
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Estudo sobre Antipadrões
em microsserviços e os

impactos na evolução do
processo de desenvolvimento

de aplicações
D. H. P. Oliveira B. B. N. França

Relatório Técnico - IC-PFG-20-05

Projeto Final de Graduação

2020 - Agosto

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Estudo sobre Antipadrões em microsserviços e os impactos na

evolução do processo de desenvolvimento de aplicações

Daniel Helu Prestes de Oliveira∗ Breno Bernard Nicolau de França∗

Resumo

O estilo arquitetural em microsserviços, é um dos estilos mais utilizados no contexto
de entrega cont́ınua e que, devida a sua recente criação, é preciso definir formas de
se identificar, de forma automatizada, padrões que representem más práticas de de-
sign e que, portanto, não devem seguidos. Este trabalho apresenta um estudo sobre
antipadrões na arquitetura de microsserviços. Com base no estudo de literatura, desen-
volvemos uma forma automatizada de identificar os dois anti padrões mais frequentes
que são Megaservice e Nanoservice, analisando apenas o código fonte. Aplicamos a
análise em um projeto open source chamado SiteWhere, que utiliza a arquitetura de
microsserviços, e fomos capazes de identificar seis microsserviços, entre os 11 existentes
no projeto, que apresentaram as caracteŕısticas dos antipadrões. Esta seleção permitiria
que desenvolvedores do projeto analisassem esses microsserviços e tomassem as ações
que julgassem necessárias para remediar o problema.

1 Introdução

Microsserviços é o nome dado ao estilo de arquitetura no qual uma aplicação é estruturada
como uma coleção de serviços altamente testáveis e manuteńıveis (maintainable), lançados
(deployed) independentemente, organizados em torno de capacidades de negócio e gerenci-
ados por times pequenos. Isso permite a entrega rápida, frequente e confiável de aplicações
complexas.[1]

Sendo um dos estilos mais utilizados no contexto da prática de entrega cont́ınua, uma
prática de desenvolvimento imprescind́ıvel atualmente no mercado, e com grandes orga-
nizações como Netflix e Amazon utilizando essa arquitetura, torna-se importante analisar
padrões de degradação que podem ocorrer no processo de desenvolvimento de aplicações e
suas consequências.

O conceito da arquitetura de microsserviços surgiu por volta de 2011 e por isso ainda
estão sendo descobertos comportamentos que se repetem em diferentes projetos e que, a
medida que o projeto cresce, eles podem impactar de maneira positiva ou negativa o desen-
volvimento como um todo. Dito isso, esse projeto tem como objetivo o estudo de padrões
considerados problemáticos (antipadrões), que ferem os prinćıpios deste estilo de arquitetura

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2 Oliveira

e que podem impactar negativamente a produtividade, a qualidade do produto e o desen-
volvimento de um negócio. Juntamente com esse estudo teórico, o trabalho busca criar um
método para identificar os antipadrões automaticamente para auxiliar os desenvolvedores a
manterem as boas práticas da entrega cont́ınua.

Esse relatório está organizado da seguinte forma: a Seção 2 apresenta a fundamentação
teórica, explicando mais sobre a arquitetura de microsserviços e os três tipos de antipadrões
que analisamos neste trabalho: Megaservice, Nanoservice e Chatty Service. A Seção 3 apre-
senta os métodos, mostrando como foi desenvolvido nosso estudo. Na Seção 4, apresentamos
o algoritmo desenvolvido e utilizado para a identificação dos antipadrões em código-fonte.
A Seção 5, apresenta e analisa os resultados obtidos a partir da execução do nosso programa
em um projeto de código aberto. A Seção 6 apresenta as limitações e desafios encontrados
durante o desenvolvimento do projeto. A Seção 7 traz as conclusões do nosso projeto e
posśıveis trabalhos que podem ser feitos futuramente. O apêndice A mostra o algoritmo
que foi desenvolvido para identificar os antipadrões.

2 Fundamentação Teórica

2.1 Arquitetura de Microsserviços

Um serviço é uma aplicação que se comunica pelo uso de mecanismos como chamada de
serviços web ou procedimento remoto. Na Figura 1, podemos observar a estrutura de
um serviço [1], criado em torno da lógica de negócio e, para comunicação, ele utiliza uma
API (Application Programming Interface) que expõe suas operações, as quais podem ser
śıncronas ou asśıncronas. Ainda, o serviço pode publicar ou receber eventos de alterações
de dados vindo de outros serviços. Normalmente, cada serviço possui a sua própria base de
dados para evitar problemas de dependências com outros serviços. Da perspectiva de um
agente externo, a API representa a interface que expõe as operações dos serviços.

Figura 1: Estrutura de um serviço (adaptado de [1]).

A arquitetura de microsserviços é o estilo de arquitetura na qual uma aplicação é estru-
turada como uma coleção de serviços testáveis e manuteńıveis (maintainable), implantados

Antipadrões microsserviços 3

(deployed) independentemente, organizados em torno de capacidades de negócio e gerencia-
dos por times pequenos. A intenção é que essas caracteŕısticas permitam a entrega rápida,
frequente e confiável de aplicações complexas. Na Figura 2, podemos ver um exemplo de
uma arquitetura de microsserviços como exemplificado no livro ”Microservice Patterns”de
Chris Richardson [2].

Figura 2: Exemplo de arquitetura de microsserviço (adaptado de [2]).

Na Figura 2, temos um exemplo de uma aplicação que tem como objetivo providenciar
um serviço de entregas para redes de restaurante. O projeto possui quatro microsserviços
que expõem seus métodos utilizando a REST API e cada um com sua própria base dados.
Para os usuários se comunicarem com a plataforma são utilizados uma interface web ou um
API Gateway que são capazes de redirecionar os usuários para o serviço correto de acordo
com o que é requisitado.

2.2 Antipadrões

Um antipadrão é a utilização recorrente de uma solução de código ou projeto (design) que
leva a um resultado de baixa qualidade [3]. Esse resultado ruim pode ser observado sob o
ponto de vista de performance, código de dif́ıcil manutenção, ou até mesmo a falha total
do projeto. Existem inúmeros trabalhos que identificaram e analisaram antipadrões em
aplicações orientadas a objetos [4].

4 Oliveira

Neste trabalho, analisaremos os três antipadrões que ocorrem mais frequentemente em
arquiteturas de microsserviços, conforme relatado em [5]: Megaservice, Nanoservice e Chatty
Service. Para a análise do Chatty Service, devido alguns impedimentos (ver Seção 6), fomos
capazes de desenvolver a identificação manual do antipadrão, mas não conseguimos fazer a
implementação automatizada.

2.2.1 Megaservice

Megaservice, também conhecido como Multiservice, é um antipadrão que tem como ca-
racteŕıstica um grande número de funcionalidades expostas por um serviço, que abordam
diferentes tipos de capacidade de negócio, ou seja, um Megaservice acumula mais responsabi-
lidades do que necessário. Devido a grande quantidade de funcionalidades, esse antipadrão
torna mais dif́ıcil o desenvolvimento do código pelo fato do código se tornar demasiada-
mente grande e ter uma maior dependência entre si e de elementos externos, o que dificulta
o lançamento de novas versões do serviço também. Na Figura 3, podemos ver um Megaser-
vice que abstrai toda a lógica por trás de um comércio eletrônico, incluindo processamento
de pedidos, processamento de pagamentos e controle de estoque. De forma contrária, uma
boa solução de projeto deveria quebrar essas preocupações em módulos distintos.

Figura 3: Exemplo de Megaservice

2.2.2 Nanoservice

Nanoservice, também conhecido como Tiny Service, é o antipadrão no qual o serviço possui
pouqúıssimas operações. Em muitos casos, o serviço oferece somente um subconjunto das
operações necessárias para o modelo de negócio, o que faz com que ele precise se conectar
a outros serviços para entregar o necessário. Isso incorre em um custo do processo de
comunicação devido às chamadas remotas entre os serviços. Caso a única função exposta
seja utilizada por uma quantidade grande de serviços, um Nanoservice torna-se um gargalo

Antipadrões microsserviços 5

ao desempenho do sistema de maneira geral. Na Figura 4, podemos observar o exemplo
de um modelo negócio que se propõe a gerenciar o processamento de pedidos. Este é
composto por três serviços que realizam partes diferentes do processo, porém para funcionar
corretamente é necessário que todos os serviços estejam presentes. Neste exemplo, cada um
desses serviços representa um Nanoservice.

Figura 4: Exemplo de Nanoservices

2.2.3 Chatty Service

Chatty Service, também conhecido como Chatty Web Service, apresenta-se na forma de
um serviço que expõe uma quantidade grande de funções, no entanto essas funções são
muito simples, o que torna necessária a combinação da chamada de diversas funções pelos
clientes desse serviço, de forma a atingir a solução requisitada pelo modelo de negócio.
Esse antipadrão tem como consequência um impacto negativo na performance do sistema,
uma vez que há um custo associado a cada chamada que é feita para essas funções, e fica
sendo responsabilidade do cliente externo desenvolver toda a lógica necessária para adquirir
a informação desejada. Na Figura 5, vemos um exemplo de microsserviço que apresenta
as caracteŕısticas do antipadrão Chatty Service. O microsserviço possui métodos públicos
muito simples o que faz com que o agente externo precisaria fazer várias chamadas ao serviço
para ser capaz de criar uma ordem de um pedido, por exemplo.

3 Métodos

O objetivo do trabalho é estudar antipadrões existentes para a arquitetura de microsserviços
e desenvolver uma forma automatizada de detectá-los com base na análise estática do código-
fonte. Para atingir essa meta, o trabalho teve como etapa inicial uma revisão da literatura
para identificar os trabalhos relacionados ao mapeamento e detecção de antipadrões. Com

6 Oliveira

Figura 5: Exemplo de um Chatty Service

isso, seria posśıvel definir quais antipadrões seriam analisados. Ainda, isso nos ajudou a
direcionar o trabalho para os antipadrões que ocorriam com maior frequência e, portanto,
maior relevância prática do trabalho.

Definido quais os antipadrões a analisar, estudamos suas caracteŕısticas e métodos para
a detecção deles. Com isso, criamos um algoritmo para identificá-los com base somente no
código-fonte.

Após isso, procuramos um projeto de código aberto que adotasse a arquitetura de mi-
crosserviços e que possúısse, pelo menos, mais que cinco microsserviços para que pudéssemos
avaliar a solução implementada em uma aplicação real.

Com isso, desenvolvemos um código em python que executasse nosso algoritmo de de-
tecção dos antipadrões. Realizamos então uma análise automatizada e verificamos os re-
sultados manualmente, considerando se os microsserviços retornados pelo nosso programa
realmente apresentavam as caracteŕısticas dos antipadrões estudados.

4 Desenvolvimento

Como um dos objetivos do trabalho, procuramos encontrar formas de detectar esses an-
tipadrões, em um projeto real, de maneira automatizada. Estudando a literatura [6, 7],
vimos que as seguintes heuŕısticas podem ser utilizadas na identificação de cada um dos
antipadrões:

• Megaservice

– Baixa coesão

– Alta quantidade de operações expostas

– Alto tempo de resposta

– Baixa disponibilidade

Antipadrões microsserviços 7

• Nanoservice

– Baixa quantidade de operações expostas

– Alta dependência de outros serviços

• Chatty Service

– Alta coesão

– Baixo número de parâmetros nas operações

– Alto número de parâmetros primitivos

– Alta quantidade de invocação de métodos

– Alt́ıssimo acesso aos dados do serviço

Para este trabalho, utilizando essas heuŕısticas como base, focamos em encontrar uma
maneira automatizada de identificar esses antipadrões utilizando apenas análise estática
(com base no código-fonte). Então, desconsideramos as caracteŕısticas que só poderiam ser
calculadas em tempo de execução como por exemplo alto tempo de resposta. Ainda, para
automatizar a detecção, precisamos definir o que consideramos como ”alto”e ”baixo”para
cada um desses parâmetros. Neste caso, escolhemos a análise estat́ıstica por Boxplots,
também conhecido como Diagrama de Caixa, com base na ideia utilizada em um outro
trabalho de identificação de antipadrões em aplicações seguindo uma arquitetura orientada
a serviços (SOA) [8].

O Boxplot permite avaliar a distribuição dos dados de forma que o quartil inferior
(ou primeiro quartil) corresponde a 25% das menores medidas e o quartil superior (ou
terceiro quartil) corresponde a 75% das menores medidas. Para essa análise, consideramos
como ”baixo”qualquer valor dentro do primeiro quartil e como ”alto”qualquer valor acima
do terceiro quartil. Assim, foi posśıvel definir os seguintes algoritmos para encontrar os
antipadrões no código-fonte:

• Megaservice e Nanoservice

1. Contar o número de funções expostas por todos os microsserviços do projeto;

2. Gerar o Boxplot para o total de microsserviços a partir da quantidade de
operações de cada microsserviço;

3. Microsserviços acima do terceiro quartil do boxplot são os candidatos a Megaser-
vice; e os microsserviços que pertencem ao primeiro quartil são os candidatos a
Nanoservice.

• Chatty Service

1. Contar o número de funções expostas por todos microsserviços do projeto, con-
siderando a quantidade de instruções de cada um dos métodos (devem ser con-
tabilizados apenas os métodos com poucas instruções);

2. Gerar o Boxplot da mesma forma que no caso anterior;

8 Oliveira

3. Os microsserviços que estão acima do terceiro quartil são candidatos a Chatty
Service.

Posteriormente, buscamos encontrar um projeto de código aberto que adotasse uma
arquitetura de microsserviços, com uma quantidade razoável (pelo menos cinco) de micros-
serviços, para que fosse posśıvel colocar em prática essa análise. Encontramos a aplicação
SiteWhere v2.1.1 [9], um sistema Open Source que facilita o armazenamento, processamento
e integração de dispositivos IoT (Internet of Things). Essa plataforma utiliza a arquitetura
de microsserviços e utiliza tecnologias como Kubernetes para orquestração de containers,
Istio para o gerenciamento do ambiente operacional e balanceamento de carga, e Kafka para
comunicação asśıncrona entre serviços. Ela é composta de microsserviços desenvolvidos em
Java utilizando o framework Spring Boot [10].

Para a nossa análise, focamos nos protocolos śıncronos de comunicação existentes na
aplicação SiteWhere, sendo eles o gRPC, utilizado para a comunicação entre os micros-
serviços da aplicação, e o REST, para a comunicação com agentes externos à plataforma.
Como veremos na Seção 6, nosso programa foi capaz de identificar somente as operações
expostas pelo protocolo gRPC devido algumas limitações encontradas.

Desenvolvemos um programa em python (o algoritmo pode ser visto no apêndice A)
que recebe como entrada uma string, que representa a implementação da interface gRPC,
neste caso ”implements IGrpcApiImplementation”, e a partir dela foi posśıvel identificar as
classes que expõe os métodos de cada microsserviço. Essas são as classes que passaram pela
análise citada acima. Os resultados encontram-se na seção 5.

5 Resultados e Análise

Considerando a busca pelos componentes expondo os serviços (incluindo via gRPC), encon-
tramos as seguintes classes expondo os métodos de cada microsserviço:

• sitewhere/service-instance-management/src/main/java/com/sitewhere/microservice/
grpc/instance/InstanceManagementImpl.java

• sitewhere/service-instance-management/src/main/java/com/sitewhere/microservice/
grpc/tenant/TenantManagementImpl.java

• sitewhere/service-instance-management/src/main/java/com/sitewhere/microservice/
grpc/user/UserManagementImpl.java

• sitewhere/service-device-state/src/main/java/com/sitewhere/microservice/grpc/
DeviceStateImpl.java

• sitewhere/service-event-management/src/main/java/com/sitewhere/microservice/
grpc/EventManagementImpl.java

• sitewhere/service-asset-management/src/main/java/com/sitewhere/asset/grpc/
AssetManagementImpl.java

Antipadrões microsserviços 9

• sitewhere/sitewhere-microservice/src/main/java/com/sitewhere/microservice/
management/MicroserviceManagementImpl.java

• sitewhere/service-label-generation/src/main/java/com/sitewhere/microservice/
grpc/LabelGenerationImpl.java

• sitewhere/service-schedule-management/src/main/java/com/sitewhere/
microservice/grpc/ScheduleManagementImpl.java

• sitewhere/service-batch-operations/src/main/java/com/sitewhere/microservice/
grpc/BatchManagementImpl.java

• sitewhere/service-device-management/src/main/java/com/sitewhere/microservice/
grpc/DeviceManagementImpl.java

Executando a análise para Megaservice e Nanoservice, obtivemos os resultados mostra-
dos na Tabela 1 e o BoxPlot apresentado na Figura 6.

Tabela 1: Número de métodos para cada microsserviço e candidatos a antipadrão.
Microsserviço Número de métodos expostos Antipadrão

InstanceManagement 3 Nanoservice

TenantManagement 7 Nanoservice

DeviceState 7 Nanoservice

MicroserviceManagement 8 N/A

LabelGeneration 11 N/A

ScheduleManagement 11 N/A

BatchManagement 11 N/A

AssetManagement 13 N/A

UserManagement 16 Megaservice

EventManagement 17 Megaservice

DeviceManagement 84 Megaservice

Com base na Figura 6, temos que a análise considerou como ”baixos”valores menores
ou iguais a 7 (arredondamento de 7,25) e ”altos”os que fossem maiores ou iguais a 16
(arredondamento de 15,25).

Analisando a quantidade de métodos expostos contabilizados para os microsserviços de
DeviceManagement e InstanceManagement, fica claro que estes representam os antipadrões
de Megaservice e Nanoservice, respectivamente.

Já os microsserviços TenantManagement e DeviceState apresentam somente funções
básicas de criação, remoção, atualização e leitura (CRUD), o que necessita uma análise
mais detalhada por parte dos desenvolvedores do projeto para avaliar se esses microsserviços
poderiam ser classificados como Nanoservice ou se eles contêm as funcionalidades necessárias
para a abstração de negócio.

No caso do microsserviço UserManagement, além das funções básicas (CRUD de usu-
arios), identificamos também funções ligadas a parte de autenticação de usuários, o que

https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-device-state
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/sitewhere-microservice
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-label-generation
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-schedule-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-batch-operations
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-asset-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-instance-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-event-management
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1/service-device-management

10 Oliveira

Figura 6: BoxPlot da contagem dos métodos expostos dos microsserviços com protocolo
gRPC.

pode representar uma acumulação indevida de responsabilidades definidas para este micros-
serviço, caracterizando-o como um Megaservice. Já no caso do EventManagement, todos
os métodos parecem pertinentes às interações básicas com as dados de eventos, o que pode
significar que temos um falso positivo, que é posśıvel dada a ausência de análise semântica
no algoritmo. Ainda, é posśıvel que esse serviço seja particionado em outros, gerando es-
pecialidades no gerenciamento de eventos. Para ambos os casos, também seria necessária
investigação adicional por parte dos desenvolvedores.

Com os resultados obtidos pela a nossa análise automática, o desenvolvedor precisaria
olhar somente parte de seus microsserviços para confirmar se eles possuem os respectivos
antipadrões conforme apontado pelo algoritmo e para os casos em que isso é verdade, ele
poderia, por exemplo, realizar as seguintes ações: para os Megaservice, separar as res-
ponsabilidades que não cabem àquele microsserviço em um novo microsserviço ou serviços
existentes, se pertinente; para os Nanoservice, considerar transformar cada um deles em
uma biblioteca, que seria adicionada aos serviços que o utilizam.

6 Limitações e Desafios

Ao longo do desenvolvimento desse projeto, encontramos algumas dificuldades. Como opta-
mos pela análise estática, baseada unicamente no código-fonte, nossa análise fica dependente
das escolhas estruturais do programador. Como existem diferentes formas de modelar um
projeto e dificilmente é seguido um mesmo padrão de codificação em diferentes projetos,
torna-se complicado desenvolver uma ferramenta capaz de detectar padrões automatica-
mente, porque há forte dependência de aspectos tecnológicos e do contexto de cada projeto
em particular.

Antipadrões microsserviços 11

Além disso, é dif́ıcil ou inviável mapear os métodos expostos para suas respectivas
realizações no caso destes serem definidos por interfaces. Assim, sem compilar o código não
se pode decidir quais métodos devem ser analisados, por exemplo, considerando a sobrescrita
de métodos, interfaces cuja implementação é decidida apenas em tempo de compilação, entre
outros. Isso inviabiliza a análise para o Chatty Web Service, por exemplo, pois esta requer a
contagem do número de instruções executadas dentro de cada método, e como podem existir
chamadas a outros métodos no corpo da função, seria necessário contabilizar também as
instruções presentes nas definições desses métodos, o que exigiria o mapeamento descrito
anteriormente.

Pelo mesmo motivo, também não foi posśıvel realizar a análise de antipadrões para o
protocolo REST, já que os métodos eram expostos de maneira indireta com uso de funções
locais que chamavam os métodos dos microsserviços. Por exemplo, como mostrado na Figura
7, temos a função createArea que é exposta utilizando REST API que possui somente uma
linha, mas essa instrução chama outra função chamada createArea que é externa a classe.
Para classificarmos a qual microsserviço essa função está ligada, precisaŕıamos identificar a
classe que implementa a interface que contém esse método, o que como explicamos acima só
é decidida durante a compilação do código, isso impossibilitou a análise do protocolo REST
e da mesma forma do Chatty Service.

Figura 7: Exemplo de função exposta utilizando protocolo REST.1

7 Conclusões e Trabalhos Futuros

Neste projeto, estudamos três antipadrões no contexto de arquiteturas em microsserviços.
Abordamos os impactos negativos que os antipadrões Megaservice, Nanoservice e Chatty
Web Service podem causar no desenvolvimento de software e estudamos maneiras de de-
tectar esses antipadrões utilizando abordagens automatizadas.

Além disso, fomos capazes de automatizar, analisando apenas o código-fonte, a identi-
ficação de candidatos aos antipadrões Megaservice e Nanoservice nos serviços implementa-

1https://github.com/sitewhere/sitewhere/blob/sitewhere-2.1.1/service-web-rest/
src/main/java/com/sitewhere/web/rest/controllers/Areas.java

12 Oliveira

dos no projeto SiteWhere, considerando os microsserviços que se comunicam utilizando o
protocolo gRPC.

Dados os desafios encontrados durante o projeto, uma maneira de dar continuidade
seria estudando formas de tornar essa análise mais tolerante a diferenças de estruturação do
projeto/código, o que facilitaria a identificação de outros antipadrões e tornaria posśıvel a
utilização da ferramenta desenvolvida em uma gama maior de projetos. Outra possibilidade
seria estudar maneiras de mapear as funções sem que seja necessário compilar o código.

Ainda, é interessante verificar a viabilidade da detecção de outros antipadrões para ar-
quiteturas em microsserviços que não foram discutidos aqui, mas que já foram categorizados
em outros estudos [5].

Referências

[1] CHRIS RICHARDSON CONSULTING INC., “What’s a service - part 1?,” 2020. Avai-
lable at: http://chrisrichardson.net/post/microservices/general/2019/02/16/whats-a-
service-part-1.html Accessed in: August, 19th, 2020.

[2] C. Richardson, Microservices patterns. Manning Publications Company, 2018.

[3] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE antipatterns. John Wiley
& Sons, 2003.

[4] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for software design
smells: managing technical debt. Morgan Kaufmann, 2014.

[5] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zimmermann,
“Towards a collaborative repository for the documentation of service-based antipat-
terns and bad smells,” in 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pp. 95–101, IEEE, 2019.

[6] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc, B. Baudry, and
J.-M. Jézéquel, “Specification and detection of soa antipatterns,” in International Con-
ference on Service-Oriented Computing, pp. 1–16, Springer, 2012.

[7] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices anti-patterns: A taxonomy,” in
Microservices, pp. 111–128, Springer, 2020.

[8] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification and detection
of soa antipatterns in web services,” in European Conference on Software Architecture,
pp. 58–73, Springer, 2014.

[9] GitHub, Inc., “Sitewhere v2.1.1,” 2020. Available at:
https://github.com/sitewhere/sitewhere/tree/sitewhere-2.1.1 Accessed in: August,
19th, 2020.

[10] VMware, Inc., “Spring boot,” 2020. Available at: https://spring.io/projects/spring-
boot Accessed in: August, 19th, 2020.

Antipadrões microsserviços 13

A Algoritmo

Algoritmo 1: Identificar Megaservice e Nanoservice

Entrada: String que identifica a implementação da interface gRPC
Sáıda: Microsserviços que apresentaram caracteŕısticas dos antipadrões

Megaservice ou Nanoservice
// Inicialização
var gRPCID = entrada;
var contador, servico;
array arquivos[], megaservices[], nanoservices[];
map servicos;
para todo arquivo presente no código-fonte faça

se Arquivo possui gRPCID então
arquivos.add(arquivo);

fim

fim
para todo arquivo presente em arquivos faça

contador = 0;
servico = identificar qual microsserviço esse arquivo pertence;
contador = número de métodos que são expostos no arquivo;
se contador != 0 então

servicos[servico] = contador;
fim

fim
var quartis = Montar Boxplot com o conjunto servicos;
para todo servico presente em servicos faça

se servicos[servico] ≥ quartis[3] então
megaservices.add(servico);

fim

fim
para todo servico presente em servicos faça

se servicos[servico] ≤ quartis[1] então
nanoservices.add(servico);

fim

fim
retorna megaservices, nanoservices

	Introdução
	Fundamentação Teórica
	Arquitetura de Microsserviços
	Antipadrões
	Megaservice
	Nanoservice
	Chatty Service

	Métodos
	Desenvolvimento
	Resultados e Análise
	Limitações e Desafios
	Conclusões e Trabalhos Futuros
	Algoritmo

