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Resumo

Este trabalho implementa o algoritmo de Chudak e Shmoys [1] para resol-
ver o Problema da Localizacao de Instalagoes [11]. Neste problema, dado um
conjunto de clientes e um conjunto de instalagdoes o objetivo é encontrar um
conjunto de facilidades para abrir de forma a minimizar o custo de abertura
das instalacOes e o custo de conexdo entre clientes as facilidades abertas mais
préximas.

1 Introducao

Algoritmos de aproximacao sao algoritmos com complexidade polinomial para pro-
blema de otimizacao que asseguram uma solucdo com valor a no maximo um fator
da solucao o6tima. Para lidar com problemas NP-dificeis, que ndo podem ser resolvi-
dos de forma exata por algoritmos polinomiais (a nao ser que P = NP), algoritmos
de aproximagao sao muito uteis: a ideia é construir uma implementacao de algorit-
mos para esses problemas, apesar da solucao devolvida ter a qualidade possivelmente
comprometida. Encontrar aproximacoes boas para problemas NP-dificeis pode ser
trabalhoso; contudo, diversas técnicas ja foram desenvolvidas, uma técnica em par-
ticular consiste em formular o problema como um programa linear inteiro ou misto,
obter uma solugao da relaxacao correspondente e encontrar uma solugao inteira para
o problema original com custo limitado por um fator do valor da solucao do programa
linear.

Para resolver programas lineares, o algoritmo padrao da industria ¢ o algoritmo
Simplex [3], que é exponencial no pior caso, e para instancias préticas, ele é bem
rapido. Muitas vezes, os pacotes para resolver PLs ja possuem otimizacgoes para
detectar um tipo especifico de PL e resolver com um algoritmo mais rapido (pode ser
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até polinomial). Além do mais, alguns PLs podem ser formulados em fluxo de rede
[6] 0 que permite resolver o problema em tempo polinomial utilizando, por exemplo,
algoritmos de resolugao de fluxo maximo.

O Problema da Localizagdo de Instalagoes [11] (FLP) é um problema bem co-
nhecido e estudado na computagao e enfrentado com alta recorréncia na industria.
Nesse problema, um atacadista tem um conjunto de lojas espalhadas na cidade e
precisa decidir quais armazéns contratar de forma a minimizar o custo de aluguel
e transporte de mercadorias. A andlise da localizacdo de instalagoes é aplicada a
varios problemas na industria; por exemplo, a localizacao de aeroportos, escolas, ar-
mazéns, fabricas, postos de correios, hospitais, entre outros. O FLP é um problema
NP-dificil, portanto, ndo existe algoritmo polinomial que o resolva (a nao ser que
P = NP). Contudo, existem algoritmos de aproximagao na literatura que o resolvem,
alguns dos quais sdo baseados na resolugao de um programa linear inteiro relaxado[1].

2 Definicoes e métodos

2.1 Algoritmo de aproximacao

Um algoritmo é uma a-aproximacao para um problema de minimizacao se for um
algoritmo polinomial que, para toda instancia do problema produz uma solugao cujo
valor é no maximo « vezes o valor da solucao 6tima para o problema. Chamamos de
a a performance do algoritmo, também chamada de fator de aproximacao ou razao
de aproximacao.

2.2 Programacao Linear e Programacao Linear Inteira

Programacao linear é um problema em que uma instancia é formada por um vetor
c e R um vetor b € Q™ e uma matriz A = (a;;) € Q™" e a tarefa é devolver
exatamente um dos seguintes resultados possiveis:

1. encontrar um vetor z € R” tal que Az < b e ¢’z é maximo, ou
2. verificar que {z € R" : Az < b} é vazio, ou
3. verificar que para todo o € R existe um # € R” com Az < be clz > a.

Uma instancia do problema acima ¢ denominado Programa Linear. O vetor z é
chamado de varidvel do problema. Qualquer z que satisfaca as restrigdes é chamado
de solucao factivel e, se existir pelo menos algum z no problema, o problema é dito
factivel; caso contrario, é dito infactivel. O termo programa linear é frequentemente
abreviado para LP.
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Algoritmo Simplex: O algoritmo Simplex é o mais velho e conhecido algoritmo
para resolver problemas lineares criado por George Dantzig. Recebe como entrada
os mesmos vetores da entrada de um problema de programacao linear e retorna, por
sua vez, uma solucao factivel 6tima, caso exista, ou uma indicagdo que o problema é
infactivel, caso contrario.

O algoritmo consiste em inicializar a solu¢ao inicial como 0 e incrementar um
pouco a variavel que tem maior interferéncia positiva no resultado da fungao objetivo.
O procedimento passa entdo para outra variavel que nos aproxima da solugao 6tima
e, em cada etapa, sao convertidos todos os coeficientes das restrigoes de acordo com
os limites encontrados nas sucessivas restrigoes.

O algoritmo possui complexidade exponencial no pior caso, devido a quantidade
de iteracoes que sao necessarias para atingir o critério de parada. Contudo, na pratica,
ele é bem eficiente e ja foi relatado que sdao raras as instancias em que atinge essa
complexidade exponencial [3] e, por isso, o algoritmo é muito utilizado na industria.

Programa Linear Inteiro: Também, é possivel definir um programa linear com
variaveis inteiras. Na programacao linear inteira, uma instancia ¢ composta de um
vetor ¢ € Q", um vetor b € Q™ e uma matriz A = (a;;) € Q™*". A tarefa é encontrar
um vetor x € Z" tal que Ax < b e cf'x é mdximo, ou verificar que {x € Z" : Ax < b}
é vazio, ou verificar que sup{cz : v € Z", Az < b} = 0.

Uma instancia do problema acima é denominado Programa Linear Inteiro, ou
abreviando, PLI. Diferentemente de um PL, PLI é um problema NP-dificil [6].

2.3 Problema da Cobertura de Conjuntos

No problema da cobertura de conjuntos (também chamado de set cover), sao dados um
conjunto de elementos £ = {ey, e, ..., €, }, um conjunto de subconjuntos Si, So, ..., Sy,
onde cada S; € E, j = 1,...,m e pesos nao negativos w; > 0 associados a cada
subconjunto. A tarefa é encontrar uma cole¢ao de subconjuntos de custo minimo que
cobre todos os elementos de E. O problema pode ser formulado como o seguinte PLI:
Minimizar:

m
Z w;T;
j=1

Sujeito a:
o x> 1Vi=1,..,n

jie; €S;
2, € {0,104V =1,..,m

onde foi adicionada uma varidvel de decisao z; para indicar se um conjunto S; faz
parte da cobertura, ou nao.
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2.4 Problema da Localizacao de Instalacoes FLP

Um atacadista tem um conjunto de lojas espalhadas na cidade e precisa decidir que
armazéns contratar de forma a minimizar o custo de aluguel e transporte de mer-
cadorias. Esse problema tem motivacao principalmente em cadeias de producao de
industrias e tem aplicagoes em projeto de rede em varias situacoes. Uma versao para
o problema acima pode ser formulada da seguinte maneira [11]:

Seja um conjunto de clientes ou demandas D e um conjunto de facilidades F'. Para
cada cliente j € D e facilidade ¢ € F existe um custo ¢;; para atribuir um cliente
j a facilidade 7. Além do mais, existe um conjunto f; associado a abertura de uma
facilidade i € F. Assim, queremos encontrar um subconjunto de facilidades F" C F
que minimize o custo de abrir as facilidades e atribuir cada cliente (um cliente é
associado com apenas uma facilidade). Logo, o problema a seguir pode ser formulado
no seguinte PLI:

Minimizar:
Z fiyi + Z CijTij
i€F ieF,jeD
Sujeito a:
inj = 1,V] S D,
ieF
ri; <y, Vi€ F,j €D,
z;; € {0,1},Vi € F,j € D,
y; €{0,1},Vi € F,

onde foram adicionadas variaveis de decisao y; para cada facilidade ¢ € F' para indicar
se a facilidade ¢ aberta ounao e x;; paratodoi € F' e j € D para indicar se a facilidade
1 esta atribuida ao cliente j.

2.5 Reducao do Problema de Localizacao de Instalacoes para
o Problema da Cobertura de Conjuntos

A seguinte reducao foi mencionada por Young em um artigo que propoe algoritmos
para resolucao de PLs de instdncias do Problema da Localizacdo de Instalagoes|[13]:

Para cada facilidade j, crie um conjunto Fj; com custo igual ao custo de abertura
da facilidade j. Para cada par cliente i e facilidade j crie um elemento (i,7) e um
conjunto S;; = {(4,5)}. Para cada i, seja <; uma ordenagdo de facilidades j por
distancia até ¢ crescente (para distancias iguais a ordem é arbitraria) e faga F; ser
{(i,k) : j =i k}. O custo do conjunto S;; é igual a distancia d(7, j) de i até j menos
a distancia d(i, j') da préxima facilidade i’ na ordenagao, se existir. O LP resultante
pode ter (nm?) entradas iguais a 0, onde n é o nimero de facilidades e m o ntimero
de clientes.
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3 Revisao bibliografica

Para resolucao de programas lineares, o Método Simplex é o mais conhecido na in-
dustria, porém, dependendo da aplicacao, ¢ possivel utilizar outras abordagens mais
eficientes e que ja& cumprem com o seu propésito. Por exemplo, Young [12] propos
uma solugao utilizando um algoritmo de aproximacao para resolver problemas mis-
tos de packing e covering (programas lineares com restrigoes da forma Pz < p e
Cz > ¢ com matrizes P e C' com coeficientes positivos). Em sua solucao, ele conse-
guiu elaborar um algoritmo de aproximagao de complexidade O(mdlog(m)/e?) para
satisfatibilidade de problemas mistos de packing e covering (onde m é o niimero total
de restrigdes e d é o nimero maximo de restrigoes que uma variavel aparece), verifi-
cando se existe um vetor z > 0 sujeito a Px < (1+4¢)p e Cx > ¢, garantindo assim, a
cobertura das restrigoes de covering e garantindo que as restri¢oes de packing fossem
no maximo um fator 1 4 € do desejado, para qualquer € > 0 constante.

O algoritmo de Young ¢ bem simples e consistiu em construir a solu¢ao incre-
mentalmente, com auxilio de derivadas parciais e observando a taxa de variagdo que
cada incremento de alguma varidvel causava nas restri¢coes de packing e covering, de
forma a garantir que a primeira nao ultrapasse um fator 1+ € para cada restricao, ga-
rantindo o objetivo do algoritmo proposto. As computacoes realizadas no algoritmo
se baseiam em produto de matrizes com vetores e somas, multiplicagoes, divisoes e
exponenciais termo a termo dos elementos das matrizes, gerando um algoritmo alta-
mente paralelizavel (versoes de algoritmos paralelos sdo propostas no artigo). Vale
ressaltar que muitos problemas que existem possuem a propriedade de serem pura-
mente de packing (restricoes na forma Ax < b), puramente de covering (restrigoes
na forma Ax > b), ou ambos, como o problema da mochila, cobertura de conjun-
tos, entre outros. Young também conseguiu utilizar seu algoritmo para a resolugao
de problemas de otimizagao do tipo max{\ : Px < Ap,Cx > c}. A ideia consistiu
basicamente em resolver varios sub-problemas de satisfatibilidade adicionando uma
restricao de packing com um limitante variavel utilizando pesquisa binaria até en-
contrar a solugao Otima. Além do mais, Young utiliza seu algoritmo para resolver
problemas com ntmero exponencial de variaveis, mais especificamente, o problema
do fluxo minimo multicommodities, implementavel com uma complexidade proporcio-
nal a resolver O(mlog(m)/e?) sub-problemas de caminho minimo, sendo m o ntimero
de arestas mais o nimero de commodities.

Com relagao a algoritmos baseados sobre fluxo em rede, Garg et al. [4] buscaram
solucionar problemas de fluxo multicommodities e problemas de packing de forma ra-
pida com algoritmos de facil implementacao, aproximados e combinacionais. A abor-
dagem deles baseou-se em explorar as versoes duais dos problemas de fluxo méaximo
e minimo multicommodities, problema de fluxo concorrente maximo, entre outros
problemas. A ideia do algoritmo foi interpretar as variaveis do problema dual como
comprimentos nas arestas do grafo (pois cada varidvel era relacionada a uma aresta)
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iniciando cada comprimento com um valor muito pequeno . Logo, para cada itera-
¢ao do algoritmo, introduzia-se um fluxo no caminho minimo do grafo em fungao dos
comprimentos das aresta e garantia-se que cada comprimento nao fosse aumentado
por um fator de no maximo 1 + ¢, fazendo isso até atingir o valor maximo possivel
de fluxo, respeitando as restrigoes de capacidade. Como resultado dessa abordagem,
eles obtiveram uma 14w aproximagao em tempo O(w™2(klog m+m)logm-Ty,) para
o problema do fluxo concorrente maximo, onde k£ é o ntimero de commodities, m o
nimero de arestas mais vértices no grafo e Ty, ¢ o custo para computar o caminho
minimo entre uma fonte e um ralo. Para atingir esse resultado foi necessario realizar
diversas otimizag¢des no algoritmo original, dentre elas, minimizar o nimero de vezes
que o algoritmo de caminho minimo é utilizado e garantir um ntimero fixo de iteragoes
na qual o algoritmo finalizava. Questoes de integralidade também foram provadas que
podem ser obtidas realizando pequenas modifica¢oes no algoritmo original.

Acerca do Problema de Localizagao de Instalagoes, o livro de Williamson e Shmoys
[11] revisa a literatura sobre o problema, desde formulacao como PLI aos algoritmos
de aproximacao, refinando cada solucao a fim de melhorar o fator de aproximacao
dos algoritmos. Um resultado que também é demonstrado no livro é que nao existe
um algoritmo de aproximacao para o Problema da Localizagao de Instalagoes com
fator a < 1,463, a nao ser que cada problema em NP tenha um algoritmo com
tempo de execucao O(n®U°8loem))  As soluces apresentadas pelo livro se basearam
em analisar a versao primal e dual do problema, definindo uma nocao de “vizinhanga”
entre instalacoes e clientes, de forma que o algoritmo definia as vizinhancas a par-
tir dos valores das variaveis do problema relaxado, olhando para esses valores como
probabilidades do cliente j estar associado & instalagao i [5]. O melhor algoritmo pro-
posto no livro (desenvolvido por Chudak e Shmoys) possuia um fator de aproximagao
a=1+ % ~ 1.736. O algoritmo em questao consiste em: resolver a relaxacao do PLI
para FLP; escalar as variaveis de abertura de facilidades da solucao do problema por
um fator v e transformar a solucao relaxada incompleta em uma solugao completa; di-
vidir os clientes em clusters minimizando uma func¢ao de custo; escolher as facilidades
que serao abertas (uma para cada cluster, escolhidas com uma certa probabilidade
dentre as facilidades que estao mais préximas do centro do cluster); abrir demais faci-
lidades que estao longe dos clusters com uma certa probabilidade (dada pela solugao
relaxada completa do PL); associar os clientes as facilidades abertas mais préoximas.

Modificando o algoritmo de Chudak e Shmoys [2], que é um algoritmo com fa-
tor (1 + 2/e), Byrka e Aardal[l] implementaram um algoritmo obtendo uma 1,5
aproximacao, melhorando o resultado anterior que era de 1,52-aproximagao feito por
Mahdian, Ye, and Zhang comentado por eles. Nesse artigo, é definido o conceito
de algoritmo de aproximacao com bi-fatores, ou seja, uma (Af, A.)-aproximacao, onde
queremos encontramos um algoritmo cujo custo das facilidades seja no maximo As- F*
do valor 6timo F* e o custo das conexoes entre facilidades e clientes seja no ma-
ximo A, - C* do valor 6timo C*. O algoritmo proposto por Byrka e Aardal é uma
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(1,6774,1,3738)-aproximagao. O melhor algoritmo conhecido para o problema tem
fator de aproximagao 1,488 [7].

4 Metodologia e Implementacao

O projeto foi dividido em trés etapas.

1. Implementagdao do algoritmo proposto por Chudak e Shmoys[1] para resolver
o FLP dada a solucao do programa linear relaxado retornado pelo Simplex.
Comparar aproximacoes obtidas com relagao a solugao étima.

2. Desenvolvimento de uma adaptacao do algoritmo de aproximacao de Young
para resolver programas lineares mistos de packing e covering[12]. Otimizar
algoritmo para resolver o problema da cobertura de conjuntos[11]. Comparar
qualidade das aproximagoes e tempo de execugao com relagao ao Simplex.

3. Reduzir o FLP para cobertura de conjuntos a partir da reducao proposta por
Young[13] e integrar os algoritmos de Chudak e Shmoys e Young implementa-
dos. Comparar aproximagoes e tempos de execucao com relagdo a solugao do
programa linear inteiro original resolvido via Gurobi/Simplex.

4.1 Algoritmo de Chudak e Shmoys + Simplex

As instancias utilizadas para testar o algoritmo sao provenientes de dois datasets
diferentes. O primeiro dataset (Beasley) foi obtido da OR-Library da Brunel Uni-
versity London[9], consistindo de 36 instdncias de dimensoes variadas (as primeiras
24 instancias tém tamanho médio variando de 16 a 50 facilidades e 50 clientes, e as
12 dltimas instancias sdo maiores, com 100 facilidades e 1000 clientes). O segundo
dataset (Holmberg) foi obtido no site do Departamento de Ciéncia da Computacao
da Universidade de Pisa[10], consistindo de 71 instancias de dimensoes variando de 50
a 200 clientes e de 10 a 30 facilidades. Ambos datasets passaram por padronizagoes
de formatacao e simplificagoes dos dados para facilitar a automatizacao dos testes
(muitas instancias estavam em formatos diferentes e com informagoes desnecessarias
que foram descartadas).

Para computar as solugoes 6timas das instancias do FLP via formulagdo do PLI
relacionado e para obter as solugoes relaxadas correspondentes, foi utilizada a ferra-
menta Gurobi. Como o Gurobi utiliza por padrao diversas otimizacdes automaticas e
possui diversos algoritmos diferentes para resolver tipos especificos de PL, foi necessa-
rio desabilitar todas as flags de otimizagao para fazer uma comparacao justa. Assim,
deixamos o algoritmo de resolu¢ao do PL sendo o Simplex e o nimero de threads
utilizadas como 1.
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A implementacao do algoritmo de Chudak e Shmoys foi feita inteiramente na lin-
guagem C utilizando somente as bibliotecas basicas da linguagem. Optou-se por rea-
lizar uma implementagao mais simples do algoritmo (nao foram utilizadas estruturas
de dados muito complexas) a fim de analisar apenas a qualidade das aproximagoes, e
somente se a performance do algoritmo fosse muito comprometida seriam explorados
novos meios de implementar o algoritmo. Por exemplo, para calcular a vizinhanca
entre clientes e facilidades poderia ter sido usado um grafo auxiliar utilizando listas de
adjacéncia pois melhoraria o custo de acessar a vizinhanga de um né (muito utilizado
no algoritmo). Contudo, a versdo inicial utilizando matriz de adjacéncia ja satisfez
as necessidades do algoritmo sem muitas perdas de performance.

O algoritmo de Chudak e Shmoys possui um parametro v que é utilizado no co-
mego do algoritmo que escala as variaveis de abertura de facilidades do PL relaxado.
Como nas fases seguintes do algoritmo a escolha das facilidades dependem de uma
probabilidade relacionada as variaveis da solu¢ao do PL, escolher um + muito alto
apenas abriria todas as facilidades com probabilidades diferente de zero, pois esca-
lando as variaveis a probabilidade de abertura seria muito préxima ou até mesmo
maior que 1 (o que foi observado nos testes). Por isso, optou-se por utilizar apenas
fatores v proximos a 1. Nos resultados apresentados serao exibidos testes com ~ entre
lel.b.

4.2 Algoritmo de Young

As instancias utilizadas para testar o algoritmo de Young sdo instancias do problema
da cobertura de conjuntos. As instancias foram obtidas da mesma fonte do primeiro
dataset do UFL (OR-Library [8]) e sdo compostas de 87 instancias de tamanhos va-
riados. Para facilitar a andlise, as instdncias foram dividias em 3 datasets: small (50
instancias menores do dataset original, de 500 a 4000 elementos e 50 a 400 subcon-
juntos), medium (30 instancias médias do dataset original, também possui instancias
pequenas, mas grande parte das instancias tem 5000 a 10000 elementos ou 500 a 1000
subconjuntos) e big (7 instancias grandes do dataset original, possuindo 3 instan-
cias com 500 a 600 elementos e 50 a 60 mil subconjuntos e 4 instancias com 2500 a
5000 elementos e por volta de 1 milhdo de subconjuntos). Observagao: No dataset
medium, as 10 primeiras instdncias comegam de instancias pequenas (200 elementos
e 500 subconjuntos) até instancias médias (11264 elementos e 28160 subconjuntos)
com grau de esparcidade aumentando crescentemente até a décima instancia (poucos
elementos nos subconjuntos). As demais instancias possuem 5000 elementos e 500
subconjuntos ou 10000 elementos e 1000 subconjuntos. Contudo, tratam-se de ins-
tancias mais densas (muitos elementos nos subconjuntos) tornando o tamanho dos
arquivos maiores que as 10 primeiras instancias. Infelizmente nao foi possivel utilizar
as instancias do dataset big pois o Gurobi nao suportou carregar restri¢oes e varia-
veis na ordem de 1 milhdo (ndo foi possivel concluir se foi incapacidade do Gurobi
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ou da memoria da méaquina utilizada, acredita-se ser a segunda razao), além do mais,
os tempos de execugdo para as menores instancias do dataset big demoravam muito
tempo para executar (mesmo no Gurobi), logo, pela inviabilidade na obtengao dos
valores de referéncia das instancias, optou-se por nao utilizar este dataset.

Para computar as solu¢oes 6timas das instancias do set cover e obter os tempos
de execucao de referéncia foi utilizado o Gurobi com as mesmas configuragoes de
execugao do algoritmo de Chudak e Shmoys (algoritmo utilizado Simplex e nimero
de threads igual a 1).

A implementacao do algoritmo de Young foi feita inteiramente na linguagem C
utilizando apenas as func¢oes da biblioteca padrao da linguagem C. A fim de evitar
multiplicagoes (que possuem custo muito alto nesse algoritmo), foi levado em conside-
racao que as entradas do algoritmo sdo apenas instancias da cobertura de conjuntos,
ou seja, com a caracteristica de possuir apenas zeros ou uns nas restri¢oes de covering
(j& que as varidveis de pertinéncia nos subconjuntos sao bindrias), o que permitiu efe-
tuar produtos de matrizes apenas com somas. Além do mais, os produtos de matrizes
foram adaptados utilizando uma estrutura de dados compacta que salva apenas as
entradas diferentes de zero das matrizes, a fim de efetuar produtos de matrizes mais
eficientes para matrizes esparsas, encontradas com grande frequéncia em instancias
do problema da cobertura de conjuntos.

O algoritmo de Young implementado possui 2 parametros na execugao, a precisao
e da aproximacao desejada e o step size factor k, que indica o tamanho do passo que
o algoritmo realiza em cada iteracao. O step size factor é um multiplicador de um
valor a calculado no algoritmo que garante que a solucao retornada sempre é um
fator 14 € da solugao 6tima caso seja utilizado o valor a como step size, ou seja, caso
seja utilizado um passo maior que « nao é garantido que a solucao devolvida seja
uma 1 + € aproximagao. Contudo, foi observado que o valor o é um limitante muito
abaixo do step size ideal e que é possivel utilizar valores bem maiores que « ainda
garantindo aproximacgoes boas. Nos testes realizados, foram usados € no intervalo de
0.08 e 1.00 e k no intervalo de 1 a 100.

4.3 Algoritmo de Chudak e Shmoys + Algoritmo de Young

Nesta etapa final, testamos a nossa implementacao do algoritmo de Chudak e Sh-
moys utilizando as solugoes do PLI relaxado resolvidas pela nossa implementacao do
algoritmo de Young. As instancias utilizadas para testar o algoritmo sdo as mesmas
utilizadas na primeira subsegao (dataset Holmberg e Beasley).

Como o PL original do FLP nao é um programa linear misto de packing e covering,
foi necessario reduzir o FLP para cobertura de conjuntos e assim utilizar a nossa
implementacao do algoritmo de Young para resolver o PL correspondente a instancia
fornecida.

Para computar as solugoes 6timas das instancias do FLP via PLI e os tempos de
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execucao de referéncia foi utilizada a ferramenta Gurobi com as mesmas configuragoes
de execucao das subsegoes anteriores (algoritmo utilizado Simplex e niimero de threads
igual a 1).

Como a variacao do fator v do algoritmo de Chudak e Shmoys ndo comprome-
teu a qualidade das aproximagoes obtidas (ver resultados do algoritmo de Chudak e
Shmoys), este parametro foi mantido constante (utilizou-se v = 1.2). Além disso, os
resultados do algoritmo de Young serviram como base para escolher as combinagoes
de K e € para serem testados sem comprometer a qualidade das aproximagoes (vale
ressaltar que Chudak e Shmoys nao comentam nada sobre a qualidade das aproxima-
¢oes utilizando uma solucao fracionaria aproximada ja que a 1.736-aproximacao vale
para a solugdo 6tima do PL relaxado). Nos testes foram utilizados x entre 10 e 80 e
e entre 0.57 e 1.

5 Resultados

5.1 Algoritmo de Chudak e Shmoys + Simplex

A figura 1 apresenta os fatores de aproximagcao e razao de tempo resolvendo o algo-
ritmo de Chudak Shmoys com relacdo ao tempo total de execucdo obtidos para as
instancias do dataset Holmberg e a figura 2 apresenta os mesmos resultados para as
instancias do dataset Beasley (para todas as instancias, o fator de aproximacao foi
calculado dividindo o custo total da solugao obtida com o algoritmo de Chudak e
Shmoys pelo custo da solugdo 6tima obtida com o Gurobi).

Como observado nos graficos das figuras 1 e 2, os fatores de aproximagao obtidos
em todas as instancias ficaram bem menores que o valor maximo teérico de 1.736 que
Chudak e Shmoys demonstraram no seu livro[11]. Para ambos datasets, valores de
aproximacao iguais a 1 vieram de instancias cuja solugao relaxada é igual a solucao
inteira (no qual ocorre em mais da metade dos casos), o que é de se esperar, ja que
a probabilidade de abertura das localizagoes é sempre 0 ou 1, que por sua vez nao
seriam alterados nas etapas do algoritmo de Chudak e Shmoys.

No dataset Holmberg, todos os testes que apresentaram fatores de aproximagao
diferente de 1 ficaram com aproximacgao entre 1.04 e 1.10 (y =1,y =1.1ey=12) e
1.02 e 1.08 (y = 1.3 e v = 1.5), com excecao da instdncia 56 que apresentou fator de
aproximacao proximo de 1.13 para v > 1. No dataset Beasley, para todos os valores de
v testados, exceto 1.5, os testes que apresentaram fatores de aproximacao diferente de
1 ficaram com aproximagao observada menores que 1.12 (alguns testes apresentaram
fator de aproximacao 1.05 e outros por volta de 1.03) e para v = 1.5, por volta de 1.05
ou menores. Como observado em ambos datasets, o algoritmo de Chudak e Shmoys
apresentou solugoes muito proximas da solugao 6tima para instancias cuja solucao do
PLI relaxado é fracionaria.
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A alteragao do fator v para uma mesma instancia do problema demonstrou mo-
dificar levemente os fatores de aproximacao obtidos nas mesmas, mas nada que com-
prometesse gravemente o custo total da solugao. Para algumas instancias, aumentar
levemente o fator v diminuia o fator de aproximagao, e para outras, aumentava o fator
de aproximacao, contudo, foi constatado em poucas instancias. Além do mais, por
se tratar de um algoritmo aleatorizado é dificil afirmar se a alteracao do v melhorava
o fator de aproximacao do algoritmo ou se apenas alterava o caminho que a solugao
percorria até chegar na solugao final.

Com relacao ao tempo de execucdo, a performance do algoritmo de Chudak e
Shmoys se limita pela obten¢ao da solu¢ao do PLI relaxado. A fracao de tempo que
o algoritmo leva para resolver o PLI relaxado (utilizando o Gurobi) com rela¢ao ao
tempo total de execucao é muito maior que a fracdo de tempo que o algoritmo de
Chudak e Shmoys utiliza para efetuar todas as suas etapas (escalar solu¢ao do PLI
relaxado, clusterizacao de clientes, calculo de vizinhanca entre clientes e facilidades,
abertura aleatorizada de facilidades e conexao de clientes mais préximos as facilidades
abertas). Para as instdncias do dataset Holmberg a razao fica por volta de 0.1 ou
menor, e para instancias maiores (observando o dataset Beasley) a razao diminui ainda
mais (nas primeiras 24 instancias que sdo menores a razao fica entre 0.03 e 0.06 e nas
ultimas 12 instancias que sao maiores a razao fica por volta de 0.01). Por causa desse
resultado, optou-se por manter a implementacao do algoritmo de Chudak e Shmoys
como estd (apesar de ainda ser possivel otimizar algumas etapas do algoritmo, por
exemplo, utilizando estruturas de dados mais complexos para computar as vizinhancas
entre clientes e facilidades na hora de fazer a clusterizagdo dos clientes) e dar mais
foco no algoritmo de Young para tentar bater o tempo de execugao do Gorobi.

5.2 Algoritmo de Young

As figuras 3 e 4 apresentam os fatores de aproximacao e speedup obtidos para as
instancias do dataset small e as figuras 5 e 6 apresentam os fatores de aproximagao e
speedup obtidos para as instancias do dataset medium.

Para todas as instancias, o fator de aproximacao foi calculado dividindo o custo
total da solucdo obtida com custo da solugdo 6tima obtida pelo Gurobi resolvendo
o PL correspondente a instancia testada. Os speedups foram calculados dividindo o
tempo de execuc¢ao do Gurobi resolvendo o PL do setcover pelo tempo de execugao
do algoritmo de Young resolvendo o mesmo PL.

Optou-se por exibir os graficos de speedup aplicando log na base 10, pois observou-
se que conforme as dimensoes da entrada aumentavam , o speedup aumentava muito,
chegando na casa dos milhares, dificultando a leitura do grafico.
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5.2.1 Fatores de aproximacao e speedups observados, x = 1

Observando primeiramente as aproximagoes obtidas utilizando o K = 1 (ou seja,
utilizando o step size = a que garante a aproximacao desejada fornecida no algoritmo)
vemos que tanto no dataset small e medium, as aproximagoes sao todas menores que
as fornecidas no algoritmo (o que é esperado).

No dataset small, utilizando um € = 1, a instancia que gerou a pior aproximagcao
tem um fator de aproximacao observado de 1.35 (bem menor que a maior possivel que
¢ uma 2-aproximagao). Ainda utilizando a mesma precisdo, em algumas insténcias
foram encontradas aproximagoes muito boas (por volta de 1.04) mesmo utilizando
e = 1. No dataset medium, utilizando a mesma precisao, a pior aproximagcao foi de
1.4, onde também foram encontradas aproximacgoes muito boas em algumas instancias
(por volta de 1.05).

Utilizando ¢ = 0.43, todas as instancias dos datasets small e medium possuem
fator de aproximacao observados menores que 1.15, e utilizando ¢ = 0.18, todas as
instancias dos datasets small e medium possuem fator de aproximacao observados
menores que 1.05. Estes resultados demonstraram que o step size utilizado de fato
garante a aproximacao escolhida na execucao o algoritmo, garantindo aproximacoes
muito melhores na pratica. Por causa disso, foi considerado testar step size maiores
posteriormente.

Com relacao aos speedups obtidos, no dataset small, apenas utilizando ¢ = 1
(na maioria dos testes) e € = 0.76 (na minoria dos testes) obtivemos performances
melhores que o Gurobi, contudo, ndo foram muito elevados (por volta de no maximo
4x mais rapido que o Gurobi).

Ja no dataset medium, observamos melhoras de performance na maioria das ins-
tancias até € = 0.43 (onde obtivemos aproximagoes menores que 1.15 em todas as
instancias). Vale ressaltar que para uma instancia (instdncia 10) que teve perfor-
mance melhor que o Gurobi com todos os € testados (até 0.08) e além do mais,
utilizando € = 1 foi obtido speedup por volta de 1000 com aproximacao observada
de 1.025 (melhor resultado encontrado). Um outro conjunto de instdncias (1 a 9 por
exemplo) também obtiveram performances muito boas (10x a 100x mais rapidas que o
Gurobi) utilizando € = 1 e com aproximagoes observadas por volta de 1.05. A maioria
das insténcias apresentaram fatores de aproximacao menores que 1.4 com speedups
obervados entre 10 e 30 (utilizando € = 1), fatores de aproximagdo menores que 1.3
com speedups entre 3 e 10 (para e = 0.76) e fatores de aproximacao menores que 1.2
com speedups entre 2 e 9 (para € = 0.57).

5.2.2 Fatores de aproximacao e speedups observados, x > 1

Observando os resultados dos datasets small e medium, temos que as aproximagoes
pioram claramente conforme aumentamos o valor do step size, sendo que no dataset
small as aproximagoOes observadas ficam maiores que as esperadas a partir de um
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step size maior que 80x do step size original e para o dataset medium os valores das
aproximacoes sao maiores a partir de um step size maior que 30x do step size original.

Contudo, ainda notamos uma melhora na precisao da aproximagao conforme di-
minuimos o € com todos os step size utilizados, de forma que a diminui¢do do € em
funcao do aumento do step size compensa a perda de precisao do algoritmo. Por
causa disso, foi necessario ponderar o trade-off entre precisdo e performace de forma
a encontrar combinacoes dos pardmetros k e € que gerem speedups bons com fatores
de aproximacao pequenos.

Segue alguns dos melhores resultados observados nos graficos das figuras 3 a 6
separados por dataset. Para todos os resultados foram selecionados combinacoes de
k e € de forma que para todas as instancias o speedup seja maior que 1 (melhor que
o Gurobi) e cujas aproximacoes observadas sempre sejam menores que o € fornecido.

No dataset small, alguns resultados dentre os melhores (fator de aproximagao
observado e speedup) foram:

e v =10, ¢ = 1.00: speedup por volta de 10 a 50, aproximagoes observadas
menores que 1.4 (cerca da metade das instdncias menores que 1.2)

e k=10, ¢ = 0.76: maioria das instancias com speedup entre 3 e 30, aproximagcoes
observadas por volta de 1.3 (cerca da metade das instancias por volta de 1.1)

e k=20, ¢ =1.00: maioria das instancias com speedup entre 5 a 40, aproxima-
¢oes observadas menores que 1.5 (cerca da metade das instancias menores que
1.2)

e k=20, ¢ =0.76: maioria das instancias com speedup entre 5 e 40, aproximagoes
observadas por volta de 1.3 (mais da metade das instancias menores que 1.15)

e k=230, ¢ =0.57: maioria das instancias com speedup entre 3 e 30, aproximagcoes
observadas menores que 1.2 (metade das instancias por volta de 1.1)

e x = b0, € = 0.57: maioria das instancias com speedup entre 10 e 40, aproxi-
magoes observadas por volta de 1.3 (cerca da metade das instdncias por volta
de 1.1)

e k=100, ¢ = 0.43: maioria das instancias com speedup entre 3 e 30, aproxima-
goes observadas por volta de 1.3 (cerca da metade das instancias menores que
1.18)

No dataset medium, alguns resultados dentre os melhores (fator de aproximagao
observado e speedup) foram:

e k=10, ¢ = 0.57: maioria das instdncias com speedup maior que 20 (algumas
maiores que 100 e uma por volta de 1000), aproximagoes observadas por volta
de 1.2
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k = 10 , € = 0.43: maioria das instdncias com speedup maior que 10 (algu-
mas maiores que 100), aproximagoes observadas por volta de 1.15 (algumas
instancias menores que 1.05)

e k=20, e = 0.32: maioria das instdncias com speedup maior que 10 (algumas
instancias maiores que 100), aproximagoes observadas por volta de 1.15 (maioria
das instancias)

e k=30, e = 0.32: instdncias com speedup maior que 10 (algumas instancias
maiores que 100, uma por volta de 1000), aproximagoes observadas menores
que 1.25

e k=50, e =0.24: instdncias com speedup maior que 10 (algumas instancias
maiores que 100, uma por volta de 1000), aproximacoes observadas menores
que 1.15 exceto uma igual a 1.21 (cerca de metade menor que 1.1)

e x =50, ¢ =0.18: maioria das instancias com speedup entre 10 e 30 (algumas
instancias maiores que 100), aproximagoes observadas menores que 1.1

e k=80, ¢ = 0.14: maioria das instancias com speedup entre 5 e 30 (algumas
instancias maiores que 100), aproximagoes observadas menores que 1.1 exceto
uma igual a 1.11

e k=100, ¢ = 0.11: maioria das instancias com speedup entre 3 e 10 (algumas
instancias maiores que 100), aproximagoes observadas por volta de 1.05

Como pressuposto, aumentar o step size de fato aumentou o speedup e manteve
a precisao das aproximagoes (regulando o k e € é claro). No geral, nas instancias
pequenas (dataset small), o speedup foi observado apenas para € maiores que 0.24
(precisando de step sizes menores para garantir a precisao desejada), enquanto que
nas instancias médias (dataset medium), o speedup foi aparente em praticamente
todas as combinacoes de k e € que garantisse a precisao nas aproximacoes.

Outra observagao no dataset medium é que conforme a esparcidade e as dimensoes
das entradas aumenta (instancias de 1 até 10) o speedup também aumenta conside-
ravelmente (s@o os melhores resultados onde encontramos speedups maiores que 100
a partir da instancia 7 e no caso da instancia 10 por volta de 1000 ou mais). Esse
comportamente é esperado ja que a implementacao do algoritmo de Young proposta
foi otimizada para matrizes esparsas, cujo produto de matrizes (custo principal do
algoritmo) tem complexidade de acordo com o ntiimero de entradas diferentes de zero
das matrizes das restricoes de packing e covering. O Simplex utilizado pelo Gurobi,
por outro lado, nao utiliza essa otimizacao, logo, a performance dele depende somente
das dimensoes das matrizes, independente das caracteristicas especificas delas, o que
torna o algoritmo de Young implementado muito superior ao Simplex para matrizes
esparsas.
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5.3 Algoritmo de Chudak e Shmoys + Algoritmo de Young

As figuras 7 a 9 apresentam os fatores de aproximacao e speedup obtidos para as ins-
tancias do dataset Holmberg e as figuras 10 a 12 apresentam os fatores de aproximacao
e speedup obtidos para as instancias do dataset Beasley.

De modo geral, as aproximagoes ficaram inferiores que o algoritmo de Chudak e
Shmoys utilizando a solugao fracionaria 6tima do PL relaxado, contudo, as aproxima-
¢oes observadas ainda sao menores que a 1.736-aproximacao garantida do algoritmo
de Chudak e Shmoys, sendo que no dataset de Holmberg todas as combinagoes de « e
€ testadas possuem em média um fator de aproximacao por volta de 1.1 enquanto que
no dataset Beasley o mesmo valor fica por volta de 1.2 (valores ainda muito abaixo
da 1.736-aproximacao).

No dataset Holmberg, alguns resultados dentre os melhores (fator de aproximagao
observado e speedup) foram:

e v =30, ¢ = 1.00: maioria das instancias com speedup por volta de 5 a 50
(algumas instancias pouco maiores que 100), aproximagoes observadas por volta
de 1.3 ou menores sendo que maior parte se encontra entre 1 e 1.2 (fator de
aproximagao médio de 1.11).

e x = 80, ¢ = 1.00: maioria das instancias com speedup por volta de 7 a 50
(algumas instancias proximas de 200), aproximacoes observadas menores que
1.5 sendo que maior parte se encontra entre 1 e 1.2 (fator de aproximagao
médio de 1.15).

e x =50, € = 0.76: maioria das instancias com speedup por volta de 3 a 50
(algumas instancias entre 100 e 200), aproximagoes observadas menores que 1.4
sendo que maior parte se encontra entre 1 e 1.2 (fator de aproximagao médio
de 1.15).

e v =80, ¢ = 0.76: maioria das instancias com speedup por volta de 3 a 50,
aproximacoes observadas por volta de 1.4 ou menores, sendo que maior parte
se encontra entre 1 e 1.14 (fator de aproximagao médio de 1.15).

e kv =50, ¢ = 0.57: maioria das instancias com speedup por volta de 2 a 30,
aproximacoes observadas por volta de 1.3 ou menores sendo que maior parte se
encontra entre 1 e 1.15 (fator de aproximacao médio de 1.1).

No dataset Beasley, alguns resultados dentre os melhores (fator de aproximagao
observado e speedup) foram:

e k=10, ¢ = 1.00: boa parte das instancias com speedup entre 1 e 9, aproxima-
¢oes observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.25
(fator de aproximacao médio de 1.15).
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k = 50 , € = 1.00: maioria das instancias com speedup entre 3 e 13 (algumas
pouco maiores que 20), aproximagoes observadas menores que 1.6 sendo que a
maioria se encontra entre 1 e 1.3 (fator de aproximagao médio de 1.21).

e k=80, ¢ = 1.00: maioria das instancias com speedup entre 3 e 14 (algumas
pouco maiores que 20), aproximagoes observadas por volta de 1.6 ou menores
sendo que a maioria se encontra entre 1 e 1.4 (fator de aproximagao médio de
1.31).

e k=280, ¢ =0.76: maioria das instancias com speedup entre 2 e 10, aproximagdes
observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.4 (fator
de aproximagao médio de 1.24).

e k=280, ¢c=0.57: boa parte das instancias com speedup entre 1 e 8, aproxima-
¢oes observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.3
(fator de aproximagao médio de 1.2).

Em ambos datasets, observou-se que no geral o aumento do x e do € nao piorou as
aproximagoes geradas pelo algoritmo de Chudak e Shmoys, ou seja, uma solugdo do
PLI relaxado aproximada ja é suficiente para garantir aproximacoes boas no algoritmo
em questao, e além do mais, esta solu¢do nao precisa ter uma precisdao muito alta
para atingir precisoes dentro da 1.736-aproximacao para todas as instancias testadas
(formalmente isso ndo é garantido para qualquer instancia). Esse 6timo resultado
permitiu escolher valores de k e € mais elevados a fim de melhorar a performance do
algoritmo e tentar obter speedups maiores com relacao ao Simplex.

Os speedups em geral ficaram melhores para o dataset Holmberg (que apresenta
instancias menores) onde foi possivel obter speedups acima de 100x o tempo de execu-
¢ao do Gurobi resolvendo o PL. No dataset Beasley (que apresenta instancias maiores)
o speedup foi inferior, obtendo no maximo speedups pouco acima de 20x o tempo de
execucao do Gurobi. Vale lembrar que foi necesssario aplicar uma reducao no PLI
original para resolver o FLP reduzido a cobertura de conjuntos (assim foi possivel
utilizar o algoritmo de Young), e esta redugao aumenta muito o nimero de varidveis
e restrigoes (por volta de O(nm) varidveis e restri¢oes, onde n é o nimero de faci-
lidades e m o numero de clientes). Contudo, a esparcidade do PLI reduzido aliado
a 6tima performance do algoritmo de Young para instancias esparsas compensou a
penalizacao da aplicacao da reducao, ja que foi possivel para algumas combinagoes
de k e € obter speedups maiores que 1 para todas as instancias em ambos datasets
obtendo bons fatores de aproximagoes observados médios (k = 80 e ¢ = 1.00 para o
dataset Holmberg e k = 50 e € = 1.00 para o dataset Beasley, por exemplo).

Ademais, para algumas instancias foram obtidos fatores de aproximacao iguais a
1, ou seja, solugao igual a solugdo 6tima (no dataset Holmberg utilizando x = 10 e
e = 1.00 nas instancias 17, 30, 32, 61, e 71 e no dataset Beasley utilizando a mesma
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combinacao de pardmetros nas instancias 2 e 19). Esse resultado é bem interessante
visto que testando o algoritmo de Chudak e Shmoys utilizando as solucoes relaxadas
retornadas pelo Simplex isso nao ocorreu para nenhuma instancia do FLP que gerava
uma solucao relaxada fracionaria.

6 Conclusao

Neste projeto, investigamos algoritmos de aproximacao polinomiais para resolver o
Problema da Localizacao de Instalagoes [11] (FLP), tentando atingir tempos de exe-
cucao e aproximacoes proximas ou até melhores, em casos especificos, de algoritmos
projetados até hoje. Para atingir este objetivo, o projeto foi dividido em trés etapas.

Na primeira etapa, implementamos o algoritmo proposto por Chudak e Shmoys|1]
para resolver o FLP dada a solugao do programa linear relaxado retornado pelo Sim-
plex, comparando as aproximagoes obtidas com relacdo a solucao 6tima. Nela, pude-
mos concluir que o limitante em performance do nosso algoritmo se da na resolugao do
PL ja que o tempo de execucao do algoritmo de Chudak e Shmoys é muito inferior ao
tempo de execucao do Gurobi resolvendo um PL. Também pudemos observar fatores
de aproximacao muito melhores que a 1.736-aproximacgao garantida pelo algoritmo
de Chudak e Shmoys, apresentando na pratica solugdbes muito préoximas da solugao
6tima (utilizando v = 1.2 obtivemos fatores de aproximagao menores que 1.13).

Na segunda etapa, desenvolvemos uma adaptacao do algoritmo de aproximacao de
Young[12] para resolver programas lineares mistos de packing e covering, otimizado
para resolver o problema da cobertura de conjuntos[11], comparando a qualidade das
aproximacoes e o tempo de execucao com relagao ao Simplex. Nesta etapa verifi-
camos que o algoritmo implementado consegue ser mais eficiente que o Gurobi para
instancias pequenas, contudo, o ganho que nao é muito elevado (é possivel garantir
aproximagoes entre 1.1 e 1.3 com speedup entre 10 e 40 utilizando x = 50 e € = 0.57).
J& para instancias médias o algoritmo implementado se mostra mais escalavel que o
Gurobi para problemas com instdncias esparsas (nimero de elementos nos subcon-
juntos reduzido) cuja performance ficou muito superior, com speedups na casa das
centenas e até milhares. Nas instdncias médias e densas (nimero de elementos nos
subconjuntos elevado) o algoritmo implementado também conseguiu atingir perfor-
mances melhores que o Gurobi (é possivel garantir fatores de aproximagao menores
que 1.1 com speedup entre 10 e 30 utilizando x = 50 e € = 0.18).

Na terceira etapa, utilizamos a redugao proposta por Young para resolver o FLP
reduzido a cobertura de conjuntos[13], e assim, comparar aproximagoes e tempos
de execucao com relagdo a resolugao do programa linear inteiro original utilizando
o Gurobi. A penalizacdo na reducao implicou uma perda severa na performance,
contudo, ainda assim foi possivel bater o tempo de execucao do Gurobi devido as
otimizacoes no algoritmo de Young para instancias esparsas, sendo possivel garantir
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em todas as instancias testadas a 1.736-aproximacao do algoritmo de Chudak Shmoys
com speedups maiores que 1. Além do mais, para instancias menores, é possivel
obter fatores de aproximacao observados médios de 1.11 com speedups entre 5 e
50 (utilizando x = 30, ¢ = 1.00 e v = 1.2) e para instancias maiores, é possivel
obter fatores de aproximacao observados médios de 1.21 com speedups entre 3 e 13
(utilizando k = 50, € = 1.00 e v = 1.2).

7 Trabalhos Futuros

Durante o projeto, foram estudados algoritmos baseados sobre fluxo de rede, por
exemplo, o algoritmo de Garg et al. [4] para resolu¢ao de programas lineares de pac-
king. Contudo, o FLP nao é um algoritmo de packing puro, portanto, o algoritmo
descrito por Garg et al. nao pode ser utilizado (da maneira que foi proposto) para
resolver o FLP. Como a eficiéncia do algoritmo para resolver o FLP proposto neste
projeto foi limitado pelo algoritmo de resolu¢ao do PLI relaxado, talvez seria inte-
ressante estudar outras formas de resolver programas lineares mistos de packing e
covering, talvez, baseados em fluxo de rede como o algoritmo de Garg et al, adaptado
para resolver também problemas de covering (se existir tal maneira).

Outra possibilidade é estudar os algoritmos de Young em [13]. Neste artigo, sdo
apresentados algoritmos de aproximagdo com complexidade linear voltados para a
resolucao de PLs do FLP sem a necessidade de reduzir explicitamente o problema a
cobertura de conjuntos (causa da perda de performance do algoritmo implementado
na tultima etapa do projeto). Esse artigo somente foi estudado apés a implementacao
da redugao do FLP para cobertura de conjuntos (fase final do projeto), e por falta de
tempo, optou-se por realizar a reducao ja que era a solugao mais simples e de facil im-
plementagao. Aqueles algoritmos unidos ao algoritmo de Chudak Shmoys aparentam
ter resultados promissores e acreditamos valer a pena investiga-los futuramente.
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Figura 1: Fatores de aproximagao e razao de tempo resolvendo algoritmo de Chudak
e Shmoys com relagdo ao tempo total de execugao para as instancias do dataset
Holmberg para diferentes fatores

Fator de aproximagao

Fator de aproximagao

cao

Fator de aproxima

cao

Fator de aproxima

1.10

| g
o
@

g
o
3

|
1
4

|
o
N

1.00

|
13
4

g
o
N

g
1=
S

I
I
~

"
.
o

g
o
@

Iy
=)
=)

g
o
4

iy
o
N

e
1=
S

I
I
~

"
o
o

[
o
3

oy
o
3

[y
13
B

g
o
N

=
1=
S

I
I
~

=
o
o

[y
o
3

=
o
&

=
13
g

1.02

1.00

Dataset holmberg , y = 1.00

Fator de aproximagao observado

UFL time / Total time

. . . .o .« e .« o . ‘e
. . . . B . 0.10 . .
. o . .
£ 0.08
B .
° . .
‘et . e N < 0.06 .
o * . . -
£ . . .
2004 R .
=) D T T . N
. . . .
0.02 - . . . ‘e
00s 500 50 sseses 5 0 3 s sess ses  wse ses seses o o s sease . . .
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
n? instancia n instancia
Dataset holmberg , y = 1.10
Fator de aproximag&o observado UFL time / Total time
0.10 .
@ . -
£ 0.08
* . . . * . ° * 5
. < 0.06 . .
o .. . .
T 0.04 .. .o . e .,
=) R R . . o
0.02 : .. . A .
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
n instancia ne instancia
Dataset holmberg , y = 1.20
Fator de aproximag&o observado UFL time / Total time
0.10 . .
@ . N
Eo0o08 .
. . . . 5
. ¢ . ° . ¢ . °
. Y 0.06 .
o * . - .
& 0.04 L. . .. .
=} L . e o
0.02 : . e . A .
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
ne instancia ne instancia
Dataset holmberg , y = 1.30
Fator de aproximag&o observado UFL time / Total time
0.10 . °
@ . -
£ 0.08
s
. < 0.06 .
o . . - .
. .. . & 0.04 K .o, . <.
= Tt Wt . DTS
0.02 . . . . N
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
ne instancia ne instancia
Dataset holmberg , y = 1.50
Fator de aproximag&o observado UFL time / Total time
0.10 . -
@ . N
Eoo08
b= .
8
. . . . < 0.06 .
. L. z 0.0s <.
> s %% e % . < .
0.02 .. . te :
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
n? instancia n? instancia



Problema da Localizagao de Instalagoes

21

Figura 2: Fatores de aproximacao e razao de tempo resolvendo algoritmo de Chudak e
Shmoys com relagao ao tempo total de execugao para as instancias do dataset Beasley
para diferentes fatores ~
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Figura 3: Fatores de aproximacao e Speedup (log 10) para as instancias do dataset
small para k entre 1 e 100 e € entre 0.32 e 1.00

Dataset small , k = 1

Fator de aproximacao Speedup (log 10)
135 —— 032
05{ —— 043
8130 s —— 057 m
2 -
£125 0.0{ —— 0.76 ~—A——
3 g —— 1.00 u %/ \V
£120 2-05] — Speedup 1
s 5 ;
3115 2 . J
5 8 -1
3 1.10 & \/
1.05 -15
1.00
30 0 10 20 30 40 50
ne instancia ne instancia
Dataset small , k = 10
Fator de aproximacao Speedup (log 10)
—— 032
1.4
° 157 — 043
3 s —— 0.57
213 o 10| — 076
H g —— 1.00
512 g 051 — Speedupl //\\
. E v
3 g oo ™ i —
5
5, & W \—J
-0.5
1.0
0 10 20 30 40 50 0 10 20 30 40 50
n instancia ne instancia
Dataset small , k = 20
Fator de aproximacao Speedup (log 10)
1.5 201 — 032
° —— 043
14 5 151 — 057
£ o —— 0.76
313 S 1.0{ —— 100
3 e —— Speedup 1 /
$12 E 0.5 /
5 a
5 “ 00 /
iD= <
10 -0.5
0 10 20 30 40 50 0 10 20 30 40 50
n instancia n? instancia
Dataset small , k = 30
Fator de aproximacao Speedup (log 10)
1.6
815
b4
£14 |
4 0.32
> 3 —— 043
Y12 —— 0.57
2 —— 0.76
s
11 AV —— 1.00
w —— Speed up 1
1.0 .
0 10 20 30 40 50 0 10 20 30 40 50
n instancia n? instancia
Dataset small , k = 50
Fator de aproximacao Speedup (log 10)
18
2.0
°
T16 s
3
£ S1s
3 g A
814 210 —— 032
© 3 0.43
N 305 —— 057
12 & |— 076
£ 0.0 —— 1.00
—— Speed up 1
105 10 20 30 40 50 0 10 20 30 40 50
n? instancia n? instancia
Dataset small , k = 80
Fator de aproximacao Speedup (log 10)
2.0 251 — 032
—— 043
] 2.0
[
£ 215 .
< S —— 1.00
s16 S
§ 3 ol — Speed up 1
- 7
814 H VoV I
s &os /
£12 I
0.0
1.0
0 10 20 30 40 50 0 10 20 30 40 50
n? instancia n? instancia
Dataset small , k = 100
Fator de aproximacao Speedup (log 10)
2.50 25{ o3
—— 043
5225 2.0
2| = 8%
§ 00 8151 — 100
5175 %10 —— Speed up 1
3 T
2150 g
=2 0.5
s
“1.25
0.0
1.00
0 10 20 30 40 50 0 10 20 30 40 50

n2 instancia n¢ instancia



Problema da Localizagao de Instalagoes 23

Figura 4: Fatores de aproximacao e Speedup (log 10) para as instancias do dataset
small para x entre 1 e 100 e € entre 0.08 e 0.24
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Figura 5: Fatores de aproximacao e Speedup (log 10) para as instancias do dataset

medium para x entre 1 e 100 e € entre 0.32 e 1.00
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Figura 6: Fatores de aproximacao e Speedup (log 10) para as instancias do dataset
medium para k entre 1 e 100 e € entre 0.08 e 0.24
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Figura 7: Fatores de aproximacao e Speedup para as instancias do dataset Holmberg

resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ =
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Figura 8: Fatores de aproximacao e Speedup para as instancias do dataset Holmberg
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ = 0.76
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Figura 9: Fatores de aproximacao e Speedup para as instancias do dataset Holmberg
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ = 0.56
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Figura 10: Fatores de aproximacao e Speedup para as instancias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ = 1.00
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Figura 11: Fatores de aproximacao e Speedup para as instancias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ = 0.76
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Figura 12: Fatores de aproximacao e Speedup para as instancias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ¢ = 0.56
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