
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

LLVM - Implementando um
Pragma OpenMP

F. O. Emos G. C. S. Araujo

Relatório Técnico - IC-PFG-19-47

Projeto Final de Graduação

2019 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

LLVM - Implementando um Pragma OpenMP

Felipe de Oliveira Emos ∗ Guido Costa Souza de Araujo†

Resumo

Por diversos interesses tanto empresariais quanto acadêmicos, o compilador LLVM
é hoje um dos compiladores mais relevantes que existe. Modificar e adaptar o código do
LLVM, seja qual for o motivo, é uma tarefa que vem se tornando cada vez mais comum
para pesquisadores e desenvolvedores da área.

Infelizmente, tal tarefa não é tão convidativa quanto poderia ser. O LLVM é um
projeto muito grande e rebuscado e por mais que exista a documentação oficial, ela se
preocupa muito mais em enumerar e descrever os compontentes do compilador do que
em propriamente explicar os funcionamentos se suas partes. Materiais de apoio (que
explicam tais funcionamentos) existem e inclusive vários deles são oficiais do LLVM,
mas eles são focados ou nas partes mais gerais do compilador ou nos primeiros passos
de um iniciante na plataforma. Existe uma carência de explicação mais detalhada para
algumas partes mais espećıficas do LLVM.

O projeto ”LLVM - Implementando um Pragma OpenMP”foi a confecção de um
material didático explicativo. A ideia do material é facilitar o trabalho de qualquer um
que queira se aventurar na exploração de uma parte espećıfica do compilador LLVM,
que são as partes do Clang que dizem respeito às anotações ”Pragma”da interface de
programação ”OpenMP”.

1 Introdução

Compiladores como LLVM ou GCC são códigos de alta performance, ou seja, a natureza da
aplicação impõe a eles um enorme incentivo para que sejam o mais otimizados o posśıvel.
Qualquer otimização em seus funcionamentos resulta em um impacto considerável na velo-
cidade de produção de software.

Eis então o dilema entre fazer um código de boa compreeensão/manutenção ou fazer o
código mais rápido posśıvel. Claro, na maioria das vezes um não impede o outro, mas se
tratando de códigos assim tão grandes como o LLVM é inevitável que ocorram estruturações
um tanto quanto confusas ”for the sake of optimization”. A própria escolha da linguagem
desses compiladores, C para o GCC e C++ para o LLVM, revela a natureza da preocupação
com performance, visto que estas são algumas das linguagens de alto ńıvel mais rápidas que
se conhece.

∗felipe.emos.computacao@gmail.com
†Inst. de Computação, UNICAMP, 13083-852 Campinas, SP. guido@ic.unicamp.br

1

2 Emos, Guido

O problema ocorre quando se abre mão demais da compreensão e o código se torna o
oposto de convidativo. Estamos muito acostumados a subestimar o fator humano, entre-
tanto é um fato que a qualidade de código é important́ıssima e não deveria ser deixada de
lado. O GCC, por exemplo, é famoso por ter um código bastante selvagem para os aven-
tureiros iniciantes. Mesmo os aventureiros mais experientes acabam evitando modificar o
GCC, já que é posśıvel sofrer bem menos e obter praticamente o mesmo resultado desejado
em uma modificação do LLVM. O LLVM é mais modular, tem orientação a objetos, tem um
bom tutorial para iniciantes e tem uma grande comunidade ativa e bastante convidativa,
conhecida por sua rápida resposta a emails de novatos.

Este é um bom exemplo em que o grau de convidatividade do código e a qualidade do
código se mostram fatores decisivos na seleção natural que ocorre entre softwares, no caso
LLVM e GCC. Por enquanto o GCC ainda vive (muito por uma questão de legado), porém
em certos ambientes, como por exemplo a pesquisa acadêmica, o LLVM parece que já venceu
a batalha. É preciso boa convidatividade para que novos desenvolvedores e pesquisadores se
engajem e modifiquem o código com facilidade, contribuindo para a evolução da plataforma
ao longo prazo. Este é um fator humano muito forte e, para os softwares, é uma questão de
sobrevivência.

Dada a importância desta questão, é preciso dizer que o LLVM não é perfeito, C++
ainda é uma linguagem bastante verbosa e um certo grau de ”não convidatividade”beira
o inevitável. Colocando em perspectiva, hoje o código do GCC contém aproximadamente
5 milhões de linhas de código e o LLVM contém 1.6 milhões de linhas de código [2]. Esta
quantidade impensável de linhas de código pode ser mais ou menos convidativa, mas é fato
que sua compreensão ainda será bastante trabalhosa. O LLVM não é um mar de rosas.

2 Objetivo

O objetivo deste trabalho ”LLVM - Implementando um Pragma OpenMP”vai nesse sentido
de facilitar a compreensão do compilador, se atendo a uma parte espećıfica do LLVM: as
anotações Pragma OpenMP. O LLVM já tem materiais de apoio para facilitar o desen-
volvedor novato, como por exemplo o famoso tutorial ”Getting Started”, da página inicial
do compilador [3]. Infelizmente, graças à grande escala do compilador, eles acabam tendo
um escopo bastante reduzido em relação ao todo. Outro ponto importante é que a docu-
mentação do LLVM (também por uma questão da grande escala de seu código) se preocupa
mais em enumerar e descrever as diversas partes do compilador, se atentando bem menos a
explicar os funcionamentos das peças.

Um documento que explicasse a mecânica de um Pragma OpenMP foi uma necessidade
que os autores deste trabalho sentiram durante um outro projeto de pesquisa, feito pela
UNICAMP em parceria com a empresa IBM no ano de 2018. A falta de experiência em
LLVM do pesquisador, que é algo perfeitamente esperado de um começo de projeto de
pesquisa, se combinou à falta de um tutorial que tangesse tal pedaço do Clang/LLVM.
O resultado foi que muito tempo e recursos valiosos foram gastos em questões puramente
técnicas de especificidades do LLVM. Julgou-se depois que isso foi desnecessário, já que
bastaria ter em mãos um bom mapa que a história teria sido diferente.

LLVM - Implementando um Pragma OpenMP 3

Este documento didático agora está feito, o mapa está dispońıvel para consulta e espera-
se que ele seja compreensivo o suficiente para que outros não tenham que passar pelo mesmo
esforço dos autores. O trabalho que você está lendo é apenas um relatório sucinto sobre a
confecção de tal documento, é como um reconhecimento (na forma de relatório) de que ele foi
feito e existe. As especificidades técnicas do LLVM, que estão no escopo do documento, não
serão explicadas aqui. O leitor interessado deve sentir-se convidado a examinar o documento
didático por si só. O link está ao final do relatório, na sessão de ”Referências”: ”LLVM -
Implementando um Pragma OpenMP”[1].

3 Conclusão

A diferença que um material didático como este pode fazer não é algo que deve ser su-
bestimado. Por exemplo, a NVIDIA fez uma apresentação chamada Targeting GPUs with
OpenMP4.5 Device Directives [4] na GPU Technology Conference de 2016. Tal apresentação
foi de fundamental importância para a pesquisa dos autores, feita em parceria com a IBM
e que acabou inspirando este projeto de material didático. O estudo, dentre outras coisas,
envolvia offloading de códigos OpenMP usando Clang. Nenhum outro material didático
encontrado na época explicava com clareza o que era preciso ser feito para que o offloa-
ding funcionasse corretamente. O pedaço da apresentação que foi verdadeiramente valioso
foi bem pequeno, coisa de poucas linhas, porém estas poucas linhas de especificidades do
Clang/OpenMP facilmente se perdem no mar das documentações e, se não fosse a apre-
sentação da NVIDIA, existiria ali um bom potencial de perda de tempo e recursos.

Em um código de 1.6 milhões de linhas, é de se esperar que muita coisa não precise
de uma documentação explicativa, o código é autoexplicativo. Entretanto, também é de se
esperar que várias linhas de código que precisam ficarão desamparadas em documentação.

Na prática, quem mexe com esses trechos de código mais espećıficos (como por exemplo
os Pragmas do OpenMP) costuma ser alguém experiente em LLVM e esta pessoa terá
facilidade na compreensão e não irá se dar o trabalho de descrever cautelosamente o seu
funcionamento para os outros. É bastante natural que aquele que está mais apto a produzir
um documento explicativo é também aquele que menos precisa de um. Logo, a menos que
exista um incentivo muito grande para a criação de um documento mais detalhado, que é
o caso dos materiais de apoio sobre as partes mais gerais e importantes do compilador, ou
mesmo sobre os primeiros passos que um iniciante deve tomar (como o tutorial ”Getting
Started”[3]), dificilmente alguém competente irá dedicar seu tempo precioso para criar um
tutorial de LLVM. O resultado é que partes espećıficas do compilador ficam desamparadas
de explicação.

Por esses motivos, dificilmente alguém que tenha explorado esta parte do LLVM faria
um tutorial como este. Mas, agora que ele existe, talvez seja de boa valia para alguém
no futuro. Provavelmente será, já que avaliando apenas a UNICAMP as pesquisas em
LLVM se mostram bastante promissoras e atrativas. As perspectivas de modificações do
LLVM/Clang são boas e oportunidades de pesquisa no assunto se projetam em fartura.

4 Emos, Guido

Referências

[1] Documento Didático - LLVM - Implementando um Pragma OpenMP

https://drive.google.com/file/d/1S4A3zcNHhYYLenn55hvsVmbUiolr07jC/view?usp=sharing

[2] How much does a compiler cost?, An analysis by David A Wheeler’s SLOCCount.

https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/
https://dwheeler.com/sloccount/

[3] LLVM Documentation, Getting Started/Tutorials.

https://llvm.org/docs/GettingStartedTutorials.html

[4] NVIDIA Presentation, Targeting GPUs with OpenMP4.5 Device Directives.

http://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-
targeting-gpus-openmp.pdf

https://www.youtube.com/watch?v=4nusBV3gWJc

LLVM - Implementing
an OpenMP Pragma

- Overview

Document created using
OpenMP 4.5
Clang-7

Unicamp IC - 2019
Author: Felipe de Oliveira Emos
Guidance: Guido C. Souza Araujo

Parse Pragmas

Pragmas are analysed using a class called
PragmaHandler

This is for all pragmas, it’s not OpenMP
specific

PragmaHandlers are initialized and defined in
the file ParsePragma.cpp

ParsePragma.cpp

void Parser::initializePragmaHandlers() {
 . . .
 . . .
 if (getLangOpts().OpenMP)
 OpenMPHandler.reset(new PragmaOpenMPHandler());
 else

 OpenMPHandler.reset(new PragmaNoOpenMPHandler());

 PP.AddPragmaHandler(OpenMPHandler.get());
 . . .
 . . .
}

ParsePragma.cpp

void Parser::initializePragmaHandlers() {
 . . .
 . . .
 if (getLangOpts().OpenMP)
 OpenMPHandler.reset(new PragmaOpenMPHandler());
 else

 OpenMPHandler.reset(new PragmaNoOpenMPHandler());

 PP.AddPragmaHandler(OpenMPHandler.get());
 . . .
 . . .
}

Driver/Options.td

This variable is true
if the flag
“-fopenmp”
was used during
compilation

These driver options
are defined in the file
“Driver/Options.td”

ParsePragma.cpp

void Parser::initializePragmaHandlers() {
 . . .
 . . .
 if (getLangOpts().OpenMP)
 OpenMPHandler.reset(new PragmaOpenMPHandler());
 else

 OpenMPHandler.reset(new PragmaNoOpenMPHandler());

 PP.AddPragmaHandler(OpenMPHandler.get());
 . . .
 . . .
}

Handler when
compiled with

flag
“-fopenmp”

Handler when
compiled without

flag
“-fopenmp”

ParsePragma.cpp

struct PragmaOpenMPHandler : public PragmaHandler {
 PragmaOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

struct PragmaNoOpenMPHandler : public PragmaHandler {
 PragmaNoOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

ParsePragma.cpp

struct PragmaOpenMPHandler : public PragmaHandler {
 PragmaOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

struct PragmaNoOpenMPHandler : public PragmaHandler {
 PragmaNoOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

PragmaHandler
objects are used
mainly through their
method
“HandlePragma” this
is the important part.

So the proper way to
do this is to derive
your new handler
from the
“PragmaHandler”
class and define your
own “HandlePragma”
method.

ParsePragma.cpp

struct PragmaOpenMPHandler : public PragmaHandler {
 PragmaOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

struct PragmaNoOpenMPHandler : public PragmaHandler {
 PragmaNoOpenMPHandler() : PragmaHandler("omp") { }

 void HandlePragma(
 Preprocessor &PP,
 PragmaIntroducerKind Introducer,
 Token &FirstToken) override;
};

Actual computation of
tokens.

This is called when
clang encounters a
“#pragma omp”

This is just the
signature of the

method. The
definition is also

in this file . . .

Identifier
of the

pragma

Ex:
#pragma ID
#pragma omp

ParsePragma.cpp

ParsePragma.cpp

Token that represents:
#pragma omp

Token that marks the end of
pragma

Get the next
Token from Lexer

ParsePragma.cpp

Creates a SmallVector
Pragma

All Tokens are pushed
to this vector

The vector is copyed
and passed to (PP)

Preprocessor’s
TokenStream

Parse OpenMP
Although the pragma handlers deal with OpenMP pragmas,
their job is pretty much to pass on the computation to other
parts of Clang. How this computation is structured and
executed is what’s coming next in this document.

The OpenMP definitions are mostly contained within the
files of OpenMPKinds

We’ll take a look at OpenMPKinds, but before that it’s
important to get ourselves comfortable with a recurrent
construct in Clang: the Definition Files and how their
inclusion affects the code

Definition files

In clang you will find definition files being
used many times

Usually the code that includes the definition
file looks like this:

OpenMPKinds.h
First there are definitions of macros
that are going to be used. They work
like a “filter”.

Then the file is included and code is
generated through the macro.

OpenMPKinds.h

OpenMPKinds.def

First there are definitions of macros
that are going to be used. They work
like a “filter”.

Then the file is included and code is
generated through the macro.

Many of the lines in the definition
file will be matched with the macro.

OpenMPKinds.h
First there are definitions of macros
that are going to be used. They work
like a “filter”.

Then the file is included and code is
generated through the macro.

OpenMPKinds.def
All this is only possible because of
those countless #ifndef placed at
the beginning of the definition file,
they define blank macros for all of
those definitions out of the “filter”,
therefore they are “erased” and do
not generate code.

OpenMPKinds.h
In summary, what is going on?

When OpenMPKinds.h includes the
definition file, many of the lines in
OpenMPKinds.def will be matched with
the #define macros and we’ll get the
desired effect, which in this case is to
populate the “enum” with all the
definitions of OpenMP directivesOpenMPKinds.def

OpenMPKinds.h
Tip: Attention is key
If at some point an error or strange behaviour
happens and it has something to do with the
variable “OMPD_parallel”, before you start
your depuration journey, think for a moment:

Does this variable exist on the code?

Well, it doesn’t, don’t waste your time looking
for it. It was created during compilation time.OpenMPKinds.def

Be careful
It’s not always that this technique of macro (“filter”) and inclusion
uses a definition file from source.
Sometimes the definition file is generated during compilation.

StmtNodes.inc doesn’t exist in clang’s code, don’t waste your time
looking for it.

Be careful
The rule of thumb is:

- if the definition file has extension “.def”, then it is somewhere in
source code.

- if the definition file has extension “.inc”, then it was generated
during compilation time and it is located inside the build
directory of your choice.

All “.inc” are generated based on a “.td” file of the same name.
All “.td” are source files, so modify “.td” in order to modify the
“.inc” that will be generated during compilation

StmtNodes.td

This file
generates ...

StmtNodes.inc

OpenMPKinds
Now that you understand how Clang uses this
technique of inclusion of definition files, let’s have a
look at the definition file OpenMPKinds.def:

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

target
Directive

data
Directive

target data
Directive

Some directives are combined in order to compose larger ones

Directives are created when the
name matches the token of pragma

parallel
Directive

#pragma
omp parallel

Source

OpenMPKinds.def

All directives from
OpenMP have some
entry in this file

target
Directive

data
Directive

target data
Directive

Some directives are combined in order to compose larger ones

Directives are created when the
name matches the token of pragma

parallel
Directive

#pragma
omp parallel

Source

OpenMPKinds.def

All clauses from
OpenMP have some
entry in this file

OpenMPKinds.def

Each clause must appear
once in the macro
OPENMP_CLAUSE
pairwised with their
corresponding class
name

These classes are
defined in the
OpenMPClause.h
and they are used a lot
throughout clang

Token id Class Name

OpenMPKinds.def

Each OpenMP directive
allows different clauses
to follow it. Only some
constructs are possible.

target data
Directive

if
Clause

device
Clause

map
Clause

use_device_ptr
Clause

#pragma omp target data if(…)

#pragma omp target data device(…)

#pragma omp target data map(…)

#pragma omp target data
use_device_ptr (…)

Each directive must have entries for all
allowed clauses

Parse OpenMP as Statements

As important as the definitions in OpenMPKinds,
we need to understand how clang uses them for
computation.

OpenMP Pragmas are treated as Statements in
Clang, so we’ll take a look at “How to add a
Statement”.

How to add an expression or statement
Through these next sections we will follow some instructions
from the manuals. Feel free to look at those for a more generic
(and detailed) approach:

 Internal Manuals: How to add an expression or statement

“Expressions and statements are one of the most fundamental
constructs within a compiler, because they interact with many
different parts of the AST, semantic analysis, and IR generation.
Therefore, adding a new expression or statement kind into Clang
requires some care”

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

How to add an expression or statement
Using the manual’s enumerated instructions:

“Introduce parsing actions into the parser. Recursive-descent
parsing is mostly self-explanatory”

Most likely you won’t have to implement any of this section for
OpenMP modifications, this is the core of all OpenMP parsing.
This is located at:

ParseOpenMP.cpp

1

Parser & Semantics Convention
From the clang’s internal manuals:

“Historically, the parser used to talk to an abstract Action
interface that had virtual methods for parse events, for example
ActOnBinOp().
When Clang grew C++ support, the parser stopped supporting
general Action clients – it now always talks to the Sema library.

However, the Parser still accesses AST objects only through
opaque types like ExprResult and StmtResult. Only Sema looks at
the AST node contents of these wrappers.”

https://clang.llvm.org/docs/InternalsManual.html#the-parser-library

Parser & Semantics Convention
From the clang’s internal manuals:

“Historically, the parser used to talk to an abstract Action
interface that had virtual methods for parse events, for example
ActOnBinOp().
When Clang grew C++ support, the parser stopped supporting
general Action clients – it now always talks to the Sema library.

However, the Parser still accesses AST objects only through
opaque types like ExprResult and StmtResult. Only Sema looks at
the AST node contents of these wrappers.”

This is the
structure that
stores OpenMP
actions

StmtResult

ActionResult
<Stmt * >

StmtResult is
the same as

https://clang.llvm.org/docs/InternalsManual.html#the-parser-library

How to add an expression or statement
Using the manual’s enumerated instructions:

“Introduce parsing actions into the parser. Recursive-descent
parsing is mostly self-explanatory”

Most likely you won’t have to implement any of this section for
OpenMP modifications, this is the core of all OpenMP parsing.
This is located at:

ParseOpenMP.cpp

1

How to add an expression or statement
Using the manual’s enumerated instructions:

“Introduce parsing actions into the parser. Recursive-descent
parsing is mostly self-explanatory”

Most likely you won’t have to implement any of this section for
OpenMP modifications, this is the core of all OpenMP parsing.
This is located at:

ParseOpenMP.cpp

StmtResult

ActionResult
<Stmt * >

StmtResult is
the same as

1

How to add an expression or statement
Using the manual’s enumerated instructions:

“Introduce semantic analysis actions into Sema”. There are
functions ActOnXXX and BuildXXX that will (eventually) build
the AST node. Please note that there aren’t OpenMP Build
functions for directives, we should add only the ActOnXXX for
each directive.

2

Sema.h This is where the signatures are located

SemaOpenMP.cpp And here is the body of those functions

How to add an expression or statement
Using the manual’s enumerated instructions:

Introduce an AST node for our new statement.
This starts with declaring the node in
include/Basic/StmtNodes.td

It’s also important to create the correspondent class for our
statement in include/AST/StmtOpenMP.h header

3

StmtNodes.td

This file holds the definitions of Stmts and Stmt
inheritance

StmtNodes.td

OMPExecutableDirective is a class that inherits from Stmt

StmtOpenMP.h

Every entry needs its correspondent implementation
somewhere. In the case of OpenMP Statements, they are at
StmtOpenMP.h and StmtOpenMP.cpp

StmtNodes.td

All OpenMP Stmts inherit from OMPExecutableDirective. Some are
direct children, others inherit through some more derivations.

How to add an expression or statement

Before sending your code to production, there are “some
specific things to watch for” the manual highlights

Those have to do with IDE support, like implementing
printing support for your statement in StmtPrinter.cpp

Feel free to look at the manual section if you’d like to
implement those

3

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

How to add an expression or statement

“Teach semantic analysis to build your AST node. At this
point, you can wire up your Sema::BuildXXX function to
actually create your AST”

In most cases this step isn’t necessary, as OpenMP’s
infrastructure already handles this. Feel free to look at the
manual if you’d like to modify those.

4

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

How to add an expression or statement

“Teach code generation to create IR to your AST node. This
step is the first (and only) that requires knowledge of LLVM
IR”

It’s strongly recommended that you read the manual section
for this one. This step really depends on the behaviour you
want to achieve.

Here are some useful advices:

5

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement

Code Generation
It’s super important to be able to verify if the IR generation is happening
correctly. Using the clang you built, compile some “C/C++” code using the flag
“-emit-llvm”, this will output the IR of such code (IR’s default file name
extension is “.ll”)

The IR is the intermediate representation for the machine code, that’s what
will actually be executed. So to prove if your new clang is really generating the
right code for your pragmas, examine the IR generated for your study case.

IR is usually complicated to read. Maybe it’s a good idea to work at first glance
using comparisons. Create some test cases for you, see how pure OpenMP
would generate such IR, how is it sending computation to cores, to devices?

Code Generation
If there is something bugging you, there’s a chance what you are
looking for is in one of these files:

CGStmtOpenMP.cpp
CGOpenMPRuntime.h
CGOpenMPRuntime.cpp
CodeGenFunction.h

Good luck

How to add an expression or statement

“Teach template instantiation how to cope with your AST
node”

TreeTransform.h is a file that “implements a semantic tree
transformation that takes a given AST and rebuilds it, possibly
transforming some nodes in the process”.

This is about type checking and type conversion (through
derivation of types). Maybe it’s important for your application
to implement a tree transformation. All directives have a
transformation implemented in this file:

6

TreeTransform.h

How to add an expression or statement

“There are some “extras” that make other features work
better”

 These don’t apply to us. OpenMP’s implementation does not
support code completion and other “extras” that this section
describes.

7

Hope this material has
helped you in some way!

Have a great time using
pragmas in clang

	Introdução
	Objetivo
	Conclusão

