
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Smart Parking app - um
aplicativo móvel para

visualização de vagas em
Estacionamento Inteligente

V. K. Aoki L. F. Gonzalez J. F. Borin

Relatório Técnico - IC-PFG-20-13

Projeto Final de Graduação

2020 - Agosto

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Smart Parking app - um aplicativo móvel para visualização de

vagas em Estacionamento Inteligente

Vitor Kaoru Aoki∗ Luis Fernando Gonzalez† Juliana Freitag Borin‡

Resumo

O projeto de estacionamento inteligente da Unicamp, desenvolvido dentro do con-
texto da iniciativa Smart Campus, utiliza aprendizado de máquina para identificar a
quantidade de vagas dispońıveis a partir de fotos tiradas dos estacionamentos. O sis-
tema inclui um totem, instalado na entrada do bolsão de estacionamento, para informar
aos motoristas o número de vagas dispońıveis. Com o objetivo de melhorar e ampliar
a disponibilização desta informação à comunidade do campus, este trabalho apresenta
o projeto e implementação de um aplicativo móvel capaz de informar, em tempo real e
com segurança para o motorista, o número de vagas dispońıves nos bolsões de estacio-
namento mais próximos do destino do usuário.

1 Introdução

A Internet das Coisas (do inglês, Internet of Things - IoT) tem sido cada vez mais adotada
em soluções de automação e monitoramento no setor produtivo bem como em soluções para
facilitar o dia-a-dia das pessoas. O mesmo tem ocorrido com algumas cidades que vêm
desenvolvendo projetos com o uso de IoT com o objetivo de aumentar sua produtividade e
torná-las mais sustentáveis.

Com a Unicamp esse processo não foi diferente; com a criação do projeto Smart Cam-
pus [5] várias soluções baseadas em IoT estão sendo desenvolvidas no campus em uma
colaboração entre funcionários, docentes e alunos. Estas soluções visam tornar o ambi-
ente da universidade mais sustentável e melhorar a vida da comunidade que a frequenta
diariamente.

Algumas soluções já estão sendo implantadas pelo campus. Entre elas está a solução de
Estacionamento Inteligente [3] implantada inicialmente no estacionamento do IC - Instituto
de Computação. Por meio da utilização de aprendizado de máquina e IoT, ela se propõem
a disponibilizar, em tempo real, a quantidade de vagas de estacionamento existentes. Para
tanto, foi utilizada uma câmera que tira fotos do estacionamento e por meio da utilização
de um algoritmo de aprendizado de máquina, é identificado o número de vagas livres. Por
questões de segurança de dados, essas fotos são tratadas localmente e apenas os dados da

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP
†Konker Labs
‡Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP

1



2 Aoki, Gonzalez e Borin

quantidade de vagas é enviado para a nuvem, que utiliza a plataforma da Konker Labs. Com
estes dados coletados, é utilizado um totem na entrada do estacionamento, que mostra aos
motoristas o número de vagas livres.

Embora a utilização de totens nas entradas dos bolsões de estacionamento contribua na
busca por uma vaga - dado que evita a entrada em um bolsão lotado, ainda não é a solução
ideal, pois: a) o motorista só recebe a informação de que não há vagas no estacionamento
mais próximo do seu destino ao visualizar o totem e, então, precisa ir em busca de outro
bolsão com vagas livres; b) é posśıvel que haja congestionamento nos arredores de bolsões
de estacionamento que apresentam alta procura por vagas em horários de pico, como, por
exemplo, próximo do horário de ińıcio das aulas. Assim sendo, este projeto propõe uma
nova interface para a visualização de vagas de Estacionamento inteligente por meio de um
aplicativo móvel.

2 Trabalhos relacionados

Durante o processo de levantamento bibliográfico, foi posśıvel encontrar diversos trabalhos
relacionados a estacionamentos inteligentes. Dentre eles, encontram-se trabalhos teóricos e
produtos vendidos no mercado; ambos com a finalidade de diminuir os problemas (tempo
gasto, congestionamentos e poluição gerados) relacionados à procura por vagas de estacio-
namento.

Uma das aplicações práticas que pode ser vista no dia-a-dia, encontra-se em estaciona-
mentos de shoppings e supermercados. Neles, nas entradas dos estacionamentos, é posśıvel
encontrar placares indicando a quantidade de vagas existentes em cada andar, proposta
similar à utilizada no projeto de Smart Parking da Unicamp. Outra proposta utilizada por
estacionamentos de estabelecimentos, é o uso de LEDs posicionados sobre cada vaga para
indicar vagas vazias ocupadas. Ao estacionar, um sensor faz com que a luz fique vermelha e
ao deixá-la, a luz volta a ficar verde. Essa alternativa apresenta algumas limitações, como
a confusão que pode causar ao condutor do véıculo caso existam muitas vagas, por conta
da poluição visual causada.

Outra solução encontrada, e a que se assemelha mais ao trabalho aqui realizado, é o apli-
cativo Smart Parking (Novas Software) [8] que consiste em uma plataforma onde é posśıvel
encontrar no mapa, estacionamentos cadastrados, com dados de horário de funcionamento,
localização e quantidade de vagas dispońıveis. Também é posśıvel realizar reservas de vagas
e fazer check-in e check-out da vaga, com pagamento pelo uso do estacionamento.

Dentre os trabalhos teóricos estudados, dois foram destacados. O primeiro [1] utili-
zava um banco de dados MySQL para o armazenamento dos dados enviados por sensores
instalados no estacionamento. A interface utilizada pelo usuário consistia em uma página
web que permitia ao usuário a reserva de vagas e o pagamento do valor referente ao tempo
utilizado no estacionamento. O sistema mostrava ao usuário as vagas livres, as reservadas
e as ocupadas. A partir desta informação, era posśıvel escolher a vaga desejada.

O segundo trabalho [2] apresentava proposta parecida ao realizado, pois utilizava um
aplicativo Android para a comunicação com o usuário. Assim como o trabalho anterior,
o sistema também era responsável por mostrar ao usuário as informações de vagas do es-



Estacionamentos Inteligentes 3

tacionamento, e realizar a reserva e liberação das vagas. Porém, diferente do anterior, ele
também mostrava ao usuário, um mapa com estacionamentos próximos. No presente tra-
balho também buscou-se minimizar a necessidade de interação do usuário com o aplicativo
como forma de garantir a segurança do motorista. Para tanto, o aplicativo mostra apenas
ao usuário a localização do instituto de destino e do estacionamento próximo.

A proposta desse trabalho se assemelha aos trabalhos estudados, no contexto de facilitar
ao condutor do véıculo a procura por vagas. Porém, diferente das demais, ela não está
relacionada a estacionamentos onde é posśıvel reservar vagas, tirando assim a possibilidade
de garantia de vagas. Para que ele possua esta informação antes de chegar ao estacionamento
desejado, a solução do trabalho se baseou na utilização do ”totem virtual”, mesclando as
propostas de utilização de totens a aplicações mobile, dando ao usuário uma maneira fácil
de acesso aos dados atualizados em tempo real.

3 Modelo do sistema

Figura 1: Fluxo de dados da solução Smart Parking [15]

O projeto é baseado na criação de eventos pelo aplicativo, que correspondem a compro-
missos que os usuários têm na Unicamp. Para cada evento, é posśıvel verificar as informações
de vagas nos estacionamentos por meio dos dados de localização armazenados dos institutos
e do banco de dados na plataforma na nuvem, com o número de vagas coletado em tempo
real.

O fluxo de dados desde a obtenção pelas câmeras, até os dispositivos móveis e totens
está representado na Figura 1. As imagens são obtidas pela câmera e a quantidade de vagas
é processada localmente, a partir dela (este processo é indicado pelo ı́ndice 2 na imagem).
Este dado então é enviado para uma plataforma de armazenamento em nuvem (́ındice 1 na
figura). Os dados de vagas são obtidos então pelos dispositivos móveis (́ındice 3) e pelos
totens (́ındice 4) para que sejam apresentados aos usuários.

A definição de eventos e de estacionamentos próximos utilizada neste projeto é detalhada
a seguir.



4 Aoki, Gonzalez e Borin

3.1 Eventos - Únicos e Repetitivos

No dia-a-dia da faculdade diversos tipos de eventos ocorrem. Eles podem ser aulas, reuniões,
atividades esporádicas em algum instituto, entre outros. O aplicativo armazena os eventos
do usuário em um banco de dados, e assim, ele pode acessá-los. Eles são compostos por um
nome do evento, o instituto em que ocorrerá, a data (que para os eventos repetitivos, é o
dia da semana e para os eventos únicos é uma data do mês) e a hora.

Os eventos únicos são utilizados pelo sistema como eventos que não ocorrem com
frequência, como alguma reunião, ou alguma atividade que possar estar acontecendo em
algum instituto. Assim sendo, após ser acessado pelo usuário, ele é apagado do banco de
dados pois não voltará a acontecer. Por exemplo, podemos ter um evento com a seguinte
configuração: Nome: Palestra sobre IoT, Local: IC - Instituto de Computação, Data:
12/06/2020, Hora: 14:00.

Já os eventos repetitivos são tratados pelo sistema como eventos que ocorrem frequen-
temente, como aulas para docentes e alunos, o horário de entrada no trabalho para os
funcionários, entre outros. Como eles ocorrem regularmente, após serem acessados pelo
usuário, ele continua salvo no sistema, a não ser que seja exclúıdo pelo mesmo. Como um
exemplo, podemos ter: Nome: Aula de Cálculo 1, Local: IMECC - Instituto de Matemática,
Estat́ıstica e Computação Cient́ıfica, Dia da semana: Segunda-feira, Hora: 10:00.

3.2 Estacionamentos Próximos

O sistema armazena informações de latitude e longitude dos estacionamentos de cada insti-
tuto. Assim, é posśıvel calcular a distância entre o instituto de destino e os institutos com
estacionamentos próximos.

Para o cálculo dessas distâncias foi utilizada a fórmula de Haversine [13] [14], que é
utilizada para cálculos de distâncias entre dois pontos, em superf́ıcies esféricas. Como
a Terra é uma esfera muito grande, é posśıvel utilizar equações planas para cálculos de
distâncias pequenas. Porém, quando essas distâncias aumentam (maiores que 20 km) o
resultado começa a apresentar discrepâncias. Assim, a fórmula de Haversine é uma das mais
precisas para esses cálculos em esferas, utilizando como parâmetros a latitude e longitude
dos pontos. A fórmula é proveniente da função seno ao quadrado, como indicado a seguir:

Haversine(θ) = sin2(θ) (1)

Para que sejam utilizadas as informações de latitude e longitude, a fórmula pode ser
reescrita da seguinte maneira:

a = sin2(∆φ/2) + cos(φ1) ∗ cos(φ2) ∗ sin2(∆λ/2)

c = 2 ∗ atan2(
√
a,
√

(1− a))

d = R ∗ c
(2)



Estacionamentos Inteligentes 5

onde φ1 é a latitude em radianos do ponto 1, φ2 é a latitude em radianos do ponto 2,
∆φ a diferença entre φ2 e φ1; ∆λ é a diferença em radianos entre as longitudes dos dois
pontos (λ2 e λ1) e R o raio da Terra em metros.

Desse modo, para este projeto a equação (2) foi utilizada para o cálculo das distâncias,
sendo d (2), o resultado final. Considerando um posśıvel deslocamento do condutor do
véıculo, do estacionamento de um instituto até o instituto de destino, tomamos como 300
m a distância ideal para recomendação dos estacionamentos próximos.

4 Metodologia

A partir de análises de trabalhos já realizados, a ideia inicial era a de utilizar uma forma
gráfica de apresentar as vagas existentes, assim como no trabalho de Santos e Passos [2].
Porém, ao analisarmos o uso do aplicativo no contexto da universidade, a ideia foi modificada
para uma forma mais simples de visualização, pois seria utilizada durante a condução do
véıculo e não poderia comprometer a segurança do usuário.

Com isso, a primeira ideia para informar ao condutor a informação de vagas, foi a
utilização de notificações. No aplicativo, antes de seu compromisso, o usuário deveria criar
um evento, que ficaria armazenado em seu aparelho. A notificação então seria disparada 5
minutos antes do evento ocorrer mostrando ao usuário, a quantidade de vagas existentes no
estacionamento mais próximo.

Porém, a solução apresentou algumas dificuldades que resultaram na escolha de outra
forma, que melhor se adequaria ao projeto, para mostrar as informações. A primeira delas
foi a de que dispositivos Android, por conta das modificações feitas pelas diversas empresas
que produzem aparelhos com o sistema, podem apresentar como configuração padrão o
bloqueio de notificações de aplicativos instalados. Desse modo, todos os usuários teriam
que alterar as configurações de seus aparelhos para que pudessem receber as notificações, o
que fugia da proposta do trabalho, causando uma dificuldade a mais para a utilização pelo
usuário. A segunda foi a de que a utilização de notificações limitava a informação em tempo
real, já que somente uma única notificação seria enviada ao usuário, podendo haver, dentro
desse peŕıodo de 5 minutos até o evento ocorrer, modificações na quantidade de vagas.

Como consequência, a proposta de utilização de notificações foi descartada, dando lugar
ao uso dos ”totens virtuais”que mostram em tempo real a quantidade de vagas em cada
estacionamento de institutos próximos ao instituto de destino.

4.1 Tecnologias utilizadas

Para o desenvolvimento do projeto, foram utilizadas tecnologias de IoT para a obtenção e
armazenamento dos dados de vagas de estacionamento, por meio da plataforma da Konker
Labs e também tecnologias de desenvolvimento de aplicações mobile, no caso do projeto, a
plataforma Android. As subseções seguintes apresentam as tecnologias utilizadas.



6 Aoki, Gonzalez e Borin

4.1.1 Konker Labs

A plataforma desenvolvida pela Konker Labs se encarrega de toda a estrutura relacionada à
”Internet”em Internet of Things. Por meio de uma plataforma em nuvem, ela é responsável
por todo o processo de coleta dos dados obtidos pelo hardware (no caso do projeto de
Estacionamento Inteligente, uma câmera para a coleta de imagens do estacionamento, e
um Raspberry Pi para o processamento das imagens), armazenamento, processamento,
replicação e backup, além da comunicação entre os diferentes dispositivos.

A plataforma trabalha com a utilização de alguns conceitos. O primeiro deles é o de
Dispositivo. Eles são representações dos dispositivos utilizados em soluções IoT. Assim,
eles podem receber e enviar dados. O envio e recebimento desses dados pode ser feito
de duas maneiras: por meio do protocolo HTTP utilizando requisições e também por ins-
crição/subscrição, por meio da utilização do protocolo MQTT.

O segundo conceito é o de Canal. Por meio de canais é posśıvel agrupar mensagens que
são semelhantes para serem processadas conjuntamente. Ele está diretamente ligado aos
dispositivos, pois, um dispositivo pode ter diferentes sensores, motores, ou outras ferramen-
tas, cujos dados são semelhantes. Assim, cada um desses dados pode ser obtido ou enviado
por meio dos canais.

O terceiro conceito é o de Rota. Como em IoT os dispositivos normalmente conversam
entre si, o conceito de rotas é utilizado para fazer essa comunicação. Por meio dele, é
posśıvel ligar um dispositivo de entrada, como um sensor, a um dispositivo de sáıda, como
por exemplo um LED.

O quarto conceito é o de Transformação. Mensagens obtidas por meio de dispositivos
de entrada muitas vezes precisam ser tratadas para serem utilizadas por um dispositivo
de sáıda. Assim, as transformações ocorrem nessa rota entre um dispositivo e outro. O
processamento dessas mensagens é feito por meio de plataformas externas que as obtém,
processam os dados e as devolvem para a plataforma da Konker para que o processo de
troca de dados entre dispositivos continue.

No projeto foram utilizados somente os dispositivos, onde cada um representa o estaci-
onamento de um instituto e armazena a quantidade de vagas dispońıveis.

4.1.2 Android

O sistema operacional Android é um dos mais utilizados do mundo para dispositivos mobile.
Foi inicialmente lançado em 2007 como um sistema beta e desde então vem sendo utilizado
em diversos aparelhos, sendo o mais comum, os smartphones. O Android foi desenvolvido
baseado no sistema Linux, e é um projeto open-source. O projeto é mantido por um conjunto
de empresas, sendo a Google a que encabeça o grupo.

4.1.3 Android Studio e Android SDK

Para o projeto foi desenvolvido um aplicativo Android, utilizando o Android SDK (Software
Development Kit), conjunto de ferramentas disponibilizada para o desenvolvimento de apli-
cativos do sistema. Ele disponibiliza diversas bibliotecas que ajudam no desenvolvimento,
além de outras que são necessárias ao funcionamento do aplicativo. Cada nova versão do



Estacionamentos Inteligentes 7

Android lançada possui um SDK diferente, que possibilita que os aplicativos criados utili-
zando esse kit, sejam compat́ıveis com todos os smartphones que utilizem essa versão do
sistema.

Em conjunto com o SDK, foi utilizado também a IDE (Integrated development envi-
ronment) Android Studio, programa oficial utilizado para desenvolvimento de aplicativos
do sistema. O Android Studio é uma IDE desenvolvida baseada na IDE existente Intellij,
que é utilizada para o desenvolvimento Java. Ela foi desenvolvida pela JetBrains e oferece
todas as ferramentas para desenvolvimento desde o backend do aplicativo até o frontend do
mesmo.

4.1.4 Kotlin

Kotlin é uma linguagem desenvolvida pela JetBrains, e que foi escolhida em 2019 pela
Google como a linguagem recomendada para o desenvolvimento de aplicativos Android. Ela
foi pensada com o objetivo de interagir completamente com a linguagem Java e também ser
uma alternativa a ela, sendo mais concisa, porém, sendo ainda fortemente tipada. Utiliza
como plataforma de execução, também a JVM utilizada pelo Java.

Para o projeto foi utilizada a linguagem Kotlin, que é uma linguagem que segue princi-
palmente o conceito de orientação a objetos (utilizando também, conceitos de programação
funcional) e que permitiu o projeto ser modularizado de forma a trabalhar com micro-
serviços que compõe o serviço final.

4.1.5 HTTP Requests e biblioteca OkHttp

O aplicativo criado pelo projeto funciona, pelos conceitos da plataforma Konker, como um
dispositivo de sáıda. Assim, os dados precisavam ser obtidos por uma das duas formas
que a plataforma disponibiliza e a escolhida foi por meio das requisições HTTP, já que o
sistema não possui a necessidade de ficar o tempo todo verificando alterações nas vagas de
estacionamento, sendo esse processo necessário somente quando o usuário solicita o acesso
a esses dados.

O protocolo HTTP trabalha com a troca de mensagens entre clientes e servidores por
meio da rede de internet, para realizar ações sobre recursos identificados por URL’s. Para
isso são utilizadas requisições enviadas pelos clientes e respostas a essas requisições devol-
vidas pelos servidores.

Para essas ações, são utilizados alguns métodos que possuem diferentes propósitos. São
eles: GET, POST, HEAD, PUT, DELETE, PATCH e OPTIONS. Para o projeto foram
utilizados somente os métodos GET e POST. O método GET é utilizado para a obtenção
dos recursos identificados por uma URL. Por outro lado, o POST é utilizado para o envio
de dados do cliente para o servidor, para a criação ou atualização de um recurso em uma
URL.

Para a realização dessas requisições foi utilizada a biblioteca OkHttp que é uma biblio-
teca open source que lida com requisições HTTP nas linguagens Java e Kotlin. Ela utiliza
o protocolo HTTP/2.0 que é uma atualização do antigo protocolo HTTP e que consegue



8 Aoki, Gonzalez e Borin

Figura 2: Fluxograma de uma requisição HTTP [4]

realizar as requisições de forma eficiente e segura. A Figura 2 apresenta o fluxo de uma
requisição HTTP.

4.1.6 SQLite

O SQLite [9] é um banco relacional open source utilizado em aplicações mobile, sites de
pequeno porte ou aplicações desktop que não necessitam de um banco de dados SQL com-
pleto. Ele se caracteriza por ter um tamanho reduzido, não necessitar de um servidor para
funcionar, já que vem embutido à aplicação, e ser de fácil utilização. Por ser um banco rela-
cional de pequeno porte, ele não apresenta todas as funcionalidades de um banco relacional
completo, como por exemplo, não tem acesso a chaves estrangeiras, delete em múltiplas ta-
belas, entre outras. Porém, apresenta funções básicas para que algumas informações sejam
armazenadas pela aplicação.

O sistema Android apresenta suporte para o SQLite [10], apresentando um pacote nativo
para a utilização do banco (android.database.sqlite). Como o banco utiliza o armazenamento
do sistema para salvar os dados, o mesmo ocorre com o Android. Assim, o banco de dados
SQLite é armazenado no armazenamento interno do dispositivo Android, na pasta privada
do aplicativo. Com isso, o banco fica seguro pois, por padrão, esta pasta não pode ser
acessada por outros aplicativos e nem pelo próprio usuário.

Para o aplicativo do projeto foi utilizada a classe SQLiteOpenHelper do Android para o
gerenciamento do banco. Por meio dela é posśıvel realizar consultas no banco de maneira
mais fácil. O banco foi utilizado no aplicativo como forma de armazenar os eventos criados
pelo usuário.

4.1.7 Google API

A Google disponibiliza uma série de API’s para o desenvolvimento mobile e web. Para a
sua utilização, deve-se realizar um cadastro na plataforma de mapas da Google Cloud [11]
para a obtenção de uma chave de acesso. No console da plataforma, é posśıvel realizar todo
o monitoramento de uso das API’s escolhidas para o sistema.



Estacionamentos Inteligentes 9

Para o projeto, foi utilizada a API de Mapas. Com ela, é posśıvel adicionar ao aplica-
tivo, ou site, mapas assim como os oferecidos pelo Google Maps. Em sistemas Android, essa
utilização é feita por meio do SDK do Maps, que faz parte do SDK utilizado para o desen-
volvimento do aplicativo. Como para o projeto não era necessário todas as funcionalidades
do Google Maps, foram utilizados somente mapas estáticos, que permitiam a utilização de
marcadores, para localizar os institutos e seus respectivos estacionamentos. Mesmo sendo
posśıvel navegar pelo mapa e utilizar o zoom para aproximação de localizações, o mapa é
estático, pois não é posśıvel realizar nenhuma interação com ele, no sentido de procurar por
novas localidades e traçar rotas.

4.2 Desenvolvimento

4.2.1 Eventos

O desenvolvimento inicial do projeto se deu com a criação dos eventos. Para isso, foram
criadas duas telas com formulários para que o usuário pudesse adicionar seus eventos no
banco de dados do sistema e posteriormente pudesse acessar os eventos criados. Para isso,
foi projetado o seguinte fluxo de funcionamento:

Figura 3: Fluxo de criação e visualização de eventos

No fluxograma da Figura 3, a Requisição 1 representa a requisição feita ao banco para o
armazenamento dos eventos. Como explicado na seção de conceitos do projeto, os eventos
possuem estruturas parecidas, diferenciando-se apenas na parte do armazenamento das
datas, onde eventos únicos armazenam as datas completas, com dia, mês e ano e os eventos
repetitivos armazenam o dia da semana na qual o evento ocorre. Assim, como o banco
SQLite não permite a utilização de campos do tipo date, este campo foi armazenado como
uma string, permitindo assim que uma única tabela fosse utilizada para o armazenamento
dos eventos. A diferenciação entre eles é feita com a utilização do campo repetitive, que em
caso de valor 0, representa os eventos únicos e em caso de valor 1, os eventos repetitivos.

As Requisições 2 e 3, representam as requisições feitas para buscar a lista de eventos
repetitivos e únicos, respectivamente, para que sejam mostradas ao usuário nas telas de



10 Aoki, Gonzalez e Borin

visualizações dos eventos cadastrados. As Respostas 1 e 2 são as respostas do banco com
as listas, para as telas de visualização de eventos repetitivos e únicos, respectivamente.

Dentro das listas de eventos, o usuário pode então acessar os eventos para a consulta dos
estacionamentos próximos. Os eventos repetitivos, como são recorrentes, não são deletados
após seu acesso. Já os eventos únicos, como só ocorrem uma vez, são deletados do banco
de dados. O fluxo de funcionamento para o acesso dos dois eventos está descrito nos
fluxogramas a seguir:

Figura 4: Fluxo de acesso aos estacionamentos próximos de um evento repetitivo

Figura 5: Fluxo de acesso aos estacionamentos próximos de um evento único

Na Figura 4, temos que o acesso dos eventos repetitivos à lista de estacionamentos
próximas é direta. Já na Figura 5, o acesso à essa lista passa por uma confirmação do
usuário. Ao clicar em um dos eventos únicos, o usuário é perguntado se deseja acessar o
evento, pois, uma vez acessado, ele é apagado do banco de eventos. Caso a resposta seja
não, nada acontece. Caso a resposta seja sim, o evento é apagado, com a Requisição 2 a
classe que gerencia o banco e com a Requisição 3 que envia a query ao banco para apagar o
evento. A Resposta 1 representa a resposta de que a query foi realizada com sucesso. Em
paralelo, o usuário tem acesso à lista de estacionamentos próximos.

Em caso de acesso a qualquer um dos eventos, o fluxo de dados para o carregamento
das listas de estacionamentos próximos com as respectivas quantidades de vagas, funciona
como descrito a seguir:

Na Figura 6, a Lista de estacionamentos próximos é carregada a partir da Requisição
1 feita para a o método responsável pelo processamento dos dados. Assim, uma requisição
HTTP é feita à plataforma da Konker para a obtenção dos últimos dados de vagas de
todos os estacionamentos, cujo retorno é identificado como Resposta 1. Em seguida, é
feita uma requisição ao método que calcula as distancias entre estacionamentos por meio



Estacionamentos Inteligentes 11

Figura 6: Fluxo de visualização de listas de estacionamentos próximos para eventos os
eventos

da fórmula de Haversine e retorna os estacionamentos próximos. Para isso é feita uma
requisição dos dados de latitude e longitude no banco de dados (Requisição 4 e Resposta
2) e em seguida as distancias são calculadas e uma lista de estacionamentos próximos é
retornada na Resposta 3. Assim, o método processa os dados e retorna, na Resposta 4, a
lista com os estacionamentos próximos e as respectivas quantidades de vagas. Esse processo
é refeito a cada 30 segundos para a atualização da quantidade de vagas para o usuário.

Na página de estacionamentos próximos, ao clicar em um dos estacionamentos, o usuário
é direcionado a um mapa com a localização marcada do instituto de destino e do estacio-
namento selecionado. Para isso, foi utilizada a API da Google para o Maps. Com ela, é
posśıvel adicionar ao aplicativo um mapa estático com os marcadores de localização. Assim,
foram utilizadas as informações de latitude e longitude dos institutos, armazenadas, para
criar os marcadores no mapa.

4.2.2 Visualização de dados dos institutos

O objetivo principal do aplicativo é a utilziação dos eventos para que o motorista tenha
acesso aos dados de vagas em seu caminho até o instituto de destino. Porém, também foi
criada uma ferramenta que mostra ao usuário as informações de localização do instituto
(rua, número, cep), para que possa planejar seu caminho previamente, além da quantidade
de vagas do estacionamento do instituto, no momento do acesso. Além disso, é posśıvel
ver os estacionamentos próximos e a localização do instituto, no mapa, por meio da API
do Google descrita anteriormente. O fluxo de funcionamento dessa ferramenta é descrito a
seguir:

Na Figura 7, a Requisição 1 e Resposta 1, representam as obtenção dos dados de lo-
calização do instituto, que estão armazenados no banco de dados. Caso o usuário decida
visualizar a localização do instituto e dos estacionamentos próximos, no mapa, a Requisição
2 é feita. Assim, na tela com o mapa, é feita uma requisição ao método que calcula as
distâncias dos estacionamentos ao instituto acessado (incluindo o próprio estacionamento



12 Aoki, Gonzalez e Borin

Figura 7: Fluxo de visualização de informações dos institutos

do instituto), e retorna a lista dos mais próximos, com as respectivas informações de latitude
e longitude que são utilizadas para adicionar os marcadores ao mapa.

5 Resultados

A versão final do aplicativo e os exemplos de sua utilização estão representados por scre-
enshots retirados do aplicativo rodando em um aparelho Android. A Figura 8 apresenta
a tela inicial do aplicativo e as próximas subseções mostram as telas e exemplos de cada
funcionalidade do aplicativo. O repositório com o projeto pode ser encontrado em [16]

Figura 8: Tela principal do aplicativo



Estacionamentos Inteligentes 13

5.1 Criação de eventos repetitivos e únicos

Na Figura 9 temos a tela de criação de eventos repetitivos. Todos os campos são necessários,
apresentando uma mensagem de erro caso o botão Enviar seja pressionado com um dos
campos vazios. O primeiro campo necessário é o t́ıtulo, utilizado para a rápida identificação
do evento pelo usuário. O segundo é o instituto onde o evento ocorrerá. A partir dessa
informação são calculados os estacionamentos próximos. Os outros dois campos são o dia da
semana e o horário do evento, para o planejamento do usuário dos eventos que participará.

Figura 9: Tela de criação de eventos repetitivos

Na Figura 10 temos a tela de criação dos eventos únicos. Assim como a de eventos re-
petitivos, todos os campos são necessários para o evento ser armazenado. A única diferença
existente para a criação de eventos repetitivos é que para eventos únicos é escolhida uma
data, não o dia da semana em que o evento ocorrerá.

5.2 Lista de eventos repetitivos e únicos

Nas Figuras 11 e 12, temos as listas de eventos repetitivos e únicos, respectivamente. Ambas
as listas são ordenadas pela ordem de adição do evento e apresentam todas as informações
dadas pelo usuário ao criar os eventos. A partir delas é posśıvel acessar os eventos e com
isso a lista de estacionamentos próximos.

Na Figura 13 temos a caixa de diálogo aberta ao tentar acessar um evento único. Como
discutido na seção de Desenvolvimento, os eventos únicos, ao serem acessados, são apagados
do banco de dados. Assim, ao clicar em um evento único, antes de ir à tela de lista de
estacionamentos próximos é pedida uma confirmação pelo usuário. No caso dos eventos
repetitivos, ele apenas vai para a tela com a lista de estacionamentos próximos.



14 Aoki, Gonzalez e Borin

Figura 10: Tela de criação de eventos únicos

Figura 11: Tela de lista de eventos repetitivos

Os eventos podem ser apagados pelo usuário, a partir das listas. Assim, a Figura 14
mostra a caixa de confirmação apresentada ao usuário ao tentar apagar um evento (a ação



Estacionamentos Inteligentes 15

Figura 12: Tela de lista de eventos únicos

Figura 13: Mensagem de acesso a eventos únicos

de apagar um evento ocorre ao pressionar e segurar o evento desejado).



16 Aoki, Gonzalez e Borin

Figura 14: Mensagem ao apagar eventos

5.3 Lista de estacionamentos próximos

Na Figura 15 temos a tela com a lista de estacionamentos próximos ao instituto onde
o evento ocorrerá. Ela mostra os estacionamentos ordenados pela proximidade, sendo o
primeiro e mais destacado, o estacionamento do próprio instituto. A quantidade de vagas
é mostrada em verde quando não são zero, e em vermelho, caso não hajam vagas. A tela
é atualizada automaticamente a cada 30 segundos, podendo ser atualizada manualmente
pressionando o botão de atualizar no canto inferior direito.

Esta tela deve ser acessada assim que o condutor ou condutora comece a utilizar o
véıculo. Assim como um GPS, o smartphone deve ser utilizado como uma forma de consulta,
estando em um local de fácil visualização e que não prejudique a condução. Dessa maneira
a informação é acessada de forma segura e fácil por quem utiliza o aplicativo.

5.4 Mapa com o instituto destino e o estacionamento selecionado

Ao clicar em um dos estacionamentos próximos, o usuário é redirecionado para a tela com
o mapa e os marcadores de localização do instituto do evento (marcador em vermelho) e do
estacionamento acessado (marcador em azul). Esta tela é indicada na Figura 16.

5.5 Informações do instituto

Outra funcionalidade citada na seção de Desenvolvimento, foi a de acesso a informações de
localização dos institutos. Esta tela é representada pela Figura 17. Nela, o usuário escolhe
o instituto desejado a partir do menu e ao efetuar a busca, lhe é mostrado o nome e logo do



Estacionamentos Inteligentes 17

Figura 15: Tela de lista de estacionamentos próximos

Figura 16: Tela com o mapa com o instituto destino e um estacionamento próximo

instituto e informações como rua, número e CEP, para o usuário se planejar previamente
como chegar ao instituto e também a quantidade de vagas no momento da pesquisa.



18 Aoki, Gonzalez e Borin

Figura 17: Tela com as informações dos institutos

Existe também o botão ”Ver Mapa”que leva o usuário a uma tela com um mapa, indi-
cando o instituto pesquisado (marcador em vermelho) e todos os estacionamentos próximos
(marcadores em azul). Este mapa tem como função ajudar o usuário a localizar as melhores
opções para estacionar seu véıculo, e assim poder se planejar previamente. A tela com este
mapa está indicada na Figura 18

6 Trabalhos futuros

Como uma forma de contribuir ainda mais para o planejamento do dia-a-dia das pessoas
que frequentam o campus, esta solução poderia ser estendida com a adição de um sistema
para informar ao usuário os horários em que os estacionamentos apresentam seus picos
de lotação e os melhores horários para que o véıculo seja estacionado. Para isso seriam
utilizadas técnicas de aprendizado de máquina, com os dados de quantidade de vagas,
coletados diariamente. Por ser um projeto novo, ainda não é posśıvel que essa ferramenta
seja implementada, por conta da falta de dados dispońıveis.

Outra funcionalidade posśıvel é a de integrar aos mapas, a localização em tempo real,
do véıculo, para que ele tivesse uma melhor visualização de sua localização em relação
ao instituto desejado e também pensando nas pessoas que estão visitando o campus pela
primeira vez e não o conhecem tão bem. Para isso seria utilizado o GPS do aparelho para
obter a localização do véıculo e também algoritmos para que essa informação fosse mostrada
no mapa com uma maior precisão.

Por fim, para abranger uma outra parcela da comunidade, é visada a criação do apli-



Estacionamentos Inteligentes 19

Figura 18: Tela com o mapa com o instituto destino e todos os estacionamentos próximos

cativo para o sistema IOS (desenvolvido pela empresa Apple para os smartphones Iphone),
tendo assim praticamente todos os usuários de smartphones da universidade conectados ao
sistema.

7 Conclusão

Assim como foi observado nas pesquisas para o desenvolvimento do projeto, a etapa de
desenvolvimento de plataformas para a visualização dos dados de vagas de estacionamento
pelos motoristas não é muito pesquisada e desenvolvida, sendo apresentada de maneira
simples por meio de totens na entrada do estabelecimento ou led’s de sinalização. Com isso,
o projeto trouxe uma outra alternativa para trabalhos futuros.

Como foi desenvolvido para mostrar os dados de maneira simplificada e direta, o aplica-
tivo se mostrou seguro para o acompanhamento durante a condução do véıculo. Por evitar
que as pessoas tenham que chegar ao estacionamento para descobrir se existem vagas ou
não, há um impacto positivo na produtividade dos membros da comunidade, pois agora
eles perdem menos tempo na busca por vagas. Adicionalmente, este projeto também tem
potencial de contribuir para a diminuição do congestionamento dentro do campus, pois não
há a necessidade de paralisações para procura por espaços para estacionar o véıculo.

Por fim, conclui-se que, se utilizada de maneira ampla, a solução aqui proposta poderá
resultar em um trânsito mais flúıdo e organizado dentro do campus contribuindo para o
objetivo do projeto Smart Campus de melhorar a qualidade de vida da comunidade da
universidade.



20 Aoki, Gonzalez e Borin

Referências

[1] Thiago Pires Romanelli Vicente - Controle Inteligente de Vagas para Estacionamentos
Utilizando o Conceito de Internet das Coisas. Monografia - Escola de Engenharia de
São Carlos da Universidade de São Paulo, 2016.

[2] Samila Ruane Barboza Santos e Śılvio Rodrigo Lima Passos - Smart Parking: Uma
Aplicação Para Estacionamento em Cidades Inteligentes. Trabalho de Conclusão de
Curso – Universidade Federal de Sergipe Centro de Ciências Exatas e Tecnologia De-
partamento de Computação, 2017.

[3] João Victor Baggio, Luis Fernando Gonzalez e Juliana Freitag Borin - Smart Par-
king - A Smart Solution Using Deep Learning. Paper – Instituto de Computação da
Universidade Estadual de Campinas, 2020.

[4] NTU. HTTP (HyperText Transfer Protocol). [S.I] [2009?]. Dispońıvel em:
<https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/
http basics.html>. Acesso em: 09 de jun. de 2020.

[5] SMART CAMPUS UNICAMP. Saiba mais sobre o projeto. [S.I] [2018?]. Dispońıvel
em: <https://smartcampus.prefeitura.unicamp.br>. Acesso em: 09 de jun. de 2020.

[6] KONKER LABS. Página inicial. [S.I] [2020?]. Dispońıvel em:
<http://www.konkerlabs.com>. Acesso em: 09 de jun. de 2020.

[7] KONKER LABS. Guia de Uso da Plataforma Konker. [S.I] [2020?]. Dispońıvel em:
<https://konker.atlassian.net/wiki/spaces/DEV/pages/28180518/Guia+de
+Uso+da+Plataforma+Konker>. Acesso em: 09 de jun. de 2020.

[8] NOVAS SOFTWARE. Página de download do aplicativo
na Play Store da Google. [S.I] [2019?]. Dispońıvel em:
<https://play.google.com/store/apps/details?id=com.novas.smartparking>. Acesso
em: 09 de jun. de 2020.

[9] SQLITE CONSORTIUM. Página principal do programa. [S.I] [2000?]. Dispońıvel em:
<https://www.sqlite.org/index.html>. Acesso em: 17 de jun. de 2020.

[10] ANDROID. Salvar dados usando o SQLite. [S.I] [2018?]. Dispońıvel em:
<https://developer.android.com/training/data-storage/sqlite>. Acesso em: 17 de jun.
de 2020.

[11] GOOGLE. Página principal do Google Cloud. [S.I] [2018?]. Dispońıvel em:
<https://cloud.google.com/maps-platform>. Acesso em: 18 de jun. de 2020.

[12] GOOGLE. Página principal do Google Maps Platform. [S.I] [2008?]. Dispońıvel
em:<https://developers.google.com/maps/documentation>. Acesso em: 18 de jun. de
2020.



Estacionamentos Inteligentes 21

[13] GEONET - THE ESRI COMMUNITY. Distance on a sphere: The Haversine Formula.
[S.I] [2017]. Dispońıvel em:<https://community.esri.com/groups/coordinate-reference-
systems/blog/2017/10/05/haversine-formula>. Acesso em: 18 de jun. de 2020.

[14] MOVABLE TYPE SCRIPTS. Calculate distance, bearing and more between
Latitude/Longitude points. [S.I] [2019?]. Dispońıvel em:<https://www.movable-
type.co.uk/scripts/latlong.html>. Acesso em: 18 de jun. de 2020.

[15] ICONS8. Free Icons, Photos, Vectors, Music, and Tools. [S.I] [2020?]. Dispońıvel
em:<https://icons8.com>. Acesso em: 04 de ago. de 2020.

[16] VITOR AOKI. Repositório Git do projeto. [S.I] 2020. Dispońıvel
em:<https://github.com/vitorkaoki/Smart-Parking>. Acesso em: 25 de jun. de
2020.


