2

4

4

Estudo sobre Antipadroes
em IMICrosservicos € os
impactos na evolucao do
processo de desenvolvimento
de aplicacoes

D. H. P. Oliveira B. B. N. Franca

Relatério Técnico - IC-PFG-20-05
Projeto Final de Graduagdo
2020 - Agosto

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteiido deste relatério é de tnica responsabilidade dos autores.




Estudo sobre Antipadroes em microsservicos e os impactos na
evolucao do processo de desenvolvimento de aplicacoes

Daniel Helu Prestes de Oliveira* Breno Bernard Nicolau de Franca*

Resumo

O estilo arquitetural em microsservigos, é um dos estilos mais utilizados no contexto
de entrega continua e que, devida a sua recente criagao, é preciso definir formas de
se identificar, de forma automatizada, padroes que representem mas praticas de de-
sign e que, portanto, nao devem seguidos. Este trabalho apresenta um estudo sobre
antipadroes na arquitetura de microsservigcos. Com base no estudo de literatura, desen-
volvemos uma forma automatizada de identificar os dois anti padroes mais frequentes
que sdo Megaservice e Nanoservice, analisando apenas o cédigo fonte. Aplicamos a
andalise em um projeto open source chamado Site Where, que utiliza a arquitetura de
microsservigos, e fomos capazes de identificar seis microsservicos, entre os 11 existentes
no projeto, que apresentaram as caracteristicas dos antipadroes. Esta selecao permitiria
que desenvolvedores do projeto analisassem esses microsservigos e tomassem as acoes
que julgassem necessédrias para remediar o problema.

1 Introducao

Microsservigos é o nome dado ao estilo de arquitetura no qual uma aplicacao é estruturada
como uma colecao de servigos altamente testdveis e manuteniveis (maintainable), lancados
(deployed) independentemente, organizados em torno de capacidades de negdcio e gerenci-
ados por times pequenos. Isso permite a entrega rapida, frequente e confidvel de aplicacoes
complexas.|1]

Sendo um dos estilos mais utilizados no contexto da pratica de entrega continua, uma
pratica de desenvolvimento imprescindivel atualmente no mercado, e com grandes orga-
nizagoes como Netflix e Amazon utilizando essa arquitetura, torna-se importante analisar
padroes de degradacao que podem ocorrer no processo de desenvolvimento de aplicagoes e
suas consequéncias.

O conceito da arquitetura de microsservigos surgiu por volta de 2011 e por isso ainda
estdo sendo descobertos comportamentos que se repetem em diferentes projetos e que, a
medida que o projeto cresce, eles podem impactar de maneira positiva ou negativa o desen-
volvimento como um todo. Dito isso, esse projeto tem como objetivo o estudo de padroes
considerados problemadticos (antipadroes), que ferem os principios deste estilo de arquitetura

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.



2 Oliveira

e que podem impactar negativamente a produtividade, a qualidade do produto e o desen-
volvimento de um negdcio. Juntamente com esse estudo tedrico, o trabalho busca criar um
método para identificar os antipadroes automaticamente para auxiliar os desenvolvedores a
manterem as boas praticas da entrega continua.

Esse relatorio esta organizado da seguinte forma: a Segdo 2 apresenta a fundamentagao
tedrica, explicando mais sobre a arquitetura de microsservigos e os trés tipos de antipadroes
que analisamos neste trabalho: Megaservice, Nanoservice e Chatty Service. A Secao 3 apre-
senta os métodos, mostrando como foi desenvolvido nosso estudo. Na Se¢ao 4, apresentamos
o algoritmo desenvolvido e utilizado para a identificagdo dos antipadroes em codigo-fonte.
A Secao 5, apresenta e analisa os resultados obtidos a partir da execugao do nosso programa
em um projeto de cédigo aberto. A Secao 6 apresenta as limitacoes e desafios encontrados
durante o desenvolvimento do projeto. A Segdo 7 traz as conclusoes do nosso projeto e
possiveis trabalhos que podem ser feitos futuramente. O apéndice A mostra o algoritmo
que foi desenvolvido para identificar os antipadroes.

2 Fundamentacao Teérica

2.1 Arquitetura de Microsservigos

Um servigo é uma aplicagdo que se comunica pelo uso de mecanismos como chamada de
servicos web ou procedimento remoto. Na Figura 1, podemos observar a estrutura de
um servigo [1], criado em torno da légica de negécio e, para comunicagao, ele utiliza uma
API (Application Programming Interface) que expde suas operagoes, as quais podem ser
sincronas ou assincronas. Ainda, o servico pode publicar ou receber eventos de alteracoes
de dados vindo de outros servigos. Normalmente, cada servico possui a sua propria base de
dados para evitar problemas de dependéncias com outros servicos. Da perspectiva de um
agente externo, a API representa a interface que expoe as operagoes dos servigos.

Sincronos:
REST, gRPC

Sincronos:
[e!
pepdee REST, gRPC

- Comandos
Assincronos: H AP| Client
Comando/respos

ta, Motificagdes

Assincronos:

Comandoirespos
ta, Naotificagbes

Assinante
(.-___—_-.

Figura 1: Estrutura de um servigo (adaptado de [1]).

A arquitetura de microsservigos é o estilo de arquitetura na qual uma aplicagao é estru-
turada como uma colecdo de servigos testaveis e manuteniveis (maintainable), implantados



Antipadrées microsservigos 3

(deployed) independentemente, organizados em torno de capacidades de negdcio e gerencia-
dos por times pequenos. A intencdo é que essas caracteristicas permitam a entrega rapida,
frequente e confidvel de aplicacoes complexas. Na Figura 2, podemos ver um exemplo de
uma arquitetura de microsservicos como exemplificado no livro ” Microservice Patterns”de
Chris Richardson [2].

-]
\ Servico de
Pedidos
Entregador
2 Servico do
Restaurante
Ciente
Interface Servigo da
@ Web do Cozinha
/ Restaurante
Restaurante Servigo de

Entrega

Figura 2: Exemplo de arquitetura de microsservigo (adaptado de [2]).

Na Figura 2, temos um exemplo de uma aplicagao que tem como objetivo providenciar
um servigo de entregas para redes de restaurante. O projeto possui quatro microsservicos
que expoem seus métodos utilizando a REST API e cada um com sua propria base dados.
Para os usudrios se comunicarem com a plataforma sao utilizados uma interface web ou um
API Gateway que sdo capazes de redirecionar os usudrios para o servico correto de acordo
com o que é requisitado.

2.2 Antipadroes

Um antipadrao é a utilizagao recorrente de uma solugao de c6digo ou projeto (design) que
leva a um resultado de baixa qualidade [3]. Esse resultado ruim pode ser observado sob o
ponto de vista de performance, cédigo de dificil manutencao, ou até mesmo a falha total
do projeto. Existem intmeros trabalhos que identificaram e analisaram antipadroes em
aplicacoes orientadas a objetos [4].



4 Oliveira

Neste trabalho, analisaremos os trés antipadroes que ocorrem mais frequentemente em
arquiteturas de microsservigos, conforme relatado em [5]: Megaservice, Nanoservice e Chatty
Service. Para a andlise do Chatty Service, devido alguns impedimentos ( ver Secao 6), fomos
capazes de desenvolver a identificacao manual do antipadrao, mas nao conseguimos fazer a
implementacao automatizada.

2.2.1 Megaservice

7

Megaservice, também conhecido como Multiservice, ¢ um antipadrao que tem como ca-
racteristica um grande nimero de funcionalidades expostas por um servico, que abordam
diferentes tipos de capacidade de negdcio, ou seja, um Megaservice acumula mais responsabi-
lidades do que necessario. Devido a grande quantidade de funcionalidades, esse antipadrao
torna mais dificil o desenvolvimento do cédigo pelo fato do cédigo se tornar demasiada-
mente grande e ter uma maior dependéncia entre si e de elementos externos, o que dificulta
o lancamento de novas versoes do servico também. Na Figura 3, podemos ver um Megaser-
vice que abstrai toda a légica por tras de um comércio eletronico, incluindo processamento
de pedidos, processamento de pagamentos e controle de estoque. De forma contraria, uma
boa solucao de projeto deveria quebrar essas preocupacoes em moédulos distintos.

Servico de Comercio

Operagoes:
- fazerPedidof()
- cancelarPedido()
- retornarStatusPedido()
- gerarFatura()
- aceitarPagamento()
- retornarStatusPagamento()
- validarCredito()
separarEstoque()

Figura 3: Exemplo de Megaservice

2.2.2 Nanoservice

Nanoservice, também conhecido como Tiny Service, é o antipadrao no qual o servigo possui
pouquissimas operacoes. Em muitos casos, o servico oferece somente um subconjunto das
operagoes necessarias para o modelo de negdcio, o que faz com que ele precise se conectar
a outros servicos para entregar o necessario. Isso incorre em um custo do processo de
comunicacao devido as chamadas remotas entre os servicos. Caso a Unica funcao exposta
seja utilizada por uma quantidade grande de servicos, um Nanoservice torna-se um gargalo



Antipadrées microsservigos 5

ao desempenho do sistema de maneira geral. Na Figura 4, podemos observar o exemplo
de um modelo negécio que se propoe a gerenciar o processamento de pedidos. Este é
composto por trés servigos que realizam partes diferentes do processo, porém para funcionar
corretamente é necessario que todos os servicos estejam presentes. Neste exemplo, cada um
desses servicos representa um Nanoservice.

Modelo de Negdcio de Pedidos

f

Servico de Criagéo de Pedidos

Operagdes:
criarPedido()

9

Servigo de Entrega de Pedidos

Interface WEB
da aplicagéo Operagoes:
- entregarPedido()

Servigo de Execugéo de Pedidos

Operagbes:
- Preencher pedido()
- Completar pedido()

Figura 4: Exemplo de Nanoservices

2.2.3 Chatty Service

Chatty Service, também conhecido como Chatty Web Service, apresenta-se na forma de
um servigo que expoe uma quantidade grande de funcgoes, no entanto essas fungoes sao
muito simples, o que torna necessaria a combinacao da chamada de diversas fungoes pelos
clientes desse servico, de forma a atingir a solucao requisitada pelo modelo de negdcio.
Esse antipadrao tem como consequéncia um impacto negativo na performance do sistema,
uma vez que hd um custo associado a cada chamada que é feita para essas funcoes, e fica
sendo responsabilidade do cliente externo desenvolver toda a logica necessaria para adquirir
a informacao desejada. Na Figura 5, vemos um exemplo de microsservico que apresenta
as caracteristicas do antipadrao Chatty Service. O microsservico possui métodos ptublicos
muito simples o que faz com que o agente externo precisaria fazer varias chamadas ao servigo
para ser capaz de criar uma ordem de um pedido, por exemplo.

3 Métodos

O objetivo do trabalho é estudar antipadroes existentes para a arquitetura de microsservigos
e desenvolver uma forma automatizada de detecta-los com base na analise estatica do codigo-
fonte. Para atingir essa meta, o trabalho teve como etapa inicial uma revisao da literatura
para identificar os trabalhos relacionados ao mapeamento e deteccao de antipadroes. Com



6 Oliveira

Servico de Pedidos

Operacgoes:
- setNomeCliente()
- setltemRequisitado()
- setVendedor()
- setValorPedido()
- setDataRequisicao()
setEnderecoCobranca()

Figura 5: Exemplo de um Chatty Service

isso, seria possivel definir quais antipadroes seriam analisados. Ainda, isso nos ajudou a
direcionar o trabalho para os antipadroes que ocorriam com maior frequéncia e, portanto,
maior relevancia pratica do trabalho.

Definido quais os antipadroes a analisar, estudamos suas caracteristicas e métodos para
a deteccao deles. Com isso, criamos um algoritmo para identificd-los com base somente no
codigo-fonte.

Apés isso, procuramos um projeto de cédigo aberto que adotasse a arquitetura de mi-
crosservigos e que possuisse, pelo menos, mais que cinco microsservigos para que pudéssemos
avaliar a solucao implementada em uma aplicacao real.

Com isso, desenvolvemos um codigo em python que executasse nosso algoritmo de de-
teccao dos antipadroes. Realizamos entdo uma andlise automatizada e verificamos os re-
sultados manualmente, considerando se os microsservigos retornados pelo nosso programa
realmente apresentavam as caracteristicas dos antipadroes estudados.

4 Desenvolvimento

Como um dos objetivos do trabalho, procuramos encontrar formas de detectar esses an-
tipadroes, em um projeto real, de maneira automatizada. Estudando a literatura [6, 7],
vimos que as seguintes heuristicas podem ser utilizadas na identificacao de cada um dos
antipadroes:

o Megaservice

— Baixa coesao

— Alta quantidade de operagoes expostas
— Alto tempo de resposta

— Baixa disponibilidade



Antipadrées microsservigos 7

e Nanoservice

— Baixa quantidade de operacoes expostas

— Alta dependéncia de outros servigos
o Chatty Service

— Alta coesao

— Baixo ntimero de parametros nas operagoes
— Alto niimero de parametros primitivos

— Alta quantidade de invocagao de métodos

— Altissimo acesso aos dados do servico

Para este trabalho, utilizando essas heuristicas como base, focamos em encontrar uma
maneira automatizada de identificar esses antipadroes utilizando apenas analise estatica
(com base no cédigo-fonte). Entao, desconsideramos as caracteristicas que sé poderiam ser
calculadas em tempo de execucdo como por exemplo alto tempo de resposta. Ainda, para
automatizar a detecga@o, precisamos definir o que consideramos como ”alto”e ”baixo” para
cada um desses parametros. Neste caso, escolhemos a andlise estatistica por Bozplots,
também conhecido como Diagrama de Caixa, com base na ideia utilizada em um outro
trabalho de identificacao de antipadroes em aplicagoes seguindo uma arquitetura orientada
a servigos (SOA) [8].

O Bozxplot permite avaliar a distribuicao dos dados de forma que o quartil inferior
(ou primeiro quartil) corresponde a 25% das menores medidas e o quartil superior (ou
terceiro quartil) corresponde a 75% das menores medidas. Para essa anélise, consideramos
como ”baixo” qualquer valor dentro do primeiro quartil e como ”alto” qualquer valor acima
do terceiro quartil. Assim, foi possivel definir os seguintes algoritmos para encontrar os
antipadroes no codigo-fonte:

o Megaservice e Nanoservice

1. Contar o nimero de funcoes expostas por todos os microsservigos do projeto;

2. Gerar o Boxplot para o total de microsservicos a partir da quantidade de
operagoes de cada microsservico;

3. Microsservigos acima do terceiro quartil do bozplot sao os candidatos a Megaser-
vice; e 0s microsservicos que pertencem ao primeiro quartil sdo os candidatos a
Nanoseruvice.

e Chatty Service

1. Contar o ntimero de fungbes expostas por todos microsservigos do projeto, con-
siderando a quantidade de instrugoes de cada um dos métodos (devem ser con-
tabilizados apenas os métodos com poucas instrugoes);

2. Gerar o Boxplot da mesma forma que no caso anterior;



8 Oliveira

3. Os microsservigos que estao acima do terceiro quartil sao candidatos a Chatty
Service.

Posteriormente, buscamos encontrar um projeto de cédigo aberto que adotasse uma
arquitetura de microsservigos, com uma quantidade razoédvel (pelo menos cinco) de micros-
servigos, para que fosse possivel colocar em prética essa andlise. Encontramos a aplicagao
Site Where v2.1.1 [9], um sistema Open Source que facilita o armazenamento, processamento
e integragao de dispositivos IoT (Internet of Things). Essa plataforma utiliza a arquitetura
de microsservigos e utiliza tecnologias como Kubernetes para orquestracao de containers,
Istio para o gerenciamento do ambiente operacional e balanceamento de carga, e Kafka para
comunicacao assincrona entre servicos. Ela é composta de microsservigos desenvolvidos em
Java utilizando o framework Spring Boot [10].

Para a nossa andlise, focamos nos protocolos sincronos de comunicacao existentes na
aplicagao Site Where, sendo eles o gRPC, utilizado para a comunicacao entre os micros-
servigos da aplicagao, e o REST, para a comunicacdo com agentes externos a plataforma.
Como veremos na Secao 6, nosso programa foi capaz de identificar somente as operacoes
expostas pelo protocolo gRPC devido algumas limitacoes encontradas.

Desenvolvemos um programa em python (o algoritmo pode ser visto no apéndice A)
que recebe como entrada uma string, que representa a implementacao da interface gRPC,
neste caso 7 implements IGrpcApilmplementation”, e a partir dela foi possivel identificar as
classes que expoe os métodos de cada microsservigo. Essas sao as classes que passaram pela
andlise citada acima. Os resultados encontram-se na segao 5.

5 Resultados e Analise

Considerando a busca pelos componentes expondo os servigos (incluindo via gRPC), encon-
tramos as seguintes classes expondo os métodos de cada microsservigo:

e sitewhere/service-instance-management /src/main/java/com/sitewhere/microservice/
grpc/instance/InstanceManagementImpl.java

e sitewhere/service-instance-management /src/main/java/com/sitewhere/microservice/
grpc/tenant/ TenantManagementImpl.java

e sitewhere/service-instance-management/src/main/java/com/sitewhere/microservice/
grpc/user/UserManagementImpl.java

e sitewhere/service-device-state/src/main/java/com/sitewhere/microservice/grpc/
DeviceStateImpl.java

e sitewhere/service-event-management/src/main/java/com/sitewhere/microservice/
grpc/EventManagementImpl.java

e sitewhere/service-asset-management /src/main/java/com/sitewhere/asset /grpc/
AssetManagementImpl.java



Antipadrées microsservigos 9

e sitewhere/sitewhere-microservice/src/main/java/com/sitewhere/microservice/
management/MicroserviceManagementImpl.java

e sitewhere/service-label-generation/src/main/java/com/sitewhere /microservice/
grpc/LabelGenerationImpl.java

e sitewhere/service-schedule-management/src/main/java/com/sitewhere/
microservice/grpc/ScheduleManagementImpl.java

e sitewhere/service-batch-operations/src/main/java/com/sitewhere/microservice/
grpc/BatchManagementImpl.java

e sitewhere/service-device-management /src/main/java/com/sitewhere/microservice/
grpc/DeviceManagementImpl.java

Executando a analise para Megaservice e Nanoservice, obtivemos os resultados mostra-
dos na Tabela 1 e o BoxPlot apresentado na Figura 6.

Tabela 1: Numero de métodos para cada microsservico e candidatos a antipadrao.

Microsservigco Numero de métodos expostos | Antipadrao
InstanceManagement 3 Nanoservice
TenantManagement 7 Nanoservice
DeviceState 7 Nanoservice
MicroserviceManagement 8 N/A
LabelGeneration 11 N/A
ScheduleManagement 11 N/A
BatchManagement 11 N/A
AssetManagement 13 N/A
UserManagement 16 Megaservice
EventManagement 17 Megaservice
DeviceManagement 84 Megaservice

Com base na Figura 6, temos que a andlise considerou como ”baixos” valores menores
ou iguais a 7 (arredondamento de 7,25) e "altos”os que fossem maiores ou iguais a 16
(arredondamento de 15,25).

Analisando a quantidade de métodos expostos contabilizados para os microsservigos de
DeviceManagement e InstanceManagement, fica claro que estes representam os antipadroes
de Megaservice e Nanoservice, respectivamente.

Ja os microsservicos TenantManagement e DeviceState apresentam somente fungoes
bésicas de criagdo, remogao, atualizagao e leitura (CRUD), o que necessita uma andlise
mais detalhada por parte dos desenvolvedores do projeto para avaliar se esses microsservigos
poderiam ser classificados como Nanoservice ou se eles contém as funcionalidades necessarias
para a abstragao de negdcio.

No caso do microsservico UserManagement, além das fungoes bésicas (CRUD de usu-
arios), identificamos também funcgoes ligadas a parte de autenticacdo de usuérios, o que


https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-device-state
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/sitewhere-microservice
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-label-generation
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-schedule-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-batch-operations
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-asset-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-event-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-device-management

10 Oliveira

0 10 20 30 40 50 60 70 80

Quantidade de métodos

Figura 6: BoxzPlot da contagem dos métodos expostos dos microsservicos com protocolo
gRPC.

pode representar uma acumulacao indevida de responsabilidades definidas para este micros-
servico, caracterizando-o como um Megaservice. Ja no caso do EventManagement, todos
os métodos parecem pertinentes as interacoes basicas com as dados de eventos, o que pode
significar que temos um falso positivo, que é possivel dada a auséncia de andlise seméantica
no algoritmo. Ainda, é possivel que esse servico seja particionado em outros, gerando es-
pecialidades no gerenciamento de eventos. Para ambos os casos, também seria necessaria
investigacao adicional por parte dos desenvolvedores.

Com os resultados obtidos pela a nossa analise automatica, o desenvolvedor precisaria
olhar somente parte de seus microsservicos para confirmar se eles possuem os respectivos
antipadroes conforme apontado pelo algoritmo e para os casos em que isso é verdade, ele
poderia, por exemplo, realizar as seguintes agoes: para os Megaservice, separar as res-
ponsabilidades que nao cabem aquele microsservico em um novo microsservigo ou servigos
existentes, se pertinente; para os Nanoservice, considerar transformar cada um deles em
uma biblioteca, que seria adicionada aos servigos que o utilizam.

6 Limitacoes e Desafios

Ao longo do desenvolvimento desse projeto, encontramos algumas dificuldades. Como opta-
mos pela andlise estédtica, baseada unicamente no cédigo-fonte, nossa analise fica dependente
das escolhas estruturais do programador. Como existem diferentes formas de modelar um
projeto e dificilmente é seguido um mesmo padrao de codificagdo em diferentes projetos,
torna-se complicado desenvolver uma ferramenta capaz de detectar padroes automatica-
mente, porque ha forte dependéncia de aspectos tecnoldgicos e do contexto de cada projeto
em particular.



Antipadrées microsservigos 11

Além disso, é dificil ou invidvel mapear os métodos expostos para suas respectivas
realizagoes no caso destes serem definidos por interfaces. Assim, sem compilar o cédigo nao
se pode decidir quais métodos devem ser analisados, por exemplo, considerando a sobrescrita
de métodos, interfaces cuja implementagao é decidida apenas em tempo de compilagao, entre
outros. Isso inviabiliza a analise para o Chatty Web Service, por exemplo, pois esta requer a
contagem do ntimero de instrugoes executadas dentro de cada método, e como podem existir
chamadas a outros métodos no corpo da funcgao, seria necessario contabilizar também as
instrugoes presentes nas definigoes desses métodos, o que exigiria o0 mapeamento descrito
anteriormente.

Pelo mesmo motivo, também néo foi possivel realizar a andlise de antipadroes para o
protocolo REST, ja que os métodos eram expostos de maneira indireta com uso de fungoes
locais que chamavam os métodos dos microsservigos. Por exemplo, como mostrado na Figura
7, temos a fungdo createArea que é exposta utilizando REST API que possui somente uma
linha, mas essa instrucao chama outra funcdo chamada createArea que é externa a classe.
Para classificarmos a qual microsservigo essa funcao estd ligada, precisariamos identificar a
classe que implementa a interface que contém esse método, o que como explicamos acima sé
¢ decidida durante a compilagao do cédigo, isso impossibilitou a andlise do protocolo REST
e da mesma forma do Chatty Service.

FE="
* Create a new area

% @param input

* @return

* @throws SiteWhereException

.*.l.f

@PostMapping

@Api0peration{value = "Create new area")

public IArea createArea(@RequestBody AreaCreateRequest input) throws SiteWhereException {
return getDeviceManagement().createfArea(input);

Figura 7: Exemplo de funcao exposta utilizando protocolo REST.!

7 Conclusoes e Trabalhos Futuros

Neste projeto, estudamos trés antipadroes no contexto de arquiteturas em microsservigos.
Abordamos os impactos negativos que os antipadroes Megaservice, Nanoservice e Chatty
Web Service podem causar no desenvolvimento de software e estudamos maneiras de de-
tectar esses antipadroes utilizando abordagens automatizadas.

Além disso, fomos capazes de automatizar, analisando apenas o cédigo-fonte, a identi-
ficacdo de candidatos aos antipadroes Megaservice e Nanoservice nos servigos implementa-

"https://github.com/sitewhere/sitewhere/blob/sitewhere-2.1.1/service-web-rest/
src/main/java/com/sitewhere/web /rest/controllers/Areas.java



12 Oliveira

dos no projeto Site Where, considerando os microsservigos que se comunicam utilizando o
protocolo gRPC.

Dados os desafios encontrados durante o projeto, uma maneira de dar continuidade
seria estudando formas de tornar essa analise mais tolerante a diferencas de estruturacgao do
projeto/cédigo, o que facilitaria a identificacao de outros antipadrdes e tornaria possivel a
utilizagdo da ferramenta desenvolvida em uma gama maior de projetos. Qutra possibilidade
seria estudar maneiras de mapear as fungoes sem que seja necessario compilar o cédigo.

Ainda, é interessante verificar a viabilidade da deteccdo de outros antipadroes para ar-
quiteturas em microsservicos que nao foram discutidos aqui, mas que ja foram categorizados
em outros estudos [5].

Referéncias

[1] CHRIS RICHARDSON CONSULTING INC., “What’s a service - part 1?,” 2020. Avai-
lable at: http://chrisrichardson.net/post/microservices/general/2019/02/16 /whats-a-
service-part-1.html Accessed in: August, 19th, 2020.

[2] C. Richardson, Microservices patterns. Manning Publications Company, 2018.

[3] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE antipatterns. John Wiley
& Sons, 2003.

[4] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for software design
smells: managing technical debt. Morgan Kaufmann, 2014.

[5] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zimmermann,
“Towards a collaborative repository for the documentation of service-based antipat-
terns and bad smells,” in 2019 IEEFE International Conference on Software Architecture
Companion (ICSA-C), pp. 95-101, IEEE, 2019.

[6] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc, B. Baudry, and
J.-M. Jézéquel, “Specification and detection of soa antipatterns,” in International Con-
ference on Service-Oriented Computing, pp. 1-16, Springer, 2012.

[7] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices anti-patterns: A taxonomy,” in
Microservices, pp. 111-128, Springer, 2020.

[8] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification and detection
of soa antipatterns in web services,” in Furopean Conference on Software Architecture,
pp- 58-73, Springer, 2014.

[9] GitHub, Inc., “Sitewhere v2.1.1,” 2020. Available at:
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1 Accessed in: August,
19th, 2020.

[10] VMware, Inc., “Spring boot,” 2020. Available at: https://spring.io/projects/spring-
boot Accessed in: August, 19th, 2020.



Antipadrées microsservigos 13

A Algoritmo

Algoritmo 1: Identificar Megaservice e Nanoservice

Entrada: String que identifica a implementagao da interface gRPC
Saida: Microsservicos que apresentaram caracteristicas dos antipadroes
Megaservice ou Nanoservice
// Inicializacao
var gRPCID = entrada;
var contador, servico;
array arquivos||, megaservices[], nanoservices||;
map Servicos;
para todo arquivo presente no cddigo-fonte faga
se Arquivo possui gRPCID entao
| arquivos.add(arquivo);
fim
fim

para todo arquivo presente em arquivos faga
contador = 0;

servico = identificar qual microsservigo esse arquivo pertence;
contador = numero de métodos que sao expostos no arquivo;
se contador != 0 entao
| servicos[servico] = contador;
fim
fim
var quartis = Montar Boxplot com o conjunto servicos;
para todo servico presente em servicos faga
se servicos[servico] > quartis/3] entao
| megaservices.add(servico);
fim
fim
para todo servico presente em servicos faga
se servicos[servico] < quartis[1] entao
| nanoservices.add(servico);
fim
fim
retorna megaservices, nanoservices




	Introdução
	Fundamentação Teórica
	Arquitetura de Microsserviços
	Antipadrões
	Megaservice
	Nanoservice
	Chatty Service


	Métodos
	Desenvolvimento
	Resultados e Análise
	Limitações e Desafios
	Conclusões e Trabalhos Futuros
	Algoritmo

