
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Circuitly: A visual and
constructive framework for

teaching digital circuits
L. Castro R. Azevedo

Relatório Técnico - IC-PFG-20-04

Projeto Final de Graduação

2020 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Circuitly: A visual and constructive framework for teaching

digital circuits

Lucas de C. B. de Castro∗ Rodolfo Jardim de Azevedo†

Abstract

This paper describes an interactive and student-friendly framework for teaching
digital circuits and computer architecture topics. It aims to improve students learning
process by providing a visual drag-and-drop circuit design editor, interactive simulation,
signal monitoring and testbench tools - all integrated in a widely accessible application
that runs in the browser. Circuitly does so in a programmatic way, to help students
better understand the Hardware Description Languages they will encounter in the fu-
ture.

1 Introduction

To create a computer based on abstraction layers, we need to start in a very low level and
design, layer by layer, new capabilities and functionalities. As example, we can start with
a NAND gate - which abstracts a few transistors. It can be used to build other logical
gates, such as ANDs, NOTs and ORs and all other combinatorial logic. After that, we
need to create the concept of memorization and sequential circuits come into play. We keep
evolving, developing larger blocks of logic until we have a set of hardware which compose
the Von-Neumann architecture in which our computers are based today.

The hardware interface with software starts with the instruction set, where programs
are expressed. Then we can create new functionalities with the lowest level drivers that
configure the hardware and ensure it is up and running, followed by an operating system
providing the essential resources to the applications - which may be tools, libraries or
frameworks to allow higher level applications to do their jobs. This stack keeps growing,
raising the abstraction level that allows us to solve the ever more complex problems we
must face in computing. Students must be able to understand and learn how this stack is
built over layers of abstractions, as well discussed by Jeff Kramer in his work Is Abstraction
the Key to Computing? [1].

Shimon Schocken and Noam Nisan wrote a book proposing a constructive approach for
teaching computing. The student starts with a NAND gate and iteratively builds larger
components up to the point it is possible to write a Tetris game in a higher level language
and run it in the custom processor developed along the course [2,3]. This approach provides

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
†Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2 L. Castro, R. Azevedo

a wider vision for the student of how computing is built, how each topic relates to others
and why we need the abstraction layers to solve complex problems.

Our work values and is heavily inspired by Schocken and Nisan’s “From Nand to Tetris”
approach. We designed an user friendly framework, named Circuitly1, for learning digital
circuits based on this concept. Circuitly aims to improve some aspects in students learning
process when it comes to digital circuits and computer architecture. It allows students
to visually design circuits with modular reusable building blocks as circuit components,
visualize and interact with the circuit simulation, run automatic tests and create larger
logical blocks from smaller ones. We also took special care so it could be widely accessible
and platform independent, ensuring that no restrictive tools or environments would be a
barrier for students or self learners who want to use it. Instead of designing Circuitly as
circuit diagram blocks, we opted to use a more textual design to better engage the student
with Hardware Description Languages that (s)he will use in the future.

2 Objectives

This work aims to improve teaching digital circuits and computer architecture related topics
by developing a student friendly framework which considers digital circuits as modular
building blocks, provides interactive visual simulation, is available across multiple platforms
and allows constructive bottom-up teaching approaches, such as the proposed by Schocken
and Nisan [2].

3 Related Work

Considering the aspect of using a constructive hands-on approach for teaching digital cir-
cuits, “From Nand to Tetris” [3] is a very relevant work in which we were inspired. It is
a consolidated course that guides the student path to build an entire computing system
starting with the NAND logic gate.

Regarding other tools and frameworks for digital circuits that run on the browser, an im-
portant example is EDA Playground [6] which has many prototyping features and supports
many simulation backends, but it is not specifically designed for teaching. Falstad [7] is also
a relevant tool, supporting interactive circuit simulation on browser, however it is focused
on electronic circuits and has restrict support for logical circuits. Another relevant work
is DigitalJS [8] which is a promising digital circuits simulation tool for teaching purposes
that allows students to live interact with their simulated circuits and watch their behaviors.
DigitalJS is one of the base tools used in this work, as detailed along the article.

Another main topic in this work is using visual programming languages for teaching.
Although this is not a common topic for digital circuits, there are many successful projects
implementing this concept for software teaching, such as Scratch [9] and Snap! [10]. Another
great work in this regard is Blockly [11] which is a consolidated framework for preparing
custom visual block based programming languages. Blockly is also an important framework
used in this work.

1Circuitly is open source [4] and has a web page [5] with additional information about the project.

Circuitly 3

4 Circuitly design and implementation

4.1 Overview

Figure 1: Circuitly user interface Overview

Figure 1 shows an overview of Circuitly user interface. The framework has the following
main features to help students design their circuits:

• Multi-platform available: This was a project requirement, we wanted it to be as
much available and easy to run as possible. We describe how it was addressed in
development in section 4.2.

• Blockly editor (In figure as “Block it up!”) The editor where students can design
their circuits as modular blocks. We prefer a language-like style to better introduce
Hardware Description Languages in a next stage. This is discussed at section 4.3.

• Circuit Simulation and Monitoring: Visual simulation and signals monitoring
for the designed circuit. This is presented at section 4.4.

• Testbench: This is a utility that allows teachers to provide a series of test cases to
validate the circuit implementation. Testbenches allow students to self-check their
work and also instructors to autograde students’ solutions. The testbench function-
ality is described at section 4.5.

4 L. Castro, R. Azevedo

Figure 2 shows an overview of how Circuitly combines these features internally. This
flow is better explained in the following sections.

Figure 2: Circuitly internal flow diagram.

4.2 Ensure wide and easy access in all platforms

The objective which most affects development is ensuring the framework is widely accessible
and platform independent since it limits the tools we are allowed to use. Native applications
would be a poor choice, it would not be easy to support the most used operating systems.
We could make a Java based application since it would run in every machine which supports
a JVM or a Web based application which is an application that runs on the browser. We
decided for the latter (Web) to be really able to run everywhere and tried to remove the
requirement to install software. It also runs on cellphones, although the visual interface
would require improvements for better user experience in this platform.

We selected libraries and frameworks available for Web as the base infrastructure for this
project. It is nodeJS based [12] and has many small dependencies, however the main features
which are detailed in the following sections are provided by Blockly [11] and digitalJS [8].

4.3 Designing digital circuits as modular building blocks

The next requirement is to allow students to see circuits as building blocks. It should be
natural that smaller blocks of logic could be used to build larger blocks. We also wanted
that students could skip the process of learning a Hardware Description Language (HDL)
in the first moment for two main reasons (we kept in mind that they will have to learn HDL
in the future if they want to be hardware designers):

• Hardware description languages have some different programming concepts when com-
pared to software programming languages since circuits are different from machine
instructions which may confuse beginner students;

• Allowing students to design hardware as building blocks permit them to visually see
and experiment with the circuit components instead of trusting a synthesis tool that
transforms their code into a logical circuit. We believe that this closer contact will be
very beneficial for learning;

We also did not want the student to design circuits as diagrams since:

Circuitly 5

• Designing larger circuits using only diagrams without the assistance of HDL descrip-
tion logic is not very scalable;

• We believe that a higher level of abstraction would be beneficial for learning the
concepts behind larger circuits and understanding what are the “smaller building
blocks” used to build it;

• We expect the student to have contact with diagrams and HDL in more advanced
courses, the goal is to pave the way between their first contact and such courses;

Based on these constraints, we selected a block design that has a good visual appeal, is
easy to use, and provides a clear path to future HDL. Scratch [9] has done a very good work
in designing a block based programming language. We were inspired by it and decided to
use the same framework, Blockly [11], to build the Circuitly design editor.

4.3.1 Using Blockly to create a digital circuits editor

Blockly [11] is, from Blockly developers own words: “a library that adds a visual code
editor to web and mobile apps. The Blockly editor uses interlocking, graphical blocks to
represent code concepts like variables, logical expressions, loops, and more. It allows users
to apply programming principles without having to worry about syntax or the intimidation
of a blinking cursor on the command line.” [13].

Blockly fits our purposes to create a block based code editor for digital circuits. Although
Blockly does not support any HDL officially, it allows developers to create their own blocks
which generate custom code - in other words, we can generate SystemVerilog from Blockly
blocks. Blockly also provides a great set of customization options for custom blocks such
as their shapes, type restrictions and code generation instructions. Figure 3 shows a set of
custom blocks developed for Circuitly as example.

Figure 3: Example of custom Blockly blocks for logic circuits design.

6 L. Castro, R. Azevedo

We developed custom blocks for Circuitly, such as those in figure 3, and they generate
valid SystemVerilog code. Students can use the high level block description to build their
circuits and their work will be converted to SystemVerilog in the background. This is
important so we can still use existing synthesis and simulation tools while providing the
higher level design layer for students.

Figure 4 shows an example of a Blockly workspace with custom blocks and the Sys-
temVerilog code generated from it.

module AND(
input a ,
input b ,
output c

) ;

wire t ;
nand nand 0 (t , a ,b) ;
nand nand 1 (c , t , t) ;

endmodule

Figure 4: Example of Blockly workspace with custom blocks and generated SystemVerilog code.

4.3.2 Constructive development of more complex circuits

As discussed in the introduction, this work values the “From Nand to Tetris” [2, 3]
approach and wants Circuitly to be compatible with it.

Blockly natively allows us to prepare workspaces - which are prepared environments
where we determine what blocks students can use to do their work. It is straightforward
to prepare consecutive laboratories asking students to build blocks that will be used in the
next exercises using only the blocks they have already prepared previously. Following are
two simple descriptions of laboratories to exemplify the concept:

• AND Laboratory: Develop AND using only NAND gates;
It is a workspace where students only have access to NAND blocks to implement the
AND behavior. This laboratory would not have any pre-requisites since NAND is the
most primitive logic block;

• DFF Laboratory: Develop Data Flip Flop (DFF) using only NOT and
NAND gates;
It is a workspace where students only have access to NAND and NOT blocks to
implement the DFF behavior. Note that this laboratory should be held after the
“NOT Laboratory” since the NOT block is required here.

Circuitly 7

Following “From Nand to Tetris” roadmap, this sequence of laboratories should con-
stantly get more complex towards the point the student is able to build a minimal processor
and run some code on it. This is better discussed at section 6.

4.4 Interactive circuit visualization and monitoring

Blockly provides a very good framework to develop the editor students will use to build
their logical circuits. The next step is synthesizing the SystemVerilog code Blockly will
generate from the custom blocks we developed for Circuitly and simulate it with a visual
and interactive tool.

4.4.1 Simulation and Monitoring with DigitalJS

Marek Materzok worked on “a visual circuit simulator tool designed for teaching students
digital circuit design” named DigitalJS [8]. It is a Javascript framework that uses Yosys
[14] to synthesize Verilog/SystemVerilog code and simulate the circuit on the browser. It
has a friendly design, is easy for the students to use and interact with. It also has a
monitor to watch signals and trigger event-based breakpoints what is very useful for better
understanding the circuit and debug it.

Figure 5 shows digitalJS simulation for the automatically generated SystemVerilog code
shown on figure 4. Users can toggle the input buttons and dynamically see how the circuit
behaviors. Considering the circuit state in 5a, toggling input ‘a’ will change the circuit to
the state shown in 5b. Users can also take a closer look in the signals transitions over time
in the monitor, as shown in 5c.

(a) (b)

(c)

Figure 5: Simulation and monitoring example of the AND block shown on figure 4

8 L. Castro, R. Azevedo

4.5 Testbench

The possibility to run automatic tests is very useful for students to check their work. Cir-
cuitly has “Testbench” section that accepts an input file describing a list of test cases with
input signals configuration and expected values for the outputs. The test cases are run
sequentially and indicates which tests succeeded and which failed.

This utility is available both in the user interface and as a runnable script, allowing
teachers to automatically correct assignments.

5 Using Circuitly

In section 4 we presented Circuitly main features using an AND block as example. Following
is a more objective demonstration of building a logic circuit in Circuitly focused in how
students would work with the platform.

5.1 Building Data Flip Flop (DFF) block demonstration

Firstly, it is expected that the laboratory specifies the desired module and the allowed
building blocks. For this example, suppose our laboratory is:

Build a Data Flip Flop (DFF). The only blocks allowed are: NOT and NAND. DFF
should contain the following connections:

• input: clk - Clock source;

• input: d - Data signal;

• output: q - Sampled data;

• output: nq - Negated sampled data;

This specification can be reinforced in the editor’s workspace and toolbar by placing
only the allowed blocks in the toolbar and preparing a ‘module shell’ with the expected
connections in the workspace, as shown in figure 6a (this is a Circuitly feature built upon
Blockly workspaces concept). Students can use the drag-and-drop editor, as discussed in
section 4.3, to implement DFF behavior. One possible result is shown at figure 6b.

The user can “Compile” the design any time. If the design is valid, it will generate
SystemVerilog code and synthesize it in the background, as shown in section 4. The inter-
active simulation starts, allowing the user to experiment with his/her work. Figure 7 shows
possible states of the simulation for this circuit.

Lastly, students have to check if the circuit is valid accordingly to some predefined
tests. Circuitly testbench supports input files in CSV format describing the input signals
configurations and the expected output results. It runs each test case and generates a
table displaying the circuit behavior in the test. Figure 8a shows a testbench input for this
example and figure 8b the corresponding testbench result.

During this process, students can save and load their work. If desired, it is possible to
setup a submission platform to retrieve the generated modules and setup an environment

Circuitly 9

(a) (b)

Figure 6: Building a DFF using Circuitly Blockly based editor.

Figure 7: Simulation of the module of figure 6

to automatically run the testbench from command line to validate the students submissions
- although this was not done yet and is marked as future work.

6 Future work

6.1 Build a RISC-V processor using Circuitly

As discussed along the article, this work was inspired by Schocken and Nisan’s “From Nand
to Tetris” constructive teaching approach. We intend to create a similar set of laboratories
using Circuitly, starting with a NAND block and creating new larger blocks until it is
possible to build a RISC-V [15] processor - which is a significant change to Schocken and
Nisan’s work, since they decided to go for a custom architecture.

We intend to use RISC-V for the following reasons:

• RISC-V is a RISC (Reduced Instruction Set Computer) ISA, its smallest variant is
RV32i [15] which has a very small set of instructions that can be easily implemented
in the scope we want for Circuitly laboratories;

• It is used for real world applications;

10 L. Castro, R. Azevedo

d q nq
0 0 1
1 1 0
0 0 1

(a)

(b)

Figure 8: Automatic testbench validation of the DFF shown in figure 6

• There is a growing community involved in RISC-V projects that can provide help or
attract students to further study this ISA;

• It is an open architecture, there is no legal related restrictions preventing the develop-
ment and usage of RISC-V processors for academic courses, which could be a barrier
in proprietary ISAs;

6.2 Circuity Improvements

Although Circuitly already provides a working interface with all features described in the
previous sections, there is still a lot of improvements to be made and features to be added.
Following is a list of what we consider the most important improvements to be done:

• Study the possibility to use the Javascript build of Yosys, YosysJS [16], instead of the
native Linux one. This would allow Circuitly to be completely client-side, requiring
no server;

• Allow users to import SystemVerilog files and automatically create their blocks, al-
lowing Circuitly to be compatible with existing SystemVerilog circuits;

• Allow users to import a “module” block and automatically create the corresponding
“instantiation” block. Currently, it is necessary to manually create the “instantiation”
block and insert it in the workspace toolbar through code;

• Study the possibility to ship Circuitly with an integrated submission platform or
provide some API for external tools;

• Better errors handling and notifications for users;

Finally, we also intend to present the framework to students and listen to their feedback.
The main goal of this work is to improve their learning, consequently their opinions and
judgment is extremely valuable to improve Circuitly.

Circuitly 11

7 Conclusion

We designed and implemented Circuitly, an interactive and student-friendly framework for
teaching digital circuits. It manages to conciliate existing tools for synthesis and simulation
with teaching methods and frameworks that are unexplored for digital circuits and computer
architecture, such as block based programming with Blockly. It also brings an important
feature of being openly available supporting many platforms as a Web app.

We consider Circuitly a promising framework for teaching digital circuits since it can
already be used in classroom with some restrictions in this initial development stage, how-
ever there are still many improvements and functionalities to be added in follow-up projects
in order to make it truly student-friendly and easy to use for academic courses.

References

[1] Jeff Kramer. Is abstraction the key to computing? Commun. ACM, 50(4):36–42, April
2007.

[2] Shimon Schocken and Noam Nisan. The Elements of Computing Systems. The MIT
Press, March 2005.

[3] Shimon Schocken, Noam Nisan, and Michal Armoni. A synthesis course in hardware
architecture, compilers, and software engineering. In Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, SIGCSE ’09, page 443–447,
New York, NY, USA, 2009. Association for Computing Machinery.

[4] Lucas Castro. Circuitly repository. https://github.com/lcbcFoo/circuitly, ac-
cessed July 12, 2020.

[5] Lucas Castro. Circuitly. https://circuitly.app, accessed July 12, 2020.

[6] Doulos. Eda playground. https://www.edaplayground.com, accessed July 12, 2020.

[7] Paul Falstad. Falstad circuit simulator applet. https://www.falstad.com/circuit/,
accessed July 12, 2020.

[8] Marek Materzok. Digitaljs: A visual verilog simulator for teaching. In Proceedings of
the 8th Computer Science Education Research Conference, CSERC ’19, page 110–115,
New York, NY, USA, 2019. Association for Computing Machinery.

[9] MIT Scratch Team. Scratch - create histories, games and animations. share with others
around the world. https://scratch.mit.edu, accessed July 12, 2020.

[10] Jens Mönig and Brian Harvey. Snap! https://snap.berkeley.edu/, accessed July
12, 2020.

[11] The Blockly Team. Blockly - A JavaScript library for building visual programming
editors. https://developers.google.com/blockly, accessed July 12, 2020.

12 L. Castro, R. Azevedo

[12] Nodejs. https://nodejs.org/en/, accessed July 12, 2020.

[13] The Blockly Team. Blockly Guides - Introduction to Blockly. https://developers.

google.com/blockly/guides/overview, accessed July 12, 2020.

[14] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/, accessed
July 12, 2020.

[15] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version
2.2. Editors Andrew Waterman and Krste Asanović, RISC-V Foundation, May 2017.

[16] Clifford Wolf. Yosysjs. http://www.clifford.at/yosys/, accessed July 12, 2020.

