
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Testes de performance em
sistemas web executados pela

Java Virtual Machine
L. A. Ramalho D. P. Mendes

Relatório Técnico - IC-PFG-20-19

Projeto Final de Graduação

2020 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Testes de performance em sistemas web executados pela Java

Virtual Machine

Lucas Alfonso Ramalho∗ Danilo Perina Mendes∗

Resumo

O objetivo deste projeto é comparar a performance e escalabilidade de dois serviços
web que utilizam linguagens executadas na Java Virtual Machine: Java e Kotlin. Iremos
focar em uma situação na qual os dois sistemas irão realizar um algoritmo de execução
paralela quando receber uma requisição HTTP. O sistema feito em Java utilizará threads,
já o sistema em Kotlin Coroutines.

Para realizar a comparação, inicialmente fizemos uma análise teórica para entender
como as aplicações deveriam se comportar em situações de alto throughput. Conclúımos
que o serviço que utiliza Coroutines deveria apresentar melhores resultados devido ao
fato de seu algoritmo de execução paralela consumir menos memória e processamento.

Então colocamos os dois sistemas sob testes de carga utilizando diversas confi-
gurações diferentes, e comparamos os resultados para avaliar o comportamento na
prática. O resultado foi que a aplicação Kotlin performou de maneira substancialmente
melhor, comprovando o que hav́ıamos entendido na análise teórica.

1 Introdução

1.1 Concorrência e paralelismo no desenvolvimento web

Nas primeiras tentativas de otimização do tempo de computação, não havia verdadeiro pa-
ralelismo com mais de um núcleo de processador. Isso exigiu criatividade nos primórdios da
programação, resultando no desenvolvimento da ideia de threads. Essa criação possibilitou
a programação concorrente, onde diferentes threads podem se revezar no uso dos recursos
computacionais, alternando entre si de modo a otimizar o tempo de utilização deles.

Com o avanço dos meios f́ısicos de computação, novas possibilidades de programação se
abriram, atacando a dificuldade de minimizar tempo de comuptação. O desenvolvimento de
processadores com mais de um núcleo possibilitou paralelismo verdadeiro, uma vez que duas
threads diferentes agora podem utilizar processadores separados sem que haja concorrência
entre elas. Essa inovação resultou em melhorias significativas no tempo de processamento
de tarefas.

Mais recentemente, novas abstrações para lidar com concorrência e paralelismo foram
se consolidando, como as corrotinas, que serão abordadas em outra seção deste relatório.
Uma das linguagens que utilizam essa funcionalidade é o Kotlin, que teve seu ińıcio em

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2 Ramalho, Mendes

2016. ”Kotlin is an open-source statically typed programming language that targets the
JVM, Android, JavaScript and Native. It’s developed by JetBrains. The project started in
2010 and was open source from very early on. The first official 1.0 release was in February
2016 ”.[1]

No caso de sistemas web, com as grandes quantidades de acessos simultâneos recentes,
os servidores tiveram que se reinventar para conseguir atender de forma satisfatória todos
os requests de clientes concorrentes. Apenas o uso de threads não soluciona esse problema
de maneira razoável. Portanto, foram criadas soluções para lidar com esse problema e
uma das que mais causou impacto foi o sistema NGINX, que tem como base o uso de
processos e chamadas de I/O asśıncrono. Desde seu lançamento (2004) ainda é um dos
sistemas mais rápidos e escaláveis que temos até hoje. Ele funciona com um processo
master e vários processos worker. Cada worker consegue gerenciar milhares de sockets de
conexão, implementando um loop de eventos que faz repetidamente syscalls não bloqueantes
de entrada e sáıda, checando na repetição se chega um evento de término para dáı executar
o que precisa e devolver o resultado. Isso acontece com cada worker utilizando apenas uma
thread, o que evita o uso exacerbado de recursos do sistema.

1.2 Motivação do projeto

Com o aumento exponencial de usuários de serviços web, um dos desafios encontrados pelos
grandes servidores é o de atender números exorbitantes de requisições ao mesmo tempo.
Com a ainda recente funcionalidade de Coroutines introduzida ao Kotlin, a comparação de
sua performance com as já amplamente utilizadas threads acaba tornando-se inevitável. A
motivação deste trabalho é para que haja um avanço na discussão de qual desses métodos
é mais eficiente quando se trata dos grandes números, uma vez que nestes casos extremos
uma pequena diferença no desempenho pode acabar custando muito mais barato.

2 Objetivo

O objetivo deste relatório é realizar um estudo teórico e prático sobre o comportamento dos
sistemas web desenvolvidos nas linguagens Kotlin e Java, buscando entender quais são as
diferenças entre os algoritmos de execução paralela dos mesmos.

Vamos analisar o comportamento dos serviços web em situações de estresse semelhantes
às encontradas na indústria e avaliar quais foram as diferenças entre o esperado pela teoria
e a prática. Deste modo, iremos aplicar o conhecimento adquirido ao longo do curso de
Engenharia da Computação nos tópicos de sistemas operacionais, engenharia de software,
redes, orientação a objetos e análise de algoritmos.

3 Base Teórica

Neste caṕıtulo iremos abordar e detalhar os conceitos das ferramentas e as teorias que vamos
utilizar como base neste projeto, além de buscar entender qual será o comportamento teórico
dos sistemas durante o experimento.

Teste de performance JVM 3

3.1 Java

Java é uma linguagem de programação orientada a objeto que inicialmente foi desenvolvida
para televisão interativa. Sua utilização veio a se provar avançada demais para as tecnologias
da época, tendo sua primeira implementação lançada em 1996. Teve como prinćıpios de
desenvolvimento a simplicidade, robustez, alta performance, entre outras.

Um desses objetivos dos desenvolvedores de Java era que a linguagem tivesse portabi-
lidade universal, ou seja, que pudesse ser utilizada em qualquer máquina sem detrimento
qualquer. Para alcançar essa missão, foi desenvolvida a JVM (Java Virtual Machine), uma
máquina virtual que permite a utilização da linguagem em qualquer sistema operacional.
Sua versão mais primitiva foi lançada em 2006, até que em 2007 foi lançada por completo.

Java foi por muito tempo a linguagem mais utilizada em serviços web, uma vez que
há bibliotecas e frameworks de suporte para desenvolver esse tipo de serviço. Essas funci-
onalidades adicionadas à portabilidade universal resultaram num amplo uso por parte de
muitos desenvolvedores. Até hoje é muito utilizada, reforçado pelo fato de que há constante
suporte e novas atualizações lançadas com certa frequência.

3.2 Kotlin

Kotlin é uma linguagem tanto orientada a objetos quanto funcional que teve seu desenvolvi-
mento iniciado em 2010 para ter sua primeira versão estável lançada em 2016. Inicialmente
foi pensada para ser uma nova linguagem para JVM, uma vez que muitos serviços web já
utilizam essa máquina virtual, e que fosse tão rapidamente compilável quanto Java, gozando
de funcionalidades que facilitassem seu uso e otimização.

Na versão v1.3 de 2018, Kotlin introduziu as chamadas Coroutines, que foram um ponto
importante na decisão atual de muitos desenvolvedores para começar a desenvolver seus
novos serviços utilizando esta linguagem. A ideia de corrotinas não foi uma invenção de
Kotlin, mas ela trouxe uma nova possibilidade para a JVM com o suporte nativo a essa
funcionalidade, facilitando seu uso.

Corrotinas tem como ideia básica a ”imitação”de uma thread ; são como se fossem threads
mais leves que permitem programação asśıncrona e concorrência entre trechos de código.
Elas tornaram Kotlin uma linguagem bastante visada no mercado web, devido ao grande
aumento no número de usuários, o que resulta em uma escalada das requisições simultâneas
nos serviços atuais.

3.3 Java Virtual Machine

A JVM é uma máquina virtual que providencia um ambiente para rodar um código Java e
aplicações, e que faz parte da JRE (Java Runtime Environment). O compilador de Java,
diferentemente de outras linguagems, compila o código para a JVM e não para o sistema
operacional. Primeiro o código Java é compilado e é gerado um Java bytecode. A JVM,
por sua vez, transforma esse bytecode em linguagem de máquina a depender do sistema
operacional sobre o qual ela está rodando.

Quando um arquivo .java é compilado, é gerado um arquivo .class de mesmo nome. Ao
ser executado, esse arquivo passa por diversos passos, realizados pela JVM. A funcionalidade

4 Ramalho, Mendes

da JVM pode ser resumida a esses passos, demonstrados na Figura 1:

Figura 1 - Arquitetura da JVM

O Class Loader tem 3 principais funções: Loading (ler o arquivo, gerar o binário cor-
respondente e salvá-lo na Method Area), Linking (faz a verificação e preparação, como por
exemplo alocação de memória) e Initialization (inicialização das variáveis).

A JVM Memory é onde ficam guardadas as informações do arquivo. Na Method Area
ficam as guardadas informações sobre variáveis e métodos. Heap é onde ficam salvos os
objetos, e é uma área compartilhada por todas as threads. Cada thread tem a sua própria
Language Stack onde ficam guardadas as variáveis locais, e essa informação não é comparti-
lhada com outras threads; quando uma thread acaba, sua Stack é destrúıda. O PC register
guarda o endereço da instrução sendo executada e não é compartilhado com outras threads.
O Native Mother Stacks guarda as instruções de métodos nativos.

O Execution Engine lê o bytecode linha por linha e executa as instruções. O Native
Method Interface habilita a JVM a chamar as bibliotecas das Native Method Libraries
(uma coleção de bibliotecas nativas).

3.3.1 Spring framework

O Spring é um framework open source para a plataforma Java criado por Rod Johnson
em Outubro de 2002 e que hoje é mantido por um time de quase 100 colaboradores[9]. O
objetivo da ferramenta é facilitar o desenvolvimento de qualquer tipo de aplicação que é

Teste de performance JVM 5

executada na JVM. Para isto, ele oferece um grande conjunto de módulos com funciona-
lidades que são tipicamente utilizadas na indústria e que possuem grande flexibilidade de
configuração. A partir da versão 5.0, o framework também passou a suportar Kotlin. [10]

O que diferencia o Spring de outros frameworks presentes no mercado é a grande va-
riedade e a qualidade dos módulos, cujo desenvolvimento é feito visando os padrões de
qualidade esperados de software presentes na indústria, como segurança e performance.
Nesse sentido, é uma ferramenta que permite o desenvolvimento de aplicações em menor
tempo e com qualidade.

Embora cada módulo seja independente dos outros, todos eles obedecem a alguns
padrões de arquitetura que são comuns, dos quais se destaca o prinćıpio de inversão de
controle, também conhecido como injeção de dependência. Este padrão corresponde a um
processo onde os objetos definem suas dependências apenas através de propriedades das mes-
mas, sem instanciá-las. O próprio Spring é responsável então por instanciar as propriedades
e relacioná-las ao objeto. Este processo é fundamentalmente o oposto do próprio objeto con-
trolar o comportamento das suas propriedades, dáı o nome ”Inversão de controle”. O grande
valor deste padrão está no fato de que o framework passa a ser o responsável em gerenciar
o comportamento dos objetos dentro da aplicação, prevenindo problemas de desempenho
como por exemplo excesso de memória no heap da JVM causado por má instanciação de
objetos.

No nosso caso, o principal módulo utilizado pelos dois serviços que vamos testar foi o
Spring Boot. Ele oferece a maioria dos componentes do Spring necessários para aplicações
em geral de maneira pré-configurada, tornando posśıvel termos uma aplicação sendo exe-
cutada com o esforço mı́nimo de configuração e implantação. Para rodar uma aplicação
baseada neste módulo, basta ter o Java na versão compat́ıvel instalada no sistema opera-
cional. É posśıvel gerar um template de um serviço web baseado neste módulo através do
site https://start.spring.io/.

O template possui uma classe chamada NomeDoServico.Java que, se for executada, irá
executar todos os passos necessários para deixar o servidor online e recebendo requisições.
Veremos no próximo caṕıtulo como isso foi feito nos dois serviços que vamos testar.

3.4 Protocolo HTTP

HTTP é um protocolo da camada de aplicação utilizado em sistemas web para fazer re-
quisições de recursos para servidores, enviado sobre o protocolo da camada de transporte
TCP. O cliente (agente-usuário), normalmente um navegador web, faz uma requisição (via
HTTP) para um servidor de algum recurso (por exemplo uma página HTML). O HTTP
é um protocolo sem estado, apenas com sessões. Para guardar o estado muitos serviços
utilizam os cookies, conseguindo assim guardar informações da conexão.

O fluxo HTTP começa com o cliente abrindo uma conexão TCP com o servidor, ge-
ralmente na porta 80. Então o cliente envia uma mensagem HTTP, como por exemplo a
demonstrada na Figura 2:

6 Ramalho, Mendes

Figura 2 - Exemplo de uma mensagem do tipo GET

Depois o cliente lê a resposta do servidor, como na Figura 3:

Figura 3 - Resposta HTTP

E por fim o cliente ou fecha a conexão ou reutiliza para requisições futuras.

O protocolo HTTP tem um conjunto de métodos, chamados de Verbos, cuja função é
indicar qual ação deverá ser executada. Os mais utilizados são POST, usado para indicar
mudanças no lado do servidor, PUT, substitui todas as atuais representações do recurso de
destino pela carga de dados da requisição, DELETE, que remove um recurso espećıfico e
o método GET. O método que foi utilizado nesse projeto, é o GET, que é um método do
HTTP usado para fazer uma requisição de recursos, como por exemplo: o cliente (navegador
web) faz uma requisição pelo endereço url ao servidor e o servidor responde com uma página
HTML, como podemos ver mais detalhadamente na Figura 4:

Teste de performance JVM 7

Figura 4 - Exemplo de mensagem do tipo GET

Vamos utilizar em um fluxo nesse projeto duas requisições GET; um é o que a ferramenta
de teste de performance faz para a aplicação e o outro é o que o serviço faz para o servidor
central, seja por uma thread separada ou por uma Coroutine. Os testes realizados neste
projeto foram desenvolvidos de modo que a comparação seja feita da melhor forma posśıvel,
tendo como objetivo a menor variação de tempo entre as requisições. Para que isso ocorra,
o ideal é que o cliente e o servidor estejam o mais próximo posśıvel; por isso colocamos o
JMeter na mesma rede dos serviços a serem testados.

3.5 Concorrência e paralelismo em sistemas web

O primeiro passo para entendermos este assunto é saber diferenciar os conceitos de con-
corrência e paralelismo no contexto de sistemas computacionais. O melhor jeito de sintetizar
essa diferença é através da famosa fala do criador da linguagem Go, Rob Pike: ”Concur-
rency is about dealing with lots of things at once. Parallelism is about doing lots of things
at once.”[11]

Em outras palavras, concorrência está ligado a como o sistema lida com a execução
de forma sequencial de um conjunto de tarefas independentes em um mesmo intervalo de
tempo. Quando se discute concorrência em sistemas web, estamos tratando de um problema
de escala exponencial, principalmente nos dias atuais em que bilhões de pessoas possuem
acesso à rede, e uma simples promoção ou festas de final de ano podem ser motivo para
que haja milhões de requisições simultâneas para um determinado sistema. Nessa escala,
pequenas diferenças de desempenho podem escalar e se tornarem colossais.

Dentro do contexto do projeto, vamos estudar como um serviço web Java e um Kotlin
lidam com esse cenário de múltiplas requisições simultâneas, onde existe o acesso concorrente
aos recursos de hardware, em especial a memória e o processamento.

Já o conceito de paralelismo significa um sistema executar mais de uma atividade si-
multaneamente. Ou seja, paralelismo é um dos recursos que podemos utilizar para se lidar
com situações de concorrência.

O número máximo de atividades que qualquer sistema computacional pode executar
simultaneamente é sempre igual a quantidade de núcleos de processamento dispońıveis para

8 Ramalho, Mendes

o mesmo. O que irá variar de um ambiente para outro é como é feito o processo de alocação
de recursos para a execução de uma determinada atividade.

Uma estratégia utilizada pelos principais sistemas operacionais presentes no mercado
é dividir as aplicações que estão sendo executadas em processos. Cada processo tem um
espaço de memória exclusivo e podemos executar dois processos simultaneamente em núcleos
separados. Contudo, essa estratégia não é válida para o nosso caso, dado que necessita-
mos compartilhar memória entre o que está sendo executado paralelamente nos cores do
processador.

Tendo em vista esse problema, foi criado o conceito de thread. A ideia é dividir um
processo em pedaços - chamados de threads - que podem ser executados simultaneamente
em núcleos diferentes. Nesse sentido, cada uma tem seu próprio contexto de hardware,
porém compartilha o contexto de software e memória com as outras do mesmo processo.

Essa estratégia gera alguns desafios de programação, já que é posśıvel que duas ou mais
threads tentem e manipular ou acessar o mesmo endereço de memória ao mesmo tempo.
Esses desafios são chamados de race conditions. São necessários mecanismos de controle
para lidar com essa situação.

É posśıvel encontrar em algumas literaturas o termo threads como ”processos leves”. Isso
se dá também porquê a mudança de contexto de execução de uma thread no processador
para outra necessita de menos recursos que a mudança de contexto de processos.

Os principais sistemas operacionais modernos possuem suas próprias implementações
de processos e threads. A JVM, por sua vez, possui uma camada de abstração em cima
dessas implementações para que seja posśıvel utilizar este recurso através do Java e do
Kotlin. Nas duas próximas subseções iremos detalhar como funciona essa abstração para
cada linguagem, quais as vantagens e desvantagens, e como irá funcionar dentro do cenário
prático.

3.5.1 Java Threads

O recurso mais baixo ńıvel oferecido pela Oracle para lidar com paralelismo é a classe Java
chamada Thread.[12] Essa classe possui métodos que permitem a criação e gerenciamento
das mesmas dentro de um programa Java.

Porém, dado que essa interface não possui nenhum mecanismo ou algoritmo para lidar
com as race conditions que podem aparecer, foram criadas algumas bibliotecas que possuem
abstrações que ajudam a evitar esses problemas.

A biblioteca que utilizamos neste projeto foi também desenvolvida pela Oracle e se
chama CompletableFuture. Essa biblioteca foi introduzida na versão 8 do Java e é uma
evolução de uma biblioteca antiga que se chamava Future.[13] O objetivo dela é prover uma
interface de desenvolvimento paralelo, onde é necessário apenas deixar expĺıcito o código
a ser executado em outra thread e qual é o formato da variável de retorno desse código.
A única parte da memória que será compartilhada é essa variável de retorno. No caso do
serviço que vamos testar, a rotina que será executada paralelamente é um HTTP GET para
um terceiro serviço e a variável de retorno é o conteúdo que é retornado na requisição.

Dentro do contexto de um serviço backend Java ou Kotlin feito utilizando Spring, cada
HTTP request que o mesmo recebe é responsável pela criação de uma thread nova dentro

Teste de performance JVM 9

do processo principal da aplicação. O conjunto de threads que estão pré-instanciadas para
armazenar requisições é chamado de Thread Pool.

Vamos imaginar que enviamos 100 requisições simultâneas para um backend feito em
Java. Se a pool do sistema estiver configurada para ter 1000 threads, 100 delas armazenarão
as requisições, que serão executadas em ordem de chegada da requisição. Porém, se a
pool estiver configurada para ter 10 threads, 90 dessas requisições não serão executadas e
retornarão erro.

O número total de threads que um pool pode ter é determinado pela memória dispońıvel
para a aplicação, e deve ser balanceado com outras caracteŕısticas do sistema como por
exemplo capacidade de processamento.

Nesse sentido, dentro do fluxo do nosso projeto, quando o serviço Java receber uma
requisição HTTP, serão abertas duas threads: uma para a execução da requisição em si e
outra através da biblioteca CompletableFuture que irá executar uma nova requisição HTTP
para um terceiro serviço.

Já quando o serviço Kotlin receber uma requisição, será aberta uma thread para a
execução da requisição em si, porém será utilizada uma Coroutine para realizar a chamada
HTTP para o terceiro serviço. Iremos explicar o comportamento da coroutine abaixo.

3.5.2 Kotlin Coroutines

Conceitualmente, as Coroutines são como threads; elas executam unidades de tarefa con-
correntemente. com a diferença de que não são obrigatoriamente ligadas a uma thread
espećıfica. Elas podem ter a sua execução suspensa e ter a sua atividade retomada em um
momento futuro, possivelmente em outra Thread.

As Coroutines também são muito mais leves, porque enquanto cada thread tem sua
própria pilha de dados, as corrotinas compartilham memória, o que torna elas muito mais
eficientes do ponto de vista de uso de recursos.

No caso do serviço Kotlin que desenvolvemos, quando a requisição HTTP é feita, faze-
mos uma chamada de suspensão, liberando a thread principal para ser utilizada por outra
requisição enquanto não recebemos a resposta. Assim que temos o retorno, a atividade é
retomada na thread principal. A Figura 5 abaixo representa este fluxo:

10 Ramalho, Mendes

Figura 5 - Fluxo de uma Coroutine

3.6 Testes Automatizados

Para garantir a qualidade e funcionalidade de um programa, uma prática fundamental é a de
testar o código, a fim de encontrar falhas no sistema e verificar se ele funciona como deveria.
Testes manuais em geral são muito trabalhosos e pouco eficientes, portanto uma chave para
ter um código amplamente testado são os testes automatizados. Existem inúmeros tipos de
testes, como por exemplo testes unitários e de interface de usuário.

Mike Cohn cunhou em seu livro Succeeding with Agile o termo Pirâmide de Testes.
Na base da pirâmide ficam os testes mais básicos, rápidos e mais fundamentais, como os
testes unitários. Já no topo da pirâmide, ficam os testes mais complexos, completos e de
alto ńıvel, que tem como objetivo testar o sistema como um todo, integrando diferentes
funcionalidades no mesmo teste.

Neste projeto, o tipo de teste que iremos desenvolver será o de performance. É um teste
de mais alto ńıvel (topo da pirâmide), que visa comparar funcionalidades mais complexas
e que não são as mais ”essenciais”para o funcionamento de um sistema web. É um tipo de
teste mais voltado para melhorias high-end, de forma que o sistema possa performar melhor

Teste de performance JVM 11

em situações muito espećıficas (situações de alto ńıvel de stress).

3.6.1 Teste de performance

Neste projeto, os testes de performance (ou desempenho) que serão realizados tem como
foco avaliar o tempo de resposta de múltiplas requisições, a velocidade de processamento e
a quantidade de recurso de hardware exigido.

Entre os testes de desempenho, existem alguns subtipos, como por exemplo o teste de
resiliência, que tem como objetivo determinar como o código reage a longos peŕıodos de
uso, o teste de carga, que serve para verificar como o sistema reage a um número grande de
usuários, e o teste de stress, parecido com o teste de carga, mas tem o objetivo de esticar ao
máximo os limites de requisições e capacidade. Neste projeto, o teste feito é mais parecido
com um teste de carga, onde iremos fazer um grande número de requisições simultâneas,
mas sem o objetivo de ”quebrar”o código como num teste de stress.

3.6.2 Métricas de performance

Nos testes de performance algumas métricas serão utilizadas como parâmetro de comparação
entre os serviços. Elas serão ligados uso de recursos de hardware, quantidade de erros e
tempo médio de resposta das requisições. Todas esses dados permitem gerar estat́ısticas
que darão mais clareza onde cada tipo de serviço tem mais dificuldades e problemas.

A variância do tempo médio de resposta é uma das estat́ısticas que iremos calcular para
cada serviço. Dessa maneira, poderemos ter uma noção melhor da consistência desse tempo
médio e checar se ele há muita discrepância entre os valores, para conseguir chegar a uma
conclusão mais apropriada. O cálculo se dá pela fórmula:

σ̂2 =

∑n
i=1(yi − ȳ)2

n− 1

Onde n é o número total de requisições feitas, yi é o tempo de resposta de cada requisição
individual e ȳ é a média aritmética de todos os yi.

Outro conjunto de estat́ısticas que será levado em consideração é o percentil. Essa
estratégia consiste em dividir todo o conjunto experimental em 100 blocos que possuem
tempo de resposta crescente. A partir dáı, o n-ésimo percentil Pn é o valor x (xn) que
corresponde à frequência cumulativa de N .n/100, onde N é o número total de requisições
feitas. Então, por exemplo, o 90 percentil corresponde ao maior valor de tempo de resposta
dos 90% menores valores dispońıveis. O JMeter disponibiliza o 90, 95 e 99 percentil da
amostragem de teste automaticamente, o que nos permite ter uma métrica de comparação
que elimina casos de borda.

Outro dado que iremos utilizar é o APDEX (Application Performance Index). Essa
classificação é um padrão aberto criado por uma série de empresas de tecnologia para avaliar
o desempenho de aplicações de software. Seu propósito é converter as métricas gerais de
performance em um valor que possa dar um entendimento do quanto a aplicação está dentro
das expectativas dos seus usuários. Este valor é calculado pelo JMeter durante a execução

12 Ramalho, Mendes

de cada teste e leva em consideração que a expectativa do usuário é conseguir realizar uma
requisição HTTP GET em menos de meio segundo. A fórmula da conta é a seguinte:

APDEX =
SatisfiedCount+ 0.5 ∗ ToleratingCount

TotalCount

3.7 Conclusão teórica

Tendo em consideração os pontos levantados neste caṕıtulo, conclúımos que é esperado
que o sistema Kotlin consiga escalar e receber mais requisições concorrentes que o serviço
Java, já que a tendência é que tenha mais memória dispońıvel para armazenar requisições
no Thread Pool. Porém, não necessariamente irá existir diferença no tempo de requisição
médio entre os dois sistemas.

4 Desenvolvimento

O objetivo deste caṕıtulo é mostrar como foi feito o desenvolvimento da parte prática do
projeto e como funcionam os sistemas criados.

4.1 Arquitetura geral

Para o desenvolvimento da parte prática de coleta de dados de desempenho foi prototipado
um sistema que seja capaz de testar e gerar métricas em relação ao desempenho de dois
serviços web semelhantes em uma situação de alta carga de trabalho.

Dentro desse fluxo de teste precisamos de no mı́nimo dois componentes atuando: um
que realiza requisições HTTP com alta frequência e retorna métricas dos resultados e outro
que seria o sistema que recebe as requisições e irá ser avaliado.

No caso do primeiro, como não se trata de interesse do projeto o desenvolvimento das
ferramentas de teste, buscamos por opções open source que são consolidadas e utilizadas
na indústria. Por isso, acabamos utilizando o JMeter. Detalhamos a ferramenta e suas
caracteŕısticas próxima seção.

No caso do segundo componente, o serviço web que vamos testar, temos que desenvolver
dois projetos: um em Java e outro em Kotlin. Os dois vão ser executados na JVM e devem
ser capazes de receber requisições web e de criar uma segunda thread/coroutine dentro de
cada requisição recebida. Ambos foram desenvolvidos utilizando o Spring como framework
base.

Cada chamada HTTP atendida pelo sistema deverá criar uma thread/coroutine que por
sua vez executa uma determinada rotina. Este trecho que será executado separadamente
precisa realizar algum tipo de tarefa que demore algum tempo fixo para executar, de modo
que podemos comparar a performance em um cenário parecido com a realidade. Nesse
cenário, haviam duas possibilidades de escolha para a tal tarefa: realizar uma operação
de I/O ou realizar uma operação custosa - por exemplo uma iteração que realize milhões
de contas. Como o ideal para a precisão do experimento é manter os dois ambientes de
teste o mais parecido posśıvel, optamos por atribuir a esta tarefa a realização de uma nova
chamada HTTP para um terceiro que chamamos de servidor central, de modo que a tarefa

Teste de performance JVM 13

a ser executada separadamente terá um tempo de execução muito próximo nos dois casos.
Na próxima subseção explica-se a escolha do servidor central.

As duas imagens abaixo (Figura 6 e Figura 7) esquematizam a arquitetura descrita:

Figura 6 - Fluxo de requisições do serviço Java

Figura 7 - Fluxo de requisições do serviço Kotlin

4.2 Componentes

Abaixo vamos detalhar a implementação e o funcionamento dos componentes descritos na
arquitetura geral. Todo o código do projeto está contido em um repositório central Git
que está dispońıvel em https://gitlab.ic.unicamp.br/ra135434/pfg-jvm-testing. Git é uma
ferramenta open source utilizada para controle de versões de código. Mais informações
em https://git-scm.com/. Ela foi utilizada pelo grupo para auxiliar no desenvolvimento
conjunto do sistema. Criamos um repositório central onde sempre se encontra a versão
mais atual do código, assim, temos controle de todas as modificações, quando elas foram
feitas e quem foi o responsável.

No arquivo README.md dentro pasta raiz do projeto pode-se encontrar instruções
sobre como executar cada componente localmente.

4.2.1 Servidor Web Java

O servidor backend foi desenvolvido utilizando o framework Spring na versão 5 como base.
Foi utilizado como base um código gerado automaticamente pelo https://start.spring.io/.
Optamos utilizar como configuração inicial as seguintes caracteŕısticas: projeto Maven,
Spring Boot versão 2.3.3 e versão 11 do Java.

Maven é uma ferramenta de gerenciamento de projeto desenvolvida pela Apache. A
sua caracteŕıstica principal é que conseguimos gerenciar o build, imports externos e do-
cumentação dentro de um mesmo documento. Escolhemos utilizar Maven por conta da

14 Ramalho, Mendes

familiaridade no uso por parte dos integrantes do projeto. Esta ferramenta não tem im-
pacto no desempenho final do sistema, apenas impacta no tempo de desenvolvimento e
deploy da aplicação.

Dentro da pasta central do código do serviço destacam-se dois componentes: a pasta
src, e o arquivo pom.xml. Este arquivo está em formato XML e é o que o Maven utiliza
como fonte para controle do projeto. Nele podemos encontrar quais bibliotecas externas
estão sendo utilizadas em qual versão.

Já na pasta src/ encontra-se o código Java responsável por receber as requisições e reali-
zar abertura de uma segunda thread que irá realizar uma chamada HTTP para um terceiro
serviço. São duas classes que realizam este trabalho: MainController.java e CentralService-
Client.java. Dentro da classe MainController temos dois métodos que correspondem à um
endpoint cada um. Abaixo a classe:

public class MainController {

@Autowired

private CentralServiceClient centralServiceClient;

Logger logger = LoggerFactory.getLogger(MainController.class);

@GetMapping("/")

public String getCentralServiceResult() {

logger.info("Get central service message incoming request");

return centralServiceClient.getCentralServiceMessage();

}

@GetMapping("/async")

public String getAsyncCentralServiceResult() {

logger.info("Get ASYNC central service message incoming request");

return centralServiceClient.getAsyncCentralServiceMessage();

}

}

A anotação @GetMapping(”/caminho”) indica que o método abaixo dele será invocado
quando uma requisição GET chegar no endereço https://ip_do_servico:porta/caminho.
Na seção ”hospedagem”detalharemos as propriedades de rede dos serviços.

Portanto, o getCentralServiceResult é ativado quando o serviço recebe uma chamada
HTTP GET no caminho ”/”e chama o método de mesmo nome da classe CentralServiceCli-
ent, que é responsável por realizar uma nova chamada HTTP bloqueante dentro da thread
principal da requisição e retornar exatamente o que vier do mesmo.

Já o getAsyncCentralServiceResult escuta o caminho ”/async”, e invoca um outro
método que realiza a chamada HTTP para o servidor em uma segunda thread e também
retorna o resultado.

A ideia de ter dois fluxos, um no qual a chamada HTTP bloqueia a thread principal e
outro que bloqueia uma outra thread, é para avaliarmos se o comportamento do serviço em

https://ip_do_servico:porta/caminho

Teste de performance JVM 15

situação de alta carga será de acordo com o que prevemos. É esperado que o fluxo que apenas
bloqueie a thread principal na realização da chamada HTTP se comporte de maneira mais
performática que o segundo, pois teoricamente apenas bloquear a thread principal consome
menos recursos (principalmente memória) que abrir uma thread extra e bloquear a mesma.

A classe CentralServiceClient, representada abaixo, é responsável por implementar os
fluxos descritos acima. Aqui é válido notar que o método asśıncrono utiliza a mesma imple-
mentação do śıncrono, ou seja, os dois executam o mesmo código, a diferença está apenas
no fato de que o asśıncrono irá abrir uma segunda thread que será bloqueada enquanto a
requisição HTTP para o servidor central é feita.

public class CentralServiceClient {

public String getAsyncCentralServiceMessage(){

try {

CompletableFuture<String> future

= CompletableFuture.supplyAsync(() ->

getCentralServiceMessage());

return future.get();

} catch (Exception e) {

e.printStackTrace();

return "Error";

}

}

public String getCentralServiceMessage(){

try {

URL url = new URL("http://172.20.0.59:8081");

HttpURLConnection con = null;

con = (HttpURLConnection) url.openConnection();

con.setRequestMethod("GET");

con.setConnectTimeout(5000);

con.setReadTimeout(5000);

BufferedReader in = new BufferedReader(

new InputStreamReader(con.getInputStream()));

String inputLine;

StringBuffer content = new StringBuffer();

while ((inputLine = in.readLine()) != null) {

content.append(inputLine);

}

in.close();

return content.toString();

} catch (Exception e) {

e.printStackTrace();

return "Error";

}

}

}

16 Ramalho, Mendes

4.2.2 Servidor Web Kotlin

O código do backend desenvolvido em Kotlin foi estruturado de maneira semelhante ao
Java. Utilizamos o framework Spring como base para o serviço e criamos o template inicial
através do start.spring.io.

Dentro do arquivo Maven pom.xml, presente na pasta raiz do projeto, podemos encon-
trar todas as dependências externas utilizadas no projeto. Destacam-se duas: org.jetbrains.kotlinx.kotlinx-
coroutines-core e org.jetbrains.kotlinx.kotlinx-coroutines-reactor. Estes módulos vem de
uma biblioteca chamada Kotlinx Coroutines desenvolvida pela Jetbrains [5], e possuem a
implementação da criação de uma corrotina. Neste sentido, do mesmo jeito que utilizamos
a CompletableFuture no projeto Java para facilitar a criação de uma thread nova, aqui
estamos utilizando a Kotlinx Coroutines.

No caminho src/main/kotlin/org/unicamp/pfg/kotlinservice podemos encontrar as clas-
ses Kotlin que implementam os dois fluxos também presentes no serviço que vamos comparar
a este. São duas classes, a MainController.kt e a CentralServiceClient.kt. A MainControl-
ler.kt é responsável por mapear os dois endpoints para responder a chamadas HTTP GET
nos caminhos ”/”e ”/async”.

A CentralServiceClient.kt é responsável por implementar os dois fluxos, um deles re-
alizando a requisição HTTP na thread principal da requisição e o outro dentro de uma
Coroutine criada. O método getAsyncCentralServiceMessage() tem na assinatura o prefixo
’suspend’, que indica à JVM que esse trecho deve ser executado numa corrotina.

Nesta classe, diferentemente do que acontece no serviço Java, o código dos fluxos de
requisição HTTP para o servidor central não são os mesmos. Isso acontece porque foi
necessário utilizar uma biblioteca que fosse compat́ıvel de ser utilizada dentro de uma Co-
routine. Para tal, é preciso que a implementação tenha claro quais são os momentos de
”pausa”, ou seja, onde que o fluxo pode liberar o recurso do sistema para executar outros
fluxos.

class CentralServiceClient {

suspend fun getAsyncCentralServiceMessage(): String {

val request = getWebClient()

.get()

.uri("/")

.retrieve()

.awaitBody<String>();

return request;

}

private fun getWebClient(): WebClient {

val tcpClient = TcpClient

.create()

.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000)

.doOnConnected { connection: Connection ->

connection.addHandlerLast(ReadTimeoutHandler(5000,

TimeUnit.MILLISECONDS))

Teste de performance JVM 17

connection.addHandlerLast(WriteTimeoutHandler(5000,

TimeUnit.MILLISECONDS))

}

return WebClient

.builder()

.baseUrl("http://localhost:8081")

.defaultCookie("cookieKey", "cookieValue")

.defaultHeader(HttpHeaders.CONTENT_TYPE,

MediaType.APPLICATION_JSON_VALUE)

.clientConnector(ReactorClientHttpConnector(HttpClient.from(tcpClient)))

.defaultUriVariables(Collections.singletonMap("url",

"http://localhost:8081"))

.build();

}

fun getCentralServiceMessage(): String {

return httpGet("http://localhost:8081");

}

private fun httpGet(myURL: String?): String {

val inputStream: InputStream

val result:String

val url: URL = URL(myURL)

val conn: HttpURLConnection = url.openConnection() as HttpURLConnection

conn.connect()

inputStream = conn.inputStream

if(inputStream != null)

result = convertInputStreamToString(inputStream)

else

result = "Erro"

return result

}

private fun convertInputStreamToString(inputStream: InputStream): String {

val reader = BufferedReader(inputStream.reader())

val content = StringBuilder()

try {

var line = reader.readLine()

while (line != null) {

content.append(line)

line = reader.readLine()

}

return content.toString();

} finally {

reader.close()

}

18 Ramalho, Mendes

}

}

4.2.3 Ferramenta de teste de performance

Para a realização das comparações entre os serviços, precisamos de uma ferramenta que
execute requisições HTTP em alta escala e retorne métricas sobre o desempenho do sistema
que recebeu.

As métricas de performance que estamos procurando são tempo médio de resposta de
uma chamada HTTP, quantidade de respostas num determinado intervalo e quantidade de
erros recebidos.

Após pesquisa de referências, acabamos escolhendo o Apache JMeterTM. Este é um
software opensource feito totalmente em Java e foi desenvolvido para realizar testes de
carga funcionais e medir performance[4]. Trata-se de um dos softwares mais utilizados
tanto na academia quanto na industria.

Para instalar, basta apenas baixar uma pasta compressa no site oficial e descomprimir
dentro de algum diretório da máquina que vai realizar as requisições. Para que a comparação
de desempenho seja o mais fiel posśıvel, é necessário que a máquina que está o JMeter seja
diferente da que o servidor sendo testado no momento.

O modo de funcionamento da ferramenta gira em torno do conceito de plano de tes-
tes. Cada plano contém todas as configurações de execução e métricas de performance de
determinado tipo de execução de carga. Podemos importar e exportar planos através de
arquivos com a extensão .jmx. Todos os arquivos correspondentes aos testes feitos dentro
deste projeto estão dentro do repositório Git apresentado no começo deste caṕıtulo, na
pasta /test-plans.

Por conveniência, instalamos a ferramenta localmente para criar os planos, porém é
necessário que os testes sejam executados numa máquina sem concorrência por recursos
(memória e processamento), de modo que seja posśıvel criar um alto número de requisições
simultâneas. Portanto, instalamos também o JMeter em uma VM situada na mesma rede
do serviço. Detalharemos melhor na próximas seções.

O JMeter possui uma interface gráfica que pode ser utilizada para a criação, edição e
exportação de planos. Para abrir a GUI, basta executar o jmeter.bat presente na raiz da
pasta da ferramenta. Na Figura 8 abaixo podemos ver a tela inicial:

Teste de performance JVM 19

Figura 8 - Interface gráfica do Test Plan

Na subseção 4.4 iremos detalhar quais foram os planos criados e como foi feita a execução
dos mesmo.

4.2.4 Servidor Central

A ideia de criar um terceiro servidor (que chamamos de central) é de que a thread ou
a Coroutine tenha tempo de execução parecido nos dois cenários de teste. Partimos do
prinćıpio que a requisição http realizada para um outro serviço não deve ter variações de
tempo para dois serviços que estão hospedados na mesma VM.

Inicialmente, criamos um terceiro projeto java com caracteŕısticas semelhantes ao que
será testado, contendo apenas um endpoint que recebe uma chamada HTTP GET e retorna
o resultado da conta 2+2. Para que haja a menor variação de tempo posśıvel entre as cha-
madas, este servidor deve estar na mesma VPN do serviço a ser testado e que a comunicação
ocorra de maneira direta - sem sair da rede.

Porém, avaliamos que as oscilações de desempenho que podem ocorrer em condições de
estresse neste serviço comprometem a veracidade do teste. Por isso, optamos em realizar
testes também realizando requisições HTTP para um terceiro fora da rede que teoricamente
não deve sofre oscilação de tempo na resposta, como por exemplo acessar o HTML estático
https://www.csus.edu/indiv/m/merlinos/enron.html ou alguma API aberta. Descrevere-
mos os testes e as diferenças de resultados na seção abaixo.

20 Ramalho, Mendes

4.3 Hospedagem

Utilizamos como serviço de hospedagem e rede o Cloud.IC, hospedado no Instituto de
Computação da UNICAMP. Este pode ser acessado apenas por alunos do instituto através
do site https://cloud.ic.unicamp.br/. Através dessa solução podemos hospedar os nossos
serviços em máquinas virtuais (VMs) e dispor de poder de processamento e armazenamento
para o funcionamento dos mesmos.

O Cloud.IC é feito utilizando o Openstack como base. Este é um sistema operacional em
nuvem que é capaz de controlar grandes clusters de computadores através de virtualização.
Também é posśıvel criar estruturas de comunicação como filas e streams. Neste projeto
utilizaremos apenas VMs - que também chamamos de instâncias - com uma configuração
espećıfica e determinado provisionamento de recursos. O Openstack também possui um
módulo de segurança com ferramentas para garantir que o acesso aos componentes possua
autenticação.

Para o propósito de comparação, os ambientes que hospedam os serviços a serem testados
devem ser idênticas. Por isso, podemos utilizar uma mesma instância para hospedar as duas
aplicações. Além desta, também iremos utilizar mais dois tipos diferentes de configuração
neste projeto: um para a ferramenta de teste e outro para o servidor central.

O Cloud.IC possui um dashboard que pode ser acessado pelo site. Neste painel conse-
guimos realizar todas as atividades de gerenciamento de recursos necessários, como criar
instâncias e ver quais estão sendo utilizadas. Abaixo temos uma imagem que mostra parte
dele, mais especificamente a parte que indica o total de recursos alocados perto do limite
dispońıvel. As duas instâncias que estão sendo utilizadas nesse contexto estão hospedando
o serviço a ser testado e o JMeter, respectivamente. O número de vCPUs é uma unidade
de medida para a quantidade de processamento que podemos utilizar.

Teste de performance JVM 21

Figura 9 - Infraestrutura das máquinas utilizadas.

Ainda dentro do dashboard, também podemos listar as instâncias ativas, como mostra a
imagem abaixo. Para este projeto será necessário inicialmente apenas duas, que chamaremos
de sender-instance e receiver-instance. A sender-instance é responsável por hospedar a
ferramenta que realiza as requisições, que no nosso caso será o JMeter. Já a receiver-
instance hospeda a aplicação que recebe as requisições e tem o desempenho testado.

Aqui somos introduzidos ao conceito de flavor - ou sabor. Dentro do IC.Cloud, flavors
definem a capacidade de processamento, armazenamento e memória de uma instânciaFLA.
Ou seja, o sabor é a configuração de hardware da máquina virtual que será disponibilizada.
Deve-se escolher um flavor no momento da criação de uma instância e não é posśıvel alterar.

Figura 10 - Instâncias ativas no dashboard.

A receiver-instance, como pode ser vista na Figura 10, é a VM que irá hospedar a
aplicação cuja performance será testada. As principais configurações de recursos hard-
ware provisionados podem ser encontradas na imagem abaixo. O flavor utilizado foi
o m1.medium-cpu-dedicated, que não era o com maior poder de computação que havia
dispońıvel, porém era o único que garantia os recursos dedicados exclusivamente para a
aplicação, pois é fundamental que não haja nenhuma variação de desempenho no hardware.

22 Ramalho, Mendes

Figura 11 - Detalhes da receiver-instance.

A sender-instance é a instância que irá hospedar a ferramenta de teste de performance.
Também foi escolhido o flavor m1.medium-cpu-dedicated, que era a melhor configuração de
hardware dispońıvel dentro do limite do projeto.

O sistema operacional utilizado nas duas instâncias foi o Ubuntu-bionic-server-amd64-
18.04-LTS. Escolhemos o Ubuntu Server pois se trata de um SO feito para ser executado em
serviços de hospedagem baseados no openstack como o Cloud.IC, é amplamente utilizado
na indústria e de fácil configuração.

Os recursos de hardware dispońıveis para utilização estão conectados a uma rede pri-
vada que possui acesso à internet. É posśıvel configurar uma instância para ter acesso ex-
terno ou não. Este conceito aqui é tratado como grupo de segurança (Figura 12 abaixo).
No momento da criação da instância, devemos selecionar quais os grupos de segurança a
mesma pode acessar. Abaixo está a listagem da receiver-instance. No nosso caso, apenas
a receiver-instance precisa estar conectada à web para realizar a requisição HTTP para o
servidor central. Para isso, temos o grupo chamado ”default”, que faz com que a instância
possa acessar a web. Os outros dois permitem a conexão da instância através do usuário
cadastrado na rede do instituto de computação.

Figura 12 - Grupos de segurança

4.3.1 Deploy

Uma vez que as instâncias estão criadas e configuradas, é necessário instalar o JMeter na
sender-instance e executar as aplicações Java e/ou Kotlin na receiver-instance.

O primeiro passo para o deploy é acessar as instâncias. Para isto, é necessário fazer via
ssh da máquina cuja chave ssh foi inserida na hora de criar a instância. Por questão de
segurança, adicionamos a chave ssh referente ao usuário de um dos integrantes dentro da

Teste de performance JVM 23

rede própria do IC. O comando necessário é:
ssh -i id-rsa ubuntu@ip-da-instância

Para ser capaz de executar tanto os serviços quanto o JMeter, é necessário ter instalado
apenas o Java instalado no Ubuntu. Vamos instalar o Java na versão 11 utilizando a bibli-
oteca aberta open-jdk. Os comandos utilizados foram:

sudo apt install openjdk-11-jre-headless

sudo apt install default-jre

Uma vez que estamos dentro da VM do receiver-instance, para executar o serviço web,
basta realizar dois passos:
1) Baixar o repositório git com o comando:

git clone https://gitlab.ic.unicamp.br/ra135434/pfg-jvm-testing.git

2) Executar o arquivo deploy.sh presente na raiz do projeto utilizando:
sh deploy.sh

O código do arquivo deploy.sh está presente na Figura 13 abaixo. Com este script,
podemos executar os três serviços que criamos: java, kotlin e o central. Nas duas primeiras
linhas do código, ele aguarda por um input que indica qual dos serviços deve ser executado.
A partir dáı, independente de qual foi a escolha, são três passos. O primeiro faz a navegação
até a pasta do projeto, o segundo realiza a instalação das bibliotecas externas declaradas
no arquivo pom.xml, e o terceiro realiza a execução do serviço.

Figura 13 - Código do arquivo deploy.sh

24 Ramalho, Mendes

Essa estratégia de deploy permite a troca de serviços a serem testados com facilidade.
Na Figura 14 abaixo temos uma representação mais completa da arquitetura, inserido os
componentes de hospedagem vistos nessa seção.

Figura 14 - Arquitetura do deploy

4.4 Testes de performance

4.4.1 Instalando o JMeter na Receiver instance

Para efetuar a instalação do JMeter, deve-se primeiramente logar na máquina via ssh:
ssh -i id-rsa ubuntu@ip-da-instância

O próximo passo é fazer o download da ferramenta através do comando:
wget https://downloads.apache.org//jmeter/binaries/apache-jmeter-5.4.tgz

O último passo é extrair a pasta. Para isso, basta executar o seguinte comando:
tar -xf apache-jmeter-5.4.tgz

Seguindo esses passos, a ferramenta estará pronta para uso.

4.4.2 Criação de um test plan

Para criar um arquivo .jmx com as configurações de um teste dentro da interface gráfica do
JMeter devemos primeiro criar uma Thread Group e especificar o número de threads (que
seriam como se fossem os usuários acessando o serviço), o peŕıodo de tempo ao longo do qual
esse número de threads será executado (no exemplo abaixo, 5000 threads serão executadas

Teste de performance JVM 25

ao longo de 60 segundos) e quantas vezes esse teste será repetido (loop count), como pode
ser visto na Figura 15:

Figura 15 - Tela de configuração de uma Thread Group

Então deve-se adicionar o tipo de requisição que as threads irão executar. No caso, foi
adicionado um HTTP Request, incluindo nas configurações o tipo de protocolo, o IP do
servidor, a porta, o tipo de requisição (GET) e o caminho, como na Figura 16:

Figura 16 - Tela de configuração do HTTP Request

Por último, é necessário adicionar os listeners, que são usados para captar os resultados
de um teste de carga. Nos testes realizados, foram utilizados o Aggregate Report, que gera
dados estat́ısticos, o Summary Report, que é um resumo dos dados obtidos e um listener
que coleta dados de tempo de resposta, como pode ser visto na Figura 17:

26 Ramalho, Mendes

Figura 17 - Listeners adicionados no Thread Group

Após o término de todas as configurações acima, basta salvar o test plan como um
arquivo .jmx dentro do repositório na pasta /teste-plans. Esse arquivo permite que esse
teste seja executado em qualquer máquina com JMeter instalado. Todos os test plans
utilizados no projeto estão salvos na pasta /test-plans.

4.4.3 Execução e Análise do resultado

Para facilitar a execução de múltiplos testes, foi desenvolvido um script que faz um disparo
do JMeter na máquina requisitada e gera os resultados numa pasta designada. Para execu-
tar um teste, basta entrar no repositório e executar o arquivo:

./test.sh

O script funciona em 5 passos:
1 - Pergunta para o usuário o nome do experimento (por exemplo, java-load-test-1)
2 - Cria uma subpasta dentro da pasta test-results/ com o nome desse experimento.
3 - Executa o arquivo .jmx que foi gerado pelo test plan (roda os testes)
4 - Coloca os resultados dentro da subpasta
5 - Faz um commit dos resultados no repositório git
Os resultados de todos os experimentos realizados estarão dispońıveis na pasta test-

results/, cada um em sua subpasta correspondente, onde haverá um arquivo log.jtl com as
informações do teste. Para gerar um dashboard em HTML com essas informações a partir
desse arquivo deve-se rodar o comando:

jmeter -g /caminho-para-arquivo/log.jtl -o pasta que vai conter o html do dashboard

5 Resultados

Nessa seção temos os resultados dos testes práticos feitos nos serviços Kotlin e Java, assim
como as análises e comparações dos mesmos. Todos os arquivos .jmx que são citados
aqui estão dispońıveis no repositório do projeto, dentro da pasta /test-plans. A estratégia
utilizada foi dividir o experimento rodadas de teste. Em cada rodada iremos executar um
mesmo teste carga (mesmo test-plan) nos dois serviços e comparar os resultados. A carga
dos experimentos será em ordem crescente, ou seja, vamos acrescentando throughput nos
serviços de uma bateria para a outra.

5.1 Primeira rodada

5.1.1 Configurações do teste

• Valores utilizados:

– Number of users (threads): 1000

– Ramp up period (seconds): 60s

Teste de performance JVM 27

– Loop Count: 10

• Arquivo: first-test-plan.jmx

• Número de threads na thread pool:

– Java: 200

– Kotlin: 5

5.1.2 Resultado Serviço Java

Pasta: java-1k-enron-1

Apdex = 0,504

Figura 18 - Estat́ısticas do serviço Java com 1000 usuários

Figura 19 - Gráfico do tempo de resposta por percentil do serviço Java com 1000 usuários

5.1.3 Resultado Serviço Kotlin

Pasta: kotlin-1k-enron-3

Apdex = 0,786

28 Ramalho, Mendes

Figura 20 - Estat́ısticas do serviço Kotlin com 1000 usuários

Figura 21 - Gráfico do tempo de resposta por percentil do serviço Kotlin com 1000
usuários

5.1.4 Análise e comparação

Observando os dois resultados, notamos que o desempenho do serviço Kotlin foi signifi-
cantemente melhor que a do serviço Java em todas as métricas. O APDEX é quase 50%
maior, o tempo médio de resposta é a metade e o 99 percentil é um terço. Apesar disso, a
performance dos dois ainda é minimamente satisfatória nesse cenário, visto que não houve
nenhum erro.

5.2 Segunda rodada

5.2.1 Configurações do teste

• Valores utilizados:

– Number of users (threads): 5000

– Ramp up period (seconds):60s

– Loop Count: 10

• Arquivo: second-test-plan.jmx

Teste de performance JVM 29

• Número de threads na thread pool:

– Java: 200

– Kotlin: 5

5.2.2 Resultado Serviço Java

Pasta: java-5k-enron-0

Apdex = 0,001

Figura 22 - Estat́ısticas do serviço Java com 5000 usuários

Figura 23 - Gráfico do tempo de resposta por percentil do serviço Java com 5000 usuários

5.2.3 Resultado Serviço Kotlin

Pasta: kotlin-5k-enron-0

Apdex = 0,437

30 Ramalho, Mendes

Figura 24 - Estat́ısticas do serviço Kotlin com 5000 usuários

Figura 25 - Gráfico do tempo de resposta por percentil do serviço Kotlin com 5000
usuários

5.2.4 Análise e comparação

Aqui multiplicamos por 5 a carga do experimento anterior, e acabou ficando claro que a dife-
rença de desempenho dos sistemas é bem grande. A aplicação Java teve tempomédioderesposta =
20s e APDEX = 0.0001, o que indica que ela já não consegue suportar essa carga. Já o
Kotlin aguentou a carga e teve seu 97percentil < 2segundos, o que consideramos uma per-
formance satisfatória. Um ponto importante de se observar é que, mesmo que lentamente,
as plataformas ainda conseguem responder todas as requisições do teste. O ı́ndice de erro
de ambas ainda é 0%.

5.3 Terceira rodada

5.3.1 Configurações do teste

• Valores utilizados:

– Number of users (threads): 10000

– Ramp up period (seconds): 60s

– Loop Count: 10

• Arquivo: third-test-plan.jmx

• Número de threads na thread pool:

– Java: 400

– Kotlin: 5

Teste de performance JVM 31

5.3.2 Resultado Serviço Java

Pasta: java-10k400t-enron-0

Apdex = 0,000

Figura 26 - Estat́ısticas do serviço Java com 10000 usuários e uma pool de 400 Threads

Figura 27 - Erros obtidos no serviço Java com 10000 usuários e uma pool de 400 Threads

Figura 28 - Gráfico do tempo de resposta por percentil do serviço Java com 1000 usuários
e uma pool de 400 Threads

5.3.3 Resultado Serviço Kotlin

Pasta: kotlin-10k-enron-0

Apdex = 0,007

32 Ramalho, Mendes

Figura 29 - Estat́ısticas do serviço Kotlin com 10000 usuários

Figura 30 - Erros obtidos no serviço Kotlin com 10000 usuários

Figura 31 - Gráfico do tempo de resposta por percentil do serviço Kotlin com 10000
usuários

5.3.4 Análise e comparação

Neste teste dobramos a carga do teste passado para buscar o limite do serviço Kotlin. Nesse
cenário, o desempenho da aplicação piorou consideravelmente, de modo que 2percentil >
2segundos. A APDEX caiu para quase zero e houve incidência do erro: ”Non HTTP
response code: java.net.SocketException/Non HTTP response message: Connection reset”,
que significa que atingiu o timeout da requisição.

Já para a aplicação Java, resolvemos aumentar o número de threads na thread pool para
400 para ver se a aplicação conseguia performar melhor com um threadpool maior. Porém,
não houve melhora na performance, o que indica que o sistema realmente não comporta
cargas dessa escala.

Teste de performance JVM 33

6 Conclusão

Durante a análise teórica, entendemos que por estarem sendo executados em sistemas seme-
lhantes a ńıvel de software e hardware, não haveriam grandes diferenças entre o desempenho
dos dois serviços. Acreditamos que haveria apenas uma vantagem pelo uso de Coroutines
em vez de Threads.

Porém, após a realização dos testes de carga nas aplicações com diversas configurações
e análise dos resultados, conclúımos que o serviço web desenvolvido em Kotlin performa
de maneira substancialmente melhor que o serviço Java. As duas métricas que levamos em
consideração para essa conclusão são tempo de resposta médio e escalabilidade, que são as
caracteŕısticas mais visadas para serviços backend web atualmente.

No teste que consideramos de carga baixa - 1000 usuários a cada minuto -, a performance
dos dois sistemas foi aceitável, com APDEX > 0, 5. Quando multiplicamos o throughput
para valores 5 e 10 vezes maiores, a aplicação Java não conseguiu lidar e passou a ter
um comportamento que consideramos inaceitável para os requerimentos de hoje, com a
maior parte das requisições levando mais que 10 segundos para retornarem (20percentil >
10segundos). Já o outro se manteve estável com 5000 usuários/segundo, porém também
não aguentou a carga maior.

Os resultados, portanto, sugerem que Kotlin é uma escolha mais razoável em situações
similares às realizadas neste projeto, tendo em vista as ferramentas e cenários utilizados
nos testes comparativos.

Referências

[1] https://kotlinlang.org/docs/reference/faq.html

[2] https://spring.io/projects/spring-boot

[3] https://maven.apache.org/

[4] https://jmeter.apache.org/

[5] https://github.com/Kotlin/kotlinx.coroutines

[6] https://github.com/JetBrains/kotlin

[7] https://www.openstack.org/software/

[8] https://docs.openstack.org/nova/latest/user/flavors.html

[9] https://spring.io/team

[10] https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html

[11] https://blog.golang.org/waza-talk

[12] https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

[13] https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

	Introdução
	Concorrência e paralelismo no desenvolvimento web
	Motivação do projeto

	Objetivo
	Base Teórica
	Java
	Kotlin
	Java Virtual Machine
	Spring framework

	Protocolo HTTP
	Concorrência e paralelismo em sistemas web
	Java Threads
	Kotlin Coroutines

	Testes Automatizados
	Teste de performance
	Métricas de performance

	Conclusão teórica

	Desenvolvimento
	Arquitetura geral
	Componentes
	Servidor Web Java
	Servidor Web Kotlin
	Ferramenta de teste de performance
	Servidor Central

	Hospedagem
	Deploy

	Testes de performance
	Instalando o JMeter na Receiver instance
	Criação de um test plan
	Execução e Análise do resultado

	Resultados
	Primeira rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Segunda rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Terceira rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Conclusão

