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Resumo

Este trabalho implementa o algoritmo de Chudak e Shmoys [1] para resol-
ver o Problema da Localização de Instalações [11]. Neste problema, dado um
conjunto de clientes e um conjunto de instalações o objetivo é encontrar um
conjunto de facilidades para abrir de forma a minimizar o custo de abertura
das instalações e o custo de conexão entre clientes às facilidades abertas mais
próximas.

1 Introdução
Algoritmos de aproximação são algoritmos com complexidade polinomial para pro-
blema de otimização que asseguram uma solução com valor a no máximo um fator
da solução ótima. Para lidar com problemas NP-difíceis, que não podem ser resolvi-
dos de forma exata por algoritmos polinomiais (a não ser que P = NP), algoritmos
de aproximação são muito úteis: a ideia é construir uma implementação de algorit-
mos para esses problemas, apesar da solução devolvida ter a qualidade possivelmente
comprometida. Encontrar aproximações boas para problemas NP-difíceis pode ser
trabalhoso; contudo, diversas técnicas já foram desenvolvidas, uma técnica em par-
ticular consiste em formular o problema como um programa linear inteiro ou misto,
obter uma solução da relaxação correspondente e encontrar uma solução inteira para
o problema original com custo limitado por um fator do valor da solução do programa
linear.

Para resolver programas lineares, o algoritmo padrão da indústria é o algoritmo
Simplex [3], que é exponencial no pior caso, e para instâncias práticas, ele é bem
rápido. Muitas vezes, os pacotes para resolver PLs já possuem otimizações para
detectar um tipo específico de PL e resolver com um algoritmo mais rápido (pode ser
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até polinomial). Além do mais, alguns PLs podem ser formulados em fluxo de rede
[6] o que permite resolver o problema em tempo polinomial utilizando, por exemplo,
algoritmos de resolução de fluxo máximo.

O Problema da Localização de Instalações [11] (FLP) é um problema bem co-
nhecido e estudado na computação e enfrentado com alta recorrência na indústria.
Nesse problema, um atacadista tem um conjunto de lojas espalhadas na cidade e
precisa decidir quais armazéns contratar de forma a minimizar o custo de aluguel
e transporte de mercadorias. A análise da localização de instalações é aplicada a
vários problemas na indústria; por exemplo, a localização de aeroportos, escolas, ar-
mazéns, fábricas, postos de correios, hospitais, entre outros. O FLP é um problema
NP-difícil, portanto, não existe algoritmo polinomial que o resolva (a não ser que
P = NP). Contudo, existem algoritmos de aproximação na literatura que o resolvem,
alguns dos quais são baseados na resolução de um programa linear inteiro relaxado[1].

2 Definições e métodos

2.1 Algoritmo de aproximação
Um algoritmo é uma α-aproximação para um problema de minimização se for um
algoritmo polinomial que, para toda instância do problema produz uma solução cujo
valor é no máximo α vezes o valor da solução ótima para o problema. Chamamos de
α a performance do algoritmo, também chamada de fator de aproximação ou razão
de aproximação.

2.2 Programação Linear e Programação Linear Inteira
Programação linear é um problema em que uma instância é formada por um vetor
c ∈ Rn, um vetor b ∈ Qm e uma matriz A = (aij) ∈ Qm×n e a tarefa é devolver
exatamente um dos seguintes resultados possíveis:

1. encontrar um vetor x ∈ Rn tal que Ax ≤ b e cTx é máximo, ou

2. verificar que {x ∈ Rn : Ax ≤ b} é vazio, ou

3. verificar que para todo α ∈ R existe um x ∈ Rn com Ax ≤ b e cTx > α.

Uma instância do problema acima é denominado Programa Linear. O vetor x é
chamado de variável do problema. Qualquer x que satisfaça as restrições é chamado
de solução factível e, se existir pelo menos algum x no problema, o problema é dito
factível; caso contrário, é dito infactível. O termo programa linear é frequentemente
abreviado para LP.
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Algoritmo Simplex: O algoritmo Simplex é o mais velho e conhecido algoritmo
para resolver problemas lineares criado por George Dantzig. Recebe como entrada
os mesmos vetores da entrada de um problema de programação linear e retorna, por
sua vez, uma solução factível ótima, caso exista, ou uma indicação que o problema é
infactível, caso contrário.

O algoritmo consiste em inicializar a solução inicial como 0 e incrementar um
pouco a variável que tem maior interferência positiva no resultado da função objetivo.
O procedimento passa então para outra variável que nos aproxima da solução ótima
e, em cada etapa, são convertidos todos os coeficientes das restrições de acordo com
os limites encontrados nas sucessivas restrições.

O algoritmo possui complexidade exponencial no pior caso, devido a quantidade
de iterações que são necessárias para atingir o critério de parada. Contudo, na prática,
ele é bem eficiente e já foi relatado que são raras as instâncias em que atinge essa
complexidade exponencial [3] e, por isso, o algoritmo é muito utilizado na indústria.

Programa Linear Inteiro: Também, é possível definir um programa linear com
variáveis inteiras. Na programação linear inteira, uma instância é composta de um
vetor c ∈ Qn, um vetor b ∈ Qm e uma matriz A = (aij) ∈ Qm×n. A tarefa é encontrar
um vetor x ∈ Zn tal que Ax ≤ b e cTx é máximo, ou verificar que {x ∈ Zn : Ax ≤ b}
é vazio, ou verificar que sup{cx : x ∈ Zn, Ax ≤ b} =∞.

Uma instância do problema acima é denominado Programa Linear Inteiro, ou
abreviando, PLI. Diferentemente de um PL, PLI é um problema NP-difícil [6].

2.3 Problema da Cobertura de Conjuntos
No problema da cobertura de conjuntos (também chamado de set cover), são dados um
conjunto de elementos E = {e1, e2, ..., en}, um conjunto de subconjuntos S1, S2, ..., Sm
onde cada Sj ⊆ E, j = 1, ...,m e pesos não negativos wj ≥ 0 associados a cada
subconjunto. A tarefa é encontrar uma coleção de subconjuntos de custo mínimo que
cobre todos os elementos de E. O problema pode ser formulado como o seguinte PLI:
Minimizar:

m∑
j=1

wjxj

Sujeito a: ∑
j:ei∈Sj

xj ≥ 1,∀i = 1, ..., n

xj ∈ {0, 1},∀j = 1, ...,m

onde foi adicionada uma variável de decisão xj para indicar se um conjunto Sj faz
parte da cobertura, ou não.
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2.4 Problema da Localização de Instalações FLP
Um atacadista tem um conjunto de lojas espalhadas na cidade e precisa decidir que
armazéns contratar de forma a minimizar o custo de aluguel e transporte de mer-
cadorias. Esse problema tem motivação principalmente em cadeias de produção de
indústrias e tem aplicações em projeto de rede em várias situações. Uma versão para
o problema acima pode ser formulada da seguinte maneira [11]:

Seja um conjunto de clientes ou demandas D e um conjunto de facilidades F . Para
cada cliente j ∈ D e facilidade i ∈ F existe um custo cij para atribuir um cliente
j à facilidade i. Além do mais, existe um conjunto fi associado à abertura de uma
facilidade i ∈ F . Assim, queremos encontrar um subconjunto de facilidades F ′ ⊆ F
que minimize o custo de abrir as facilidades e atribuir cada cliente (um cliente é
associado com apenas uma facilidade). Logo, o problema a seguir pode ser formulado
no seguinte PLI:
Minimizar: ∑

i∈F
fiyi +

∑
i∈F,j∈D

cijxij

Sujeito a: ∑
i∈F

xij = 1,∀j ∈ D,

xij ≤ yi,∀i ∈ F, j ∈ D,

xij ∈ {0, 1},∀i ∈ F, j ∈ D,

yi ∈ {0, 1},∀i ∈ F,

onde foram adicionadas variáveis de decisão yi para cada facilidade i ∈ F para indicar
se a facilidade é aberta ou não e xij para todo i ∈ F e j ∈ D para indicar se a facilidade
i está atribuída ao cliente j.

2.5 Redução do Problema de Localização de Instalações para
o Problema da Cobertura de Conjuntos

A seguinte redução foi mencionada por Young em um artigo que propõe algoritmos
para resolução de PLs de instâncias do Problema da Localização de Instalações[13]:

Para cada facilidade j, crie um conjunto Fj com custo igual ao custo de abertura
da facilidade j. Para cada par cliente i e facilidade j crie um elemento (i, j) e um
conjunto Sij = {(i, j)}. Para cada i, seja ≺i uma ordenação de facilidades j por
distância até i crescente (para distâncias iguais a ordem é arbitrária) e faça Fj ser
{(i, k) : j ≺i k}. O custo do conjunto Sij é igual a distância d(i, j) de i até j menos
a distância d(i, j′) da próxima facilidade i′ na ordenação, se existir. O LP resultante
pode ter Ω(nm2) entradas iguais a 0, onde n é o número de facilidades e m o número
de clientes.
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3 Revisão bibliográfica

Para resolução de programas lineares, o Método Simplex é o mais conhecido na in-
dústria, porém, dependendo da aplicação, é possível utilizar outras abordagens mais
eficientes e que já cumprem com o seu propósito. Por exemplo, Young [12] propôs
uma solução utilizando um algoritmo de aproximação para resolver problemas mis-
tos de packing e covering (programas lineares com restrições da forma Px ≤ p e
Cx ≥ c com matrizes P e C com coeficientes positivos). Em sua solução, ele conse-
guiu elaborar um algoritmo de aproximação de complexidade O(md log(m)/ε2) para
satisfatibilidade de problemas mistos de packing e covering (onde m é o número total
de restrições e d é o número máximo de restrições que uma variável aparece), verifi-
cando se existe um vetor x ≥ 0 sujeito a Px ≤ (1 + ε)p e Cx ≥ c, garantindo assim, a
cobertura das restrições de covering e garantindo que as restrições de packing fossem
no máximo um fator 1 + ε do desejado, para qualquer ε > 0 constante.

O algoritmo de Young é bem simples e consistiu em construir a solução incre-
mentalmente, com auxílio de derivadas parciais e observando a taxa de variação que
cada incremento de alguma variável causava nas restrições de packing e covering, de
forma a garantir que a primeira não ultrapasse um fator 1+ ε para cada restrição, ga-
rantindo o objetivo do algoritmo proposto. As computações realizadas no algoritmo
se baseiam em produto de matrizes com vetores e somas, multiplicações, divisões e
exponenciais termo a termo dos elementos das matrizes, gerando um algoritmo alta-
mente paralelizável (versões de algoritmos paralelos são propostas no artigo). Vale
ressaltar que muitos problemas que existem possuem a propriedade de serem pura-
mente de packing (restrições na forma Ax ≤ b), puramente de covering (restrições
na forma Ax ≥ b), ou ambos, como o problema da mochila, cobertura de conjun-
tos, entre outros. Young também conseguiu utilizar seu algoritmo para a resolução
de problemas de otimização do tipo max{λ : Px ≤ λp, Cx ≥ c}. A ideia consistiu
basicamente em resolver vários sub-problemas de satisfatibilidade adicionando uma
restrição de packing com um limitante variável utilizando pesquisa binária até en-
contrar a solução ótima. Além do mais, Young utiliza seu algoritmo para resolver
problemas com número exponencial de variáveis, mais especificamente, o problema
do fluxo mínimo multicommodities, implementável com uma complexidade proporcio-
nal a resolver O(m log(m)/ε2) sub-problemas de caminho mínimo, sendo m o número
de arestas mais o número de commodities.

Com relação a algoritmos baseados sobre fluxo em rede, Garg et al. [4] buscaram
solucionar problemas de fluxo multicommodities e problemas de packing de forma rá-
pida com algoritmos de fácil implementação, aproximados e combinacionais. A abor-
dagem deles baseou-se em explorar as versões duais dos problemas de fluxo máximo
e mínimo multicommodities, problema de fluxo concorrente máximo, entre outros
problemas. A ideia do algoritmo foi interpretar as variáveis do problema dual como
comprimentos nas arestas do grafo (pois cada variável era relacionada a uma aresta)
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iniciando cada comprimento com um valor muito pequeno γ. Logo, para cada itera-
ção do algoritmo, introduzia-se um fluxo no caminho mínimo do grafo em função dos
comprimentos das aresta e garantia-se que cada comprimento não fosse aumentado
por um fator de no máximo 1 + ε, fazendo isso até atingir o valor máximo possível
de fluxo, respeitando as restrições de capacidade. Como resultado dessa abordagem,
eles obtiveram uma 1+ω aproximação em tempo O(ω−2(k logm+m) logm ·Tsp) para
o problema do fluxo concorrente máximo, onde k é o número de commodities, m o
número de arestas mais vértices no grafo e Tsp é o custo para computar o caminho
mínimo entre uma fonte e um ralo. Para atingir esse resultado foi necessário realizar
diversas otimizações no algoritmo original, dentre elas, minimizar o número de vezes
que o algoritmo de caminho mínimo é utilizado e garantir um número fixo de iterações
na qual o algoritmo finalizava. Questões de integralidade também foram provadas que
podem ser obtidas realizando pequenas modificações no algoritmo original.

Acerca do Problema de Localização de Instalações, o livro de Williamson e Shmoys
[11] revisa a literatura sobre o problema, desde formulação como PLI aos algoritmos
de aproximação, refinando cada solução a fim de melhorar o fator de aproximação
dos algoritmos. Um resultado que também é demonstrado no livro é que não existe
um algoritmo de aproximação para o Problema da Localização de Instalações com
fator α ≤ 1,463, a não ser que cada problema em NP tenha um algoritmo com
tempo de execução O(nO(log logn)). As soluções apresentadas pelo livro se basearam
em analisar a versão primal e dual do problema, definindo uma noção de “vizinhança”
entre instalações e clientes, de forma que o algoritmo definia as vizinhanças a par-
tir dos valores das variáveis do problema relaxado, olhando para esses valores como
probabilidades do cliente j estar associado à instalação i [5]. O melhor algoritmo pro-
posto no livro (desenvolvido por Chudak e Shmoys) possuía um fator de aproximação
α = 1 + 2

ε
≈ 1.736. O algoritmo em questão consiste em: resolver a relaxação do PLI

para FLP; escalar as variáveis de abertura de facilidades da solução do problema por
um fator γ e transformar a solução relaxada incompleta em uma solução completa; di-
vidir os clientes em clusters minimizando uma função de custo; escolher as facilidades
que serão abertas (uma para cada cluster, escolhidas com uma certa probabilidade
dentre as facilidades que estão mais próximas do centro do cluster); abrir demais faci-
lidades que estão longe dos clusters com uma certa probabilidade (dada pela solução
relaxada completa do PL); associar os clientes às facilidades abertas mais próximas.

Modificando o algoritmo de Chudak e Shmoys [2], que é um algoritmo com fa-
tor (1 + 2/e), Byrka e Aardal[1] implementaram um algoritmo obtendo uma 1,5-
aproximação, melhorando o resultado anterior que era de 1,52-aproximação feito por
Mahdian, Ye, and Zhang comentado por eles. Nesse artigo, é definido o conceito
de algoritmo de aproximação com bi-fatores, ou seja, uma (λf , λc)-aproximação, onde
queremos encontramos um algoritmo cujo custo das facilidades seja no máximo λf ·F ∗
do valor ótimo F ∗ e o custo das conexões entre facilidades e clientes seja no má-
ximo λc · C∗ do valor ótimo C∗. O algoritmo proposto por Byrka e Aardal é uma
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(1,6774, 1,3738)-aproximação. O melhor algoritmo conhecido para o problema tem
fator de aproximação 1,488 [7].

4 Metodologia e Implementação
O projeto foi dividido em três etapas.

1. Implementação do algoritmo proposto por Chudak e Shmoys[1] para resolver
o FLP dada a solução do programa linear relaxado retornado pelo Simplex.
Comparar aproximações obtidas com relação à solução ótima.

2. Desenvolvimento de uma adaptação do algoritmo de aproximação de Young
para resolver programas lineares mistos de packing e covering[12]. Otimizar
algoritmo para resolver o problema da cobertura de conjuntos[11]. Comparar
qualidade das aproximações e tempo de execução com relação ao Simplex.

3. Reduzir o FLP para cobertura de conjuntos a partir da redução proposta por
Young[13] e integrar os algoritmos de Chudak e Shmoys e Young implementa-
dos. Comparar aproximações e tempos de execução com relação à solução do
programa linear inteiro original resolvido via Gurobi/Simplex.

4.1 Algoritmo de Chudak e Shmoys + Simplex
As instâncias utilizadas para testar o algoritmo são provenientes de dois datasets
diferentes. O primeiro dataset (Beasley) foi obtido da OR-Library da Brunel Uni-
versity London[9], consistindo de 36 instâncias de dimensões variadas (as primeiras
24 instâncias têm tamanho médio variando de 16 a 50 facilidades e 50 clientes, e as
12 últimas instâncias são maiores, com 100 facilidades e 1000 clientes). O segundo
dataset (Holmberg) foi obtido no site do Departamento de Ciência da Computação
da Universidade de Pisa[10], consistindo de 71 instâncias de dimensões variando de 50
a 200 clientes e de 10 a 30 facilidades. Ambos datasets passaram por padronizações
de formatação e simplificações dos dados para facilitar a automatização dos testes
(muitas instâncias estavam em formatos diferentes e com informações desnecessárias
que foram descartadas).

Para computar as soluções ótimas das instâncias do FLP via formulação do PLI
relacionado e para obter as soluções relaxadas correspondentes, foi utilizada a ferra-
menta Gurobi. Como o Gurobi utiliza por padrão diversas otimizações automáticas e
possui diversos algoritmos diferentes para resolver tipos específicos de PL, foi necessá-
rio desabilitar todas as flags de otimização para fazer uma comparação justa. Assim,
deixamos o algoritmo de resolução do PL sendo o Simplex e o número de threads
utilizadas como 1.
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A implementação do algoritmo de Chudak e Shmoys foi feita inteiramente na lin-
guagem C utilizando somente as bibliotecas básicas da linguagem. Optou-se por rea-
lizar uma implementação mais simples do algoritmo (não foram utilizadas estruturas
de dados muito complexas) a fim de analisar apenas a qualidade das aproximações, e
somente se a performance do algoritmo fosse muito comprometida seriam explorados
novos meios de implementar o algoritmo. Por exemplo, para calcular a vizinhança
entre clientes e facilidades poderia ter sido usado um grafo auxiliar utilizando listas de
adjacência pois melhoraria o custo de acessar a vizinhança de um nó (muito utilizado
no algoritmo). Contudo, a versão inicial utilizando matriz de adjacência já satisfez
as necessidades do algoritmo sem muitas perdas de performance.

O algoritmo de Chudak e Shmoys possui um parâmetro γ que é utilizado no co-
meço do algoritmo que escala as variáveis de abertura de facilidades do PL relaxado.
Como nas fases seguintes do algoritmo a escolha das facilidades dependem de uma
probabilidade relacionada às variáveis da solução do PL, escolher um γ muito alto
apenas abriria todas as facilidades com probabilidades diferente de zero, pois esca-
lando as variáveis a probabilidade de abertura seria muito próxima ou até mesmo
maior que 1 (o que foi observado nos testes). Por isso, optou-se por utilizar apenas
fatores γ próximos a 1. Nos resultados apresentados serão exibidos testes com γ entre
1 e 1.5.

4.2 Algoritmo de Young
As instâncias utilizadas para testar o algoritmo de Young são instâncias do problema
da cobertura de conjuntos. As instâncias foram obtidas da mesma fonte do primeiro
dataset do UFL (OR-Library [8]) e são compostas de 87 instâncias de tamanhos va-
riados. Para facilitar a análise, as instâncias foram dividias em 3 datasets: small (50
instâncias menores do dataset original, de 500 a 4000 elementos e 50 a 400 subcon-
juntos), medium (30 instâncias médias do dataset original, também possui instâncias
pequenas, mas grande parte das instâncias tem 5000 a 10000 elementos ou 500 a 1000
subconjuntos) e big (7 instâncias grandes do dataset original, possuindo 3 instân-
cias com 500 a 600 elementos e 50 a 60 mil subconjuntos e 4 instâncias com 2500 a
5000 elementos e por volta de 1 milhão de subconjuntos). Observação: No dataset
medium, as 10 primeiras instâncias começam de instâncias pequenas (200 elementos
e 500 subconjuntos) até instâncias médias (11264 elementos e 28160 subconjuntos)
com grau de esparcidade aumentando crescentemente até a décima instância (poucos
elementos nos subconjuntos). As demais instâncias possuem 5000 elementos e 500
subconjuntos ou 10000 elementos e 1000 subconjuntos. Contudo, tratam-se de ins-
tâncias mais densas (muitos elementos nos subconjuntos) tornando o tamanho dos
arquivos maiores que as 10 primeiras instâncias. Infelizmente não foi possível utilizar
as instâncias do dataset big pois o Gurobi não suportou carregar restrições e variá-
veis na ordem de 1 milhão (não foi possível concluir se foi incapacidade do Gurobi
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ou da memória da máquina utilizada, acredita-se ser a segunda razão), além do mais,
os tempos de execução para as menores instâncias do dataset big demoravam muito
tempo para executar (mesmo no Gurobi), logo, pela inviabilidade na obtenção dos
valores de referência das instâncias, optou-se por não utilizar este dataset.

Para computar as soluções ótimas das instâncias do set cover e obter os tempos
de execução de referência foi utilizado o Gurobi com as mesmas configurações de
execução do algoritmo de Chudak e Shmoys (algoritmo utilizado Simplex e número
de threads igual a 1).

A implementação do algoritmo de Young foi feita inteiramente na linguagem C
utilizando apenas as funções da biblioteca padrão da linguagem C. A fim de evitar
multiplicações (que possuem custo muito alto nesse algoritmo), foi levado em conside-
ração que as entradas do algoritmo são apenas instâncias da cobertura de conjuntos,
ou seja, com a característica de possuir apenas zeros ou uns nas restrições de covering
(já que as variáveis de pertinência nos subconjuntos são binárias), o que permitiu efe-
tuar produtos de matrizes apenas com somas. Além do mais, os produtos de matrizes
foram adaptados utilizando uma estrutura de dados compacta que salva apenas as
entradas diferentes de zero das matrizes, a fim de efetuar produtos de matrizes mais
eficientes para matrizes esparsas, encontradas com grande frequência em instâncias
do problema da cobertura de conjuntos.

O algoritmo de Young implementado possui 2 parâmetros na execução, a precisão
ε da aproximação desejada e o step size factor κ, que indica o tamanho do passo que
o algoritmo realiza em cada iteração. O step size factor é um multiplicador de um
valor α calculado no algoritmo que garante que a solução retornada sempre é um
fator 1 + ε da solução ótima caso seja utilizado o valor α como step size, ou seja, caso
seja utilizado um passo maior que α não é garantido que a solução devolvida seja
uma 1 + ε aproximação. Contudo, foi observado que o valor α é um limitante muito
abaixo do step size ideal e que é possível utilizar valores bem maiores que α ainda
garantindo aproximações boas. Nos testes realizados, foram usados ε no intervalo de
0.08 e 1.00 e κ no intervalo de 1 a 100.

4.3 Algoritmo de Chudak e Shmoys + Algoritmo de Young
Nesta etapa final, testamos a nossa implementação do algoritmo de Chudak e Sh-
moys utilizando as soluções do PLI relaxado resolvidas pela nossa implementação do
algoritmo de Young. As instâncias utilizadas para testar o algoritmo são as mesmas
utilizadas na primeira subseção (dataset Holmberg e Beasley).

Como o PL original do FLP não é um programa linear misto de packing e covering,
foi necessário reduzir o FLP para cobertura de conjuntos e assim utilizar a nossa
implementação do algoritmo de Young para resolver o PL correspondente à instância
fornecida.

Para computar as soluções ótimas das instâncias do FLP via PLI e os tempos de
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execução de referência foi utilizada a ferramenta Gurobi com as mesmas configurações
de execução das subseções anteriores (algoritmo utilizado Simplex e número de threads
igual a 1).

Como a variação do fator γ do algoritmo de Chudak e Shmoys não comprome-
teu a qualidade das aproximações obtidas (ver resultados do algoritmo de Chudak e
Shmoys), este parâmetro foi mantido constante (utilizou-se γ = 1.2). Além disso, os
resultados do algoritmo de Young serviram como base para escolher as combinações
de κ e ε para serem testados sem comprometer a qualidade das aproximações (vale
ressaltar que Chudak e Shmoys não comentam nada sobre a qualidade das aproxima-
ções utilizando uma solução fracionária aproximada já que a 1.736-aproximação vale
para a solução ótima do PL relaxado). Nos testes foram utilizados κ entre 10 e 80 e
ε entre 0.57 e 1.

5 Resultados

5.1 Algoritmo de Chudak e Shmoys + Simplex
A figura 1 apresenta os fatores de aproximação e razão de tempo resolvendo o algo-
ritmo de Chudak Shmoys com relação ao tempo total de execução obtidos para as
instâncias do dataset Holmberg e a figura 2 apresenta os mesmos resultados para as
instâncias do dataset Beasley (para todas as instâncias, o fator de aproximação foi
calculado dividindo o custo total da solução obtida com o algoritmo de Chudak e
Shmoys pelo custo da solução ótima obtida com o Gurobi).

Como observado nos gráficos das figuras 1 e 2, os fatores de aproximação obtidos
em todas as instâncias ficaram bem menores que o valor máximo teórico de 1.736 que
Chudak e Shmoys demonstraram no seu livro[11]. Para ambos datasets, valores de
aproximação iguais a 1 vieram de instâncias cuja solução relaxada é igual à solução
inteira (no qual ocorre em mais da metade dos casos), o que é de se esperar, já que
a probabilidade de abertura das localizações é sempre 0 ou 1, que por sua vez não
seriam alterados nas etapas do algoritmo de Chudak e Shmoys.

No dataset Holmberg, todos os testes que apresentaram fatores de aproximação
diferente de 1 ficaram com aproximação entre 1.04 e 1.10 (γ = 1, γ = 1.1 e γ = 1.2) e
1.02 e 1.08 (γ = 1.3 e γ = 1.5), com exceção da instância 56 que apresentou fator de
aproximação próximo de 1.13 para γ > 1. No dataset Beasley, para todos os valores de
γ testados, exceto 1.5, os testes que apresentaram fatores de aproximação diferente de
1 ficaram com aproximação observada menores que 1.12 (alguns testes apresentaram
fator de aproximação 1.05 e outros por volta de 1.03) e para γ = 1.5, por volta de 1.05
ou menores. Como observado em ambos datasets, o algoritmo de Chudak e Shmoys
apresentou soluções muito próximas da solução ótima para instâncias cuja solução do
PLI relaxado é fracionária.
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A alteração do fator γ para uma mesma instância do problema demonstrou mo-
dificar levemente os fatores de aproximação obtidos nas mesmas, mas nada que com-
prometesse gravemente o custo total da solução. Para algumas instâncias, aumentar
levemente o fator γ diminuía o fator de aproximação, e para outras, aumentava o fator
de aproximação, contudo, foi constatado em poucas instâncias. Além do mais, por
se tratar de um algoritmo aleatorizado é difícil afirmar se a alteração do γ melhorava
o fator de aproximação do algoritmo ou se apenas alterava o caminho que a solução
percorria até chegar na solução final.

Com relação ao tempo de execução, a performance do algoritmo de Chudak e
Shmoys se limita pela obtenção da solução do PLI relaxado. A fração de tempo que
o algoritmo leva para resolver o PLI relaxado (utilizando o Gurobi) com relação ao
tempo total de execução é muito maior que a fração de tempo que o algoritmo de
Chudak e Shmoys utiliza para efetuar todas as suas etapas (escalar solução do PLI
relaxado, clusterização de clientes, cálculo de vizinhança entre clientes e facilidades,
abertura aleatorizada de facilidades e conexão de clientes mais próximos às facilidades
abertas). Para as instâncias do dataset Holmberg a razão fica por volta de 0.1 ou
menor, e para instâncias maiores (observando o dataset Beasley) a razão diminui ainda
mais (nas primeiras 24 instâncias que são menores a razão fica entre 0.03 e 0.06 e nas
ultimas 12 instâncias que são maiores a razão fica por volta de 0.01). Por causa desse
resultado, optou-se por manter a implementação do algoritmo de Chudak e Shmoys
como está (apesar de ainda ser possível otimizar algumas etapas do algoritmo, por
exemplo, utilizando estruturas de dados mais complexos para computar as vizinhanças
entre clientes e facilidades na hora de fazer a clusterização dos clientes) e dar mais
foco no algoritmo de Young para tentar bater o tempo de execução do Gorobi.

5.2 Algoritmo de Young

As figuras 3 e 4 apresentam os fatores de aproximação e speedup obtidos para as
instâncias do dataset small e as figuras 5 e 6 apresentam os fatores de aproximação e
speedup obtidos para as instâncias do dataset medium.

Para todas as instâncias, o fator de aproximação foi calculado dividindo o custo
total da solução obtida com custo da solução ótima obtida pelo Gurobi resolvendo
o PL correspondente à instância testada. Os speedups foram calculados dividindo o
tempo de execução do Gurobi resolvendo o PL do setcover pelo tempo de execução
do algoritmo de Young resolvendo o mesmo PL.

Optou-se por exibir os gráficos de speedup aplicando log na base 10, pois observou-
se que conforme as dimensões da entrada aumentavam , o speedup aumentava muito,
chegando na casa dos milhares, dificultando a leitura do gráfico.
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5.2.1 Fatores de aproximação e speedups observados, κ = 1

Observando primeiramente as aproximações obtidas utilizando o κ = 1 (ou seja,
utilizando o step size = α que garante a aproximação desejada fornecida no algoritmo)
vemos que tanto no dataset small e medium, as aproximações são todas menores que
as fornecidas no algoritmo (o que é esperado).

No dataset small, utilizando um ε = 1, a instância que gerou a pior aproximação
tem um fator de aproximação observado de 1.35 (bem menor que a maior possível que
é uma 2-aproximação). Ainda utilizando a mesma precisão, em algumas instâncias
foram encontradas aproximações muito boas (por volta de 1.04) mesmo utilizando
ε = 1. No dataset medium, utilizando a mesma precisão, a pior aproximação foi de
1.4, onde também foram encontradas aproximações muito boas em algumas instâncias
(por volta de 1.05).

Utilizando ε = 0.43, todas as instâncias dos datasets small e medium possuem
fator de aproximação observados menores que 1.15, e utilizando ε = 0.18, todas as
instâncias dos datasets small e medium possuem fator de aproximação observados
menores que 1.05. Estes resultados demonstraram que o step size utilizado de fato
garante a aproximação escolhida na execução o algoritmo, garantindo aproximações
muito melhores na prática. Por causa disso, foi considerado testar step size maiores
posteriormente.

Com relação aos speedups obtidos, no dataset small, apenas utilizando ε = 1
(na maioria dos testes) e ε = 0.76 (na minoria dos testes) obtivemos performances
melhores que o Gurobi, contudo, não foram muito elevados (por volta de no máximo
4x mais rápido que o Gurobi).

Já no dataset medium, observamos melhoras de performance na maioria das ins-
tâncias até ε = 0.43 (onde obtivemos aproximações menores que 1.15 em todas as
instâncias). Vale ressaltar que para uma instância (instância 10) que teve perfor-
mance melhor que o Gurobi com todos os ε testados (até 0.08) e além do mais,
utilizando ε = 1 foi obtido speedup por volta de 1000 com aproximação observada
de 1.025 (melhor resultado encontrado). Um outro conjunto de instâncias (1 a 9 por
exemplo) também obtiveram performances muito boas (10x a 100x mais rápidas que o
Gurobi) utilizando ε = 1 e com aproximações observadas por volta de 1.05. A maioria
das instâncias apresentaram fatores de aproximação menores que 1.4 com speedups
obervados entre 10 e 30 (utilizando ε = 1), fatores de aproximação menores que 1.3
com speedups entre 3 e 10 (para ε = 0.76) e fatores de aproximação menores que 1.2
com speedups entre 2 e 9 (para ε = 0.57).

5.2.2 Fatores de aproximação e speedups observados, κ > 1

Observando os resultados dos datasets small e medium, temos que as aproximações
pioram claramente conforme aumentamos o valor do step size, sendo que no dataset
small as aproximações observadas ficam maiores que as esperadas a partir de um
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step size maior que 80x do step size original e para o dataset medium os valores das
aproximações são maiores a partir de um step size maior que 30x do step size original.

Contudo, ainda notamos uma melhora na precisão da aproximação conforme di-
minuimos o ε com todos os step size utilizados, de forma que a diminuição do ε em
função do aumento do step size compensa a perda de precisão do algoritmo. Por
causa disso, foi necessário ponderar o trade-off entre precisão e performace de forma
a encontrar combinações dos parâmetros κ e ε que gerem speedups bons com fatores
de aproximação pequenos.

Segue alguns dos melhores resultados observados nos gráficos das figuras 3 a 6
separados por dataset. Para todos os resultados foram selecionados combinações de
κ e ε de forma que para todas as instâncias o speedup seja maior que 1 (melhor que
o Gurobi) e cujas aproximações observadas sempre sejam menores que o ε fornecido.

No dataset small, alguns resultados dentre os melhores (fator de aproximação
observado e speedup) foram:

• κ = 10 , ε = 1.00: speedup por volta de 10 a 50, aproximações observadas
menores que 1.4 (cerca da metade das instâncias menores que 1.2)

• κ= 10 , ε = 0.76: maioria das instâncias com speedup entre 3 e 30, aproximações
observadas por volta de 1.3 (cerca da metade das instâncias por volta de 1.1)

• κ = 20 , ε = 1.00: maioria das instâncias com speedup entre 5 a 40, aproxima-
ções observadas menores que 1.5 (cerca da metade das instâncias menores que
1.2)

• κ= 20 , ε = 0.76: maioria das instâncias com speedup entre 5 e 40, aproximações
observadas por volta de 1.3 (mais da metade das instâncias menores que 1.15)

• κ= 30 , ε = 0.57: maioria das instâncias com speedup entre 3 e 30, aproximações
observadas menores que 1.2 (metade das instâncias por volta de 1.1)

• κ = 50 , ε = 0.57: maioria das instâncias com speedup entre 10 e 40, aproxi-
mações observadas por volta de 1.3 (cerca da metade das instâncias por volta
de 1.1)

• κ = 100 , ε = 0.43: maioria das instâncias com speedup entre 3 e 30, aproxima-
ções observadas por volta de 1.3 (cerca da metade das instâncias menores que
1.18)

No dataset medium, alguns resultados dentre os melhores (fator de aproximação
observado e speedup) foram:

• κ = 10 , ε = 0.57: maioria das instâncias com speedup maior que 20 (algumas
maiores que 100 e uma por volta de 1000), aproximações observadas por volta
de 1.2
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• κ = 10 , ε = 0.43: maioria das instâncias com speedup maior que 10 (algu-
mas maiores que 100), aproximações observadas por volta de 1.15 (algumas
instâncias menores que 1.05)

• κ = 20 , ε = 0.32: maioria das instâncias com speedup maior que 10 (algumas
instâncias maiores que 100), aproximações observadas por volta de 1.15 (maioria
das instâncias)

• κ = 30 , ε = 0.32: instâncias com speedup maior que 10 (algumas instâncias
maiores que 100, uma por volta de 1000), aproximações observadas menores
que 1.25

• κ = 50 , ε = 0.24: instâncias com speedup maior que 10 (algumas instâncias
maiores que 100, uma por volta de 1000), aproximações observadas menores
que 1.15 exceto uma igual a 1.21 (cerca de metade menor que 1.1)

• κ = 50 , ε = 0.18: maioria das instâncias com speedup entre 10 e 30 (algumas
instâncias maiores que 100), aproximações observadas menores que 1.1

• κ = 80 , ε = 0.14: maioria das instâncias com speedup entre 5 e 30 (algumas
instâncias maiores que 100), aproximações observadas menores que 1.1 exceto
uma igual a 1.11

• κ = 100 , ε = 0.11: maioria das instâncias com speedup entre 3 e 10 (algumas
instâncias maiores que 100), aproximações observadas por volta de 1.05

Como pressuposto, aumentar o step size de fato aumentou o speedup e manteve
a precisão das aproximações (regulando o κ e ε é claro). No geral, nas instâncias
pequenas (dataset small), o speedup foi observado apenas para ε maiores que 0.24
(precisando de step sizes menores para garantir a precisão desejada), enquanto que
nas instâncias médias (dataset medium), o speedup foi aparente em praticamente
todas as combinações de κ e ε que garantisse a precisão nas aproximações.

Outra observação no dataset medium é que conforme a esparcidade e as dimensões
das entradas aumenta (instâncias de 1 até 10) o speedup também aumenta conside-
ravelmente (são os melhores resultados onde encontramos speedups maiores que 100
a partir da instância 7 e no caso da instância 10 por volta de 1000 ou mais). Esse
comportamente é esperado já que a implementação do algoritmo de Young proposta
foi otimizada para matrizes esparsas, cujo produto de matrizes (custo principal do
algoritmo) tem complexidade de acordo com o número de entradas diferentes de zero
das matrizes das restrições de packing e covering. O Simplex utilizado pelo Gurobi,
por outro lado, não utiliza essa otimização, logo, a performance dele depende somente
das dimensões das matrizes, independente das características específicas delas, o que
torna o algoritmo de Young implementado muito superior ao Simplex para matrizes
esparsas.
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5.3 Algoritmo de Chudak e Shmoys + Algoritmo de Young
As figuras 7 a 9 apresentam os fatores de aproximação e speedup obtidos para as ins-
tâncias do dataset Holmberg e as figuras 10 a 12 apresentam os fatores de aproximação
e speedup obtidos para as instâncias do dataset Beasley.

De modo geral, as aproximações ficaram inferiores que o algoritmo de Chudak e
Shmoys utilizando a solução fracionária ótima do PL relaxado, contudo, as aproxima-
ções observadas ainda são menores que a 1.736-aproximação garantida do algoritmo
de Chudak e Shmoys, sendo que no dataset de Holmberg todas as combinações de κ e
ε testadas possuem em média um fator de aproximação por volta de 1.1 enquanto que
no dataset Beasley o mesmo valor fica por volta de 1.2 (valores ainda muito abaixo
da 1.736-aproximação).

No dataset Holmberg, alguns resultados dentre os melhores (fator de aproximação
observado e speedup) foram:

• κ = 30 , ε = 1.00: maioria das instâncias com speedup por volta de 5 a 50
(algumas instâncias pouco maiores que 100), aproximações observadas por volta
de 1.3 ou menores sendo que maior parte se encontra entre 1 e 1.2 (fator de
aproximação médio de 1.11).

• κ = 80 , ε = 1.00: maioria das instâncias com speedup por volta de 7 a 50
(algumas instâncias próximas de 200), aproximações observadas menores que
1.5 sendo que maior parte se encontra entre 1 e 1.2 (fator de aproximação
médio de 1.15).

• κ = 50 , ε = 0.76: maioria das instâncias com speedup por volta de 3 a 50
(algumas instâncias entre 100 e 200), aproximações observadas menores que 1.4
sendo que maior parte se encontra entre 1 e 1.2 (fator de aproximação médio
de 1.15).

• κ = 80 , ε = 0.76: maioria das instâncias com speedup por volta de 3 a 50,
aproximações observadas por volta de 1.4 ou menores, sendo que maior parte
se encontra entre 1 e 1.14 (fator de aproximação médio de 1.15).

• κ = 50 , ε = 0.57: maioria das instâncias com speedup por volta de 2 a 30,
aproximações observadas por volta de 1.3 ou menores sendo que maior parte se
encontra entre 1 e 1.15 (fator de aproximação médio de 1.1).

No dataset Beasley, alguns resultados dentre os melhores (fator de aproximação
observado e speedup) foram:

• κ = 10 , ε = 1.00: boa parte das instâncias com speedup entre 1 e 9, aproxima-
ções observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.25
(fator de aproximação médio de 1.15).
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• κ = 50 , ε = 1.00: maioria das instâncias com speedup entre 3 e 13 (algumas
pouco maiores que 20), aproximações observadas menores que 1.6 sendo que a
maioria se encontra entre 1 e 1.3 (fator de aproximação médio de 1.21).

• κ = 80 , ε = 1.00: maioria das instâncias com speedup entre 3 e 14 (algumas
pouco maiores que 20), aproximações observadas por volta de 1.6 ou menores
sendo que a maioria se encontra entre 1 e 1.4 (fator de aproximação médio de
1.31).

• κ= 80 , ε = 0.76: maioria das instâncias com speedup entre 2 e 10, aproximações
observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.4 (fator
de aproximação médio de 1.24).

• κ = 80 , ε = 0.57: boa parte das instâncias com speedup entre 1 e 8, aproxima-
ções observadas menores que 1.6 sendo que a maioria se encontra entre 1 e 1.3
(fator de aproximação médio de 1.2).

Em ambos datasets, observou-se que no geral o aumento do κ e do ε não piorou as
aproximações geradas pelo algoritmo de Chudak e Shmoys, ou seja, uma solução do
PLI relaxado aproximada já é suficiente para garantir aproximações boas no algoritmo
em questão, e além do mais, esta solução não precisa ter uma precisão muito alta
para atingir precisões dentro da 1.736-aproximação para todas as instâncias testadas
(formalmente isso não é garantido para qualquer instância). Esse ótimo resultado
permitiu escolher valores de κ e ε mais elevados a fim de melhorar a performance do
algoritmo e tentar obter speedups maiores com relação ao Simplex.

Os speedups em geral ficaram melhores para o dataset Holmberg (que apresenta
instâncias menores) onde foi possível obter speedups acima de 100x o tempo de execu-
ção do Gurobi resolvendo o PL. No dataset Beasley (que apresenta instâncias maiores)
o speedup foi inferior, obtendo no máximo speedups pouco acima de 20x o tempo de
execução do Gurobi. Vale lembrar que foi necesssário aplicar uma redução no PLI
original para resolver o FLP reduzido a cobertura de conjuntos (assim foi possível
utilizar o algoritmo de Young), e esta redução aumenta muito o número de variáveis
e restrições (por volta de O(nm) variáveis e restrições, onde n é o número de faci-
lidades e m o número de clientes). Contudo, a esparcidade do PLI reduzido aliado
a ótima performance do algoritmo de Young para instâncias esparsas compensou a
penalização da aplicação da redução, já que foi possível para algumas combinações
de κ e ε obter speedups maiores que 1 para todas as instâncias em ambos datasets
obtendo bons fatores de aproximações observados médios (κ = 80 e ε = 1.00 para o
dataset Holmberg e κ = 50 e ε = 1.00 para o dataset Beasley, por exemplo).

Ademais, para algumas instâncias foram obtidos fatores de aproximação iguais a
1, ou seja, solução igual à solução ótima (no dataset Holmberg utilizando κ = 10 e
ε = 1.00 nas instâncias 17, 30, 32, 61, e 71 e no dataset Beasley utilizando a mesma
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combinação de parâmetros nas instâncias 2 e 19). Esse resultado é bem interessante
visto que testando o algoritmo de Chudak e Shmoys utilizando as soluções relaxadas
retornadas pelo Simplex isso não ocorreu para nenhuma instância do FLP que gerava
uma solução relaxada fracionária.

6 Conclusão
Neste projeto, investigamos algoritmos de aproximação polinomiais para resolver o
Problema da Localização de Instalações [11] (FLP), tentando atingir tempos de exe-
cução e aproximações próximas ou até melhores, em casos específicos, de algoritmos
projetados até hoje. Para atingir este objetivo, o projeto foi dividido em três etapas.

Na primeira etapa, implementamos o algoritmo proposto por Chudak e Shmoys[1]
para resolver o FLP dada a solução do programa linear relaxado retornado pelo Sim-
plex, comparando as aproximações obtidas com relação à solução ótima. Nela, pude-
mos concluir que o limitante em performance do nosso algoritmo se dá na resolução do
PL já que o tempo de execução do algoritmo de Chudak e Shmoys é muito inferior ao
tempo de execução do Gurobi resolvendo um PL. Também pudemos observar fatores
de aproximação muito melhores que a 1.736-aproximação garantida pelo algoritmo
de Chudak e Shmoys, apresentando na prática soluções muito próximas da solução
ótima (utilizando γ = 1.2 obtivemos fatores de aproximação menores que 1.13).

Na segunda etapa, desenvolvemos uma adaptação do algoritmo de aproximação de
Young[12] para resolver programas lineares mistos de packing e covering, otimizado
para resolver o problema da cobertura de conjuntos[11], comparando a qualidade das
aproximações e o tempo de execução com relação ao Simplex. Nesta etapa verifi-
camos que o algoritmo implementado consegue ser mais eficiente que o Gurobi para
instâncias pequenas, contudo, o ganho que não é muito elevado (é possível garantir
aproximações entre 1.1 e 1.3 com speedup entre 10 e 40 utilizando κ = 50 e ε = 0.57).
Já para instâncias médias o algoritmo implementado se mostra mais escalável que o
Gurobi para problemas com instâncias esparsas (número de elementos nos subcon-
juntos reduzido) cuja performance ficou muito superior, com speedups na casa das
centenas e até milhares. Nas instâncias médias e densas (número de elementos nos
subconjuntos elevado) o algoritmo implementado também conseguiu atingir perfor-
mances melhores que o Gurobi (é possível garantir fatores de aproximação menores
que 1.1 com speedup entre 10 e 30 utilizando κ = 50 e ε = 0.18).

Na terceira etapa, utilizamos a redução proposta por Young para resolver o FLP
reduzido a cobertura de conjuntos[13], e assim, comparar aproximações e tempos
de execução com relação à resolução do programa linear inteiro original utilizando
o Gurobi. A penalização na redução implicou uma perda severa na performance,
contudo, ainda assim foi possível bater o tempo de execução do Gurobi devido às
otimizações no algoritmo de Young para instâncias esparsas, sendo possível garantir
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em todas as instâncias testadas a 1.736-aproximação do algoritmo de Chudak Shmoys
com speedups maiores que 1. Além do mais, para instâncias menores, é possível
obter fatores de aproximação observados médios de 1.11 com speedups entre 5 e
50 (utilizando κ = 30, ε = 1.00 e γ = 1.2) e para instâncias maiores, é possível
obter fatores de aproximação observados médios de 1.21 com speedups entre 3 e 13
(utilizando κ = 50, ε = 1.00 e γ = 1.2).

7 Trabalhos Futuros
Durante o projeto, foram estudados algoritmos baseados sobre fluxo de rede, por
exemplo, o algoritmo de Garg et al. [4] para resolução de programas lineares de pac-
king. Contudo, o FLP não é um algoritmo de packing puro, portanto, o algoritmo
descrito por Garg et al. não pode ser utilizado (da maneira que foi proposto) para
resolver o FLP. Como a eficiência do algoritmo para resolver o FLP proposto neste
projeto foi limitado pelo algoritmo de resolução do PLI relaxado, talvez seria inte-
ressante estudar outras formas de resolver programas lineares mistos de packing e
covering, talvez, baseados em fluxo de rede como o algoritmo de Garg et al, adaptado
para resolver também problemas de covering (se existir tal maneira).

Outra possibilidade é estudar os algoritmos de Young em [13]. Neste artigo, são
apresentados algoritmos de aproximação com complexidade linear voltados para a
resolução de PLs do FLP sem a necessidade de reduzir explicitamente o problema à
cobertura de conjuntos (causa da perda de performance do algoritmo implementado
na última etapa do projeto). Esse artigo somente foi estudado após a implementação
da redução do FLP para cobertura de conjuntos (fase final do projeto), e por falta de
tempo, optou-se por realizar a redução já que era a solução mais simples e de fácil im-
plementação. Aqueles algoritmos unidos ao algoritmo de Chudak Shmoys aparentam
ter resultados promissores e acreditamos valer a pena investigá-los futuramente.
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Figura 1: Fatores de aproximação e razão de tempo resolvendo algoritmo de Chudak
e Shmoys com relação ao tempo total de execução para as instâncias do dataset
Holmberg para diferentes fatores γ
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Figura 2: Fatores de aproximação e razão de tempo resolvendo algoritmo de Chudak e
Shmoys com relação ao tempo total de execução para as instâncias do dataset Beasley
para diferentes fatores γ
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Figura 3: Fatores de aproximação e Speedup (log 10) para as instâncias do dataset
small para κ entre 1 e 100 e ε entre 0.32 e 1.00
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Figura 4: Fatores de aproximação e Speedup (log 10) para as instâncias do dataset
small para κ entre 1 e 100 e ε entre 0.08 e 0.24
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Figura 5: Fatores de aproximação e Speedup (log 10) para as instâncias do dataset
medium para κ entre 1 e 100 e ε entre 0.32 e 1.00
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Figura 6: Fatores de aproximação e Speedup (log 10) para as instâncias do dataset
medium para κ entre 1 e 100 e ε entre 0.08 e 0.24

0 5 10 15 20 25 30
nº instância

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 1

0 5 10 15 20 25 30
nº instância

1.00

1.02

1.04

1.06

1.08

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 10

0 5 10 15 20 25 30
nº instância

1.00

1.02

1.04

1.06

1.08

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 20

0 5 10 15 20 25 30
nº instância

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 30

0 5 10 15 20 25 30
nº instância

1.00

1.05

1.10

1.15

1.20

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 50

0 5 10 15 20 25 30
nº instância

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 80

0 5 10 15 20 25 30
nº instância

1.0

1.1

1.2

1.3

1.4

Fa
to

r d
e 

ap
ro

xi
m

aç
ão

Fator de aproximação
0.08
0.11
0.14
0.18
0.24

0 5 10 15 20 25 30
nº instância

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 

(lo
g 

10
)

Speedup (log 10)
0.08
0.11
0.14
0.18
0.24
Speed up 1

Dataset medium ,  = 100



26 Alarcón, Pedrosa

Figura 7: Fatores de aproximação e Speedup para as instâncias do dataset Holmberg
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 1.00
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Figura 8: Fatores de aproximação e Speedup para as instâncias do dataset Holmberg
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 0.76
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Figura 9: Fatores de aproximação e Speedup para as instâncias do dataset Holmberg
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 0.56
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Figura 10: Fatores de aproximação e Speedup para as instâncias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 1.00
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Figura 11: Fatores de aproximação e Speedup para as instâncias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 0.76
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Figura 12: Fatores de aproximação e Speedup para as instâncias do dataset Beasley
resolvidas pelo algoritmo de Chudak Shmoys + algoritmo de Young para ε = 0.56
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