2
W

Testes de performance em

sistemas web executados pela

Java Virtual Machine

L. A. Ramalho D. P. Mendes

Relatério Técnico - IC-PFG-20-19
Projeto Final de Graduagdo
2020 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

Testes de performance em sistemas web executados pela Java
Virtual Machine

Lucas Alfonso Ramalho* Danilo Perina Mendes*

Resumo

O objetivo deste projeto é comparar a performance e escalabilidade de dois servigos
web que utilizam linguagens executadas na Java Virtual Machine: Java e Kotlin. Iremos
focar em uma situag@o na qual os dois sistemas irao realizar um algoritmo de execucao
paralela quando receber uma requisicao HTTP. O sistema feito em Java utilizara threads,
ja o sistema em Kotlin Coroutines.

Para realizar a comparagao, inicialmente fizemos uma andlise tedrica para entender
como as aplicacoes deveriam se comportar em situagoes de alto throughput. Concluimos
que o servigo que utiliza Coroutines deveria apresentar melhores resultados devido ao
fato de seu algoritmo de execucao paralela consumir menos memoria e processamento.

Entao colocamos os dois sistemas sob testes de carga utilizando diversas confi-
guragoes diferentes, e comparamos os resultados para avaliar o comportamento na
pratica. O resultado foi que a aplicagao Kotlin performou de maneira substancialmente
melhor, comprovando o que haviamos entendido na anélise tedrica.

1 Introducao

1.1 Concorréncia e paralelismo no desenvolvimento web

Nas primeiras tentativas de otimizacao do tempo de computagao, nao havia verdadeiro pa-
ralelismo com mais de um ntcleo de processador. Isso exigiu criatividade nos primérdios da
programacao, resultando no desenvolvimento da ideia de threads. Essa criacao possibilitou
a programacao concorrente, onde diferentes threads podem se revezar no uso dos recursos
computacionais, alternando entre si de modo a otimizar o tempo de utilizacao deles.

Com o avango dos meios fisicos de computagao, novas possibilidades de programacao se
abriram, atacando a dificuldade de minimizar tempo de comuptacao. O desenvolvimento de
processadores com mais de um ntcleo possibilitou paralelismo verdadeiro, uma vez que duas
threads diferentes agora podem utilizar processadores separados sem que haja concorréncia
entre elas. Essa inovacao resultou em melhorias significativas no tempo de processamento
de tarefas.

Mais recentemente, novas abstragoes para lidar com concorréncia e paralelismo foram
se consolidando, como as corrotinas, que serao abordadas em outra secao deste relatorio.
Uma das linguagens que utilizam essa funcionalidade é o Kotlin, que teve seu inicio em

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

2 Ramalho, Mendes

2016. ” Kotlin is an open-source statically typed programming language that targets the
JVM, Android, JavaScript and Native. It’s developed by JetBrains. The project started in
2010 and was open source from very early on. The first official 1.0 release was in February
20167 .[1]

No caso de sistemas web, com as grandes quantidades de acessos simultaneos recentes,
os servidores tiveram que se reinventar para conseguir atender de forma satisfatéria todos
os requests de clientes concorrentes. Apenas o uso de threads nao soluciona esse problema,
de maneira razoavel. Portanto, foram criadas solucoes para lidar com esse problema e
uma, das que mais causou impacto foi o sistema NGINX, que tem como base o uso de
processos e chamadas de I/O assincrono. Desde seu langamento (2004) ainda é um dos
sistemas mais rapidos e escaldveis que temos até hoje. Ele funciona com um processo
master e varios processos worker. Cada worker consegue gerenciar milhares de sockets de
conexao, implementando um loop de eventos que faz repetidamente syscalls nao bloqueantes
de entrada e saida, checando na repeticao se chega um evento de término para dai executar
o que precisa e devolver o resultado. Isso acontece com cada worker utilizando apenas uma
thread, o que evita o uso exacerbado de recursos do sistema.

1.2 Motivacao do projeto

Com o aumento exponencial de usuarios de servigos web, um dos desafios encontrados pelos
grandes servidores é o de atender nimeros exorbitantes de requisicoes ao mesmo tempo.
Com a ainda recente funcionalidade de Coroutines introduzida ao Kotlin, a comparacao de
sua performance com as ja amplamente utilizadas threads acaba tornando-se inevitavel. A
motivacao deste trabalho é para que haja um avanco na discussao de qual desses métodos
é mais eficiente quando se trata dos grandes nimeros, uma vez que nestes casos extremos
uma pequena diferenca no desempenho pode acabar custando muito mais barato.

2 Objetivo

O objetivo deste relatorio é realizar um estudo tedrico e pratico sobre o comportamento dos
sistemas web desenvolvidos nas linguagens Kotlin e Java, buscando entender quais sao as
diferencas entre os algoritmos de execugao paralela dos mesmos.

Vamos analisar o comportamento dos servigos web em situacoes de estresse semelhantes
as encontradas na industria e avaliar quais foram as diferencas entre o esperado pela teoria
e a pratica. Deste modo, iremos aplicar o conhecimento adquirido ao longo do curso de
Engenharia da Computagao nos tépicos de sistemas operacionais, engenharia de software,
redes, orientagao a objetos e analise de algoritmos.

3 Base Teérica

Neste capitulo iremos abordar e detalhar os conceitos das ferramentas e as teorias que vamos
utilizar como base neste projeto, além de buscar entender qual serd o comportamento tedrico
dos sistemas durante o experimento.

Teste de performance JVM 3

3.1 Java

Java é uma linguagem de programacao orientada a objeto que inicialmente foi desenvolvida
para televisao interativa. Sua utilizagao veio a se provar avancada demais para as tecnologias
da época, tendo sua primeira implementacao lancada em 1996. Teve como principios de
desenvolvimento a simplicidade, robustez, alta performance, entre outras.

Um desses objetivos dos desenvolvedores de Java era que a linguagem tivesse portabi-
lidade universal, ou seja, que pudesse ser utilizada em qualquer méaquina sem detrimento
qualquer. Para alcangar essa missao, foi desenvolvida a JVM (Java Virtual Machine), uma
maquina virtual que permite a utilizacao da linguagem em qualquer sistema operacional.
Sua versao mais primitiva foi langada em 2006, até que em 2007 foi langada por completo.

Java foi por muito tempo a linguagem mais utilizada em servigos web, uma vez que
h& bibliotecas e frameworks de suporte para desenvolver esse tipo de servico. Essas funci-
onalidades adicionadas a portabilidade universal resultaram num amplo uso por parte de
muitos desenvolvedores. Até hoje é muito utilizada, reforcado pelo fato de que ha constante
suporte e novas atualizagoes lancadas com certa frequéncia.

3.2 Kotlin

Kotlin é uma linguagem tanto orientada a objetos quanto funcional que teve seu desenvolvi-
mento iniciado em 2010 para ter sua primeira versao estavel langada em 2016. Inicialmente
foi pensada para ser uma nova linguagem para JVM, uma vez que muitos servigos web ja
utilizam essa maquina virtual, e que fosse tao rapidamente compilavel quanto Java, gozando
de funcionalidades que facilitassem seu uso e otimizagao.

Na versao v1.3 de 2018, Kotlin introduziu as chamadas Coroutines, que foram um ponto
importante na decisao atual de muitos desenvolvedores para comecar a desenvolver seus
novos servicos utilizando esta linguagem. A ideia de corrotinas ndo foi uma invencao de
Kotlin, mas ela trouxe uma nova possibilidade para a JVM com o suporte nativo a essa
funcionalidade, facilitando seu uso.

Corrotinas tem como ideia bésica a ”imitacao” de uma thread; sdo como se fossem threads
mais leves que permitem programagao assincrona e concorréncia entre trechos de cédigo.
Elas tornaram Kotlin uma linguagem bastante visada no mercado web, devido ao grande
aumento no nimero de usudrios, o que resulta em uma escalada das requisi¢oes simultaneas
nos servicos atuais.

3.3 Java Virtual Machine

A JVM é uma maéaquina virtual que providencia um ambiente para rodar um cédigo Java e
aplicacoes, e que faz parte da JRE (Java Runtime Environment). O compilador de Java,
diferentemente de outras linguagems, compila o cédigo para a JVM e nao para o sistema
operacional. Primeiro o cédigo Java é compilado e é gerado um Java bytecode. A JVM,
por sua vez, transforma esse bytecode em linguagem de maquina a depender do sistema
operacional sobre o qual ela estd rodando.

Quando um arquivo .java é compilado, é gerado um arquivo .class de mesmo nome. Ao
ser executado, esse arquivo passa por diversos passos, realizados pela JVM. A funcionalidade

4 Ramalho, Mendes

da JVM pode ser resumida a esses passos, demonstrados na Figura 1:

JVM language Classes ——»
9 Class Loader
N

JVM Memory

Method Area g Heap JVM Language PC Registers Native Method
e Stacks e Stacks

. . Native Method Native Method
Execution Engine

o Interface g (9] Libraries

Figura 1 - Arquitetura da JVM

O Class Loader tem 3 principais fungoes: Loading (ler o arquivo, gerar o bindrio cor-
respondente e salva-lo na Method Area), Linking (faz a verificagdo e preparagao, como por
exemplo alocagdo de memoria) e Initialization (inicializagao das varidveis).

A JVM Memory é onde ficam guardadas as informacoes do arquivo. Na Method Area
ficam as guardadas informacoes sobre varidveis e métodos. Heap é onde ficam salvos os
objetos, e é uma area compartilhada por todas as threads. Cada thread tem a sua propria
Language Stack onde ficam guardadas as varidveis locais, e essa informagao nao é comparti-
lhada com outras threads; quando uma thread acaba, sua Stack é destruida. O PC register
guarda o endereco da instrucao sendo executada e nao é compartilhado com outras threads.
O Native Mother Stacks guarda as instrucées de métodos nativos.

O Ezxecution Engine 1& o bytecode linha por linha e executa as instrugoes. O Native
Method Interface habilita a JVM a chamar as bibliotecas das Native Method Libraries
(uma colegao de bibliotecas nativas).

3.3.1 Spring framework

O Spring é um framework open source para a plataforma Java criado por Rod Johnson
em Outubro de 2002 e que hoje é mantido por um time de quase 100 colaboradores[9]. O
objetivo da ferramenta é facilitar o desenvolvimento de qualquer tipo de aplicacao que é

Teste de performance JVM)

executada na JVM. Para isto, ele oferece um grande conjunto de médulos com funciona-
lidades que sao tipicamente utilizadas na industria e que possuem grande flexibilidade de
configuragao. A partir da versao 5.0, o framework também passou a suportar Kotlin. [10]

O que diferencia o Spring de outros frameworks presentes no mercado é a grande va-
riedade e a qualidade dos mddulos, cujo desenvolvimento ¢é feito visando os padroes de
qualidade esperados de software presentes na industria, como seguranca e performance.
Nesse sentido, é uma ferramenta que permite o desenvolvimento de aplicagoes em menor
tempo e com qualidade.

Embora cada moédulo seja independente dos outros, todos eles obedecem a alguns
padroes de arquitetura que sao comuns, dos quais se destaca o principio de inversao de
controle, também conhecido como injecao de dependéncia. Este padrao corresponde a um
processo onde os objetos definem suas dependéncias apenas através de propriedades das mes-
mas, sem instancid-las. O préprio Spring é responsével entao por instanciar as propriedades
e relacionda-las ao objeto. Este processo é fundamentalmente o oposto do préprio objeto con-
trolar o comportamento das suas propriedades, dai o nome ” Inversao de controle”. O grande
valor deste padrao estd no fato de que o framework passa a ser o responsavel em gerenciar
o comportamento dos objetos dentro da aplicacdo, prevenindo problemas de desempenho
como por exemplo excesso de meméria no heap da JVM causado por mé instanciacao de
objetos.

No nosso caso, o principal médulo utilizado pelos dois servicos que vamos testar foi o
Spring Boot. Ele oferece a maioria dos componentes do Spring necessarios para aplicagoes
em geral de maneira pré-configurada, tornando possivel termos uma aplicacao sendo exe-
cutada com o esfor¢o minimo de configuracao e implantacao. Para rodar uma aplicagao
baseada neste mdédulo, basta ter o Java na versao compativel instalada no sistema opera-
cional. E possivel gerar um template de um servico web baseado neste médulo através do
site https://start.spring.io/.

O template possui uma classe chamada NomeDoServico.Java que, se for executada, ird

executar todos os passos necessarios para deixar o servidor online e recebendo requisigoes.
Veremos no préximo capitulo como isso foi feito nos dois servigos que vamos testar.

3.4 Protocolo HTTP

HTTP é um protocolo da camada de aplicagao utilizado em sistemas web para fazer re-
quisicoes de recursos para servidores, enviado sobre o protocolo da camada de transporte
TCP. O cliente (agente-usuério), normalmente um navegador web, faz uma requisi¢ao (via
HTTP) para um servidor de algum recurso (por exemplo uma péagina HTML). O HTTP
¢ um protocolo sem estado, apenas com sessoes. Para guardar o estado muitos servigos
utilizam os cookies, conseguindo assim guardar informagoes da conexao.

O fluxo HTTP comeca com o cliente abrindo uma conexao TCP com o servidor, ge-
ralmente na porta 80. Entao o cliente envia uma mensagem HTTP, como por exemplo a
demonstrada na Figura 2:

6 Ramalho, Mendes

GET / HTTF/1.1
Host: developer.mozilla.org

Accept-lLanguage: fr

Figura 2 - Exemplo de uma mensagem do tipo GET

Depois o cliente 1é a resposta do servidor, como na Figura 3:

HTTP/1.1 288 OK

Date: Sat, €9 Oct 2818 14:28:82 GMT

Server: Apache

Last-Modified: Tue, 81 Dec 286% 28:18:22 GMT
ETag: "51142bcl1-7449%-475b875b2891b"
Accept-Ranges: bytes

Content-Length: 29769

Content-Type: text/html

<IDOCTYPE html... (here comes the 29769 bytes of the requested web pa

Figura 3 - Resposta HT'TP

E por fim o cliente ou fecha a conexao ou reutiliza para requisicoes futuras.

O protocolo HTTP tem um conjunto de métodos, chamados de Verbos, cuja fungao é
indicar qual acao devera ser executada. Os mais utilizados sao POST, usado para indicar
mudancgas no lado do servidor, PUT, substitui todas as atuais representagoes do recurso de
destino pela carga de dados da requisicao, DELETE, que remove um recurso especifico e
o método GET. O método que foi utilizado nesse projeto, é o GET, que é um método do
HTTP usado para fazer uma requisi¢ao de recursos, como por exemplo: o cliente (navegador
web) faz uma requisigao pelo enderego url ao servidor e o servidor responde com uma pagina
HTML, como podemos ver mais detalhadamente na Figura 4:

Teste de performance JVM 7

Path
Method Versign of the protocol

|GET|/ [HTTP/1.1]
Host: developer.mozilla.org
Accept-Language: fr

Headers

Figura 4 - Exemplo de mensagem do tipo GET

Vamos utilizar em um fluxo nesse projeto duas requisicoes GET; um é o que a ferramenta
de teste de performance faz para a aplicacao e o outro é o que o servigo faz para o servidor
central, seja por uma thread separada ou por uma Coroutine. Os testes realizados neste
projeto foram desenvolvidos de modo que a comparacao seja feita da melhor forma possivel,
tendo como objetivo a menor variacao de tempo entre as requisicoes. Para que isso ocorra,
o ideal é que o cliente e o servidor estejam o mais proximo possivel; por isso colocamos o
JMeter na mesma rede dos servigos a serem testados.

3.5 Concorréncia e paralelismo em sistemas web

O primeiro passo para entendermos este assunto é saber diferenciar os conceitos de con-
corréncia e paralelismo no contexto de sistemas computacionais. O melhor jeito de sintetizar
essa diferenca é através da famosa fala do criador da linguagem Go, Rob Pike: ”Concur-
rency is about dealing with lots of things at once. Parallelism is about doing lots of things
at once.” [I1]

Em outras palavras, concorréncia estd ligado a como o sistema lida com a execucao
de forma sequencial de um conjunto de tarefas independentes em um mesmo intervalo de
tempo. Quando se discute concorréncia em sistemas web, estamos tratando de um problema
de escala exponencial, principalmente nos dias atuais em que bilhoes de pessoas possuem
acesso a rede, e uma simples promocao ou festas de final de ano podem ser motivo para
que haja milhoes de requisi¢oes simultaneas para um determinado sistema. Nessa escala,
pequenas diferencas de desempenho podem escalar e se tornarem colossais.

Dentro do contexto do projeto, vamos estudar como um servico web Java e um Kotlin
lidam com esse cendrio de multiplas requisi¢oes simultaneas, onde existe o acesso concorrente
aos recursos de hardware, em especial a meméria e o processamento.

Ja o conceito de paralelismo significa um sistema executar mais de uma atividade si-
multaneamente. Ou seja, paralelismo é um dos recursos que podemos utilizar para se lidar
com situagoes de concorréncia.

O numero maximo de atividades que qualquer sistema computacional pode executar
simultaneamente é sempre igual a quantidade de nicleos de processamento disponiveis para

8 Ramalho, Mendes

o mesmo. O que ird variar de um ambiente para outro é como é feito o processo de alocagao
de recursos para a execucao de uma determinada atividade.

Uma estratégia utilizada pelos principais sistemas operacionais presentes no mercado
¢é dividir as aplicacoes que estao sendo executadas em processos. Cada processo tem um
espago de memoria exclusivo e podemos executar dois processos simultaneamente em nicleos
separados. Contudo, essa estratégia nao é valida para o nosso caso, dado que necessita-
mos compartilhar memoria entre o que estd sendo executado paralelamente nos cores do
processador.

Tendo em vista esse problema, foi criado o conceito de thread. A ideia é dividir um
processo em pedacgos - chamados de threads - que podem ser executados simultaneamente
em nucleos diferentes. Nesse sentido, cada uma tem seu préprio contexto de hardware,
porém compartilha o contexto de software e meméria com as outras do mesmo processo.

Essa estratégia gera alguns desafios de programacao, ja que é possivel que duas ou mais
threads tentem e manipular ou acessar o mesmo endereco de meméria ao mesmo tempo.
Esses desafios sao chamados de race conditions. Sao necessarios mecanismos de controle
para lidar com essa situacao.

E possivel encontrar em algumas literaturas o termo threads como ” processos leves”. Isso
se da também porqué a mudanca de contexto de execugao de uma thread no processador
para outra necessita de menos recursos que a mudanca de contexto de processos.

Os principais sistemas operacionais modernos possuem suas préprias implementacoes
de processos e threads. A JVM, por sua vez, possui uma camada de abstracdo em cima
dessas implementacoes para que seja possivel utilizar este recurso através do Java e do
Kotlin. Nas duas préximas subsecgoes iremos detalhar como funciona essa abstracdo para
cada linguagem, quais as vantagens e desvantagens, e como ird funcionar dentro do cenario
pratico.

3.5.1 Java Threads

O recurso mais baixo nivel oferecido pela Oracle para lidar com paralelismo é a classe Java
chamada Thread.[12] Essa classe possui métodos que permitem a criagdo e gerenciamento
das mesmas dentro de um programa Java.

Porém, dado que essa interface nao possui nenhum mecanismo ou algoritmo para lidar
com as race conditions que podem aparecer, foram criadas algumas bibliotecas que possuem
abstracoes que ajudam a evitar esses problemas.

A biblioteca que utilizamos neste projeto foi também desenvolvida pela Oracle e se
chama CompletableFuture. Essa biblioteca foi introduzida na versao 8 do Java e é uma
evolugao de uma biblioteca antiga que se chamava Future.[I3] O objetivo dela é prover uma
interface de desenvolvimento paralelo, onde é necessario apenas deixar explicito o cédigo
a ser executado em outra thread e qual é o formato da varidvel de retorno desse cédigo.
A tnica parte da memoria que serd compartilhada é essa varidvel de retorno. No caso do
servigo que vamos testar, a rotina que sera executada paralelamente é um HTTP GET para
um terceiro servigo e a variavel de retorno é o conteido que é retornado na requisigao.

Dentro do contexto de um servigo backend Java ou Kotlin feito utilizando Spring, cada
HTTP request que o mesmo recebe é responsavel pela criagao de uma thread nova dentro

Teste de performance JVM 9

do processo principal da aplicagao. O conjunto de threads que estao pré-instanciadas para
armazenar requisicoes é chamado de Thread Pool.

Vamos imaginar que enviamos 100 requisi¢oes simultdneas para um backend feito em
Java. Se a pool do sistema estiver configurada para ter 1000 threads, 100 delas armazenarao
as requisicoes, que serao executadas em ordem de chegada da requisicao. Porém, se a
pool estiver configurada para ter 10 threads, 90 dessas requisi¢coes nao serao executadas e
retornarao erro.

O numero total de threads que um pool pode ter é determinado pela memoria disponivel
para a aplicacao, e deve ser balanceado com outras caracteristicas do sistema como por
exemplo capacidade de processamento.

Nesse sentido, dentro do fluxo do nosso projeto, quando o servigo Java receber uma
requisicao HTTP, serao abertas duas threads: uma para a execucao da requisicao em si e
outra através da biblioteca CompletableFuture que ird executar uma nova requisi¢ao HTTP
para um terceiro servico.

Ja quando o servigo Kotlin receber uma requisicao, serda aberta uma thread para a
execucao da requisicdo em si, porém serd utilizada uma Coroutine para realizar a chamada
HTTP para o terceiro servigo. Iremos explicar o comportamento da coroutine abaixo.

3.5.2 Kotlin Coroutines

Conceitualmente, as Coroutines sao como threads; elas executam unidades de tarefa con-
correntemente. com a diferenca de que nao sao obrigatoriamente ligadas a uma thread
especifica. Elas podem ter a sua execugao suspensa e ter a sua atividade retomada em um
momento futuro, possivelmente em outra Thread.

As Coroutines também sdo muito mais leves, porque enquanto cada thread tem sua
prépria pilha de dados, as corrotinas compartilham memoéria, o que torna elas muito mais
eficientes do ponto de vista de uso de recursos.

No caso do servico Kotlin que desenvolvemos, quando a requisicao HT'TP é feita, faze-
mos uma chamada de suspensao, liberando a thread principal para ser utilizada por outra
requisicao enquanto nao recebemos a resposta. Assim que temos o retorno, a atividade é
retomada na thread principal. A Figura 5 abaixo representa este fluxo:

10 Ramalho, Mendes

Main T hread

aauardamlo servidor
remocto

request HT TP

Main T hreod

resposto recebido,
continuar @ xecugio

processar resposta HT TP

Figura 5 - Fluxo de uma Coroutine

3.6 Testes Automatizados

Para garantir a qualidade e funcionalidade de um programa, uma pratica fundamental é a de
testar o cédigo, a fim de encontrar falhas no sistema e verificar se ele funciona como deveria.
Testes manuais em geral sdo muito trabalhosos e pouco eficientes, portanto uma chave para
ter um cédigo amplamente testado sao os testes automatizados. Existem intimeros tipos de
testes, como por exemplo testes unitarios e de interface de usuario.

Mike Cohn cunhou em seu livro Succeeding with Agile o termo Piramide de Testes.
Na base da piramide ficam os testes mais béasicos, rapidos e mais fundamentais, como os
testes unitarios. J& no topo da piramide, ficam os testes mais complexos, completos e de
alto nivel, que tem como objetivo testar o sistema como um todo, integrando diferentes
funcionalidades no mesmo teste.

Neste projeto, o tipo de teste que iremos desenvolver sera o de performance. E um teste
de mais alto nivel (topo da piramide), que visa comparar funcionalidades mais complexas
e que nao sao as mais ”essenciais” para o funcionamento de um sistema web. E um tipo de
teste mais voltado para melhorias high-end, de forma que o sistema possa performar melhor

Teste de performance JVM 11

em situagoes muito especificas (situagoes de alto nivel de stress).

3.6.1 Teste de performance

Neste projeto, os testes de performance (ou desempenho) que serao realizados tem como
foco avaliar o tempo de resposta de multiplas requisigoes, a velocidade de processamento e
a quantidade de recurso de hardware exigido.

Entre os testes de desempenho, existem alguns subtipos, como por exemplo o teste de
resiliéncia, que tem como objetivo determinar como o cédigo reage a longos periodos de
uso, o teste de carga, que serve para verificar como o sistema reage a um nimero grande de
usuarios, e o teste de stress, parecido com o teste de carga, mas tem o objetivo de esticar ao
maximo os limites de requisicoes e capacidade. Neste projeto, o teste feito é mais parecido
com um teste de carga, onde iremos fazer um grande nimero de requisi¢ées simultaneas,
mas sem o objetivo de ”quebrar”o cédigo como num teste de stress.

3.6.2 Meétricas de performance

Nos testes de performance algumas métricas serao utilizadas como parametro de comparacao
entre os servicos. Elas serao ligados uso de recursos de hardware, quantidade de erros e
tempo médio de resposta das requisicoes. Todas esses dados permitem gerar estatisticas
que dardo mais clareza onde cada tipo de servigo tem mais dificuldades e problemas.

A variancia do tempo médio de resposta é uma das estatisticas que iremos calcular para
cada servigo. Dessa maneira, poderemos ter uma noc¢ao melhor da consisténcia desse tempo
médio e checar se ele ha muita discrepancia entre os valores, para conseguir chegar a uma
conclusao mais apropriada. O célculo se da pela féormula:

6-2 _ E?Zl(yl - g)Q
n—1

Onde n é o nimero total de requisicoes feitas, y; é o tempo de resposta de cada requisigao
individual e § é a média aritmética de todos os y;.

Outro conjunto de estatisticas que sera levado em consideragao é o percentil. KEssa
estratégia consiste em dividir todo o conjunto experimental em 100 blocos que possuem
tempo de resposta crescente. A partir dai, o n-ésimo percentil Pn é o valor x (xn) que
corresponde & frequéncia cumulativa de N .n/100, onde N é o nimero total de requisigoes
feitas. Entao, por exemplo, o 90 percentil corresponde ao maior valor de tempo de resposta
dos 90% menores valores disponiveis. O JMeter disponibiliza o 90, 95 e 99 percentil da
amostragem de teste automaticamente, o que nos permite ter uma métrica de comparacao
que elimina casos de borda.

Outro dado que iremos utilizar é o APDEX (Application Performance Index). Essa
classificagao é um padrao aberto criado por uma série de empresas de tecnologia para avaliar
o desempenho de aplicagoes de software. Seu propdsito é converter as métricas gerais de
performance em um valor que possa dar um entendimento do quanto a aplicacao estd dentro
das expectativas dos seus usuarios. Este valor é calculado pelo JMeter durante a execucao

12 Ramalho, Mendes

de cada teste e leva em consideragao que a expectativa do usuério é conseguir realizar uma
requisicilo HTTP GET em menos de meio segundo. A férmula da conta é a seguinte:

Satis fiedCount 4 0.5 x ToleratingCount
TotalCount

APDEX =

3.7 Conclusao tedrica

Tendo em consideragao os pontos levantados neste capitulo, concluimos que é esperado
que o sistema Kotlin consiga escalar e receber mais requisicoes concorrentes que o servico
Java, ja que a tendéncia é que tenha mais meméria disponivel para armazenar requisi¢oes
no Thread Pool. Porém, nao necessariamente ird existir diferenca no tempo de requisicao
médio entre os dois sistemas.

4 Desenvolvimento

O objetivo deste capitulo é mostrar como foi feito o desenvolvimento da parte prética do
projeto e como funcionam os sistemas criados.

4.1 Arquitetura geral

Para o desenvolvimento da parte pratica de coleta de dados de desempenho foi prototipado
um sistema que seja capaz de testar e gerar métricas em relagao ao desempenho de dois
servicos web semelhantes em uma situacao de alta carga de trabalho.

Dentro desse fluxo de teste precisamos de no minimo dois componentes atuando: um
que realiza requisicoes HT'TP com alta frequéncia e retorna métricas dos resultados e outro
que seria o sistema que recebe as requisicoes e ird ser avaliado.

No caso do primeiro, como nao se trata de interesse do projeto o desenvolvimento das
ferramentas de teste, buscamos por opgoes open source que sao consolidadas e utilizadas
na inddustria. Por isso, acabamos utilizando o JMeter. Detalhamos a ferramenta e suas
caracteristicas préoxima segao.

No caso do segundo componente, o servico web que vamos testar, temos que desenvolver
dois projetos: um em Java e outro em Kotlin. Os dois vao ser executados na JVM e devem
ser capazes de receber requisi¢coes web e de criar uma segunda thread/coroutine dentro de
cada requisicao recebida. Ambos foram desenvolvidos utilizando o Spring como framework
base.

Cada chamada HTTP atendida pelo sistema deverd criar uma thread/coroutine que por
sua vez executa uma determinada rotina. Este trecho que serd executado separadamente
precisa realizar algum tipo de tarefa que demore algum tempo fixo para executar, de modo
que podemos comparar a performance em um cendrio parecido com a realidade. Nesse
cenario, haviam duas possibilidades de escolha para a tal tarefa: realizar uma operacao
de I/O ou realizar uma operagao custosa - por exemplo uma iteracao que realize milhoes
de contas. Como o ideal para a precisao do experimento é manter os dois ambientes de
teste o mais parecido possivel, optamos por atribuir a esta tarefa a realizagdo de uma nova
chamada HTTP para um terceiro que chamamos de servidor central, de modo que a tarefa

Teste de performance JVM 13

a ser executada separadamente terd um tempo de execucao muito préximo nos dois casos.
Na proxima subsecao explica-se a escolha do servidor central.
As duas imagens abaixo (Figura 6 e Figura 7) esquematizam a arquitetura descrita:

HTTP Get HTTP Get >
| 5 -
\} > >
> B >
JMeter i .
Servidor Web Java Servidor Web Central
Figura 6 - Fluxo de requisicoes do servigo Java
HTTP Get HTTP Get >
\ 5 03
g ; <
> >
JMeter)))
Servidor Web Kotlin Servidor Web Central

Figura 7 - Fluxo de requisig¢oes do servigo Kotlin

4.2 Componentes

Abaixo vamos detalhar a implementacao e o funcionamento dos componentes descritos na
arquitetura geral. Todo o cédigo do projeto estd contido em um repositorio central Git
que estd disponivel em https://gitlab.ic.unicamp.br/ral35434/pfg-jvm-testing. Git é uma
ferramenta open source utilizada para controle de versdes de codigo. Mais informagoes
em https://git-scm.com/. Ela foi utilizada pelo grupo para auxiliar no desenvolvimento
conjunto do sistema. Criamos um repositério central onde sempre se encontra a versao
mais atual do cédigo, assim, temos controle de todas as modificagoes, quando elas foram
feitas e quem foi o responsavel.

No arquivo README.md dentro pasta raiz do projeto pode-se encontrar instrugoes
sobre como executar cada componente localmente.

4.2.1 Servidor Web Java

O servidor backend foi desenvolvido utilizando o framework Spring na versao 5 como base.
Foi utilizado como base um cédigo gerado automaticamente pelo https://start.spring.io/.
Optamos utilizar como configuragao inicial as seguintes caracteristicas: projeto Maven,
Spring Boot versao 2.3.3 e versao 11 do Java.

Maven é uma ferramenta de gerenciamento de projeto desenvolvida pela Apache. A
sua caracteristica principal é que conseguimos gerenciar o build, imports externos e do-
cumentacao dentro de um mesmo documento. Escolhemos utilizar Maven por conta da

14 Ramalho, Mendes

familiaridade no uso por parte dos integrantes do projeto. Esta ferramenta nao tem im-
pacto no desempenho final do sistema, apenas impacta no tempo de desenvolvimento e
deploy da aplicacao.

Dentro da pasta central do cédigo do servico destacam-se dois componentes: a pasta
src, e o arquivo pom.xml. Este arquivo estd em formato XML e é o que o Maven utiliza
como fonte para controle do projeto. Nele podemos encontrar quais bibliotecas externas
estao sendo utilizadas em qual versao.

J4 na pasta src/ encontra-se o c6digo Java responsavel por receber as requisigoes e reali-
zar abertura de uma segunda thread que ira realizar uma chamada HTTP para um terceiro
servigo. Sao duas classes que realizam este trabalho: MainController.java e CentralService-
Client.java. Dentro da classe MainController temos dois métodos que correspondem a um
endpoint cada um. Abaixo a classe:

public class MainController {

@Autowired
private CentralServiceClient centralServiceClient;

Logger logger = LoggerFactory.getLogger (MainController.class);

@GetMapping("/")

public String getCentralServiceResult() {
logger.info("Get central service message incoming request");
return centralServiceClient.getCentralServiceMessage();

}

Q@GetMapping("/async")

public String getAsyncCentralServiceResult() {
logger.info("Get ASYNC central service message incoming request");
return centralServiceClient.getAsyncCentralServiceMessage();

A anotagao @QGetMapping(” /caminho”) indica que o método abaixo dele serd invocado
quando uma requisi¢ao GET chegar no endereco https://ip_do_servico:porta/caminho.
Na secao "hospedagem” detalharemos as propriedades de rede dos servigos.

Portanto, o getCentralServiceResult é ativado quando o servigo recebe uma chamada
HTTP GET no caminho ” /”e chama o método de mesmo nome da classe CentralServiceCli-
ent, que é responsavel por realizar uma nova chamada HTTP bloqueante dentro da thread
principal da requisicao e retornar exatamente o que vier do mesmo.

Ja o getAsyncCentralServiceResult escuta o caminho ”/async”, e invoca um outro
método que realiza a chamada HTTP para o servidor em uma segunda thread e também
retorna o resultado.

A ideia de ter dois fluxos, um no qual a chamada HTTP bloqueia a thread principal e
outro que bloqueia uma outra thread, é para avaliarmos se o comportamento do servico em

https://ip_do_servico:porta/caminho

Teste de performance JVM 15

situacao de alta carga serd de acordo com o que prevemos. E esperado que o fluxo que apenas
bloqueie a thread principal na realizagao da chamada HTTP se comporte de maneira mais
performatica que o segundo, pois teoricamente apenas bloquear a thread principal consome
menos recursos (principalmente memoria) que abrir uma thread extra e bloquear a mesma.

A classe CentralServiceClient, representada abaixo, é responsdvel por implementar os
fluxos descritos acima. Aqui é valido notar que o método assincrono utiliza a mesma imple-
mentagao do sincrono, ou seja, os dois executam o mesmo codigo, a diferenca estd apenas
no fato de que o assincrono ird abrir uma segunda thread que serd bloqueada enquanto a
requisicao HTTP para o servidor central é feita.

public class CentralServiceClient {

public String getAsyncCentralServiceMessage(){
try {
CompletableFuture<String> future
= CompletableFuture.supplyAsync(() ->
getCentralServiceMessage());
return future.get();
} catch (Exception e) {
e.printStackTrace();
return "Error";

}

public String getCentralServiceMessage(){
try {

URL url = new URL("http://172.20.0.59:8081");
HttpURLConnection con = null;
con = (HttpURLConnection) url.openConnection() ;
con.setRequestMethod ("GET") ;
con.setConnectTimeout (5000) ;
con.setReadTimeout (5000) ;

BufferedReader in = new BufferedReader(
new InputStreamReader(con.getInputStream()));
String inputline;
StringBuffer content = new StringBuffer();
while ((inputLine = in.readLine()) != null) {
content.append(inputLine) ;
}
in.close();
return content.toString();
} catch (Exception e) {
e.printStackTrace();
return "Error";

16 Ramalho, Mendes

4.2.2 Servidor Web Kotlin

O codigo do backend desenvolvido em Kotlin foi estruturado de maneira semelhante ao
Java. Utilizamos o framework Spring como base para o servico e criamos o template inicial
através do start.spring.io.

Dentro do arquivo Maven pom.xml, presente na pasta raiz do projeto, podemos encon-
trar todas as dependéncias externas utilizadas no projeto. Destacam-se duas: org.jetbrains.kotlinx.kotlinx-
coroutines-core e org.jetbrains.kotlinx.kotlinx-coroutines-reactor. Estes moédulos vem de
uma biblioteca chamada Kotlinx Coroutines desenvolvida pela Jetbrains [5], e possuem a
implementacao da criacdo de uma corrotina. Neste sentido, do mesmo jeito que utilizamos
a CompletableFuture no projeto Java para facilitar a criacdo de uma thread nova, aqui
estamos utilizando a Kotlinx Coroutines.

No caminho src/main/kotlin/org/unicamp/pfg/kotlinservice podemos encontrar as clas-
ses Kotlin que implementam os dois fluxos também presentes no servigo que vamos comparar
a este. Sao duas classes, a MainController.kt e a CentralServiceClient.kt. A MainControl-
ler.kt é responsavel por mapear os dois endpoints para responder a chamadas HTTP GET
nos caminhos ” /e ” /async”.

A CentralServiceClient.kt é responsavel por implementar os dois fluxos, um deles re-
alizando a requisicaio HTTP na thread principal da requisicao e o outro dentro de uma
Coroutine criada. O método getAsyncCentralServiceMessage() tem na assinatura o prefixo
’suspend’, que indica a JVM que esse trecho deve ser executado numa corrotina.

Nesta classe, diferentemente do que acontece no servigo Java, o cédigo dos fluxos de
requisicaio HTTP para o servidor central nao sdo os mesmos. Isso acontece porque foi
necessario utilizar uma biblioteca que fosse compativel de ser utilizada dentro de uma Co-
routine. Para tal, é preciso que a implementacao tenha claro quais sao os momentos de
”pausa”, ou seja, onde que o fluxo pode liberar o recurso do sistema para executar outros
fluxos.

class CentralServiceClient {

suspend fun getAsyncCentralServiceMessage(): String {
val request = getWebClient()
.get O
.uri (/")
.retrieve()
.awaitBody<String>();

return request;

}

private fun getWebClient(): WebClient {
val tcpClient = TcpClient
.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000)
.doOnConnected { connection: Connection ->
connection.addHandlerLast (ReadTimeoutHandler (5000,
TimeUnit.MILLISECONDS))

Teste de performance JVM 17

connection.addHandlerLast (WriteTimeoutHandler (5000,
TimeUnit .MILLISECONDS))

}

return WebClient
.builder()
.baseUrl("http://localhost:8081")
.defaultCookie("cookieKey", "cookieValue")

.defaultHeader (HttpHeaders.CONTENT_TYPE,
MediaType.APPLICATION_JSON_VALUE)
.clientConnector(ReactorClientHttpConnector (HttpClient.from(tcpClient)))
.defaultUriVariables(Collections.singletonMap("url",
"http://localhost:8081"))
.build O ;
}

fun getCentralServiceMessage(): String {
return httpGet("http://localhost:8081");
}

private fun httpGet(myURL: String?): String {
val inputStream: InputStream
val result:String
val url: URL = URL(myURL)
val conn: HttpURLConnection = url.openConnection() as HttpURLConnection

conn.connect ()
inputStream = conn.inputStream
if (inputStream != null)
result = convertInputStreamToString(inputStream)
else
result = "Erro"

return result

}

private fun convertInputStreamToString(inputStream: InputStream): String {
val reader = BufferedReader (inputStream.reader())
val content = StringBuilder()
try {
var line = reader.readLine()
while (line != null) {
content.append(line)
line = reader.readLine()
}
return content.toString();
} finally {
reader.close()

3

18 Ramalho, Mendes

4.2.3 Ferramenta de teste de performance

Para a realizacao das comparacoes entre os servigos, precisamos de uma ferramenta que
execute requisicoes HT'TP em alta escala e retorne métricas sobre o desempenho do sistema
que recebeu.

As métricas de performance que estamos procurando sdo tempo médio de resposta de
uma chamada HTTP, quantidade de respostas num determinado intervalo e quantidade de
erros recebidos.

Apés pesquisa de referéncias, acabamos escolhendo o Apache JMeter™. Este é um
software opensource feito totalmente em Java e foi desenvolvido para realizar testes de
carga funcionais e medir performance[4]. Trata-se de um dos softwares mais utilizados
tanto na academia quanto na industria.

Para instalar, basta apenas baixar uma pasta compressa no site oficial e descomprimir
dentro de algum diretério da maquina que vai realizar as requisicoes. Para que a comparacao
de desempenho seja o mais fiel possivel, é necessario que a maquina que esta o JMeter seja
diferente da que o servidor sendo testado no momento.

O modo de funcionamento da ferramenta gira em torno do conceito de plano de tes-
tes. Cada plano contém todas as configuracoes de execugao e métricas de performance de
determinado tipo de execugao de carga. Podemos importar e exportar planos através de
arquivos com a extensao .jmx. Todos os arquivos correspondentes aos testes feitos dentro
deste projeto estdo dentro do repositério Git apresentado no comeco deste capitulo, na
pasta /test-plans.

Por conveniéncia, instalamos a ferramenta localmente para criar os planos, porém é
necessario que os testes sejam executados numa maquina sem concorréncia por recursos
(memdria e processamento), de modo que seja possivel criar um alto nimero de requisi¢oes
simultaneas. Portanto, instalamos também o JMeter em uma VM situada na mesma rede
do servigo. Detalharemos melhor na préximas segoes.

O JMeter possui uma interface grafica que pode ser utilizada para a criagao, edigao e
exportacao de planos. Para abrir a GUI, basta executar o jmeter.bat presente na raiz da
pasta da ferramenta. Na Figura 8 abaixo podemos ver a tela inicial:

Teste de performance JVM 19

[] Apache JMeter (5.4)

Delete

Figura 8 - Interface gréfica do Test Plan

Na subsecao 4.4 iremos detalhar quais foram os planos criados e como foi feita a execucao
dos mesmo.

4.2.4 Servidor Central

A ideia de criar um terceiro servidor (que chamamos de central) é de que a thread ou
a Coroutine tenha tempo de execucao parecido nos dois cendrios de teste. Partimos do
principio que a requisicao http realizada para um outro servico nao deve ter variacoes de
tempo para dois servicos que estao hospedados na mesma VM.

Inicialmente, criamos um terceiro projeto java com caracteristicas semelhantes ao que
serd testado, contendo apenas um endpoint que recebe uma chamada HTTP GET e retorna
o resultado da conta 2+2. Para que haja a menor variacao de tempo possivel entre as cha-
madas, este servidor deve estar na mesma VPN do servico a ser testado e que a comunicagao
ocorra de maneira direta - sem sair da rede.

Porém, avaliamos que as oscilacoes de desempenho que podem ocorrer em condigoes de
estresse neste servico comprometem a veracidade do teste. Por isso, optamos em realizar
testes também realizando requisicoes HT'TP para um terceiro fora da rede que teoricamente
nao deve sofre oscilacao de tempo na resposta, como por exemplo acessar o HTML estatico
https://www.csus.edu/indiv/m/merlinos/enron.html ou alguma API aberta. Descrevere-
mos os testes e as diferencas de resultados na secao abaixo.

20 Ramalho, Mendes

4.3 Hospedagem

Utilizamos como servico de hospedagem e rede o Cloud.IC, hospedado no Instituto de
Computacao da UNICAMP. Este pode ser acessado apenas por alunos do instituto através
do site https://cloud.ic.unicamp.br/. Através dessa solu¢do podemos hospedar os nossos
servigos em maquinas virtuais (VMs) e dispor de poder de processamento e armazenamento
para o funcionamento dos mesmos.

O Cloud.IC é feito utilizando o Openstack como base. Este é um sistema operacional em
nuvem que é capaz de controlar grandes clusters de computadores através de virtualizacao.
Também é possivel criar estruturas de comunicacao como filas e streams. Neste projeto
utilizaremos apenas VMs - que também chamamos de instancias - com uma configuracao
especifica e determinado provisionamento de recursos. O Openstack também possui um
moédulo de seguranca com ferramentas para garantir que o acesso aos componentes possua
autenticagao.

Para o propésito de comparacao, os ambientes que hospedam os servicos a serem testados
devem ser idénticas. Por isso, podemos utilizar uma mesma instancia para hospedar as duas
aplicagoes. Além desta, também iremos utilizar mais dois tipos diferentes de configuragao
neste projeto: um para a ferramenta de teste e outro para o servidor central.

O Cloud.IC possui um dashboard que pode ser acessado pelo site. Neste painel conse-
guimos realizar todas as atividades de gerenciamento de recursos necessarios, como criar
instancias e ver quais estao sendo utilizadas. Abaixo temos uma imagem que mostra parte
dele, mais especificamente a parte que indica o total de recursos alocados perto do limite
disponivel. As duas instancias que estdo sendo utilizadas nesse contexto estdao hospedando
o servico a ser testado e o JMeter, respectivamente. O ntimero de vCPUs é uma unidade
de medida para a quantidade de processamento que podemos utilizar.

Projeto / Computagéo / Visao Geral

Visao Geral

Resumo de Limites

’

Instancias vCPUs RAM IPs Flutuantes

Utilizado 2 de 2 Utilizado 4 de 8 Utilizado 8GB de S50GB Alocado 0 de1

Armazenamento de volume

Utilizado 0Byte de 100GB

Grupos de Seguranga

Utilizaclo 4 de 10

Teste de performance JVM 21

Figura 9 - Infraestrutura das maquinas utilizadas.

Ainda dentro do dashboard, também podemos listar as instancias ativas, como mostra a
imagem abaixo. Para este projeto sera necessario inicialmente apenas duas, que chamaremos
de sender-instance e receiver-instance. A sender-instance é responsavel por hospedar a
ferramenta que realiza as requisicoes, que no nosso caso serd o JMeter. Ja a receiver-
instance hospeda a aplicacao que recebe as requisicoes e tem o desempenho testado.

Aqui somos introduzidos ao conceito de flavor - ou sabor. Dentro do IC.Cloud, flavors
definem a capacidade de processamento, armazenamento e memoria de uma instanciaFLA.
Ou seja, o sabor é a configuracao de hardware da maquina virtual que sera disponibilizada.
Deve-se escolher um flavor no momento da criacao de uma instancia e nao é possivel alterar.

N d N d Par d Z de Estado d
[m] _on'Ale _a ome ca Endereco IP Flavor arde Status _ona - Tarefa S _o €
instancia Imagem chaves Disponibilidade energia
Ubuntu-bi
sender-in onic-serve 172.20.0.59 m1.medium.cpu- agora .
O Gance ramdsd-1 2801:8a:40c0:c11d:1816:3¢M1e86:8778 dedicated vai S nova AT R L
B.04-LTS
Ubuntu-bi
receiver- onic-serve 172.20.0.37 mi.medium.cpu- agora .
O lstance r-amdsd-1 2801:8a:40c0:c11df816:3effe63:4d0¢ dedicated vai Alivo fova Nenhum - Executando
B.04-LTS

Figura 10 - Instancias ativas no dashboard.

A receiver-instance, como pode ser vista na Figura 10, é a VM que ird hospedar a
aplicagdo cuja performance serd testada. As principais configuragoes de recursos hard-
ware provisionados podem ser encontradas na imagem abaixo. O flavor utilizado foi
o ml.medium-cpu-dedicated, que nao era o com maior poder de computacao que havia
disponivel, porém era o unico que garantia os recursos dedicados exclusivamente para a
aplicacao, pois é fundamental que nao haja nenhuma variagao de desempenho no hardware.

Visdo Geral Log Console Log da Agéo
Nome receiver-instance
Descrigao -
ID 5f868a3a-d214-4dbf-aeee-0438142c2615
Status Ativo
Bloqueado False
Zona de Disponibilidade nova
Criado 1 de Outubro de 2020 s 21:38

Tempo Desde Criado 2 meses, 3 semanas

Especificacdes

MNome do Sabor m1.medium.cpu-dedicated

ID do Sabor 1ddi12bfl-ee1f-4359-8941-7Tbelbeet9754
RAM 4GB
vCPUs 2vCPU
Disco 25GB

Tempo
desde a
criacao

2 meses,
3 semanas

2 meses,
3 semanas

22 Ramalho, Mendes

Figura 11 - Detalhes da receiver-instance.

A sender-instance é a instancia que ird hospedar a ferramenta de teste de performance.
Também foi escolhido o flavor m1.medium-cpu-dedicated, que era a melhor configuracao de
hardware disponivel dentro do limite do projeto.

O sistema operacional utilizado nas duas instancias foi o Ubuntu-bionic-server-amd64-
18.04-LTS. Escolhemos o Ubuntu Server pois se trata de um SO feito para ser executado em
servigos de hospedagem baseados no openstack como o Cloud.IC, é amplamente utilizado
na industria e de facil configuracao.

Os recursos de hardware disponiveis para utilizagao estao conectados a uma rede pri-
vada que possui acesso A internet. E possivel configurar uma instancia para ter acesso ex-
terno ou nao. Este conceito aqui ¢é tratado como grupo de seguranca (Figura 12 abaixo).
No momento da criagdo da instancia, devemos selecionar quais os grupos de seguranca a
mesma pode acessar. Abaixo estd a listagem da receiver-instance. No nosso caso, apenas
a receiver-instance precisa estar conectada a web para realizar a requisicao HT'TP para o
servidor central. Para isso, temos o grupo chamado ”default”, que faz com que a instancia
possa acessar a web. Os outros dois permitem a conexao da instancia através do usuario
cadastrado na rede do instituto de computacao.

Grupos de Seguranca

default ALLOW IPvE from default
ALLOW IPv4 to 0.0.0.0/0
ALLOW IPv4 from default
ALLOW IPvE to /0
rai35434 global http ALLOW IPvE to ::/0
ALLOW IPv4 to 0.0.0.0/0
ALLOW IPvE 443/tcp from /0
ALLOW IPv4 BO/tcp from 0.0.0.0/0
ALLOW IPvE BO/tcp from /0
ALLOW IPv4 443/tcp from 0.0.0.0/0
ra135434 global ssh ALLOW IPv4 22/tcp from 0.0.0.0/0
ALLOW IPvE to /0
ALLOW IPvE 22/tcp from /0
ALLOW IPv4 to 0.0.0.0/0

Figura 12 - Grupos de seguranca

4.3.1 Deploy

Uma vez que as instancias estdo criadas e configuradas, é necessario instalar o JMeter na
sender-instance e executar as aplicagoes Java e/ou Kotlin na receiver-instance.

O primeiro passo para o deploy ¢é acessar as instancias. Para isto, é necesséario fazer via
ssh da maquina cuja chave ssh foi inserida na hora de criar a instancia. Por questao de
seguranca, adicionamos a chave ssh referente ao usuario de um dos integrantes dentro da

Teste de performance JVM 23

rede prépria do IC. O comando necessario é:

ssh -i id-rsa ubuntu@ip-da-insténcia

Para ser capaz de executar tanto os servicos quanto o JMeter, é necessario ter instalado
apenas o Java instalado no Ubuntu. Vamos instalar o Java na versao 11 utilizando a bibli-
oteca aberta open-jdk. Os comandos utilizados foram:

sudo apt install openjdk-11-jre-headless
sudo apt install default-jre

Uma vez que estamos dentro da VM do receiver-instance, para executar o servigo web,
basta realizar dois passos:
1) Baixar o repositério git com o comando:
git clone https://gitlab.ic.unicamp.br/ral35434/pfg-jvm-testing.git
2) Executar o arquivo deploy.sh presente na raiz do projeto utilizando:
sh deploy.sh

O cédigo do arquivo deploy.sh estd presente na Figura 13 abaixo. Com este script,
podemos executar os trés servigos que criamos: java, kotlin e o central. Nas duas primeiras
linhas do cédigo, ele aguarda por um nput que indica qual dos servigos deve ser executado.
A partir dai, independente de qual foi a escolha, sdo trés passos. O primeiro faz a navegagao
até a pasta do projeto, o segundo realiza a instalacao das bibliotecas externas declaradas
no arquivo pom.xml, e o terceiro realiza a execucao do servico.

echo "Insert service name for deployment: java, kotlin, central®
read service_name

if [$service_name = "java"]; then
cd javaservice/
JJ/mvnw clean install
java -jar target/javaservice.jar

fi
if [S$service _name = "central™]; then
cd centralservice/
SSmvnw clean install
java -jar target/centralservice.jar
fi
if [S$service name = "kotlin"]; then
cd kotlinservice/
SSmvnw clean install
java -jar target/ketlinservice.jar
fi

Figura 13 - Cédigo do arquivo deploy.sh

24 Ramalho, Mendes

Essa estratégia de deploy permite a troca de servigos a serem testados com facilidade.
Na Figura 14 abaixo temos uma representacao mais completa da arquitetura, inserido os
componentes de hospedagem vistos nessa secao.

Cloud.IC
sender-instance receiver-instance
HTTP Get - HTTP Get
[
> \ |
JMeter) _
Servidor Web JVM Servidor Web Central

Figura 14 - Arquitetura do deploy

4.4 Testes de performance
4.4.1 Instalando o JMeter na Receiver instance
Para efetuar a instalacao do JMeter, deve-se primeiramente logar na méquina via ssh:

ssh -i id-rsa ubuntu@ip-da-insténcia

O proximo passo é fazer o download da ferramenta através do comando:
wget https://downloads.apache.org//jmeter/binaries/apache-jmeter-5.4.tgz

O ultimo passo € extrair a pasta. Para isso, basta executar o seguinte comando:
tar -xf apache-jmeter-5.4.tgz

Seguindo esses passos, a ferramenta estard pronta para uso.

4.4.2 Criagao de um test plan

Para criar um arquivo .jmx com as configuragoes de um teste dentro da interface grafica do
JMeter devemos primeiro criar uma Thread Group e especificar o nimero de threads (que
seriam como se fossem os usudrios acessando o servigo), o periodo de tempo ao longo do qual
esse nimero de threads serd executado (no exemplo abaixo, 5000 threads serdo executadas

Teste de performance JVM 25

ao longo de 60 segundos) e quantas vezes esse teste serd repetido (loop count), como pode
ser visto na Figura 15:

Figura 15 - Tela de configuracao de uma Thread Group

Entao deve-se adicionar o tipo de requisicdo que as threads irdo executar. No caso, foi
adicionado um HTTP Request, incluindo nas configuragoes o tipo de protocolo, o IP do
servidor, a porta, o tipo de requisicdo (GET) e o caminho, como na Figura 16:

Apache JMeter (5.4)

Figura 16 - Tela de configuracao do HTTP Request

Por ultimo, é necessario adicionar os listeners, que sao usados para captar os resultados
de um teste de carga. Nos testes realizados, foram utilizados o Aggregate Report, que gera
dados estatisticos, o Summary Report, que é um resumo dos dados obtidos e um listener
que coleta dados de tempo de resposta, como pode ser visto na Figura 17:

Lol

* A TestPlan

26 Ramalho, Mendes

Figura 17 - Listeners adicionados no Thread Group

Apébs o término de todas as configuragoes acima, basta salvar o test plan como um
arquivo .jmx dentro do repositério na pasta /teste-plans. Esse arquivo permite que esse
teste seja executado em qualquer maquina com JMeter instalado. Todos os test plans
utilizados no projeto estao salvos na pasta /test-plans.

4.4.3 Execugao e Analise do resultado

Para facilitar a execucao de multiplos testes, foi desenvolvido um script que faz um disparo
do JMeter na maquina requisitada e gera os resultados numa pasta designada. Para execu-
tar um teste, basta entrar no repositério e executar o arquivo:

./test.sh

O script funciona em 5 passos:

1 - Pergunta para o usudrio o nome do experimento (por exemplo, java-load-test-1)

2 - Cria uma subpasta dentro da pasta test-results/ com o nome desse experimento.

3 - Executa o arquivo .jmx que foi gerado pelo test plan (roda os testes)

4 - Coloca os resultados dentro da subpasta

5 - Faz um commit dos resultados no repositério git

Os resultados de todos os experimentos realizados estarao disponiveis na pasta test-
results/, cada um em sua subpasta correspondente, onde haverd um arquivo log.jtl com as
informacoes do teste. Para gerar um dashboard em HTML com essas informacoes a partir
desse arquivo deve-se rodar o comando:

jmeter -g /caminho-para-arquivo/log.jtl -o pasta que vai conter o html do dashboard

5 Resultados

Nessa se¢ao temos os resultados dos testes praticos feitos nos servigos Kotlin e Java, assim
como as andlises e comparacoes dos mesmos. Todos os arquivos .jmx que sao citados
aqui estao disponiveis no repositério do projeto, dentro da pasta /test-plans. A estratégia
utilizada foi dividir o experimento rodadas de teste. Em cada rodada iremos executar um
mesmo teste carga (mesmo test-plan) nos dois servigos e comparar os resultados. A carga
dos experimentos serd em ordem crescente, ou seja, vamos acrescentando throughput nos
servicos de uma bateria para a outra.

5.1 Primeira rodada
5.1.1 Configuragoes do teste

e Valores utilizados:

— Number of users (threads): 1000
— Ramp up period (seconds): 60s

Teste de performance JVM 27

— Loop Count: 10
e Arquivo: first-test-plan.jmx
e Numero de threads na thread pool:

— Java: 200
— Kotlin: 5

5.1.2 Resultado Servigo Java

Pasta: java-1k-enron-1
Apdex = 0,504

Statistics

Requests Executions Response Times (ms) Throughput Network (KB/sec)

Label ~ #Samples * FAIL % Error% ¥ Average # Min # Max # Median % 90thpct # 95thpct ¥ 99thpct ¥ Transactions/s ¥+ Received * Sent ¥

Total 10000 0 0.00% 1082.58 198 4159 1140.00 1550.00 1668.00 1910.00 153.70 1010.45 18.76
HTTP 10000 0 0.00% 1082.58 198 4159 1140.00 1550.00 1668.00 19810.00 1563.70 1010.45 18.76
Request

Figura 18 - Estatisticas do servigo Java com 1000 usuéarios

Ll Response Time Percentiles i

N
4500 Zoom :
4000 6000
2000
3500 2000
. 0
£ 3000 o 50.0 o
c
S 2500
o
2
2 2000
€
8
51500
1000
500
0
0.0 10.0 200 300 400 50.0 60.0 700 80.0 90.0 100.0
Percentiles
HTTP Request

Figura 19 - Grafico do tempo de resposta por percentil do servico Java com 1000 usudrios

5.1.3 Resultado Servigo Kotlin

Pasta: kotlin-1k-enron-3
Apdex = 0,786

28 Ramalho, Mendes

Statistics
Requests Executions Response Times (ms) Throughput Network (KBisec)
Label ~ #Samples ® FAIL ® Error% ¢ Average ® Min ® Max ® Median # 90thpct O5thpet 99thpet ® Transactionsis * Received * Sent
Total 10000 0 0.00% 484.30 321 2769 479.00 598.00 613.00 680.98 154.69 61.48 18.88
HTTP 10000 0 0.00% 484.30 321 2769 479.00 598.00 613.00 680.98 154.69 61.48 18.88

Request

Figura 20 - Estatisticas do servigo Kotlin com 1000 usuarios

Ll Response Time Percentiles T £ oA

3000

2500 2000

2000 0.0 50.0 100.0

1500

Percentile value in ms

1000

500

0.0 10.0 200 30.0 400 50.0 60.0 700 80.0 90.0 100.0

Percentiles

HTTP Request

Figura 21 - Grafico do tempo de resposta por percentil do servico Kotlin com 1000
usuarios
5.1.4 Analise e comparagao

Observando os dois resultados, notamos que o desempenho do servico Kotlin foi signifi-
cantemente melhor que a do servigo Java em todas as métricas. O APDEX é quase 50%
maior, o tempo médio de resposta é a metade e o 99 percentil é um terco. Apesar disso, a
performance dos dois ainda é minimamente satisfatéria nesse cenario, visto que nao houve
nenhum erro.

5.2 Segunda rodada
5.2.1 Configuragoes do teste
e Valores utilizados:

— Number of users (threads): 5000
— Ramp up period (seconds):60s
— Loop Count: 10

e Arquivo: second-test-plan.jmx

Teste de performance JVM

e Numero de threads na thread pool:

— Java: 200
— Kotlin: 5

5.2.2 Resultado Servigo Java

Pasta: java-bk-enron-0
Apdex = 0,001

Statistics

Total 50000 0.00% 20660.09 226 29186 21641.00 25475.00 25742.00 26148.99 188.15 1236.92

HTTP 50000 0 0.00% 20660.09 226 29186 21641.00 25475.00 25742.00 26148.99 188.15 1236.92
Request

Figura 22 - Estatisticas do servigo Java com 5000 usuarios

Ll Response Time Percentiles

30000

Zoom :

30000

22.97
22.97

25000 20000

10000]

0
20000 0.0 50.0

15000

Percentile value in ms

10000

00 10.0 200 300 400 50.0 60.0 70.0 80.0 90.0 100.0

Percentiles

" HTTP Request

100.0

29

Figura 23 - Gréafico do tempo de resposta por percentil do servigo Java com 5000 usuérios

5.2.3 Resultado Servigo Kotlin

Pasta: kotlin-5k-enron-0
Apdex = 0,437

Statistics

Total 50000 0 0.00% 1160.99 321 7390 634.00 973.90 1041.95 1124.00 779.16 309.68

HTTP 50000 0 0.00% 1160.99 321 7390 634.00 973.90 1041.95 1124.00 779.16 309.68
Request

95.11
95.11

30 Ramalho, Mendes

Figura 24 - Estatisticas do servigo Kotlin com 5000 usuérios

Linl Response Time Percentiles 1+ A

7000 Zoom :

6000 5000

2500
5000 0

4000

3000

Percentile value in ms

2000

1000

0
0.0 10.0 20.0 30.0 400 50.0 60.0 70.0 80.0 90.0

Percentiles

HTTP Request

Figura 25 - Grafico do tempo de resposta por percentil do servico Kotlin com 5000
usuarios

5.2.4 Analise e comparagao

Aqui multiplicamos por 5 a carga do experimento anterior, e acabou ficando claro que a dife-
renga de desempenho dos sistemas é bem grande. A aplicacao Java teve tempomédioderesposta =
20s e APDEX = 0.0001, o que indica que ela ja nao consegue suportar essa carga. Ja o
Kotlin aguentou a carga e teve seu 97percentil < 2segundos, o que consideramos uma per-
formance satisfatoria. Um ponto importante de se observar é que, mesmo que lentamente,

as plataformas ainda conseguem responder todas as requisi¢coes do teste. O indice de erro

de ambas ainda é 0%.

5.3 Terceira rodada
5.3.1 Configuragoes do teste
e Valores utilizados:

— Number of users (threads): 10000
— Ramp up period (seconds): 60s
— Loop Count: 10

e Arquivo: third-test-plan.jmx
e Ntumero de threads na thread pool:

— Java: 400
— Kotlin: 5

Teste de performance JVM

5.3.2 Resultado Servico Java

Pasta: java-10k400t-enron-0
Apdex = 0,000

Statistics

31

Requests. Executions Response Times (ms) Throughput Network (KBisec)
Label - #Samples * FAIL # Eror% * Average ¥ Min * Max ¥ Median # 90thpet ¢ 95thpct # 99thpet ¢ Transactions/s * Received ¥ Sent ¥
Total 32811 878 2.68% 36683.92 393 132677 39489.00 76319.90 95417.60 131464.97 178.44 1154.03 21.20
HTTP 32811 878 2.68% 36683.92 393 132677 39489.00 76319.90 95417.60 131464.97 178.44 1154.03 21.20
Request

Figura 26 - Estatisticas do servigo Java com 10000 usudrios e uma pool de 400 Threads

Errors

Type of error + Number of errors = % in errors @

Non HTTP response code: 612 69.70% 1.87%
org.apache.http.conn.HttpHostGonnectException/Non

HTTP response message: Connect to 172.20.0.37:8081

[/172.20.0.37] failed: Connection timed out (Connection

timed out)

Non HTTP response code: java.net.SocketException/Non 266 30.30% 0.81%

HTTP response message: Connection reset

% in all samples *

Figura 27 - Erros obtidos no servigo Java com 10000 usudrios e uma pool de 400 Threads

Ll Response Time Percentiles

150000

125000

100000

75000

Perezntile value in ms

50000

25000

Percentiles

HTTP Request

Figura 28 - Grafico do tempo de resposta por percentil do servico Java
e uma pool de 400 Threads
5.3.3 Resultado Servigo Kotlin

Pasta: kotlin-10k-enron-0
Apdex = 0,007

com 1000 usuérios

32 Ramalho, Mendes

Statistics
Requests Executions Response Times (ms) Throughput Network (KBlsec)
Label + #Samples * FAIL % Eror% * Average ® Min # Max * Median # 90thpet ¥ 95thpct ¥ 9Sthpet # Transactions/s ¢ Received + Sent #
Total 100000 79 0.08% 762115 333 79466 5738.00 6668.00 6781.00 6916.00 781.20 2264.41 95.29
HTTP 100000 79 0.08% 7621.15 333 79466 5738.00 6668.00 6781.00 6916.00 781.20 2264.41 95.29
Request
. e . . s
Figura 29 - Estatisticas do servigo Kotlin com 10000 usuérios
Errors
Type of error * Number of errors = % in errors ® % in all samples +
Non HTTP response code: 79 100.00% 0.08%

java.net.SocketException/Non HTTP response
message: Connection reset

Figura 30 - Erros obtidos no servigo Kotlin com 10000 usuérios

Ll Response Time Percentiles 1t £ A
90000
80000
50000
70000
" 0
£ 60000 0.0 50.0 100.0
c
S 50000
=
>
< 40000
€
8
& 30000
20000
10000
0
0.0 10.0 200 300 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Percentiles

HTTP Request

Figura 31 - Grafico do tempo de resposta por percentil do servico Kotlin com 10000
usuarios

5.3.4 Analise e comparagao

Neste teste dobramos a carga do teste passado para buscar o limite do servico Kotlin. Nesse
cenario, o desempenho da aplicacao piorou consideravelmente, de modo que 2percentil >
2sequndos. A APDEX caiu para quase zero e houve incidéncia do erro: "Non HTTP
response code: java.net.SocketException/Non HTTP response message: Connection reset”,
que significa que atingiu o timeout da requisigao.

Ja para a aplicagao Java, resolvemos aumentar o nimero de threads na thread pool para
400 para ver se a aplicagao conseguia performar melhor com um threadpool maior. Porém,
nao houve melhora na performance, o que indica que o sistema realmente nao comporta
cargas dessa escala.

Teste de performance JVM 33

6 Conclusao

Durante a anélise tedrica, entendemos que por estarem sendo executados em sistemas seme-
lhantes a nivel de software e hardware, nao haveriam grandes diferencas entre o desempenho
dos dois servigos. Acreditamos que haveria apenas uma vantagem pelo uso de Coroutines
em vez de Threads.

Porém, apos a realizacdo dos testes de carga nas aplicagdes com diversas configuracoes
e andlise dos resultados, concluimos que o servico web desenvolvido em Kotlin performa
de maneira substancialmente melhor que o servigo Java. As duas métricas que levamos em
consideracao para essa conclusao sao tempo de resposta médio e escalabilidade, que sao as
caracteristicas mais visadas para servicos backend web atualmente.

No teste que consideramos de carga baixa - 1000 usuérios a cada minuto -, a performance
dos dois sistemas foi aceitavel, com APDEX > 0,5. Quando multiplicamos o throughput
para valores 5 e 10 vezes maiores, a aplicacdo Java nao conseguiu lidar e passou a ter
um comportamento que consideramos inaceitavel para os requerimentos de hoje, com a
maior parte das requisigoes levando mais que 10 segundos para retornarem (20percentil >
10segundos). Ja o outro se manteve estavel com 5000 usudrios/segundo, porém também
nao aguentou a carga maior.

Os resultados, portanto, sugerem que Kotlin é uma escolha mais razoavel em situagoes
similares as realizadas neste projeto, tendo em vista as ferramentas e cendrios utilizados
nos testes comparativos.

Referéncias

[1] https://kotlinlang.org/docs/reference/faq.html

S

https://spring.io/projects/spring-boot

<

https://maven.apache.org/

N A2 R A

https://jmeter.apache.org/

(@5

https://github.com/Kotlin/kotlinx.coroutines

=)

https://github.com/JetBrains/kotlin

J

https://www.openstack.org/software/

=

https://docs.openstack.org/nova/latest /user /flavors.html

https://spring.io/team

]
]
[10] https://docs.spring.io/spring-framework/docs/current /reference /html/overview.html
] https://blog.golang.org/waza-talk

]

https://docs.oracle.com /javase/tutorial /essential /concurrency /threads.html

[13] https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

	Introdução
	Concorrência e paralelismo no desenvolvimento web
	Motivação do projeto

	Objetivo
	Base Teórica
	Java
	Kotlin
	Java Virtual Machine
	Spring framework

	Protocolo HTTP
	Concorrência e paralelismo em sistemas web
	Java Threads
	Kotlin Coroutines

	Testes Automatizados
	Teste de performance
	Métricas de performance

	Conclusão teórica

	Desenvolvimento
	Arquitetura geral
	Componentes
	Servidor Web Java
	Servidor Web Kotlin
	Ferramenta de teste de performance
	Servidor Central

	Hospedagem
	Deploy

	Testes de performance
	Instalando o JMeter na Receiver instance
	Criação de um test plan
	Execução e Análise do resultado

	Resultados
	Primeira rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Segunda rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Terceira rodada
	Configurações do teste
	Resultado Serviço Java
	Resultado Serviço Kotlin
	Análise e comparação

	Conclusão

