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Abstract

Knowledge graphs (KGs) define facts expressed as triples considering subject, pred-
icate and object in the representation of knowledge. Usually, several knowledge graphs
are published in a given domain. It is relevant to create alignments both for classes
that model concepts and between instances of those classes defined in different knowl-
edge graphs. In this work, we study techniques for aligning entities expressed in KGs.
Our solution explores supervised ranking aggregation method in the alignment based
on similarity values. Our experiments rely on the dataset from the Ontology Alignment
Evaluation Initiative to evaluate the proposed method in experimental analyzes.

1 Introduction

The term knowledge graphs was coined by Google when it introduced this technology as
the basis for a new web search strategy in 2012 [32]. A traditional search method uses
keywords to search for the expected results, but the terms can be ambiguous and limit the
retrieved information. The use of knowledge graphs allows the search to be carried out for
objects that represent real entities such as places, people and movies. These entities and
their relationships allow performing information retrieval by using a context in which the
term is searched for. This helps in reducing the ambiguity of terms, and improving the
quality of information returned when using the entities’ relationships [34].

Large-scale knowledge graphs (KGs) like DBpedia 1, YAGO2 and Wikidata 3 play a
central role as a source of general knowledge. These KGs present a good coverage regarding
the entities represented and expressed in several domains. However, they lack covering
specific topics or they usually are addressed with little detail [18]. The aforementioned KGs
present similar information, as they all use Wikipedia as the basis for creating entities and
their relationships. Their use in a combined way requires creating links between entities

1http://dbpedia.org
2https://yago-knowledge.org
3https://www.wikidata.org/wiki/Wikidata:Main Page
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of different KGs [33]. For example, “Black Panther” 4 is an entity from Marvel Cinematic
Universe Wiki, which is mapped to the Marvel Database entity “Black Panther” 5.

Hofman et al. [18] used a two-step method to create mappings between KGs generated
from Wikis. First, mappings were generated between each Wiki and DBpedia. Using these
mappings, the KGs were grouped in blocks and the mappings between Wikis were created
only between graphs of the same group. To obtain the related entities, a string distance
algorithm was used based on the labels of the entities.

Learning to Rank is a machine learning technique for training ordering models. This
technique can be used in several areas such as information retrieval, natural language pro-
cessing and data mining. An example of application of such technique is the retrieval of
documents. A system manages a set of documents and when a query is executed, the sys-
tem searches for documents containing the queried terms, order the documents based on
different processed ranking lists and returns the best results [28].

In the creation of an alignment (process of generating mappings between KG entities),
the simplest approach might look for all possible pairs in a set. However, this approach
becomes prohibitive for larger sets. Locality-sensitive Hashing (LSH) [26] allows the com-
parison between similar pairs. The items are provided in a hash, in which the probability
of two items having the same hash is based on the similarity value between them. In this
sense, the candidate pairs are those that are in the same hash bucket .

In this work, we propose and evaluate a method for the alignment of KGs based on
Learning to Rank techniques. In our approach, we investigate the candidate reduction
methods based on Locality-sensitive Hashing. We experimentally evaluate our proposal
based on the test dataset offered by the OAEI (Ontology Alignment Evaluation Initiative)
competition 6. The quality of the mappings created by our solution are evaluated by
comparing them with the alignment provided by the competition (as a gold standard).

In our results, the proposed technique obtained high recall in the created mappings, but
affected precision in several cases. Compared to existing baseline systems, our approach
presents lower f-measure for class and instance, but higher f-measure for property.

The remaining part of this work is organized as follows: Section 2 presents a literature
review on methods for KG alignment. Section 3 introduces the necessary formalization;
Section 4 describes our proposal thoroughly; Section 5 presents the experimental results
conducted; Section 6 discusses the achieved results; Section 7 summarizes the conclusions.

2 Related Work

Literature provides several definitions for knowledge graphs. Ehrlinger and Wöß [13] defined
knowledge graph as a knowledge base with extended requirement to reasoning. Using this
definition, a system must have a knowledge base (e.g., Ontology) and a reasoning engine to
generate new knowledge and integrates one or more information sources to be considered
as knowledge graphs. DBkWik [18] uses knowledge graphs as synonym of knowledge base

4https://marvelcinematicuniverse.fandom.com/wiki/Black Panther
5https://marvel.fandom.com/wiki/Black Panther
6http://oaei.ontologymatching.org

https://marvelcinematicuniverse.fandom.com/wiki/Black_Panther
https://marvel.fandom.com/wiki/Black_Panther
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and ontology like DBpedia [25], YAGO [35] and Wikidata [29]. Hogan et al. [21] defines
knowledge graph as a graph of data intended to accumulate and convey real-world knowl-
edge, whose nodes represent entities of interest and whose edges represent relations between
these entities.

Several systems have been proposed with the creating mappings between entities of
KGs. AgreementMakerLight Ontology Matching System (AML) [14] is a framework that
performs the mapping between ontologies using four types of matchers and implements a
ranked selector. The matchers are lexicon; lexicon mediated by a third ontology; words
using the Jaccard index [22]; and a set of parameters exploring string similarity methods.
To obtain the best mappings, the results of the matchers are ordered in a unified list from
the best to the worst. The mappings are created based on such ordered list.

FCAMap-KG system [7] uses the analysis of formal concepts to create mappings. This
system organizes the process into three stages: lexical match, structural match and match
filter. In the first step, it creates three formal contexts based on keys for classes, properties
and instances. In OAEI KG context, those types were created to fuse different KGs into
one coherent KG. Schema type (classes and properties) derives from wikis’ constructs and
instance type derives from pages about real-world entities [20]. A mapping is created when
a formal concept contains objects from the two KGs under alignment. In the second stage,
the previously obtained mappings are used to create a structured formal context. In this
step, the focus is on creating mappings between the instances using RDF triples whose
properties and subsequent instances were already mapped. In the last step, the mappings
are selected so that each entity has only one mapping. This operation can be carried out
because the OAEI 2019 KG competition uses only 1:1 matches. If an entity has more than
one mapping, the mapping with more structural attributes and lexical keys in common is
selected in this technique.

DOME system (Deep Ontology MatchEr) [19] uses doc2vec method to obtain the
mappings. Doc2vec is an algorithm that learns fixed-length feature representations from
variable-length piece of text. Each document is represented as a vector which is trained
to predict words in the documents [24]. This system is organized into five stages: String
matching; confidence adjustment; instance-based class matching; type filter; and cardinal-
ity filter. In the first step, the text is divided into tokens and a series of string matching
methods is used to obtain the mappings. In the second stage, the system goes through all
correspondences and assigns a new confidence using the doc2vec method. In the third step,
new mappings are created for classes based on instances that were already mapped. The
idea is that if instances of a class present mappings, then there is a greater chance that
a class migth also have a mapping. In the fourth step, the mappings are filtered so that
only mappings between entities of the same type remain. In the last step, the mappings are
filtered to obtain only one mapping per entity.

Learning to Rank (LTR) is a machine learning technique for training the model to
rank [28]. The system manages a system of documents. When queried, the system retrieves
documents related to the query, rank the documents and returns the top ranked documents.
The differences between learning to rank and other models are that LTR does not need to
predict absolute value of the items (regression); it does not need to predict the class of items
(classification); the important thing is to obtain the relative ranking of items.
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There are three common approaches to learning to rank: pointwise, pairwise and listwise.
Pointwise is based on regression and classification. The general criteria is to create a ranking
function f that learns to assign an absolute score to each item in isolation. The objective is
to minimize the cost function based on the absolute gold score. This approach is generally
more difficult than necessary. Pairwise approach is based on rank-preference model. The
general criteria is to find a ranking function f that learns to rank pairs of items. The
objective is to minimize the cost function of misclassified pairs. To solve this problem, any
binary classifier can be used. The listwise approach is based on list of documents and aims
to optimise the most appropriate task metric [10]. Our method explored LambdaMart which
is a pairwise learning to rank technique. Destro et al. explored several rank aggregation
techniques for aligning crosslingual ontologies and found that LambdaMart have the best
results [23]. LambdaMart also won Yahoo! Learning To Rank Challenge [8]. LambdaMart is
a technique that combines MART and LambdaRank techniques and so those two techniques
is explained below separately.

MART (Multiple Additive Regression Trees) [15] is a boosting paradigm based on the
gradient method for additive expansion used in regression trees. Boosting is a technique
based on PAC (probably approximately correct) and its main focus is on learning efficiency.
The idea is to create a series of weak classifiers that together form a strong classifier. This
method starts with an original training set made up of N different examples. Each element
in the original test set is given a weight proportional to the probability of appearing in
the filtered test set. Initially, each element is given an equal unit weight so that they all
appear in the initial set. At each step, the weight is changed and some elements can have
multiple entries in the filtered test set. The tree is trained using the filtered training set.
The original test set is used to assess the quality of the tree’s classification. The error is
used to update the weight of each element in the test set. The training process is repeated
until the result is stable [12].

LambdaRank [5] is a pairwise learning to rank technique that uses only the gradient
of the cost to reduce the error. Previous approaches like RankNet [4] use cross entropy
cost function that penalizes the number of inversions in output ranking to get the correct
order for all element in the list and use stochastic gradient descent to optimize results.
LambdaRank uses ranking quality measures like Normalized Discounted Cumulative Gain
(NDCG) that handle multiple levels of relevance and a position dependence for results. This
measure gives more weight for higher ranked results, so the optimization of those measure
is more focused on top results. Both techniques use gradient descent, but RankNet uses the
number of pairwise error and LambdaRank uses weighted ranking quality measure.

LambdaMart is a version of LambdaRank using boosted tree combined with the MART
paradigm. The difference between LambdaMart and LambdaRank is that LambdaRank
updates its weights for each test entry queried, while LambdaMart updates only a few
parameters, but using all test set. This means that LambdaMart can reduce the quality of
the result for some queries if the overall quality is higher.

Cruz et al. [9] explores learning to rank to deal with unbalanced test set. This technique
was explored in other unbalanced class problem such as link prediction [27]. Our study
explores learning to rank techniques in the creation of mappings between different types of
entities expressed in KGs.
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3 Preliminaries

This section provides a series of formal definitions relevant to our solution.

Knowledge Graph. A knowledge graph K accumulates and conveys knowledge in term
of entity and relations [21]. Formally, a knowledge graph K = (EK,RK) consists of a set of
entities EK represented as nodes; and entities are interrelated by directed relationships RK.
Each entity e ∈ EK has a unique identifier and type. The entity identifier uses Universal
Resource Identifier (URI) that is a string used to identify resources and provide a mean
of locating the resource [1]. Entity type can be of schema level, formed by properties and
classes, and instance level. Each relationship r(e1, e2, e3) ∈ RK is a triple consisting of a
subject, a predicate and an object.

Mapping. Given two entities es and et from two different KGs, a mapping mst is de-
fined as:

mst = (es, et, conf) (1)

The conf is the similarity value between es and et indicating the confidence of their
relation. We define Mj

ST as a set of mappings mst between two KGs KS and KT .

Similarity. Given two entities ei and ej , the similarity between them is defined as a
function that calculates the similarity score between them returning a real value in the
interval [0,1]. The function can explore different techniques for the similarity computa-
tion, like string-based processing and semantic-based techniques which explore background
knowledge for similarity computation. Formally:

sim(ei, ej) = f(ei, ej) (2)

Rank Aggregation. Consider a set of rankings R1, R2, R3, ..., Rn formed by set
of similarity proposals S1, S2, S3, ... Sm. Each similarity list Sk requires a different
function sim(ei, ej) with a source ei and target ej . Each s ∈ S is defined as a triple
s = (ei, ej , sim(ei, ej) and the entity ei can be used to retrieve a set of similarity. Rank
Aggregation produces one single rank that aggregates all given ranking. Equation 3 is used
to include new set of ranking to aggregate. Figure 1 shows an example of rank aggregation.
Each column represents a ranking and in each rank the yellow box represents an element
that is ranked in different positions for each rank. An aggregated rank is created and used
to map entities in our solution.

rankAggregation.aggregate(R) = Ragg

⋃
R (3)
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Figure 1: Rank Aggregation

Given an aggregated rank rankAggregation and an entity e, it is possible to query
the aggregated rank presenting e. Equation 4 represents a function that returns a ranking
formed by set of similarity that have input e as query filter.

rankAggregation.query(e) = R, s ∈ Ragg, s.id = e (4)

Locality-sensitive Hashing. An entity e is converted to a set of n-grams and added
to a bucket of the hash. The equation 5 describes a function that insert an entity e to the
hash H. Locality-sensitive Hash is an algorithm that uses random projections to construct
hash codes which pairwise distance is preserved when the length of codes is sufficiently large
[36]. Given an entity e and a locality-sensitive hash LSH, entity e can be used to query a
similar entity inside such hash based on a similarity method. The equation 6 describes a
function that query for similar entities compared to entity ei and returns a set of entity E
where ej ∈ E have similarity sim(ei, ej) greater than a given threshold τ [26].

LSH.insert(ei) = H
⋃
Hash(ei) (5)

LSH.query(ei) = E, ej ∈ E, sim(ei, ej) > τ (6)

Problem statement. Given two KGs KS and KT , the problem addressed in this work is to
obtain all mappings between entities from these KGs by using rank aggregation techniques
and reduce explored candidates with the use of Locality-sensitive Hashing.

4 Our proposal to link Knowledge Graphs

Our goal is to create appropriate mapping for each entity of a source KG KS to a target
KG KT . Figure 2 shows our defined workflow for this purpose. It is organized in four main
steps: input process, candidate pairing, similarity calculation and map creation.

In the first step, both KGs are processed and their entities are divided by their type
(class; property; instance). Every triple formed by subject, predicate and object is extracted
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if the predicate is a RDFS label. The Resource Description Framework (RDF) is a frame-
work for representing information in the Web [11] and RDFS is the schema used to model
RDF data. RDFS:label is an instance that provides a human-readable resource’s name [2].
If the subject of the triple is an URI, a new entity is created and it is identified by the ex-
tracted URI. The entity type is defined by analysing if the type name is contained in the URI.
Class, property and instance is identified by class, property and resource, respectively. For
example, http://dbkwik.webdatacommons.org/starwars.wikia.com/class/character
is an URI that identifies a class type entity; and http://dbkwik.webdatacommons.org/

starwars.wikia.com/resource/Anakin Skywalker is an URI that identifies an instance
type entity.

In the second step (candidate pairing), the method creates the list of candidate entities
for each entity from the source KG KS . For schema types (class and property), all target
candidates are considered as candidates. For instance type, locality-sensitive hashing is
used to create the list of candidate entities (cf. Subsection 4.1). All entities from target KG
KT are inserted to the hash H. After this process, each entity e from source KG KS query
hash H to retrieve the set of candidate entities E .

In the third step (similarity calculation), each pair of source entity and candidate entity
similarity is calculated. The similarity is calculated using entity name from URI. URI is
formed by three main components: scheme, authority and path. Only the path after the
type identifier is used to calculate the similarity. For example, http://dbkwik.webdata
commons.org/starwars.wikia.com/resource/Anakin Skywalker has http as scheme;
dbkwik.webdatacommons.org as authority; and starwars.wikia.com/resource/Anakin

Skywalker as path. The entity name used to calculate the similarity is Anakin Skywalker.
Our solution explored four different methods: Levenshtein, Jaro, Babelnet and Wordnet (cf.
Subsection 4.3 for the explored similarity methods).

In the fourth step (mapping creation), similarity values are aggregated by using the
LambdaMart method. Our solution generates the final classification (pair of entities ex-
pressing the mapping). Each source KG entity receives an alignment with the candidate
entity with the best classification. Alignments are filtered to remove multiple alignments
to the same entity from the target KG and below than a threshold (cf. Subsection 4.1).

4.1 Locality-sensitive Hashing

Broder [3] describes a min hash technique to identify almost duplicate web documents.
MinHash is an implementation of locality-sensitive hashing used to calculate a hash that
maintain similarity property. The proposal is that each document has a sketch of a few
hundred bytes consisting of a collection of shingle. Each shingle is formed by a continuous
substring of words that is converted into a unique numeric identifier based on polynomial
arithmetic of a given size. The size of the identifier defines the probability of collision
between documents. The document is then identified as a sequence of identifiers and the
similarity between two documents is given by the Jaccard distance of identifiers.

Figure 3 shows how min hash technique is used with an locality-sensitive hashing. In
this example, there are three entities described with three shingles. The set of entities is
converted to a matrix called characteristic matrix (A in figure 3). The characteristic matrix

http://dbkwik.webdatacommons.org/starwars.wikia.com/class/character
http://dbkwik.webdatacommons.org/starwars.wikia.com/resource/Anakin_Skywalker
http://dbkwik.webdatacommons.org/starwars.wikia.com/resource/Anakin_Skywalker
http://dbkwik.webdatacommons.org/starwars.wikia.com/resource/Anakin_Skywalker
http://dbkwik.webdatacommons.org/starwars.wikia.com/resource/Anakin_Skywalker
http
dbkwik.webdatacommons.org
starwars.wikia.com/resource/Anakin_Skywalker
starwars.wikia.com/resource/Anakin_Skywalker
Anakin_Skywalker
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Figure 2: Our mapping technique workflow

represents the presence of certain shingle inside each entity. It is 1 if the entity have the
shingle and 0, otherwise. The characteristic matrix is converted to a signature matrix using
min hashing (B in figure 3). First, random permutations of row index is created (represented
by α, β, γ). Second, the characteristic matrix is iterated using the permuted order and the
number of the permutation used to find the first 1 in the column is recorded in the signature
matrix. Each permutation fills a row inside signature matrix.

Figure 4 represents the step by step process to convert characteristic matrix to signature
matrix. In the example, first permutation is 1, 2, 3 (permutation α). The algorithm iterates
each row using permutation order. The first row is explored and the columns that have
value 1 are column 1 and column 3. In the signature matrix, the first row receives 1 in
the columns 1 and 3 (A in Figure 4). Continue the iteration through permutation. The
second row is examined and only column 3 has value 1. Only the first time 1 is found in
the column is recorded, so this entry is not recorded in the signature matrix (B in figure 4).
The last iteration examined the third row and columns 2 and 3 have value 1. The column
3 is ignored again and column 2 doesn’t have any value in the signature matrix, so the first
row in second column is filled with value 3 (C in 4). The next rows in the signature matrix
are filled with the permutations β and γ.

The last step is the creation of locality-sensitive hashing (C in Figure 3). The signature
matrix rows are divided in bands with same row size. Each signature part inside the band is
hashed and put in a bucket. Two entities, which creates at least one band signature creating
the same hash has more probability to be similar. In the example, signatures are divided
in three parts. In the first band, signatures 1 and 3 have same hash result, represented as
columns s1 and s3 in the signature matrix. This means that they are in the same bucket
for at least one bucket.

All entities in the target KG KT are recorded in the respective buckets. The entities
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Figure 3: Locality-sensitive Hashing (Adapted from Gupta [16])

from the source KG KS calculate hash in the same way, but they are not recorded. In this
case, the calculated hashes are used only to retrieve all entities in the same bucket.

The size of bands affects the chance of entities sharing the same bucket. If more bands
are created, there is less rows inside each band that leads to decrease possible buckets results.
It means it creates more false positive cases. If less bands are created than it creates more
false negative cases. This property can be used to set an approximated threshold. If the
similarity between two entities is greater than threshold, they are similar [16] [31]. Given n
that is the number of permutations and signature length, b is the number of bands, r is the
number of rows in each band and τ is the threshold. Equation 7 and 8 are used to decide
the number of bands and rows for a fixed number of permutation and threshold.

br = n (7)

τ ∼ (
1

b
)(

1
r
) (8)
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Figure 4: Process to convert Characteristic Matrix to Signature Matrix

4.2 Learning to Rank for the alignment of KGs

Figure 5 presents how learning to rank is applied to our study context. First, the rank
aggregation model is created using a training set (cf. A in Figure 5). Second, the pair of
source KG entity es and the target KG entity et have their similarity calculated for each
similarity method sim (cf. Subsection 4.3) and the triple (es, et, sim) is recorded as an
entry for the system (cf. B in Figure 5). Third, each entity of the source KG is used as a
query to retrieve all similarity entries that form different ranks for each similarity method
(cf. C in Figure 5). In the last step, retrieved ranks are aggregated using the trained model
and return one rank as result (cf. D in Figure 5).

Figure 5: Learning to Rank technique applied to our approach (based on [10])

Learning to Rank techniques like lambdaMart [5] are supervised learning tasks. It needs
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training and testing phases. In the training phase, a model is created to be used later to
aggregate ranks (cf. A in figure 5). The training data is consisted of queries set Q as a set
of documents to be retrieved D and a set of possible labels Y . The training set S is formed
by triples (qi, dj , yij), where q ∈ Q, d ∈ D and y ∈ Y . The set Y = 1, 2, ..., n;n ∈ N is
the relevance of the document di for the query qj . The process to put relevance to the pair
query and document is analogous to the labeling in other techniques.

In our approach, a set of queries Q is formed by URI from source KG’s entities; the set
of retrieved documents D is formed by candidate entities from target KG’s entities; and the
set of labels Y receives a value according to the presence of the pair in the gold standard. If
the pair (ei, ej) is in the gold standard, the triple (qi, dj , yij) receives values (ei, ej , 1); and
the triple receives value (ei, ej , 0) if not present.

The training model creates an ranking model f(q, d) = f(x) that assigns a score to
a given pair query and document. For a set, the training model creates a ranking model
F (q,D) = F (X) that returns a list of scores that can be converted to a ranking of documents
using the score from f(q, d) to sort the documents D [28]. In our approach, the model creates
a ranking model F (ei, C) = F (X), where ei is an entity from source KG and C is the set
of candidate entities from target KG. This model is used to sort all candidate entities for a
certain entity from source KG.

4.3 Similarity Techniques

Our proposed technique explores four method for similarity computation to generate rank-
ings to be aggregated.

• Levenshtein similarity, also known as edit distance, between two strings is the minimal
number of insertions, deletions and replacements to make two strings equal [30].

• Jaro similarity between two string is shown in equation 9, where m is the number of
matching characters, t is the number of transposition, |s1| and |s2| are string length.

Jaro(s1, s2) =
1

3
(
m

|s1|
+

m

|s2|
+
m− t
m

) (9)

• Path-similarity is based on WordNet synset, as groups of synonymous words. The
similarity between two terms is the shortest path that connects the senses in the
“is-a” taxonomy.

• Weighted Overlap is based on NASARI vector constructed using WordNet synsets and
Wikipedia pages [6]. Given a pair of words wi and wj the algorithm checks if they
are synonym, returning maximum similarity score if true. If they are not synonym,
it gets their respective NASARI vector and calculates weighted overlap synonym.
Weighted Overlap sorts the elements of each vector and harmonically weights the
overlap between two vectors. Equation 10 defines weighted overlap for two vectors vi
and vj , where O is the set of overlapping dimensions between the vectors and rjq is
the rank of dimension q in the vector vj .
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WO(vi, vj) =

∑
q∈O(riq + rjq)−1∑|O|

k=1(2k)−1
(10)

5 Experimental Evaluation

Our goal is to analyze the quality of mappings generated in our approach for KG align-
ment. In the developed experiments, we used datasets from the OAEI (Ontology Alignment
Evaluation Initiative) – Knowledge Graph Track released on 20197. Datasets were created
running DBpedia extraction framework on Wikis from Fandom Wiki hosting platform [17].
Each instance entity is created from an wiki page and one triple is created for each entry
in an infobox [18]. Table 1 describes statistics from the datasets used in our experimental
evaluation. The source column have the name of the KG and the acronym used in this
work.

Table 1: Statistics of Knowledge Graphs [17]

Source Hub Topic # Instances # Properties # Classes

Star Wars Wiki (SWW) Movies Entertainment 145,033 700 269

The Old Republic Wiki (TOR) Games Gaming 4,180 368 101

Star Wars Galaxies Wiki (SWG) Games Gaming 9,634 148 67

Marvel Database (MDB) Comics Comics 210,996 139 186

Marvel Cinematic Universe Wiki (MCU) Movies Entertainment 45,828 325 181

Memory Alpha (MAL) TV Entertainment 45,828 325 181

Star Trek Expanded Universe (STX) TV Entertainment 13,426 202 283

Memory Beta (MBT) Books Entertainment 51,323 423 240

The mappings created by our proposed approach were compared with the gold standard
offered by OAEI – Knowledge Graph Track (2019 edition). The schema level maps were
created by experts. Instance level maps were extracted using links present in sections with
header containing “link” to corresponding page of another wiki (e.g. “External links”),
removing all links where the source page linked to more than one page in another wiki and
multiple links to the same concepts to ensure injectivity. The gold standard is a partial gold
standard, because it does not contain all correct matches. Trivial match is an exact string
match of the label and non-trivial match is when string match is not exact [20]. Table 2
describes statistics of the gold standard used in our experiments.

The learning process used 100% of the mappings to training and validation between
the datasets Star Wars Wiki and Star Wars Galaxies Wiki; Star Wars Wiki and The Old
Republic Wiki; Memory Alpha and Memory Beta; and Memory Alpha and Star Trek Ex-
panded Universe. Mappings between Marvel Cinematic Universe and Marvel Database
were isolated to be used as evaluation set. To this end, we applied our solution to them
and analyzed the results based on objective metrics.

MinHash Locality-sensitive hashing used 256 permutation, threshold of 0.75 and each
entity were converted to a set of trigrams of entity name to hash. Trigram is a sequence of
three consecutive character.

7http://oaei.ontologymatching.org/2020/knowledgegraph/index.html
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Table 2: Gold Standard statistics [20]

Mapping
Class Matches Property Matches Instance Matches

Total Non-trivial Total Non-trivial Total Non-trivial

SWW-SWG 5 2 20 0 1,096 528

SWW-TOR 15 3 56 6 1,358 220

MCU-MDB 2 0 11 0 1,654 726

MAL-MBT 14 10 53 4 9,296 2,140

MAL-STX 13 6 41 3 1,725 274

We used three metrics to evaluate the results: Precision, Recall and F-Measure. These
metrics were used by comparing results obtained by our approach and expected results from
the gold standard. Precision is defined as the relation between the number of correctly
identified mappings and the number of identified mapping (Formula 11).

Precision =
#IdentifedAndCorrectMappings

#IdentifiedMappings
(11)

Recall is defined as the relation between the number of correctly identified mappings
and the number of expected mappings (Formula 12).

Recall =
#IdentifedAndCorrectMappings

#CorrectMappings
(12)

F-measure is the harmonic mean of precision and recall (Formula 13).

F −Measure =
2× Precision×Recall
Precision+Recall

(13)

Table 3 presents the obtained results in terms of precision, recall and f-measure for
schema type. In the class type, we achieved precision higher than 0.5 in the datasets
“Star Wars Wiki” and “Star Wars The Old Republic Wiki” (SWW-TOR). In the datasets,
“Memory Alpha - Memory Beta” (MAL-MBT) and “Memory Alpha and Star Trek Ex-
panded Universe” (MAL-STX), our solution presented recall lower than 0.9. The class
matching for “Memory Alpha” had more Non-trivial mapping compared to other data sets,
so it leads to lower recall. In the analysis of the mappings regarding the properties, all
datasets presented precision near 0.5 and recall higher than 0.9.

Table 4 presents the results for the mappings connecting the instances of the KGs.
All datasets presented low precision, but achieved a recall higher than 0.7 except “Marvel
Cinematic Universe - Marvel Database” (MCU-MDB) and “Star Wars Wiki and Star Wars
Galaxies” (SWW-SWG).

Figures 7 and 8 compare our approach to the baseline matchers offered by OAEI Knowl-
edge Graph Track organization. The baseline matcher used the label for each entity to create
a mapping. The baseline matcher matches all resources which share the same rdfs:label. The
baseline Alt Label additionally uses skos:altLabel as predicate. Both baseline matchers used
cross product for all resources that have common label.
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Table 3: Mapping results for schema-type entities applying our solution

Mapping Type Precision Recall F-measure

SWW-
SWG

class 0.385 1.000 0.556
property 0.435 1.000 0.606

SWW-
TOR

class 0.515 0.944 0.667
property 0.514 0.966 0.671

MCU-
MDB

class 0.222 1.000 0.364
propety 0.611 1.000 0.759

MAL-
MBT

class 0.217 0.333 0.263
property 0.559 0.963 0.707

MAL-
STX

class 0.307 0.571 0.400
property 0.549 0.975 0.703

Table 4: Mapping results for instance-type entities applying our solution

Mapping Precision Recall F-measure

SWW-SWG 0.337 0.494 0.400

SWW-TOR 0.273 0.746 0.400

MCU-MDB 0.357 0.460 0.403

MAL-MBT 0.298 0.739 0.425

MAL-STX 0.228 0.794 0.354

KGs is represented as RDF formed by triples (subject, predicate, object) and data from
RDF can be retrieved matching those triples. Baseline matchers query for all triples in
the KG that match predicate and rdfs:label or skos:altLabel. Each entity is a subject in
the triple and the object is used to match entities. Figure 6 shows an example of triple
that matches predicate and rdfs:label extracted from Marvel Database (MDB) 8. In this
example, http://dbkwik.webdatacommons.org/marvel.wikia.com/resource/Char

les Weiderman (Earth-616) is the subject, the predicate is rdfs:label and the object is
Charles Weiderman (Earth-616).

Our approach and both baselines found all class mappings. Our approach found some
false positive classes, so it lowered precision and f-measure. Our approach found all proper-
ties mapped and baseline found 36%, but all mapping found by baseline is correct. Overall,
our approach exceeded baseline for properties. Figure 7 shows the results obtained by our
approach and the baseline matchers for schema-type entities mapping in “Marvel Cinematic

Figure 6: RDF XML example removed from Marvel Database (MDB)

8http://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v3/suite/marvelc

inematicuniverse-marvel/component/target/

http://dbkwik.webdatacommons.org/marvel.wikia.com/resource/Charles_Weiderman_(Earth-616)
http://dbkwik.webdatacommons.org/marvel.wikia.com/resource/Charles_Weiderman_(Earth-616)
http://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v3/suite/marvelcinematicuniverse-marvel/component/target/
http://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v3/suite/marvelcinematicuniverse-marvel/component/target/
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Universe” (MCU) and “Marvel Database” (MDB).

Figure 7: Comparison between our results and competition base line for schema-type entities
in “Marvel Cinematic Universe” (MCU) and “Marvel Database” (MDB) mappings.

Figure 8 shows results for instance-type entities in “Marvel Cinematic Universe” (MCU)
and “Marvel Database” (MDB). Baseline matcher presents better precision for all cases, but
for recall the result is mixed. Our approach had better recall for property, same recall for
class and worst for instance.

6 Discussion

This investigation aimed to create mappings between KGs based on rank aggregation meth-
ods. Our results by experimenting our approach showed high recall for schema-type, but
penalized the precision. For instance level type of entities, our approach presented low
precision and acceptable recall.

The main difference between schema-type and instance-type mapping generations is in
how candidate entities was created. Our approach used all entities as candidate entities for
schema-type, but candidate entities is filtered using locality-sensitive hashing for instance
type. For instance-type, it is not possible to use cross-product approach to compare entities,
because the number of instance-type entities is very large, so it needs to reduce the quantity
of comparisons. For this reason, we were unable to calculate similarity for all possible pair.
This difference is more clear for SWW-SWG and MCU-MDB, because both datasets have
proportionally more non-trivial mappings than others.

Our approach found false positive mappings which affected the precision for almost all
datasets studied. The explored gold standard is based on links created by Wiki community
in the page where entities were extracted. It means that the presence of mapping between
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Figure 8: Comparison between our results and competition base line for instance-type
entities in “Marvel Cinematic Universe” (MCU) and “Marvel Database” (MDB) mappings.

entities depends on the interest of the community to enrich those pages. For example,
“Marvel Database” has the entity identified by http://dbkwik.webdatacommons.org/ma

rvel.wikia.com/resource/Iron Man 2: The Official Movie Storybook and “Marvel
Cinematic Universe” has the entity identified by http://dbkwik.webdatacommons.org/

marvelcinematicuniverse.wikia.com/resource/Iron Man 2: The Official Movie Sto

rybook. Our approach created a mapping between both entities, but it is not contained in
the gold standard.

Another case of false positive was caused by different specificities of the entities. In this
case, the matcher creates new mappings between an entity and the more general entity, but
the correct mapping was for the more specific entity. For example, our technique created a
mapping between “Michael Duffy” from “Marvel Cinematic Universe” and “Michael Duffy”
from “Marvel Database”. However, the correct answer was between “Michael Duffy” from
“Marvel Cinematic Universe” and “Michael Duffy (Earth-616)” from “Marvel Database”.

Our approach found mapping with good recall for most cases in schema-type entities.
With property, it exceeded base line recall. Our approach uses learning to rank technique
that can be improved with more similarity techniques to aggregate ranking and more dataset
without changing code structure.

7 Conclusion

The alignment of KGs remains an open research challenge. In this work, we proposed
an approach based on rank aggregation and locality-sensitive hashing to create mappings
between distinct KGs. Our approach used the entity URI to extract the set used to explore

http://dbkwik.webdatacommons.org/marvel.wikia.com/resource/Iron_Man_2:_The_Official_Movie_Storybook
http://dbkwik.webdatacommons.org/marvel.wikia.com/resource/Iron_Man_2:_The_Official_Movie_Storybook
http://dbkwik.webdatacommons.org/marvelcinematicuniverse.wikia.com/resource/Iron_Man_2:_The_Official_Movie_Storybook
http://dbkwik.webdatacommons.org/marvelcinematicuniverse.wikia.com/resource/Iron_Man_2:_The_Official_Movie_Storybook
http://dbkwik.webdatacommons.org/marvelcinematicuniverse.wikia.com/resource/Iron_Man_2:_The_Official_Movie_Storybook
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locality-senstive hashing and similarities. We explored the hashing and four similarity
techniques to create independent rankings that were aggregated using learning to rank
techniques (in particular, we explored lambdaMart). We implemented the proposal and
carried out experiments using OAEI competition datasets. Our solution was able to found
most of mappings between schema level entities (good recall) although improvements are
needed in terms of precision. Future work involves exploring more information from entities
to get better results for hashing. We plan to explore other similarity techniques that do not
use string as the main component. We also plan to experiment our solution with additional
datasets.
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