que acessam o sistema, tendo no maximo 300 usuarios acessando simultane-
amente.

4 Autenticacao e seguranca

O Sistema estd passando por uma migragao que possibilitard o uso de Single Sign On (SSO),
e pode-se executar os testes necessarios para as analises que serao realizadas e o sistema serd
como na Figura 4. O SSO foi feito com uma ferramenta WSO2 Identity Server que oferece
solucoes as empresas a flexibilidade de implantar aplicativos e servicos no local, em nuvens
privadas ou publicas ou em ambientes hibridos e migrar facilmente entre eles conforme
necessario. E como todos os produtos sao pré-integrados, as empresas podem se concentrar
em servigos de valor agregado e chegar ao mercado mais rapidamente. A autenticagdo usada
foi OAuth2. As aplicagoes ja possuiam autenticacdo em OAuth2, entao foi necessédrio passar
o endereco de onde as aplicacbes iriam fazer a autenticacdo. Houve algumas mudancas. A
arquitetura do diagrama esta representado na Figura 3, onde o ClientWebApp € o FrontEnd
e 0 ResourceServer o BackEnd das aplicagoes (News, Chat, Consulta, UP), o OAuth Service
é o WSO2 Identity Server.

OAuth2 é um protocolo de autorizacao para API usada pelo Facebook e outras plata-
formas. O OAuth2 possui escopos para limitar o acesso de um aplicativo & conta de um
usuario, o acesso aos recursos de uma aplicagao sao feitos através de um token, conhecido
como access token que é uma autorizacao tipo Bearer. Para se obter o access token é ne-
cessario obté-lo através de outro token (refresh token), e para isso também é necesséario uma
autenticagao bésica, os tokens tem tempo de expiracao, geralmente o access token tem em
média de 15 minutos e o refresh varia de acordo com a necessidade. Assim, caso esse token
seja roubado por um hacker, o hacker nao fard muitas consultas ou alteragoes por causa do
tempo de expiracao. O uso de tokens para acesso a recursos faz com que as credenciais do
usudrio nao fiquem trafegando pela rede, assim as credenciais sao usadas apenas para se
obter um refresh token.. Outro beneficio de usar tokens é quando uma aplicacao de terceiros
que precisem acessar as API do sistema, entao para se obter o acesso aos tokens, a aplicacao
¢é direcionada para uma tela de login do préprio sistema, assim a aplicacao de terceiro nao
vai ter acesso as credenciais do usuario. Além disso, quando um aplicacao de terceiro obtém
o token de acesso pode-se definir um escopo para limitar o acesso aos recursos do sistema.

Apesar de ter mais aplicacoes no sistema distribuido, apenas as aplicagoes que vao que
foram desenvolvidas por Gunter serao descritas e feitas as analises.



6 Gunter M. Oliveira

O usuério tem trés logins para acessar as
aplicacdes, cada login pode acessar as aplicacées Usudrio

delimitadas pelos retdngulos azul, vermelho e verde.

[pere—
¥
CRM CHAT_BOT CHAT NEWS
(Microsservico) (Microsservico) (Microsservico)
¥
Up PushMNofification Consulta
(Middleware) (Middleware) (Middleware)

Figura 2: Esbogo da Divisao atual do sistema de acordo com seus acessos. Setas representam
acoes e comunicacoes das entidades.

1. Access

. 4. Requests
fc\herl.itca:inn Resource
PP ;
ClientWebA
8. Renders 7. Returns
Result Resource r
2. Requests 3. Issues
Access Access
Token Token

5. Validates Access

., Token
OAuth Service
6. Responds Token

Validation

Figura 3: Arquitetura do diagrama do OAuth2 [9)].



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura 7

O usudrio tem trés logins para acessar as
aplicagdes, cada login pode acessar as aplicaces Usudrio

delimitadas pelos retdngulos azul, vermelho e verde.

[pee—
A 4
CRM CHAT_BOT CHAT NEWS
(Microsservico) (Microsservico) (Microsservico)
¥
Up PushNofification Consulta
(Middleware) (Middleware) (Middleware)

Figura 4: Esbogo do Sistema com SSO (Single Sign On), e cada componente sendo um
Microsservico.



8 Gunter M. Oliveira

5 Aplicacoes

Assistente Virtual (UP) O assistente virtual, nomeado de UP, utiliza o DialogFlow: plata-
forma de processamento de linguagem natural que contém uma IA (Inteligéncia artificial)
do Google para a interpretagao de frases, essa ferramenta possui uma plataforma pronta
para desenvolvimento de assistente virtual e algumas integragoes com alguns aplicativos de
Chat, como Skype, Telegram e Messenger.

— Middleware (UP)

Para a comunicacao entre o ChatBot (chat do UP) com o DialogFlow foi feito um
Middleware.

O Middleware foi desenvolvido com Node, usando a biblioteca Express, e esse servico foi
disponibilizado nos servidores internos. Foi usado Node pela facilidade de desenvolvimento
de Middlewares e na comunicagao com o DialogFlow. O fluxo de mensagens entre os com-
ponentes do UP sao: o Middleware recebe requisicao do ChatBot com um conteido de texto
ou audio, envia esse contetido para o DialogFlow, que envia novamente para o Middleware
que interpreta a pergunta e faz a requisicao para o Webmodule para obter a resposta, apds
obter a resposta retorna para o DialogFlow que retornari a resposta em formato de texto
e dudio, assim retorna novamente a resposta para o ChatBot que ira interpretar a resposta
em formato JSON e mostrard para o usudrio. Este Fluxo pode ser observado na Figura 5.

— News e Chat

News é uma aplicacao de noticias, tendo a parte administrativa, pois apenas alguns
usuarios poderao criar, alterar e excluir uma noticia, e a parte de timeline onde todos
usuarios poderao ler as noticias publicadas.

Chat é uma aplicagdo de comunicagdo entre os usudrios através de troca de mensagens.

— WebSocket

WebSocket é um Middleware Push/Subscribe ao qual todas as aplica¢oes FrontEnd se
subscrevem em um contexto e assim o BackEnd manda requisi¢oes para o FrontEnd para
mandar uma notificacao ou manter o FrontEnd atualizado.

— Consultas

Consultas é um Middleware que realiza consultas de CNPJ, CPF e CEP. As consultas
apds serem realizadas sdo guardadas no banco de dados local, e caso precise atualizar o
usuario deverd informar.

6 Testes e Analises

As andlises serao divididas em quatro cenarios: dois cenarios terao a configuracao da figura
2, e outros dois o da Figura 4. Para cada Cenario teremos um teste que simulard uma



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura 9

situacao didria e real, ou seja, onde teremos um ntumero limitado de 200 usuarios usando
simultaneamente o sistema e cada usudrio estara fazendo no maximo duas requisicoes por
vez; Outros testes sdo testar Performance e stress da aplicaggo WSO2 Identity Server, e
outro para testar a capacidade das aplicagoes, considerando 500 usudrios simultaneos (por
ser um numero alto talvez nao consiga simular exatamente os 500 usudrios por limitagoes
da maquina que estd realizando os testes) com um periodo de 5 segundos.

As andlises serao feitas nos EndPoints considerados os mais usados no sistema, algumas
aplicagoes serao desconsideradas também pelo fato de terem rodando em tecnologias iguais
e em servidores com as mesmas capacidades. Para os testes foi usado a ferramenta JMeter
Apache. O JMeter obedece a uma estrutura de escopos, ou seja, cada teste tem que estar
dentro de um escopo, por exemplo, o teste de requisicoes HTTP tem que estar dentro de
um grupo de usudrios, que basicamente especifica quantas requisi¢oes serdao executadas e
um determinado nimero de periodo. Dentro dos grupos de usudrios teremos uma arvore de
resultados para verificar se as requisigoes tiveram sucesso. Para poder analisar o desempenho
foi usado o Summary Report e o Graph Results.

— Infraestrutura computacional

A méquina que realizou os testes (Testador) com o JMeter, estd separada fisicamente
das maquinas onde estao hospedadas as aplicacoes. Entao para se ter uma boa conexao com
o minimo tempo de atraso possivel o testador estd conectado diretamente na rede, através
de um cabo de rede. O testador é uma maquina com sistema operacional Windows 10, com
16 GB de memoéria RAM, com um processador Intel(R) Core(TM) i7 com 2 Ntcleos e 4
Processadores Logicos.

Duas maquinas hospedarao as aplicagoes:

e Servidor local: a maquina estd na mesma rede que o testador. Esta maquina prépria
para ser um servidor, com 12 GB de memoéria RAM, com um processador Intel(R)
Xeon(R), 3.30GHz, 3292 Mhz, 2 Ntcleos, 4 Processadores Ldgicos.

o Servidor AWS: servidor da Amazon Web Services localizado no Oeste dos EUA (Ore-
gon), com uma CPU, e 2 GB de memoéria. Esta instancia foi criada apenas para
realizar testes, como os testes feitos no servidor aws serd apenas para andlise de
tempo, nao serd necessario um maquina muito robusta.

— Cendério 1: Testes da aplicacao no Servidor local
e Teste 1: Teste de tempo das requisicoes.

No teste 1 foi visto que o sistema obteve um bom desempenho tendo a sua média de
resposta de 430 ms como visto na figura 6. Também que a quantidade de transferéncia de
dados praticamente nao teve influéncia sobre as médias. Por outro lado um erro encontrado
mostrado na figura 6 se fosse em um sistema real nao aconteceria, pois o erro ocorreu pelo
acesso a dois recursos simultaneamente, e no dia a dia para este caso é um caso muito raro
de acontecer, e portanto é um erro que pode-se desprezar.



10 Gunter M. Oliveira

o Teste 2: Teste de Performance e Stress.

Neste caso o sistema nao possui um bom desempenho, afetando muito os usuérios pois
um tempo médio de 4 segundos para cada requisi¢cao, pode ser considerado um sistema com
mau funcionamento, visto na Figura 6. Para fazer o servidor ter um melhor desempenho
as funcoes de enviar mensagem e buscar mensagem, devem ser melhor implementadas, e
como visto no teste 1 as médias das requisi¢oes sao 6timas, assim pode concluir que um
dos fatores que podem ter comprometido o desempenho do servidor estd na sua capacidade
de processamento, e assim uma das maneiras de corrigir isso seria criar um outro servidor
para balanceamento de carga e/ou aumento da capacidade de processamento do servidor.

Como o testador é uma maquina com certas limitacoes, nao é possivel mandar requisi¢oes
suficientes para quebrar o servidor, ou seja, a maquina tem um limite. Por exemplo, foi
feito um teste para tentar fazer 5000 requisi¢oes simultaneas, mas o programa JMeter parou
de funcionar.

— Cenario 2: Teste com aplicagao no Servidor AWS

O tempo médio das requisicoes, visto na figura 6, tiveram um bom tempo, pois de acordo
com os requisitos do sistema 1,5 segundos é considerado um tempo bom, com uma diferenca
para o Cenério 1 de aproximadamente 900 ms. Assim pode-se cortar gastos de hospedagem
de servidores colocando-os no Oeste dos EUA, pois os servidores da AWS em Sao Paulo sao
mais caros.

— Cendrio 3: Aplicagdo no servidor local, com a autorizacao sendo feita no WSO2
Identity Server, e hospedado no servidor local.

Os tempos de resposta foram bons, de acordo com o requisito do sistema, com um
tempo de resposta de 890 ms, visto na figura 6. Apesar de ter apenas uma funcao, a
aplicagdo News, o tempo de requisi¢ao foi maior comparado com o Cenéario 1 Teste 1, pois
a autenticacao nao foi feita mais na proépria aplicagdo. Com os resultados dos testes do
Cendrio 2 temos um média de tempo se considerarmos a aplicacdo em Oregon (EUA) de
aproximadamente 900 ms + 900 ms = 1800 ms, no caso o tempo ja pode ser um problema
para algumas aplicagoes.

— Cendrio 4: Teste de Performance e Stress, da aplicagao de Autenticacao com o WSO2
Identity Server hospedada no servidor local.

Os resultados estdo em um tempo razoavelmente bons, pois estdao um pouco acima da
média esperada de 1000ms, mas caso fossem alocados em um servidor da AWS no Oeste
dos EUA os tempos podem ser bem ruins, mas alguns tempos podem ser reduzidos através
do aumento de capacidade de processamento, pois como os testes foram feitos em maquinas
locais a maior parte do tempo da requisi¢ao foi por causa de processamento da requisicao
dos usudrios.

Analises Gerais



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura

5) Retorna resposta

WebModule 6) Retorna resposta

3) Envia contexto da-tonversa

4) Busca resposta

—_f—> Middleware 2) Repassd Audio/Texto

ChatBot 1) Envia Audio/Texto

:

7) Retorna resposta com Testo/Audio

8) Retorna resposta com Testo/Audio

Figura 5: Diagrama de fluxo do funcionamento do Assistente Virtual.

Tempo requisicdes(ms) vs. Cenarios
5000
4000
g
é 3000
€ 2000
g
2
1000
1}
1 (Teste 1) 1 (Teste 2) 2 3 4
Cenarios

Figura 6: Grafico do testes tempo das requisi¢oes de acordo com os cenarios.

11



12 Gunter M. Oliveira

Os resultados dos testes de maneira geral foram bons, pois de acordo com o requisito
de ter um tempo de resposta menor que 1000 ms, e alguns que nao foram tao bons também
podem ser corrigidos adicionando outros servidores para distribui¢ao de carga (crescimento
horizontal), ou aumentar o capacidade de processamento (crescimento vertical). Assim
pode-se fazer um sistema baseado nas especificagoes do cliente, por exemplo, caso o cliente
deseje que os dados de seus usudrios nao fiquem na nuvem (Servidores da Amazon), mas
aceite que algumas aplicagdoes como o news, que nao possui dados que sao mais publicos,
fique na nuvem por questoes de ter uma disponibilidade alta, e principalmente pelos custos,
essa distribuicao das aplicacoes poderiam ser realizadas com o auxilio do Docker e do Ku-
bernetes, que ajudam no deploy e gerenciamento das aplicagoes. Caso um cliente exija que
um dos requisitos do sistema seja o mais rapido possivel, e ndo considere ter custos baixos,
as aplicagoes podem ser hospedadas nos Servidores da AWS em Sao Paulo.

Assim o sistema serd bem escalavel e facil manutencao, alteracao, isso permite atender
melhor as exigéncias dos clientes de acordo com os seus requisitos.

7 Conclusao

Neste periodo de Trabalho de Conclusao de Curso as mudangas que foram realizadas nas
aplicacoes da empresa RedCompany foram de acordo com os estudos sobre microsservigos,
e conhecimentos sobre sistemas distribuidos, esses conhecimentos ajudaram a fazer um sis-
tema mais estruturado que possibilita ter escalabilidade, os estudos também ajudaram a
tirar dividas e ter um definicao clara sobre esses tipos de sistemas e como separar cada
componente, pois inicialmente ao comecar a desenvolver as aplicagoes alguns conceitos nao
estavam muito claros. As analises dos tempos de requisigoes, preocupagodes com a seguranca
e coordenacao, sao alguns 6nus dos sistemas distribuidos, mas as vantagens como escala-
bilidade, ganho em facilidade de manutencao para cada aplicagao fazem compensar esses
onus, e com as andlises foi visto que o apesar do tempo das requisicoes este é um fator
que nao afetard os usudrios de forma negativa desde que o tempo esteja dentro do tempo
determinado pelos requisitos do sistema.

Referéncias
[1] Microservices Architecture Enables DevOps - Migration to a Cloud-Native Architecture
- Armin Balalaie and Abbas Heydarnoori, Sharif University of Technology

Pooyan Jamshidi, Imperial College London

[2] Open Issues in Scheduling Microservices in the Cloud

Maria Fazio and Antonio Celesti, University of Messina - Rajiv Ranjan and Chang
Liu, Newcastle University - Lydia Chen, IBM Research - Massimo Villari, University
of Messina

[3] Microservices - The Journey So Far and Challenges Ahead



Sistemas Distribuidos - Aplicagdes de Micorsservigos e sua Infraestrutura 13

Pooyan Jamshidi, Carnegie Mellon University - Claus Pahl, Free University of Bozen-
Bolzano - Nabor C. Mendonga, University of Fortaleza - James Lewis, ThoughtWorks
- Stefan Tilkov, INNOQ

[4] Microservices: Architecting for Continuous Delivery and DevOps - 2018 IEEE Inter-
national Conference on Software Architecture

Lianping Chen - Lianping Chen Limited - Dublin, Ireland

[5] The Design and Architecture of Microservices

Alan Sill, Texas Tech University,

[6] Using Microservices for Legacy Software Modernization

Holger Knoche and Wilhelm Hasselbring, Kiel University

[7] Microservices

Johannes Thones - Editor: Robert Blumen, Symphony Commerce
[8] WSO2 Identity Server: https://wso2.com/

[9] OAuth2: https://oauth.net/2/
https://docs.oracle.com/cd /E8208501,/160023/J0OS

[10] Empresa RedCompany: https://www.redcompany.com.br/

[11] Figura 1: https://igia.github.io/docs/architecture



