2

4

4

LLVM - Implementando um
Pragma OpenMP

F. 0. Emos G. C. S. Araujo

Relatério Técnico - |IC-PFG-19-47
Projeto Final de Graduagdo
2019 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

LLVM - Implementando um Pragma OpenMP

Felipe de Oliveira Emos * Guido Costa Souza de Araujo'

Resumo

Por diversos interesses tanto empresariais quanto académicos, o compilador LLVM
é hoje um dos compiladores mais relevantes que existe. Modificar e adaptar o cédigo do
LLVM, seja qual for o motivo, é uma tarefa que vem se tornando cada vez mais comum
para pesquisadores e desenvolvedores da &rea.

Infelizmente, tal tarefa ndo é tao convidativa quanto poderia ser. O LLVM é um
projeto muito grande e rebuscado e por mais que exista a documentacao oficial, ela se
preocupa muito mais em enumerar e descrever os compontentes do compilador do que
em propriamente explicar os funcionamentos se suas partes. Materiais de apoio (que
explicam tais funcionamentos) existem e inclusive vérios deles sao oficiais do LLVM,
mas eles sao focados ou nas partes mais gerais do compilador ou nos primeiros passos
de um iniciante na plataforma. Existe uma caréncia de explicacdo mais detalhada para
algumas partes mais especificas do LLVM.

O projeto "LLVM - Implementando um Pragma OpenMP”foi a confeccao de um
material didatico explicativo. A ideia do material é facilitar o trabalho de qualquer um
que queira se aventurar na exploracao de uma parte especifica do compilador LLVM,
que sao as partes do Clang que dizem respeito as anotagoes ”Pragma”da interface de
programacao ”OpenMP”.

1 Introducao

Compiladores como LLVM ou GCC sao cédigos de alta performance, ou seja, a natureza da
aplicacao impoe a eles um enorme incentivo para que sejam o mais otimizados o possivel.
Qualquer otimizacao em seus funcionamentos resulta em um impacto consideravel na velo-
cidade de producao de software.

Eis entao o dilema entre fazer um cédigo de boa compreeensao/manutencao ou fazer o
c6digo mais rapido possivel. Claro, na maioria das vezes um nao impede o outro, mas se
tratando de cédigos assim tao grandes como o LLVM ¢ inevitavel que ocorram estruturagoes
um tanto quanto confusas “for the sake of optimization”. A proépria escolha da linguagem
desses compiladores, C para o GCC e C++ para o LLVM, revela a natureza da preocupacao
com performance, visto que estas sao algumas das linguagens de alto nivel mais rapidas que
se conhece.

*felipe.emos.computacao@gmail.com
'Inst. de Computacio, UNICAMP, 13083-852 Campinas, SP. guido@ic.unicamp.br

2 Emos, Guido

O problema ocorre quando se abre mao demais da compreensao e o cédigo se torna o
oposto de convidativo. Estamos muito acostumados a subestimar o fator humano, entre-
tanto é um fato que a qualidade de cédigo é importantissima e nao deveria ser deixada de
lado. O GCC, por exemplo, é famoso por ter um cédigo bastante selvagem para os aven-
tureiros iniciantes. Mesmo os aventureiros mais experientes acabam evitando modificar o
GCC, ja que é possivel sofrer bem menos e obter praticamente o mesmo resultado desejado
em uma modificacdo do LLVM. O LLVM ¢é mais modular, tem orientagao a objetos, tem um
bom tutorial para iniciantes e tem uma grande comunidade ativa e bastante convidativa,
conhecida por sua rapida resposta a emails de novatos.

Este ¢ um bom exemplo em que o grau de convidatividade do cédigo e a qualidade do
c6digo se mostram fatores decisivos na selecdo natural que ocorre entre softwares, no caso
LLVM e GCC. Por enquanto o GCC ainda vive (muito por uma questao de legado), porém
em certos ambientes, como por exemplo a pesquisa académica, o LLVM parece que ja venceu
a batalha. B preciso boa convidatividade para que novos desenvolvedores e pesquisadores se
engajem e modifiquem o cédigo com facilidade, contribuindo para a evolucao da plataforma
ao longo prazo. Este é um fator humano muito forte e, para os softwares, é uma questao de
sobrevivéncia.

Dada a importancia desta questao, é preciso dizer que o LLVM néao é perfeito, C++
ainda é uma linguagem bastante verbosa e um certo grau de "nao convidatividade”beira
o inevitavel. Colocando em perspectiva, hoje o c¢6digo do GCC contém aproximadamente
5 milhoes de linhas de cédigo e o LLVM contém 1.6 milhdes de linhas de cédigo [2]. Esta
quantidade impensavel de linhas de c6digo pode ser mais ou menos convidativa, mas é fato
que sua compreensao ainda serd bastante trabalhosa. O LLVM nao é um mar de rosas.

2 Objetivo

O objetivo deste trabalho ” LLVM - Implementando um Pragma OpenMP”vai nesse sentido
de facilitar a compreensao do compilador, se atendo a uma parte especifica do LLVM: as
anotagoes Pragma OpenMP. O LLVM ja tem materiais de apoio para facilitar o desen-
volvedor novato, como por exemplo o famoso tutorial ” Getting Started”, da pagina inicial
do compilador [3]. Infelizmente, gracas a grande escala do compilador, eles acabam tendo
um escopo bastante reduzido em relacao ao todo. Outro ponto importante é que a docu-
mentagao do LLVM (também por uma questao da grande escala de seu c6digo) se preocupa
mais em enumerar e descrever as diversas partes do compilador, se atentando bem menos a
explicar os funcionamentos das pecas.

Um documento que explicasse a mecanica de um Pragma OpenMP foi uma necessidade
que os autores deste trabalho sentiram durante um outro projeto de pesquisa, feito pela
UNICAMP em parceria com a empresa IBM no ano de 2018. A falta de experiéncia em
LLVM do pesquisador, que ¢é algo perfeitamente esperado de um comeco de projeto de
pesquisa, se combinou & falta de um tutorial que tangesse tal pedago do Clang/LLVM.
O resultado foi que muito tempo e recursos valiosos foram gastos em questoes puramente
técnicas de especificidades do LLVM. Julgou-se depois que isso foi desnecessario, ja que
bastaria ter em maos um bom mapa que a histdria teria sido diferente.

LLVM - Implementando um Pragma OpenMP 3

Este documento didatico agora estd feito, o mapa estd disponivel para consulta e espera-
se que ele seja compreensivo o suficiente para que outros nao tenham que passar pelo mesmo
esforco dos autores. O trabalho que vocé estd lendo é apenas um relatorio sucinto sobre a
confeccao de tal documento, é como um reconhecimento (na forma de relatério) de que ele foi
feito e existe. As especificidades técnicas do LLVM, que estao no escopo do documento, nao
serao explicadas aqui. O leitor interessado deve sentir-se convidado a examinar o documento
didético por si s6. O link estd ao final do relatério, na sessao de ”Referéncias”: "LLVM -
Implementando um Pragma OpenMP”[I].

3 Conclusao

A diferenca que um material diddtico como este pode fazer nao é algo que deve ser su-
bestimado. Por exemplo, a NVIDIA fez uma apresentacao chamada Targeting GPUs with
OpenMP/.5 Device Directives [4] na GPU Technology Conference de 2016. Tal apresentagao
foi de fundamental importancia para a pesquisa dos autores, feita em parceria com a IBM
e que acabou inspirando este projeto de material didatico. O estudo, dentre outras coisas,
envolvia offloading de cédigos OpenMP usando Clang. Nenhum outro material didético
encontrado na época explicava com clareza o que era preciso ser feito para que o offloa-
ding funcionasse corretamente. O pedaco da apresentacao que foi verdadeiramente valioso
foi bem pequeno, coisa de poucas linhas, porém estas poucas linhas de especificidades do
Clang/OpenMP facilmente se perdem no mar das documentagoes e, se nao fosse a apre-
sentacao da NVIDIA, existiria ali um bom potencial de perda de tempo e recursos.

Em um cédigo de 1.6 milhoes de linhas, é de se esperar que muita coisa nao precise
de uma documentacao explicativa, o codigo é autoexplicativo. Entretanto, também é de se
esperar que varias linhas de cédigo que precisam ficarao desamparadas em documentagao.

Na prética, quem mexe com esses trechos de cédigo mais especificos (como por exemplo
os Pragmas do OpenMP) costuma ser alguém experiente em LLVM e esta pessoa terd
facilidade na compreensao e nao ird se dar o trabalho de descrever cautelosamente o seu
funcionamento para os outros. E bastante natural que aquele que esta mais apto a produzir
um documento explicativo é também aquele que menos precisa de um. Logo, a menos que
exista um incentivo muito grande para a criacao de um documento mais detalhado, que é
o caso dos materiais de apoio sobre as partes mais gerais e importantes do compilador, ou
mesmo sobre os primeiros passos que um iniciante deve tomar (como o tutorial ”Getting
Started” [3]), dificilmente alguém competente ird dedicar seu tempo precioso para criar um
tutorial de LLVM. O resultado é que partes especificas do compilador ficam desamparadas
de explicacao.

Por esses motivos, dificilmente alguém que tenha explorado esta parte do LLVM faria
um tutorial como este. Mas, agora que ele existe, talvez seja de boa valia para alguém
no futuro. Provavelmente serd, ji que avaliando apenas a UNICAMP as pesquisas em
LLVM se mostram bastante promissoras e atrativas. As perspectivas de modificacoes do
LLVM/Clang sao boas e oportunidades de pesquisa no assunto se projetam em fartura.

4 Emos, Guido
Referéncias
[1] Documento Didético - LLVM - Implementando um Pragma OpenMP
https://drive.google.com/file/d/1S4A3zcNHhY Y Lenn55hvs VmbUiolr07jC /view?usp=sharing
[2] How much does a compiler cost?, An analysis by David A Wheeler’s SLOCCount.
https://www.embecosm.com/2018/02/26 /how-much-does-a-compiler-cost/
https://dwheeler.com/sloccount /
[3] LLVM Documentation, Getting Started/Tutorials.
https://llvm.org/docs/GettingStarted Tutorials.html
[4] NVIDIA Presentation, Targeting GPUs with OpenMPJ4.5 Device Directives.

http://on-demand.gputechconf.com/gtc/2016 /presentation/s6510-jeff-larkin-
targeting-gpus-openmp.pdf

https://www.youtube.com/watch?v=4nusBV3gWJc

LLVM - Implementing

an OpenMP Pragma
- Overview

Parse Pragmas

Pragmas are analysed using a class called
PragmaHandler

This is for all pragmas, it’s not OpenMP
specific

PragmaHandlers are initialized and defined in
the file ParsePragma.cpp

@

ParsePragma.cpp

g & ParsePragma.cpp >

void Parser::initializePragmaHandlers() { This variable is true

if the flag
“-fopenmp”
was used during
compilation

These driver options
are defined in the file
“Driver/Options.td”

Driver/Options.td

1568 def fopenmp : Flég<["—"], "fobenmp">, Group<f_Group$, Flags<[CC10ption, NoArgumentUnused]>,
1501 HelpText<"Parse OpenMP pragmas and generate parallel code.">;

ParsePragma.cpp

Handler when
compiled with

flag
“-fopenmp”

Handler when
compiled without
flag

“-fopenmp”

@

ParsePragma.cpp

@

ParsePragma.cpp

)

PragmaHandler
objects are used
mainly through their
method
‘“‘HandlePragma” this
is the important part.

So the proper way to
do this is to derive
your new handler
from the
“PragmaHandler”
class and define your
own “HandlePragma”
method.

‘@

ParsePragma.cpp

struct PragmaOpenMPHandler : public PragmaHandler {

b

PragmaOpenMPHandler() : PragmaHandler("omp") { }
*

void HandlePragma(
Preprocessor &PP,
PragmalntroducerKind Introducer,
Token &FirstToken) override;

[§

Identifier Ex:
ofthe #pragmalD
pragma #pragmaomp

Actual computation of
tokens.

struct PragmaNoOpenMPHandler : public PragmaHandler {

PragmaNoOpenMPHandler() : PragmaHandler("omp'") { }

void HandlePragma(
Preprocessor &PP,
PragmalntroducerKind Introducer,
Token &FirstToken) override;

This is called when
clang encounters a
“#pragma omp”

This is just the

v

signature of the
method. The

definition is also
in this file. ..

1521
1522

1523 [oid
1524 [FEULEITIIINERGARTY: : Hand lePragma(Preprocessor &PP,

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547 }

PragmalntroducerKind Introducer,
Token &FirstTok) {
SmallVector<Token, 16> Pragma;
Token Tok;
Tok.startToken();
Tok.setKind(tok::annot_pragma_openmp);
Tok.setlLocation(FirstTok.getlLocation());

(Tok.isNot(tok::eod)) {

Pragma.push_back(Tok);

PP.Lex(Tok);
}
Sourcelocation EodlLoc = Tok.getlLocation();
Tok.startToken();
Tok.setKind(tok::annot_pragma_openmp _end);
Tok.setLocation(EodLoc);
Pragma.push_back(Tok);

auto Toks = 1lvm::make unique<Token[]>(Pragma.size());

std::copy(Pragma.begin(), Pragma.end(), Toks.get());

PP.EnterTokenStream(std: :move(Toks), Pragma.size(),
false);

ParsePragma.cpp

1521

1522

153 Mo ParsePragma.cpp
1524 [FEULEITIIINERGARTY: : Hand lePragma(Preprocessor &PP,

1525 PragmalntroducerKind Introducer,

1526 Token &FirstTok) {

1527 SmallVector<Token, 16> Pragma;
1528 Token Tok;

1529 Tok.startToken(); .
1530 Tok.setKind(tok::annot_pragma_openmp) ; -« Tokenthatrepresents.

1531 Tok.setlLocation(FirstTok.getlLocation()); #pragma omp

1532
1533 (Tok.isNot(tok::eod)) {
1534 Pragma.push_back(Tok);

Get the next
Token from Lexer

1535 PP . L X (T 0 K) ;<
1536 1}

1537 Sourcelocation EodlLoc = Tok.getlLocation();

B [ok-sta rt.TOKen()i Token that marks the end of
1539 Tok.setKind(tok::annot_pragma_openmp_end) ; < raoma
1540 Tok.setlLocation(EodLoc); prag

Pragma.push_back(Tok);

1543 auto Toks = 1llvm::make _unique<Token[]>(Pragma.size());
1544 std::copy(Pragma.begin(), Pragma.end(), Toks.get());
1545 PP.EnterTokenStream(std: :move(Toks), Pragma.size(),

1546 false);

1521

1522

1593 Woid ParsePragma.cpp
1524 [HELIENERLIMENA): : Hand lePragma(Preprocessor &PP,

1525 PragmalntroducerKind Introducer,

1526 Token &FirstTok) {

1527 SmallVector<Token, 16> Pragma
1528 Token Tok;

1529 Tok.startToken(); Creates a SmallVector
1530 Tok.setKind(tok::annot_pragma_openmp); Pragma
1531 Tok.setlLocation(FirstTok.getlLocation());

1532

1533 (Tok.isNot(tok::eod)) {

1534 Pragma push_back(Tok); AH TOken.S are pU_ShEd
1535 PP.Lex(Tok); to this vector

1536 }

1537 SourcelLocation EodLoc = Tok.getLocation();

1538 Tok.startToken(); The vector is copyed
1539 Tok.setKind(tok::annot_pragma_openmp_end);

1540 Tok.setlLocation(EodLoc); and passed to (PP)
Pragma. push_back(Tok); PreproceSSO]f,S

1543 auto Toks = llvm::make unique<Token[]l>(Pragma.size()); TokenStream
1544 std::copy Pragma begin(), Pragma.end(), Toks.get());
PP.EnterTokenStream(std: :move(Toks), Pragma size(),

false);

Parse OpenMP

Although the pragma handlers deal with OpenMP pragmas,
their job is pretty much to pass on the computation to other
parts of Clang. How this computation is structured and
executed is what’s coming next in this document.

The OpenMP definitions are mostly contained within the
files of OpenMPKinds

We’ll take a look at OpenMPKinds, but before that it’s
important to get ourselves comfortable with a recurrent
construct in Clang: the Definition Files and how their
inclusion affects the code

Definition files

In clang you will find definition files being
used many times

Usually the code that includes the definition
file looks like this:

OpenMPKinds.h . o
First there are definitions of macros
22

23 enum OpenMPDirectiveKind { that are gOIHg tO be used’ They Work

24 #define OPENMP DIRECTIVE(Name) \ 1 (£)
R like a “filter”.
26 #define OPENMP _DIRECTIVE EXT(Name, Str) \

27 OMPD_##Name, . « o .
28 #include "clang/Basic/OpenMPKinds.def" Then the fl]-e 1S lnCIUded and COde 1S

g, generated through the macro.

OpenMPKinds.h . o
First there are definitions of macros
22

23 enum OpenMPDirectiveKind { that are gOIHg tO be used’ They Work

24 #define OPENMP DIRECTIVE(Name) \ 1 (£)
R like a “filter”.
26 #define OPENMP _DIRECTIVE EXT(Name, Str) \

27 OMPD_##Name, . o o .
28 #include "clang/Basic/OpenMPKinds.def" Then the fl]-e 1S lnCIU-ded and COde 1S

g, generated through the macro.

, Many of the lines in the definition
OpenMPKinds.def file will be matched with the macro.

OpenMPKinds.h . o
First there are definitions of macros

enum OpenMPDirectiveKind { that are gOIHg tO be used' They Work

#define OPENMP DIRECTIVE(Name) \ 1 (£)
e like a “filter”.
#define OPENMP DIRECTIVE EXT(Name, Str) \

OMPD ##Name, . e e .
#include "clang/Basic/OpenMPKinds.def" Then the fl]-e 1S lnCIU-ded and COde 1S

g e generated through the macro.

All this is only possible because of
those countless #ifndef placed at
the beginning of the definition file,
#ifndef OPENMP DIRECTIVE .
define OPENMP DIRECTIVE (Name) they define blank macros for all of
#endif 1111+ (£)
L e e e those definitions out of the “filter”,
#define OPENMP_DIRECTIVE EXT(Name, Str) therefore they are “erased” and do

#endif
- not generate code.

OpenMPKinds.def

OpenMPKinds.h

22

23 enum OpenMPDirectiveKind {

24 #define OPENMP DIRECTIVE(Name) \

25 OMPD_##Name,

26 #define OPENMP DIRECTIVE EXT(Name, Str) \

27 OMPD_##Name,

28 #include "clang/Basic/OpenMPKinds.def"
PAS OMPD unknown

30 };

OpenMPKinds.def

In summary, what is going on?

When OpenMPKinds.h includes the
definition file, many of the lines in
OpenMPKinds.def will be matched with
the #define macros and we’ll get the
desired effect, which in this case is to
populate the “enum” with all the
definitions of OpenMP directives

OpenMPKinds.h

22

23 enum OpenMPDirectiveKind {

24 #define OPENMP DIRECTIVE(Name) \

25 OMPD_##Name,

26 #define OPENMP DIRECTIVE EXT(Name, Str) \

27 OMPD_##Name,

28 #include "clang/Basic/OpenMPKinds.def"
PAS OMPD unknown

30 };

OpenMPKinds.def

Tip: Attention is key

If at some point an error or strange behaviour
happens and it has something to do with the
variable “OMPD__parallel”, before you start
your depuration journey, think for a moment:

Does this variable exist on the code?

Well, it doesn’t, don’t waste your time looking
for it. It was created during compilation time.

Be careful

It’s not always that this technique of macro (“filter”) and inclusion
uses a definition file from source.
Sometimes the definition file is generated during compilation.

59

60 Initialized = 1 C

61 #define ABSTRACT_STMT(STMT)
62 #define STMT(CLASS, PARENT) \

63 StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
64 StmtClassInfo[(unsigned)Stmt: :CLASS##Class].Size (CLASS) ;
65 #include "clang/AST/StmtNodes.inc”

66

StmtNodes.inc doesn’t exist in clang’s code, don’t waste your time
looking for it.

Be careful
The rule of thumb is:

if the definition file has extension “.def”, then it is somewhere in
source code.

if the definition file has extension “.inc”, then it was generated
during compilation time and it is located inside the build
directory of your choice.

All “.inc” are generated based on a “.td” file of the same name.
All “.td” are source files, so modify “.td” in order to modify the
“.inc” that will be generated during compilation

StmtNodes.td

200 // Directives.

201
202
VALK
204
205
206
207
208
209
ALY
AN
212
213
214
215
216
217
218

def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def

OMPExecutableDirective : Stmt<1>;

OMPLoopDirective : DStmt<OMPExecutableDirective, 1>;
OMPParallelDirective : DStmt<OMPExecutableDirective>;
OMPSimdDirective : DStmt<OMPLoopDirective>;
OMPForDirective : DStmt<OMPLoopDirective>;
OMPForSimdDirective : DStmt<OMPLoopDirective>;
OMPSectionsDirective : DStmt<OMPExecutableDirective>;
OMPSectionDirective : DStmt<OMPExecutableDirective>;
OMPSingleDirective : DStmt<OMPExecutableDirective>;
OMPMasterDirective : DStmt<OMPExecutableDirective>;
OMPCriticalDirective : DStmt<OMPExecutableDirective>;
OMPParallelForDirective : DStmt<OMPLoopDirective>;
OMPParallelForSimdDirective : DStmt<OMPLoopDirective>;
OMPParallelSectionsDirective : DStmt<OMPExecutableDirective>;
OMPTaskDirective : DStmt<OMPExecutableDirective>:
OMPTaskyieldDirective : DStmt<OMPExecutableDirective>;
OMPBarrierDirective : DStmt<OMPExecutableDirective>;
OMPTaskwaitDirective : DStmt<OMPExecutableDirective>;

This file
generates ...

StmtNodes.inc

#ifndef OMPEXECUTABLEDIRECTIVE

define OMPEXECUTABLEDIRECTIVE(Type, Base) STMT(Type, Base)

#endif

@PSTRACT_STMT(OMPEXECUTABLEDIRECTIVE(OMPExecutableDirective, Stmt))

#ifndef OMPATOMICDIRECTIVE

define OMPATOMICDIRECTIVE(Type, Base) OMPEXECUTABLEDIRECTIVE(Type, Base)
#endif

OMPATOMICDIRECTIVE(OMPAtomicDirective, OMPExecutableDirective)

#undef OMPATOMICDIRECTIVE

#ifndef OMPBARRIERDIRECTIVE

define OMPBARRIERDIRECTIVE(Type, Base) OMPEXECUTABLEDIRECTIVE(Type, Base)
#endif

OMPBARRIERDIRECTIVE(OMPBarrierDirective, OMPExecutableDirective)

#undef OMPBARRIERDIRECTIVE

OpenMPKinds

Now that you understand how Clang uses this
technique of inclusion of definition files, let’s have a
look at the definition file OpenMPKinds.def:

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
Re
195
196
197
198
199

// OpenMP directives.

OPENMP DIRECTIVE(threadprivate)
OPENMP DIRECTIVE(parallel)
OPENMP DIRECTIVE(task)
OPENMP_DIRECTIVE(simd)
OPENMP DIRECTIVE(for)
OPENMP DIRECTIVE(sections)
OPENMP DIRECTIVE(section)
OPENMP DIRECTIVE(single)
OPENMP DIRECTIVE(master)
OPENMP DIRECTIVE(critical)
OPENMP DIRECTIVE(taskyield)
OPENMP DIRECTIVE(barrier)
OPENMP DIRECTIVE(taskwait)
OPENMP DIRECTIVE(taskgroup)
OPENMP DIRECTIVE(flush)
OPENMP DIRECTIVE(ordered)
OPENMP DIRECTIVE(atomic)
OPENMP DIRECTIVE(target)
OPENMP DIRECTIVE(teams)
OPENMP_ DIRECTIVE(cancel)

OPENMP DIRECTIVE EXT(target data, "target
OPENMP DIRECTIVE EXT(target enter data,
OPENMP DIRECTIVE EXT(target exit data,
OPENMP_DIRECTIVE EXT(target parallel,

OPENMP DIRECTIVE EXT(target parallel for,
(

OPENMP DIRECTIVE EXT(target update,

“target enter
"target exit
“target parallel")
“target parallel for")
"target update")

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

175 // OpenMP directives.
176 iy LIVI'IF_ULI'\I_L TALVL | LI TQupl 4! E Directives are Created When the

178 ADCAIMD NDNTDCOCTTVA/C [+~

179 OPENMP DIRECTIVE(simd)
180 OPENMP DIRECTIVE(for) #pragma parallel
181 OPENMP DIRECTIVE(sections) omp

182 OPENMP DIRECTIVE(section)
183 OPENMP DIRECTIVE(single)
184 OPENMP DIRECTIVE(master)
185 OPENMP DIRECTIVE(critical)
186 OPENMP DIRECTIVE(taskyield)
187 OPENMP DIRECTIVE(barrier)
188 OPENMP DIRECTIVE(taskwait)

120 NDCAMMD NTDECTTVL (+acllarann)

Some directives are combined in order to compose larger ones

target data target data

OPENMP DIRECTIVE EXT(target data, "target ")

t :
‘
DINCOT IV IO eenEeEGmempgmrgeeenter

OPENMP DIRECTIVE EXT(target exit data, "target exit *)
OPENMP_DIRECTIVE_EXT(target_parallel “target parallel")

OPENMP DIRECTIVE EXT(target parallel for, "target parallel for")
OPENMP DIRECTIVE EXT(target update, "target update")

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

175
176
177
178
179
180
181
182
183
184
185
186
187
188

190

// OpenMP directives.

JELINKIT DiANnLuCiiAvLo |\ LI Tauplr 1)

JPENMP DIRECTIVE(parallel)
ADCAIMD NTDCOCTTVA/IC /4~
OPENMP_DIRECTIVE(simd)
OPENMP DIRECTIVE(for)
OPENMP DIRECTIVE(sections)
OPENMP DIRECTIVE(section)
OPENMP DIRECTIVE(single)
OPENMP DIRECTIVE(master)
OPENMP DIRECTIVE(critical)
OPENMP DIRECTIVE(taskyield)
OPENMP DIRECTIVE(barrier)
OPENMP DIRECTIVE(taskwait)

NDCAMMD NTDECTTVL (+acltarann)

: Directives are created when the

name matches the token of pragma

parallel

#pragma
omp

Some directives are combined in order to compose larger ones

target data

VI LINIr VL

OPENMP_DIR

OPENMP DIRECTIVE EXT
OPENMP_DIRECTIVE EXT
OPENMP_DIRECTIVE EXT
OPENMP_DIRECTIVE EXT
OPENMP DIRECTIVE EXT

“irivieL\uvalni

target data,

target parallel,
target parallel for,
target update,

Directive Directive

data

dota—target enter)

target:exit_aata, “target exit =)

“target parallel")
“target parallel for")
“target update")

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

OpenMPKinds.def

All clauses from
OpenMP have some
entry in this file

// OpenMP clauses.
OPENMP_CLAUSE(if, OMPIfClause)
OPENMP_ CLAUSE(final, OMPFinalClause)
OPENMP_CLAUSE (num_threads, OMPNumThreadsClause)
OPENMP CLAUSE (safelen, OMPSafelenClause)
OPENMP_CLAUSE(simdlen, OMPSimdlenClause)
OPENMP_CLAUSE (collapse, OMPCollapseClause)
OPENMP_CLAUSE (default, OMPDefaultClause)
OPENMP_CLAUSE (, OMPPrivateClause)
OPENMP_CLAUSE(firstprivate, OMPFirstprivateClause)
OPENMP_CLAUSE(lastprivate, OMPLastprivateClause)
OPENMP_CLAUSE(shared, OMPSharedClause)
OPENMP CLAUSE(reduction, OMPReductionClause)
OPENMP_CLAUSE(linear, OMPLinearClause)
OPENMP_CLAUSE (aligned, OMPAlignedClause)
OPENMP_CLAUSE (copyin, OMPCopyinClause)
OPENMP_CLAUSE (copyprivate, OMPCopyprivateClause)
OPENMP CLAUSE(proc_bind, OMPProcBindClause)
OPENMP_CLAUSE (schedule, OMPScheduleClause)
OPENMP CLAUSE (ordered, OMPOrderedClause)
OPENMP_CLAUSE (nowait, OMPNowaitClause)
OPENMP CLAUSE (untied, OMPUntiedClause)
OPENMP_CLAUSE (mergeable, OMPMergeableClause)
(
(

OPENMP_CLAUSE (flush, OMPFlushClause)
OPENMP CLAUSE(read, OMPReadClause)

OpenMPKinds.def

// OpenMP clauses.

OPENMP_CLAUSE(if, OMPIfClause)
Each clause must appear OPENMP™CLAUSE (final, OMPFinalClause)
o OPENMP_CLAUSE (num_threads, OMPNumThreadsClause)
once in the macro OPENMP_CLAUSE (safelen, OMPSafelenClause)
OPENMP_CLAUSE(simdlen, OMPSimdlenClause)
OPENMP CLAUSE OPENMP_CLAUSE (collapse, OMPCollapseClause)
o o T . o OPENMP_CLAUSE (default, OMPDefaultClause)
pa1rw1sed with their OPENMP_CLAUSE (, OMPPrivateClause)
(1. 1 OPENMP_CLAUSE(firstprivate, OMPFirstprivateClause)
OPENMP_CLAUSE(lastprivate, OMPLastprivateClause)
Correspon lng C aSS OPENMP_CLAUSE(shared, OMPSharedClause)
OPENMP CLAUSE(reduction, OMPReductionClause)
IlEiII](E OPENMP_CLAUSE(linear, OMPLinearClause)
OPENMP_CLAUSE (aligned, OMPAlignedClause)
OPENMP_CLAUSE (copyin, OMPCopyinClause)
OPENMP_CLAUSE (copyprivate, OMPCopyprivateClause)
These classes are OPENMP_CLAUSE (nroc._bind, OMPProcRindClause)
° o OPENMP_CLAUSE(schedule| OMPScheduleClause
defined in the orewe sl
opENMP_C - Token id ' Class Name
OpenMPClause.h OPENHP_(;
(1 11 (i 1 t OPENMP_CLAUSE (mergeable, OMPMergeableClause)
OPENMP_CLAUSE (flush, OMPFlushClause)
ElI]' ‘t E?S[El]:EE llE;EE Ei () OPENMP CLAUSE(read, OMPReadClause)

throughout clang

OpenMPKinds.def

459 // Clauses allowed for OpenMP directive 'target data'.

. . 460 OPENMP_TARGET DATA CLAUSE(if)
Each OpenMP directive 461 OPENMP_TARGET DATA CLAUSE (device)

. 462 OPENMP_TARGET DATA CLAUSE (map)
allows different clauses 463 OPENMP_TARGET DATA CLAUSE(use device ptr)

to follow it. Only some

) Each directive must have entries for all
constructs are possible.

allowed clauses

"~ ([Clause | .
#pragma omp target data if(...)
- @ @ v
.
target data #pragma omp target data device(...)
-
#pragma omp target data map(...)
-
#pragma omp target data
use__device_ptr(...)

Parse OpenMP as Statements

As important as the definitions in OpenMPKinds,
we need to understand how clang uses them for
computation.

OpenMP Pragmas are treated as Statements in
Clang, so we’ll take a look at “How to add a
Statement”.

How to add an expression or statement

Through these next sections we will follow some instructions
from the manuals. Feel free to look at those for a more generic
(and detailed) approach:

Internal Manuals: How to add an expression or statement

“Expressions and statements are one of the most fundamental
constructs within a compiler, because they interact with many
different parts of the AST, semantic analysis, and IR generation.
Therefore, adding a new expression or statement kind into Clang
requires some care”

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

How to add an expression or statement

Using the manual’s enumerated instructions:
1 “Introduce parsing actions into the parser. Recursive-descent
parsing is mostly self-explanatory”

Most likely you won’t have to implement any of this section for
OpenMP modifications, this is the core of all OpenMP parsing.

This is located at:
ParseOpenMP.cpp

912 StmtResult Parser::ParseOpenMPDeclarativeOrExecutableDirective(
913 AllowedConstructskKind Allowed) {

1137)
1138

Parser & Semantics Convention

From the clang’s internal manuals:

‘““‘Historically, the parser used to talk to an abstract Action
interface that had virtual methods for parse events, for example
ActOnBinOp().

When Clang grew C++ support, the parser stopped supporting
general Action clients — it now always talks to the Sema library.

However, the Parser still accesses AST objects only through
opaque types like ExprResult and StmtResult. Only Sema looks at
the AST node contents of these wrappers.”

https://clang.llvm.org/docs/InternalsManual.html#the-parser-library

From the clang’s internal manuals:

‘““‘Historically, the parser used to talk to
interface that had virtual methods for i
ActOnBinOp().

When Clang grew C++ support, the par
general Action clients — it now always |

Parser & Semantics Convention

)

Irse evernl

T stoppe
1ks to th

However, the Parser still accessegml

StmtResult is
the same as

ActionResult
<Stmt * >

This is the
structure that
stores OpenMP
actions

https://clang.llvm.org/docs/InternalsManual.html#the-parser-library

How to add an expression or statement

Using the manual’s enumerated instructions:
1 “Introduce parsing actions into the parser. Recursive-descent
parsing is mostly self-explanatory”

Most likely you won’t have to implement any of this section for
OpenMP modifications, this is the core of all OpenMP parsing.

This is located at:
ParseOpenMP.cpp

912 StmtResult Parser::ParseOpenMPDeclarativeOrExecutableDirective(
913 AllowedConstructskKind Allowed) {

1137)
1138

How to add an expression or statement

Using the manual’s enumerated instructions:
“Introduce parsing actions into the parser.]
1 parsing is mostly self-explanatory” StmtResult is
the same as
M FWV‘VUU‘WUTFU’JVETO‘WTFDFH’L?’U]} . ActionResult
Op| hMP modifications, this is the core of all Opfii S
Th| |is located at:

ParseOpenMP.cpp

Parser: :ParseOpenMPDeclarativeOrExecutableDirective(
AllowedConstructskKind Allowed) {

2

How to add an expression or statement

Using the manual’s enumerated instructions:

“Introduce semantic analysis actions into Sema”. There are
functions ActOnXXX and BuildXXX that will (eventually) build
the AST node. Please note that there aren’t OpenMP Build
functions for directives, we should add only the ActOnXXX for
each directive.

This is where the signatures are located

StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, Sourcelocation StartLoc,
SourcelLocation EndLoc);

StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, Sourcelocation StartLoc,
SourcelLocation EndLoc);

StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, Sourcelocation StartlLoc,
SourcelLocation EndLoc);

SemaOpenMP.cpp And here is the body of those functions

6787

6788 StmtResult Sema::ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
6789 Stmt *AStmt,

6796 Sourcelocation StartlLoc,

6791 SourcelLocation EndLoc) {

6810 }

6811

6812 StmtResult

6813 Sema::ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,

6814 Sourcelocation StartlLoc,

6815 SourcelLocation EndLoc, Stmt *AStmt) ({

6847)
6848

How to add an expression or statement

Using the manual’s enumerated instructions:
Introduce an AST node for our new statement.

3 This starts with declaring the node in
include/Basic/StmtNodes.td

It’s also important to create the correspondent class for our
statement in include/AST/StmtOpenMP.h header

StmtNodes.td

200 // Directives.

201
202
203
204
205
206
207
208
209
210
211

def
def
def
def
def
def
def
def
def
def
def
def

OMPExecutableDirective : Stmt<1>;
OMPLoopDirective : DStmt<OMPExecutableDirective, 1>;
OMPParallelDirective : DStmt<OMPExecutableDirective>;
OMPSimdDirective : DStmt<OMPLoopDirective>;
OMPForDirective : DStmt<OMPLoopDirective>;
OMPForSimdDirective : DStmt<OMPLoopDirective>;
OMPSectionsDirective : DStmt<OMPExecutableDirective>;
OMPSectionDirective : DStmt<OMPExecutableDirective>;
OMPSingleDirective : DStmt<OMPExecutableDirective>;
OMPMasterDirective : DStmt<OMPExecutableDirective>;
OMPCriticalDirective : DStmt<OMPExecutableDirective>;
: DStmt<OMPLoopDirective>;

This file holds the definitions of Stmts and Stmt

inheritance

StmtNodes.td

201 def OMPExecutableDirective : Stmt<l1>;

OMPExecutableDirective is a class that inherits from Stmt

StmtOpenMP.h

33 class OMPExecutableDirective :

267 };

Every entry needs its correspondent implementation
somewhere. In the case of OpenMP Statements, they are at
StmtOpenMP.h and StmtOpenMP.cpp

StmtNodes.td

OMPLoopDirective : DStmt<OMPExecﬁtab1eDirective, 1>
OMPParallelDirective : DStmt<OMPExecutableDirective>;

OMPParallelSectionsDirective : DStmt<OMPExecutableDirective>;
OMPTaskDirective : DStmt<OMPExecutableDirective>:
OMPTaskyieldDirective : DStmt<OMPExecutableDirective>;
OMPBarrierDirective : DStmt<OMPExecutableDirective>;
OMPTaskwaitDirective : DStmt<OMPExecutableDirective>;

All OpenMP Stmts inherit from OMPExecutableDirective. Some are
direct children, others inherit through some more derivations.

202 def OMPLoopDirective : DStmt<OMPExecQtab1eDirective, 1>

I_>_‘l'

212 def OMPParallelForDirective : DStmt<OMPLoopDirective>;

How to add an expression or statement

Before sending your code to production, there are “some
3 specific things to watch for” the manual highlights

Those have to do with IDE support, like implementing
printing support for your statement in StmtPrinter.cpp

Feel free to look at the manual section if you’d like to
implement those

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

How to add an expression or statement

“Teach semantic analysis to build your AST node. At this
4 point, you can wire up your Sema::BuildXXX function to
actually create your AST”

In most cases this step isn’t necessary, as OpenMP’s
infrastructure already handles this. Feel free to look at the
manual if you’d like to modify those.

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

5

How to add an expression or statement

“Teach code generation to create IR to your AST node. This
step is the first (and only) that requires knowledge of LLVM
IR))

It’s strongly recommended that you read the manual section
for this one. This step really depends on the behaviour you
want to achieve.

Here are some useful advices:

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

Code Generation

It’s super important to be able to verify if the IR generation is happening
correctly. Using the clang you built, compile some “C/C++” code using the flag
“-emit-1lvm”, this will output the IR of such code (IR’s default file name
extension is “.11”)

The IR is the intermediate representation for the machine code, that’s what
will actually be executed. So to prove if your new clang is really generating the
right code for your pragmas, examine the IR generated for your study case.

IR is usually complicated to read. Maybe it’s a good idea to work at first glance
using comparisons. Create some test cases for you, see how pure OpenMP
would generate such IR, how is it sending computation to cores, to devices?

Code Generation

If there is something bugging you, there’s a chance what you are
looking for is in one of these files:

CGStmtOpenMP.cpp
CGOpenMPRuntime.h
CGOpenMPRuntime.cpp
CodeGenFunction.h

Good luck

How to add an expression or statement

“Teach template instantiation how to cope with your AST
node”

TreeTransform.h is a file that “implements a semantic tree
transformation that takes a given AST and rebuilds it, possibly
transforming some nodes in the process”.

This is about type checking and type conversion (through
derivation of types). Maybe it’s important for your application
to implement a tree transformation. All directives have a
transformation implemented in this file:

TreeTransform.h

7653

7654

7655

7656 template <typename Derived>

7657 StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
7658 OMPExecutableDirective *D) {

752)

7713

7714 template <typename Derived>

7715 StmtResult

7716 TreeTransform<Derived>: :TransformOMPParallelDirective(OMPParallelDirective *D) {

77230 }
7724

How to add an expression or statement

“There are some “extras’ that make other features work
better”

These don’t apply to us. OpenMP’s implementation does not
support code completion and other “extras” that this section
describes.

	Introdução
	Objetivo
	Conclusão

