
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Sistema para Monitoramento
Remoto da Refrigeração do
Data Center do Instituto de

Computação
L. C. Tonon M. M. Yonue J. F. Borin R. Ferrari

Relatório Técnico - IC-PFG-20-12

Projeto Final de Graduação

2020 - Agosto

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Sistema para Monitoramento

Remoto da Refrigeração do Data Center do Instituto de

Computação

Lucas Chinaglia Tonon∗ Juliana Freitag Borin† Mariane Massago Yonue‡

Rafael Ferrari§

Resumo

Este projeto tem por objetivo auxiliar os mantenedores dos ares condicionados do
Data Center do Instituto de Computação (IC) da Universidade Estadual de Campinas a
identificar problemas no funcionamento dos mesmos de forma rápida e visual através de
gráficos e alarmes gerados por um sistema de monitoramento baseado em IoT (Internet
of Things).

A motivação para o desenvolvimento deste trabalho veio de uma falha - não de-
tectada rapidamente por falta de um sistema de notificação apropriado - ocorrida nos
ares condicionados do IC. Considerando que um defeito nestes aparelhos afetaria a ca-
pacidade de manter a sala resfriada, isto poderia causar danos aos equipamentos do
Data Center com o aquecimento progressivo das máquinas, podendo queimar processa-
dores dos servidores caso não seja corrigido rapidamente [1], o que acarretaria custos à
universidade para os substituir.

A solução propõe adicionar sensores de temperatura e umidade, fornecendo aux́ılio
na detecção de comportamentos anômalos no resfriamento do ambiente monitorado, de
forma a enviar alarmes via e-mail em caso de medições fora de um intervalo previamente
definido. Também é esperado que, com o tempo e uma base de dados de medições cada
vez mais completa - adquiridas em situações, épocas e climas diferentes - seja posśıvel
desenvolver projetos capazes de prever falhas no sistema e até mesmo diagnosticar suas
causas.

1 Introdução

Data Centers são responsáveis por armazenar e lidar com grandes quantidades de da-
dos de forma a serem usados no desenvolvimento de soluções computacionais para resolver

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
†Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
‡Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852

Campinas, SP
§Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852

Campinas, SP

1



2 Tonon, Yonue, Borin e Ferrari

problemas do dia a dia. Para isto, existem critérios relacionados a infraestrutura do ambi-
ente em que estão instalados que são necessários para garantir o funcionamento em tempo
integral dos aparelhos neles inseridos.

Fatores como alimentação de energia, refrigeração adequada com sistema de backup,
sistemas de notificação e supressão de incêndios e outras adaptações de infraestrutura são
requisitos básicos de um Data Center para garantir que falhas eventuais não afetem os
serviços que dependem destes dados e servidores [2]. Tratando-se do sistema de refrigeração,
existem opções no mercado já focadas no contexto de ares condicionados, trazendo mais de
um aparelho com um modelo de backup entre eles de modo que exista um reserva e, caso um
ar condicionado pare de funcionar, um dos reservas toma seu lugar de forma automática
sem necessitar da intervenção de um dos indiv́ıduos responsáveis pelo funcionamento do
local.

No caso do Instituto de Computação da Unicamp segue-se um sistema similar, em que
o resfriamento do Data Center possui no total três ares condicionados. A configuração de-
termina que duas máquinas sempre devem estar ativas e a terceira permanece em ‘estado
de espera’ para que sirva como substituta em caso de falha de uma das primeiras. Ainda
que isto já consiga prover uma boa cobertura de problemas que podem vir a ocorrer no
controle de temperatura da sala, outros erros comuns em ares condicionados ou até mesmo
neste controle de backup podem causar falhas inesperadas que poderiam ser solucionadas
provendo um modo eficaz de monitoramento das condições de temperatura e umidade den-
tro do ambiente monitorado, de modo a ajudar os mantenedores a terem uma noção da
existência de um problema recorrente através da análise de dados exibidos de forma gráfica.

2 Justificativa

Recentemente houve uma falha no funcionamento dos ares condicionados dentro do Data
Center do Instituto de Computação, em que um deles ficou inativo e o sistema de backup não
foi acionado, fazendo com que apenas um dos três aparelhos estivesse funcional. Por falta
de um sistema de notificação e pelo fato do erro ter acontecido durante um final de semana,
esta falha só foi detectada depois de um dia, o que resultou em altas temperaturas dentro
do Data Center e no desligamento automático de vários servidores. Este fato evidenciou a
necessidade de se ter um sistema mais robusto para detecção e predição de falhas deste tipo
no Data Center.

3 Objetivos

Este projeto tem como objetivo o projeto e implementação de um sistema de baixo
custo para monitoramento e detecção de falhas do sistema de refrigeração do Data Center
do Instituto de Computação da Unicamp. Mais especificamente, espera-se:

– desenvolver um protótipo de dispositivo composto por sensores para coleta de dados de
temperatura, umidade e presença no Data Center e capaz de enviar os dados coletados
para uma plataforma em nuvem;



Sistema de Monitoramento do Data Center 3

– desenvolver um sistema de notificação de falhas baseado nos dados coletados no Data
Center;

– desenvolver uma aplicação web para monitoramento em tempo real dos dados coleta-
dos no Data Center;

4 Desenvolvimento

O primeiro passo do projeto consistiu em discutir e averiguar com os mantenedores do
Data Center os problemas e necessidades em relação ao monitoramento dos ares condiciona-
dos. A conclusão foi de que seria interessante encontrar uma forma de, dadas as informações
- como temperatura de certos componentes, umidade total da sala, vibração e rúıdo do apa-
relho e afins - aferidas por diferentes sensores dentro de um ambiente refrigerado, prever e
diagnosticar erros no funcionamento dos ares condicionados. Contudo, através do estudo
de trabalhos dispońıveis na literatura [3] [4] ficou claro que, embora existam métodos de
detecção e diagnóstico utilizando parâmetros como a temperatura em vários pontos de um
equipamento, que apresentam seus resultados dentro de uma margem bastante confiável, a
complexidade para tais previsões fugiria ao escopo do projeto pois, além do desenvolvimento
deste ter se dado a distância1, a ausência de um conjunto de dados referentes às medições
dos aparelhos em diferentes estágios de uso - entende-se por ‘estágio de uso’ o funcionamento
do aparelho de ar condicionado ao longo do tempo, quando novo, após algumas semanas de
uso, momentos antes de ocorrer uma falha, após manutenção - torna-se fator determinante
para a adaptação da ideia original.

Para o desenvolvimento do projeto foi idealizada uma arquitetura com a qual fosse
posśıvel incorporar múltiplos sensores, possibilitando a obtenção de dados através de re-
quisições HTTP para uma API - Application Programming Interface - e, em posse destas
informações, permitir a exibição de gráficos e outras informações em uma página web.

A plataforma em nuvem escolhida para armazenar e tratar os dados foi a Konker [5]
devido ao fato de se tratar de um serviço confiável e conhecido, visto que já existem projetos
baseados em Internet das Coisas dentro do contexto da iniciativa Smart Campus [6] na
UNICAMP que a utilizam. Através de seu uso, os dispositivos eletrônicos tornam-se aptos
a receber e enviar dados para um servidor, e então uma aplicação web poderá realizar
requisições - via REST API - para a plataforma, retornando os dados de forma gráfica -
considerada, do ponto de vista de User Interface e User Experience, mais intuitiva.

4.1 Arquitetura do Sistema

O projeto foi pensado de forma a ser modular, considerando a necessidade de imple-
mentação de circuitos diferentes para contextos distintos e a implementação de uma interface
visual que se comunica com um serviço de back-end. Portanto, a arquitetura básica proje-
tada inicialmente consistia de um conjunto de sensores e microcontroladores, responsáveis
por todas as medidas e envio de dados para um back-end, que deveria então prover essas

1Devido a pandemia de COVID-19, não foi posśıvel acessar a sala do Data Center na Unicamp



4 Tonon, Yonue, Borin e Ferrari

informações para um front-end capaz de exib́ı-las de maneira clara e intuitiva, auxiliando
no monitoramento. Esta arquitetura é apresentada na Figura 1.

Para realizar o monitoramento de temperatura e umidade optou-se por associar ao mi-
crocontrolador o sensor DHT11 [7], que permite medição simultânea de ambas as variáveis.
Levando em consideração o tamanho do ambiente e a existência de mais de um ponto de
interesse a ser monitorado, ficou evidente que seriam necessários múltiplos microcontrola-
dores, e, por consequência, um código capaz de lidar com as diversas medições provindas
de diferentes sensores DHT11. Pensando nisso, o código foi estruturado de forma a ser
permeável à variação do número de dispositivos - aqui entende-se por dispositivos micro-
controladores associados a sensores -, tornando simples o processo de configuração. Para
tanto, o método escolhido foi através do uso de “variáveis de ambiente” que, no caso deste
projeto, consistem em constantes definidas em um arquivo env.h e importadas no código do
microcontrolador; desse modo, se for desejado reconfigurar o comportamento do circuito,
estas mudanças serão concentradas, essencialmente, na alteração do valor destas constantes.
Por exemplo, para adicionar um novo dispositivo capaz de se comunicar com a plataforma
Konker será necessário alterar, no arquivo env.h, os valores correspondentes às credenciais
do dispositivo para conexão MQTT e em seguida realizar a compilação do código.

Além do microcontrolador e do sensor DHT11 também foi incorporado um sensor de
presença PIR - HC-SR501 [8]. De menor relevância no contexto deste trabalho, e conside-
rado complementar, apenas um sensor foi pensado a ser posicionado próximo à entrada da
sala para indicação de fluxo de pessoas adentrando o recinto - nota-se aqui que o objetivo
deste sensor não é trabalhar com um quantitativo de pessoas presentes na sala, mas sim,
indicar se houve, ou não, movimentação em um certo momento do dia.

Definido o modo a serem coletadas as medições, começou-se a pensar onde estes dados
seriam salvos para que posteriormente requisições de software pudessem acessá-los. A ideia
original pressupunha a criação de front-end e back-end, no entanto, por motivos que serão
justificados mais detalhadamente na Seção 4, apenas a implementação do front-end foi
necessária para tornar posśıvel a obtenção dos dados dos sensores a partir de seu local de
armazenamento. Em grande parte essa simplificação se deve à escolha da arquitetura ao
fazer uso da plataforma Konker para o armazenamento de dados. A Figura 2 ilustra a
arquitetura final.

4.2 Plataforma em nuvem

A escolha de utilização da plataforma em nuvem da Konker se deu embasada no fato de
outros projetos no contexto de Smart Campus já fazerem, ou terem feito, uso deste serviço
para lidar com os dados provindos de dispositivos eletrônicos dentro da universidade. A van-
tagem imediata de utilizar esta plataforma está na diminuição no esforço de implementação,
não sendo necessário projetar a conexão entre dispositivos e um back-end especializado, tão
pouco um banco de dados para armazenar as medições. Dessa forma, expande-se a possi-
bilidade de melhor investimento de tempo de desenvolvimento no aprimoramento do modo
como os dados são apresentados ao usuário e na estruturação do código, para tornar simples
a configuração de novos sensores, assim permitindo que o sistema seja mantido inteiramente
pelos funcionários do Instituto de Computação, e facilitando em caso de desejo de expansão



Sistema de Monitoramento do Data Center 5

Figura 1: Arquitetura inicial

Figura 2: Arquitetura final sem back-end

futura do projeto.

Além de permitir salvar os dados das medições dos sensores DHT11 e PIR - HC-SR501,
a Konker possui uma API REST [9] capaz de acessar os dados através de requisições HTTP
diretamente a partir do front-end. O serviço também permite o gerenciamento de diversos



6 Tonon, Yonue, Borin e Ferrari

dispositivos IoT, armazenamento de dados, conexão e envio/recebimento de mensagens via
HTTP ou MQTT, entre outras funcionalidades.

4.3 Hardware

Para montagem do sistema f́ısico foram utilizados kits disponibilizados pelos orienta-
dores. Dentre os componentes dispońıveis haviam jumpers, placas, sensores de presença,
umidade, temperatura, e outros não utilizados neste projeto.

A construção dos circuitos foi feita utilizando um microcontrolador NodeMCU ESP8266
[10] - responsável pela comunicação dos sensores com a internet e, a partir desta, conexão
com o serviço da Konker -, sensores DHT11 - para medição de temperatura e umidade - e
sensor de presença PIR - HC-SR501. Além disso, para assegurar uma boa modularidade
dos componentes foram criadas diversas variáveis de ambiente - responsáveis pelo armazena-
mento de valores como login e senha da internet, informações de conexão do dispositivo com
a Konker, valores usados para definir limites do alarme e informações para envio dos e-mails
- de modo a permitir que o comportamento lógico possa ser alterado sem dificuldades.

Pensando no objetivo final, foi natural - recapitulando o exposto na seção de arquite-
tura - pensar na separação dos componentes em duas disposições de sistemas eletrônicos,
uma que consiga medir temperatura e umidade e outra que possa detectar presença dado
algum movimento, posto que deverão existir múltiplos sensores de umidade e temperatura
distribúıdos pela sala - visando melhorar a precisão dos dados -, e apenas um sensor de
presença alocado na entrada para identificar caso alguém passe pela porta.

A abordagem inicial, pesquisas, definição de tecnologias e arquitetura do projeto foram
realizadas integralmente em conjunto. A partir de então as tarefas foram nominalmente alo-
cadas - embora, como esperado de um trabalho em conjunto, interações (pair programming)
e discussões para troca de informações, ajustes e melhorias tenham ocorrido. A seguir, são
descritas as atividades de cada um dos alunos do grupo nessa parte do projeto.

4.3.1 Atividades de Mariane Massago Yonue

A aluna ficou responsável pela montagem dos circuitos de detecção de presença e men-
suração de umidade e temperatura, seguida pela codificação do comportamento base destes.
Tendo como guia o mapeamento dos pinos contido nos datasheets dos componentes:

– DHT11

1. Fonte VDD 3.5V 5V

2. Serial DATA

3. NC, Not Connected

4. GND, fio terra

– PIR - HC-SR501

1. GND, fio terra

2. Serial DATA

3. Fonte VDD

foi feita a conexão entre sensores e microcontroladores.
No ESP8266, para a entrada de dados foram escolhidos os pinos D3 e D4, sendo que a

utilização do D3 ocorre somente em caso de acoplamento de múltiplos sensores ao disposi-
tivo. Existem três configurações distintas criadas para este projeto. Duas delas objetivam



Sistema de Monitoramento do Data Center 7

medidas de temperatura e umidade - single-dht11 (Figura 3) e double-dht11 (Figura 4) -, e
a última visa a detecção de presença - circuito nomeado de single-presence (Figura 5).

Figura 3: Montagem single-dht11, representando um único
sensor DHT11 associado ao ESP8266

Figura 4: Montagem double-dht11, representando dois sensores
DHT11 associados ao ESP8266

A criação das disposições single e double-dht11 foram pensadas de forma a cobrir uma
maior quantidade de cenários posśıveis, bem como de mitigar os efeitos da incerteza de
configuração da sala do Data Center. O microcontrolador associado a um único sensor
(single-dht11 ) pode ser utilizado em casos de medições espacialmente muito distantes, já a
configuração double foi pensada para medidas em pontos próximos, com sensores voltados a



8 Tonon, Yonue, Borin e Ferrari

Figura 5: Montagem single-presence, representando um único sensor
PIR - HC-SR501 associado ao ESP8266

seus respectivos locais de interesse mas aproveitando o mesmo microcontrolador - reduzindo
os gastos com dispositivos ESP8266.

No que tange a utilização do sensor de presença, esta configuração, muito mais simples,
necessita de apenas um exemplar localizado em um ponto que acuse movimentação no caso
de algum indiv́ıduo adentrar a sala. De imediato o ponto escolhido foi a porta, garantindo
que toda presença seja captada.

Quanto à lógica de funcionamento, para o circuito dos sensores DHT11, o desenvolvi-
mento assumiu, inicialmente, um único sensor. Fazendo uso da biblioteca “DHT Sensor
Library”. As medições são realizadas em intervalos de um minuto, e então são enviadas
para a Konker, com impressão dos valores na sáıda serial a cada nova medida. Validado
o sistema com um único sensor, foi feita a refatoração do código para aceitação de dois
sensores. Já o código do circuito responsável pela detecção de presença, apesar desse ter
um uso mais direto e simples, apresentou maior complexidade lógica. O principal problema
consistia na dificuldade em avaliar se uma pessoa estava ou não na sala caso permanecesse
sem se mover por muito tempo. Uma vez que o PIR - HC-SR501 leva em conta o movimento
para acusar presença, assim que este cessa, ele deixa de sinalizar que existe alguém na sala.
Para atenuar falsos negativos, foi criado um timer. Dessa forma, se houver ocorrência de
movimento, o timer é disparado e considera-se que existe alguém na sala até que o tempo
definido - aqui como cinco minutos, considerado adequado à movimentação esperada no
Data Center - se esgote. Caso seja novamente detectado um novo movimento, a contagem
do timer é reiniciada.

4.3.2 Atividades de Lucas Chinaglia Tonon

O aluno, nesta parte do projeto, focou principalmente na implementação da comunicação
com a Konker e no envio de e-mails a partir dos módulos ESP8266.



Sistema de Monitoramento do Data Center 9

Para definir a comunicação com os serviços da Konker usou-se como referência um ma-
terial provido pela própria empresa em formato de v́ıdeo educativo [11] que ensina como
usar e conectar dispositivos com a aplicação. Na documentação, denota-se que o envio de
mensagens dos dispositivos poderia ser feito tanto via HTTP quanto via MQTT, e consi-
derando que o protocolo MQTT [12] foi especificamente desenvolvido para lidar com IoT,
provendo um modo leve de realizar subscrição e publicação de mensagens entre componentes
eletrônicos, este foi o escolhido para realizar a implementação do projeto.

A conexão é feita através do uso das bibliotecas PubSubClient.h e ESP8266WiFi.h,
que são responsáveis por criar um cliente de publicação e subscrição de mensagens e pela
conexão a internet, respectivamente. Para definir o cliente, é necessário ter o endereço do
servidor MQTT provido pela Konker, bem como a porta a ser utilizada, ambos obtidos
facilmente no próprio site da aplicação. Um exemplo do que foi feito encontra-se a seguir:

Figura 6: Objetos de conexão com a internet e canal MQTT

Com estas duas variáveis definidas, é posśıvel conectar ao servidor MQTT da Konker
usando o login e a senha definidos para o dispositivo, com cada microcontrolador tendo
uma credencial própria. É posśıvel também criar os canais de publicação e subscrição de
mensagens, que são um modo de definir o contexto de uma mensagem recebida e enviada
dentro da Konker para facilitar a filtragem de informações de um tipo espećıfico diretamente
pela API da plataforma. Como existem três tipos de informação distintas para serem
monitoradas, foram criados os canais temperature, humidity e presence, sendo que cada
um passa um JSON com dados que fazem sentido no contexto - valor e unidade para
temperatura e umidade, e um binário para presença.

Figura 7: Exemplo de um payload de temperatura

Para a implementação do envio de e-mails de notificação foram pesquisadas alternativas
já existentes que permitissem mandar as informações com segurança e de modo simples
para os usuários. A biblioteca mais promissora encontrada foi a EMailSender [13], cujo foco
principal é o envio de e-mails usando o servidor SMTP - Simple Mail Transfer Protocol - do
Gmail, mas que permite usar um construtor para definir outros servidores SMTP. Esse foi
um fator determinante na escolha visto que para enviar os e-mails foi solicitada a criação



10 Tonon, Yonue, Borin e Ferrari

Figura 8: Exemplo de um payload de umidade

Figura 9: Exemplo de um payload de presença no
caso sem ninguém na sala

de um usuário aos funcionários do Instituto de Computação para os dispositivos de alarme
para que estes possam se conectar ao servidor do IC e enviar notificações para as pessoas
escolhidas a partir de uma conta pré-determinada.

A definição de quem vai receber estes e-mails de notificação também foi feita pensando
na necessidade de se alterar a lista no futuro, para isto existe um e-mail alias para os
funcionários do Instituto de Computação que encaminha os e-mails recebidos nesta conta
para os responsáveis pelo Data Center.

Com o modo de envio, e-mails e biblioteca a serem utilizados bem definidos, a lógica por
trás do alarme teve que ser desenvolvida. Inicialmente pensava-se em medir os valores um a
um e caso algum deles passasse dos valores limitantes definidos pelas variáveis de ambiente,
um alarme seria enviado para notificar os mantenedores dos equipamentos. No entanto,
discutindo com os orientadores chegou-se à conclusão de que isto não seria o ideal visto que
os sensores poderiam subitamente ter algum erro de medição por alguma falha e interpretar
isto como um problema com a sala de fato. Para evitar este problema foram criados vetores
para temperatura e umidade que guardam as medidas obtidas de cinco em cinco segundos,
dentro de um intervalo de cinco minutos, isto é, um vetor de sessenta elementos. Além
destes vetores de medições, foram criadas variáveis para verificar e atualizar o ı́ndice atual
da última medida obtida, assim, pode-se obter a média de todas as medidas e, ao chegar
no fim do vetor e recebendo uma nova medida a ser armazenada, zera-se os ı́ndices para
iniciar a escrita dos novos valores no começo dos vetores, sobrescrevendo as informações
mais antigas.

Este método de medição garante que a média tomada consiga identificar problemas de
forma rápida, levando menos de cinco minutos para detectar oscilações na temperatura e
notificar os mantenedores do data center. Outro cuidado que foi necessário considerou a
questão do spam de e-mails, isto é, caso de fato estivesse ocorrendo algum problema nos
aparelhos de ar condicionado e com as medições sendo tomadas a cada cinco segundos e
avaliadas para checar a necessidade dos alarmes, se a condição não fosse corrigida seriam
enviadas notificações constantemente para os funcionários a cada nova medida fora do limite.



Sistema de Monitoramento do Data Center 11

A solução para este problema foi definir um intervalo de trinta minutos para cada tipo de
notificação, garantindo que caso um alarme seja enviado o dispositivo irá esperar no mı́nimo
este tempo para enviar outro do mesmo tipo.

4.4 Back-end

A implementação do back-end do sistema, sob responsabilidade do aluno Lucas Chinaglia
Tonon, visava permitir que, além de acessar a API da Konker usando um proxy - isto é,
quando o front-end fizesse uma requisição para o back-end para obter informações dos
sensores, ele estaria na verdade se comunicando com a API da Konker com uma camada
extra de abstração entre os dois -, fosse posśıvel realizar outras ações como alertar os usuários
através de e-mails e realizar atualizações de valores dos alarmes e da lista de pessoas a serem
notificadas dinamicamente.

Um protótipo deste componente da arquitetura foi feito utilizando NodeJS e Express
para programação dos endpoints, e o módulo http-proxy-middleware [14] para realizar o
proxy entre o back-end criado e os endpoints definidos pela plataforma da Konker. Esta
prototipagem foi bastante útil para auxiliar o grupo a descobrir como realizar na prática as
requisições, e também para entender como autorizar uma operação HTTP para a API pré-
definida a partir de uma requisição antes mesmo de existir uma página web, agilizando assim
o processo do front-end quando em seu desenvolvimento. Para a autorização das requisições
para a Konker foi usado um token enviado via header HTTP de Authorization do tipo
bearer. Nesta fase do desenvolvimento, o token ficava salvo como variável de ambiente no
projeto NodeJS e servia exclusivamente para permitir o acesso ao serviço externo.

A partir de conversas com ambos os orientadores, e com o decorrer da implementação
do front-end e do código usado nos microcontroladores, foi definido que a melhor alternativa
para o envio de e-mail e lógica por trás dos alarmes deveria ser dada dentro dos próprios
componentes eletrônicos para evitar que falhas em algum ponto do processo de comunicação
entre os dispositivos e o back-end criado pudesse influenciar na notificação de medições
fora do esperado. Assim, os microcontroladores ficaram encarregados de armazenar uma
certa quantidade de informações e enviar e-mails para os usuários, dependendo dos limites
definidos dentro deles em variáveis de ambiente. Graças a esta alteração, o serviço de
back-end criado foi reduzido a apenas um proxy da Konker e perdeu sua relevância dentro
do projeto, fazendo com que pudesse ser removido, mantendo na arquitetura apenas um
front-end, com o intuito de exibir informações dos sensores em forma de gráficos. Os
microcontroladores ficaram responsáveis tanto pelo envio destes dados para o banco de
dados quanto pela notificação de valores inesperados.

4.5 Front-end

Para implementação da UI do website foram usadas tecnologias com as quais os alunos já
haviam tido algum contato anteriormente - fosse por experiências de estágio ou por projetos
pessoais. Para criação dos componentes fez-se uso da biblioteca JavaScript React [15], que
permite grande flexibilidade na implementação de páginas web e também o uso de diversos
módulos, como Styled Components [16] e Material-UI [17] - que trazem, respectivamente a



12 Tonon, Yonue, Borin e Ferrari

definição de estilos CSS usando JavaScript e componentes pré-definidos seguindo o material
design. As atividades de cada membro do grupo na construção do front-end são descritas a
seguir.

4.5.1 Atividades de Mariane Massago Yonue

A aluna trabalhou na implementação dos componentes de front-end, usando React e CSS
- este último feito com a ajuda do módulo Styled Components -, na renderização dos dados
em gráficos e também lidou com as escolhas, visuais e de comportamentos, relacionadas à
experiência dos usuários do website.

A implementação do design da página passou por dois estágios de prototipação até chegar
ao produto final em termos de UI e UX. A primeira versão, feita para testar a integração
entre o front-end e as APIs utilizadas, bem como checar os modos de formatar os valores a
serem exibidos, mostrava apenas algumas poucas informações - médias, valores máximos e
mı́nimos -, sem ainda dispor de gráficos ou apresentar quaisquer outras informações.

Feito o primeiro protótipo, o próximo passo direcionou-se ao modo de como apresen-
tar, dentro do website, a grande quantidade de dados provinda dos sensores. Pensando
no volume dessas medidas, decidiu-se que a maneira mais apropriada de exibi-las seria por
meio de gráficos. Para tal, foram pesquisadas opções de módulos que mostrassem boa com-
patibilidade com um serviço feito em React. Restritas as opções de componentes React
espećıficos para exibição de gráficos, foram realizados testes práticos para checagem da do-
cumentação provida por cada módulo, pois seria necessário certo ńıvel de compreensão de
seu funcionamento para atingir o ńıvel de personalização desejado. Além disso, critérios
como simplicidade de implementação, personalização visual e design intuitivo foram con-
siderados. Seguindo estas restrições de projeto, optou-se pela escolha do módulo @nivo
[18].

Durante a incorporação dos gráficos ao projeto, vale citar a dificuldade relacionada à
implementação de uma abcissa sobre a qual fosse posśıvel representar, através de data e
hora, o instante em que a medida foi tomada. O empecilho residia na extrema lentidão
causada pela alta demanda de elementos visuais vetorizados a serem exibidos, em tentativa
de renderizar todos os dados coletados. Cabe aqui a explicação para a alta quantia de
medidas: inicialmente era posśıvel definir o intervalo de ińıcio e de fim das capturas, assim,
assumir-se-ia posśıvel exibir os dados de uma semana completa - ou até intervalos de tempo
maiores -, entretanto, a página não conseguiria lidar com a renderização simultânea de
tantos pontos - com medidas tomadas a cada cinco segundos, um único dia teria mais
de dezessete mil medidas, acumulando na semana uma quantia superior a cento e vinte
mil medições. De modo a solucionar este problema, foi realizada alteração no seletor de
tempo. Ao invés de possibilitar a seleção de um intervalo livre para exibição das medidas,
o seletor passa a permitir o apontamento de uma data, ou seja, os dados são apresentados
em intervalos fixos de vinte e quatro horas. Ademais, foi alterado o intervalo de envio
entre medidas, passando de cinco segundos para cinco minutos - apesar de parecer um
espaçamento demasiado grande, pensando nas situações em que possam ocorrer as variações
de temperatura e umidade, a resposta ao acontecimento permanece suficientemente rápida
para a dinâmica das grandezas f́ısicas envolvidas.



Sistema de Monitoramento do Data Center 13

Por fim, com o segundo protótipo cumprindo bem - sem falhas - suas funcionalidades,
foram feitas iterações de design, relacionadas às cores, disposição de elementos e identidade
visual do site, de modo a definir o layout final da página. As Figuras 10 e 11 apresentam o
layout da página desenvolvida.

Figura 10: Website sem dados medidos e apenas um
dispositivo ativo, em verde

Figura 11: Website com dados no gráfico, máxima e mı́nima do dia
e foco na medida mais alta



14 Tonon, Yonue, Borin e Ferrari

4.5.2 Atividades de Lucas Chinaglia Tonon

O aluno ficou responsável pela comunicação entre o front-end com a API REST da
Konker, bem como a implementação de um sistema responsivo para o website que permitisse
adaptabilidade dos componentes para diferentes configurações de largura e altura.

A comunicação entre o que era mostrado e o back-end que armazena as informações cap-
tadas pelos sensores foi feita usando o módulo @axios [19], que permite realizar requisições
HTTP de forma simples utilizando Promises JavaScript. As rotas usadas no projeto e sua
utilidade dentro deste foram:

1. GET /{application}/devices: Responsável por retornar a lista de dispositivos
de hardware definidos por uma conta dentro da Konker. Isto foi utilizado para que
se obtenha os identificadores (ids) de dispositivos dentro da plataforma - chamados
nesta de deviceGuid - para serem usados na requisição de health status abaixo.

2. GET /{application}/devices/deviceGuid/health: Responsável por trazer in-
formações quanto à “saúde” de um dispositivo, isto é, se está ativo ou não, o que é
útil para exibir informações sobre algum microcontrolador que não esteja mandando
informações de seus sensores e detectar problemas com o funcionamento destes de
forma simples.

3. GET /{application}/incomingEvents: Esta é a mais importante das rotas den-
tro do sistema por permitir o acesso às informações medidas pelos sensores dentro da
sala monitorada. A informação mais relevante sobre este endpoint está na necessidade
de query strings - parâmetros enviados na requisição para filtrar o resultado conforme
o que for desejado - para obtenção dos dados de somente um peŕıodo pré definido e
organizados em ordem de recebimento da mensagem, de forma que as mensagens mais
novas estejam no topo da lista de resultados e a quantidade destas seja limitada pelo
peŕıodo de tempo definido em um formulário no front-end.

Como dito anteriormente, para poder acessar os endpoints declarados pela Konker é ne-
cessário adicionar um cabeçalho de autenticação espećıfico na requisição de forma que toda
requisição direcionada para lá tenha um Authorization do tipo bearer com o token obtido
dentro da plataforma, o que pode ser feito de forma simples com o módulo escolhido, visto
que fica tudo configurado na instanciação do objeto a ser usado para realizar as operações
HTTP. Ainda que isto possa trazer dúvidas quanto a segurança do sistema implementado,
pois por questão de praticidade o token usado está fixo no código do sistema, após discussão
com os funcionários do Data Center notou-se que não era necessária uma segurança muito
ŕıgida dentro da aplicação desenvolvida - como autenticação e autorização robustas - pelo
fato de que no processo de deploy do projeto este será bloqueado para um IP espećıfico
dentro dos servidores do Instituto de Computação.

Quanto à questão do design responsivo do web site, isto foi feito no fim do ciclo de desen-
volvimento após notar-se que, ao mudar o tamanho da janela do browser, o site respondia
de maneira inadequada escondendo informações e quebrando os estilos. Para corrigir este
comportamento foram utilizados padrões de CSS de forma que grande parte dos estilos dos



Sistema de Monitoramento do Data Center 15

componentes foi definido usando porcentagens e tamanhos relativos ao viewport da página.
Também foram adicionadas condições aos estilos por meio do atributo @media nos CSS de
forma que dependendo da largura da página um estilo espećıfico seja utilizado. Os testes
para estas alterações foram realizados utilizando o próprio browser, mudando o tamanho
da janela, e também usando a funcionalidade que mostra o conteúdo da forma como seria
mostrado em um celular espećıfico, como exemplificado na Figura 12.

Figura 12: Site exibido através da resolução em um iPad usando função do browser

5 Resultados e Discussão

Seguindo o que foi exposto na Seção 4, obteve-se como produto final um sistema que
pode ser melhor explicado em duas partes. Primeiramente, levando em conta as necessida-
des dos mantenedores de arescondicionados do Instituto de Computação da Unicamp, foi
desenvolvida uma arquitetura de alarmes responsável por notificar os funcionários via e-mail



16 Tonon, Yonue, Borin e Ferrari

no caso de reconhecimento de anomalia detectada, no Data Center, por microcontroladores
associados a sensores de umidade, temperatura e presença. Em segundo lugar, de forma a
complementar e auxiliar o serviço primo, foi criado um website que, fazendo uso dos dados
coletados pelos sensores e armazenados na Konker - utilizando a plataforma como banco de
dados e back-end -, exibe cards com informações gráficas que podem ser acompanhadas em
tempo real.

Devido à condições adversas impostas pela pandemia, o desenvolvimento foi realizado
em sua totalidade em local diferente ao que será realmente monitorado. Tendo isso em
mente, foram tomados os devidos cuidados para que a implementação do trabalho fosse
constrúıda de forma a ser flex́ıvel, no sentido de ser facilmente ajustada a mudança de
ambientes. Para tal, foram utilizadas variáveis de ambiente dentro dos microcontroladores,
pois podem ser rapidamente alteradas, garantindo assim o comportamento desejado.

Os testes práticos do projeto - realizados através de simulações de diferentes condições
de ambiente dentro da própria residência dos alunos - foram executados da seguinte forma:
utilizando uma vasta gama de medições, obtidas inicialmente com os aparelhos em repouso -
isto é, fazendo com que os sensores medissem temperatura e umidade sem interferências ati-
vas - e, posteriormente simulando comportamentos adversos - por meio do vapor decorrente
de água fervente, ventiladores, luz solar, gelo, entre outros - foi observado se os disparos
de alarmes ocorriam nos momentos esperados e também analisado se o comportamento
refletido nos cards gráficos apresentava-se coerente ao decorrer do tempo.

Com relação às limitações do trabalho, é preciso citar o fato de que caso faça-se necessária
alteração dos valores limite para definição de disparo dos alarmes, os microcontroladores
precisam ter seu uso suspendido pelo intervalo de tempo em que receberão um novo código
fonte com as variáveis de ambiente ajustadas para os novos valores desejados de limite
superior e inferior de acionamento de notificação, não sendo posśıvel fazê-lo dinâmica e
remotamente.

Pensando em futuros desenvolvimentos, pode-se visar a implementação de um sistema
de arquivos, dentro dos microcontroladores, associado a um receptor de mensagens que
permita a alteração dos valores que controlam o envio de alarmes pelo simples acesso do
website, inserindo através dele os novos valores e submetendo uma requisição para que os
NodeMCU atualizem a informação armazenada dentro de sua memória e permitam sua
customização dinâmica.

6 Conclusões

Este trabalho final de graduação teve como propósito central desenvolver um sistema ca-
paz de contribuir com o monitoramento do Data Center do Instituto de Computação através
do acompanhamento das medições de temperatura e umidade da sala, detectando falhas de
funcionamento nos ares condicionados rapidamente, esperando assim evitar situações que
causem prejúızos à universidade. O objetivo foi cumprido por meio da implementação de
uma página web que resume os dados obtidos de forma limpa e clara e de um conjunto de
sensores conectados a um servidor responsável por armazenar suas informações e também
capazes de enviar e-mail para notificar situações de risco.



Sistema de Monitoramento do Data Center 17

7 Agradecimentos

Aos orientadores, Rafael Ferrari e Juliana Freitag Borin, agradecemos a disponibilidade
e acompanhamento no trabalho, sempre nos auxiliando de forma soĺıcita contribuindo para
a conclusão deste projeto.

Aos funcionários do Data Center, William Lima Reiznautt e Wellington de Oliveira Hen-
rique, agradecemos a contribuição para definição de requisitos do projeto e pelas sugestões
de implementação no decorrer de seu desenvolvimento.

Referências

[1] NEXT DATA CENTER. Why Data Centers Need Air Conditioners and How to Cho-
ose It. Dispońıvel em: <https://www.nexdatacenter.com/why-data-centers-need-air-
conditioners-and-how-to-choose-it/>. Acesso em: 20, Agosto de 2020.

[2] M. A. Bel. Use Best Practices to Design Data Center Facilities, 2005. Dispońıvel
em: <https://www.it.northwestern.edu/bin/docs/DesignBestPractices 127434.pdf/>.
Acesso em: 22, Agosto de 2020.

[3] M. S. Breuker, J. E. Braun, Evaluating the Performance of a Fault Detection and
Diagnostic System for Vapor Compression Equipment, HVAC&R Research, 4:4, 401-
425, 1998.

[4] H. Li, J. E. Braun, An Improved Method for Fault Detection and Diagnosis Applied to
Packaged Air Conditioners. ASHRAE Transactions. 109. 683-692, 2003.

[5] KONKER. Konker - Construa a sua solução de IoT em dias e não em meses, c2020.
Página Inicial. Dispońıvel em: <http://www.konkerlabs.com/>. Acesso em: 26, Abril
de 2020.

[6] UNICAMP. Smart Campus - Unicamp, Internet das Coisas, 2020. Página inicial. Dis-
pońıvel em: <https://smartcampus.prefeitura.unicamp.br/>. Acesso em: 18, Fevereiro
de 2020.

[7] AOSONG. Temperature and Humidity Module, DHT11 Product Ma-
nual. Datasheet para o dispositivo eletrônico DHT11. Dispońıvel em:
<https://components101.com/sites/default/files/components datasheet/DHT11-
Temperature-Sensor.pdf>. Acesso em: 20, Março de 2020.

[8] COMPONENTS101. HC-SR501 PIR MOTION DETECTOR, 2017. Da-
tasheet para o dispositivo eletrônico PIR HC-SR501. Dispońıvel em:
<https://components101.com/sites/default/files/component datasheet/HC%20SR501
%20PIR%20Sensor%20Datasheet.pdf>. Acesso em: 20, Março de 2020.

[9] KONKER. Konker Platform API, c2020. Página com informações da API. Dispońıvel
em: <https://api.demo.konkerlabs.net/v1/swagger-ui.html>. Acesso em: 30, Abril de
2020.



18 Tonon, Yonue, Borin e Ferrari

[10] ESPRESSIF. ESP8266EX Datasheet, c2015. Datasheet
para o dispositivo eletrônico ESP8266. Dispońıvel em:
<https://components101.com/sites/default/files/component datasheet/ESP8266-
NodeMCU-Datasheet.pdf>. Acesso em: 20, Março de 2020.

[11] YOUTUBE. Como conectar um dispositivo IoT com a Plataforma Konker, 2020. Dis-
pońıvel em: <https://www.youtube.com/watch?v=lL6Fsi1kDSw>. Acesso em: 10,
Maio de 2020.

[12] MQTT ORG. MQTT: The Standard for IoT Messaging, c2020. Página Inicial. Dis-
pońıvel em: <http://mqtt.org/>. Acesso em: 18, Maio de 2020.

[13] GITHUB: xreef. Library to send EMail with attachments. Repo-
sitório do código fonte para biblioteca EMailSender. Dispońıvel em:
<https://github.com/xreef/EMailSender>. Acesso em: 9, Julho de 2020.

[14] NPM. http-proxy-middleware. Página do módulo no repositório de pacotes npm, c2015-
2020. Dispońıvel em: <https://www.npmjs.com/package/http-proxymiddleware>.
Acesso em: 10, Maio de 2020.

[15] FACEBOOK INC. React - Uma biblioteca JavaScript para criar interfaces de usuário,
c2020. Dispońıvel em: <https://pt-br.reactjs.org/>. Acesso em: 10, Maio de 2020.

[16] STYLED COMPONENTS. Visual primitives for the component age, 2020. Dispońıvel
em: <https://styled-components.com/>. Acesso em: 10, Maio de 2020.

[17] MATERIAL UI. Material-ui: Biblioteca de componentes React para um desenvolvi-
mento ágil e fácil. Construa seu próprio design, ou comece com Material Design. Dis-
pońıvel em: <https://material-ui.com/pt/>. Acesso em: 10, Maio de 2020.

[18] NIVO. Nivo, c2020. Dispońıvel em: <https://nivo.rocks/>. Acesso em: 28, Junho de
2020.

[19] NPM. axios: Promise based HTTP client for the browser and node.js, 2020. Dispońıvel
em: <https://www.npmjs.com/package/axios>. Acesso em: 20, Maio de 2020.


