
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Responsabilidades
Arquiteturais para

Experimentação Online
Chan Kyung Kim Breno Bernard Nicolau de França

Relatório Técnico - IC-PFG-19-15

Projeto Final de Graduação

2019 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Responsabilidades Arquiteturais

para Experimentação Online

Chan Kyung Kim∗ Breno Bernard Nicolau de França∗

Resumo

Muitas empresas na indústria tiveram que se adaptar para oferecer produtos e
serviços através de software. De forma geral, mesmo um software já lançado pode
ser constantemente melhorado através da Experimentação Online, também conhecido
como testes A/B, amplamente aplicado no mundo. Porém, para que uma empresa toma
decisões data-driven para a melhoria do software é importante que exista uma aborda-
gem sistemática para a Experimentação. Temos como objetivo propor responsabilidades
arquiteturais essenciais que consigam suportar o desenvolvimento, implementação e ava-
liação dos experimentos, além de ser capaz de coletar e analisar dados. Para isso, este
trabalho analisa quatro arquiteturas diferentes da academia, identificando pontos em
comum, além de explorar as três ferramentas mais utilizadas hoje na indústria para
testes A/B. A contribuição deste relatório é uma proposta de uma arquitetura com
componentes essenciais para Experimentos Online. Vemos, também, que a indústria e
a academia se relacionam bastante neste tema.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2 Kim e França

Sumário

1 Introdução 3

2 Justificativa 4

3 Objetivo e Método 5
3.1 Objetivo . 5
3.2 Revisão bibliográfica de artigos acadêmicos 5
3.3 Compilação das responsabilidades . 5
3.4 Levantamento das ferramentas existentes na web 5
3.5 Mapeamento de funcionalidades das ferramentas 6

4 Trabalhos Relacionados 7
4.1 The RIGHT model for Continuous Experimentation 7
4.2 Online controlled experiments at large scale 8
4.3 Your System Gets Better Every Day You Use It: Towards Automated Con-

tinuous Experimentation . 10
4.4 Architecture for Large-Scale Innovation Experiment Systems 11

5 Resultados 13
5.1 Śıntese de Responsabilidades . 13
5.2 Ferramentas para Experimentação Online 15
5.3 Responsabilidades arquiteturais essenciais 16

6 Conclusão e Trabalhos Futuros 16

Responsabilidades Arquiteturais 3

1 Introdução

Com o crescimento acelerado da digitalização na indústria, diversos setores tiveram que
se adaptar para alavancar suas vendas, aumentando assim o número de empresas que se
tornaram provedoras de produtos e serviços por meio do uso de software [1]. Tanto empresas
antigas, quanto novas empresas tiveram que se encaixar a essa nova realidade.

Mesmo que um software já tenha sido lançado, existem diversas flexibilidades que per-
mitem que o produto inicial seja melhorado [1]. Uma das posśıveis flexibilidades é a Expe-
rimentação Online, conhecida também como Testes A/B.

Em śıntese, Testes A/B consistem em comparar uma variante A (controle), com uma
variante B (tratamento), dividindo aleatoriamente os usuários entre as duas variantes, com o
objetivo de melhorar uma métrica espećıfica [2], [10], como mostrado na Figura 1 (adaptada
do artigo [2]).

Figura 1: Fluxo high-level de uma experimentação online

A implementação da Experimentação Online traz um bom return-on-investment (ROI)
e, com uma infraestrutura apropriada pode acelerar a inovação [2]. Além disso, quando
bem conduzidos, de forma sistemática, elas trazem um entendimento mais preciso do que os
clientes priorizam e provém provas para decidir sobre uma métrica chave para a mudança
espećıfica de um produto [3]. Ou seja, as decisões tornam-se data-driven, escutando os
clientes, em vez de serem baseados no HiPPO (Highest Paid Person’s Opinion), opiniões de
desenvolvedores ou gerentes. [4][7][9].

Assim, uma empresa consegue impulsionar inovação por meio da experimentação. Isso
faz com que os custos de testes e falhas experimentais tornem-se pequenos, auxiliando com
propostas de novas ideias a serem implementadas, fazendo com que as empresas tenham seu
sucesso alavancado. Diversos artigos mostram melhoria nos produtos/serviços por meio dos
benef́ıcios provenientes dos experimentos online. Tanto na academia quanto na indústria,
em empresas como Microsoft, Google, Facebook, entre outras [1][3][5][6][8], foi posśıvel
observar resultados expressivos.

O desenvolvimento de novas features deve ser feito, idealmente, de forma sistemática

4 Kim e França

e data-driven [7]. Dado isso, para que os experimentos onlines sejam devidamente im-
plementados, é necessário uma arquitetura que suporte tanto o desenvolvimento, quanto a
implementação e avaliação dos experimentos, junto com uma infraestrutura capaz de coletar
e analisar os dados, utilizando feedbacks de usuários reais em grande escala [9].

2 Justificativa

Empresas que estão trilhando em direção ao desenvolvimento baseado em experimentos,
enfrentam diversos desafios. O custo e consumo de tempo elevados, diferentes times que
podem levar a objetivos conflitantes e, falta de uma abordagem sistemática para rodar
experimentos em diferentes domı́nios, leva as empresas a criarem diversas plataformas de
experimentos [2][7].

[1] também afirma que ainda não existe um framework detalhado para realizar desen-
volvimento de software baseado em experimentação de forma sistemática. É necessário um
framework que englobe uma infraestrutura técnica do produto; um processo de desenvolvi-
mento do software; requerimentos acerca de competências que os desenvolvedores precisam
para projetar, executar, analisar e interpretar experimentos; e os recursos que a empresa
precisa para operar e gerenciar baseada experimentação.

Além disso, em [11] vemos que, apesar de muitas empresas se interessarem pela expe-
rimentação online, nem todas conseguem a incorporar aos negócios. Entre as principais
dificuldades (Figura 2, adaptada do artigo [11]), são citados como principais causas: pro-
blemas com arquitetura, falta de expertise, base de usuários pequena e falta de interesse
em investir por motivos comerciais.

Figura 2: Principais obstáculos para implementação de experimentação

Responsabilidades Arquiteturais 5

3 Objetivo e Método

3.1 Objetivo

Esse trabalho tem como objetivo explorar as arquiteturas e ferramentas existentes hoje
na academia e plataformas de experimentação (Optimizely, Google Optimize e VWO) na
indústria para propor responsabilidades arquiteturais essenciais para a execução de experi-
mentos online e ver como elas se relacionam com as plataformas online.

3.2 Revisão bibliográfica de artigos acadêmicos

A prinćıpio, foi realizada uma pesquisa na literatura técnico-cient́ıfica para levantar artigos
que abordassem sobre o tema “Experimentação Online” e, especificamente, sobre aspectos
relacionados à arquitetura. Foram utilizados, na ferramenta Google Scholar, os termos
”online controlled experiments”, ”architecture continuous experimentation”e”architecture
innovation experiment”.

Para este trabalho, foram considerados os artigos [1], [5], [7] e [9], e suas arquiteturas.
A seguir, seguem os detalhes de cada arquitetura apresentada nos artigos e suas principais
contribuições.

3.3 Compilação das responsabilidades

Revisando os artigos, percebe-se que há uma diferença em granularidade dos detalhes de
cada arquitetura, assim, foram escolhidas as responsabilidades de uma forma que fosse mais
detalhada, dentro do conjunto de responsabilidades dos quatro artigos. Feito isso, foram
mapeadas os componentes menos detalhados que abrangiam mais funções em múltiplas res-
ponsabilidades. Foram considerados as responsabilidades que foram explicitamente citados
nos artigos.

Além disso, os nomes de cada componente foram mantidos para cada artigo e compi-
lados em uma tabela a ser mostrada na seção 5. As descrições de cada responsabilidade
foram feitas de uma forma a abranger os quatro artigos. Especificamente, para a arquite-
tura RIGHT, no lugar de funções de trabalho, as responsabilidades foram adaptadas para
refletirem os componentes da arquitetura.

3.4 Levantamento das ferramentas existentes na web

Por conta da grande quantidade de ferramentas presentes hoje na web para experimentos
online, além de diversas funcionalidades que cada um ferramentas consegue oferecer, foi
feita uma análise das ferramentas mais utilizadas. Os critérios de seleção foram:

• Ferramentas que rodam testes A/B

• Os top 100 mil sites em tráfego que utilizam plataformas de experimentação online

Com a ajuda de alguns sites [12], [13], [14] que medem o market share da utilização das
ferramentas, foram levantadas as três que são utilizadas no mercado e muito citadas por
sites de indicação de melhores ferramentas de testes A/B [18][19][]20][21][22]. São elas:

6 Kim e França

• Google Optimize

• Optimizely

• VWO - Visual Website Optimizer

Como podemos ver na Figura 3, todas as 3 ferramentas aparecem nos top 3 em market
share em utilização, seguindo os critérios citados acima. Conseguimos afirmar que para o
critério utilizado, as três ferramentas possuem um market share significativo de mais de
60%. Para o market share da SimilarTech foram consideradas apenas as 8 top ferramentas.

Figura 3: Market share Datanyze, BuiltWith e SimilarTech

3.5 Mapeamento de funcionalidades das ferramentas

Foram pesquisadas funcionalidades em cada ferramenta que se relacionassem com as res-
ponsabilidades já mapeadas pelos artigos. Para isso, foram exploradas os sites de cada
ferramenta ([15], [16], [17]), coletando as funcionalidades que cada uma oferecia, pesqui-
sando na área de resources e, além disso, foi feita uma pesquisa de casos de usos exemplos e
reais utilizando as ferramentas passo-a-passo. Paralelamente, foi feita uma comparação com
as responsabilidades dos artigos e fazendo um check nos itens que as ferramentas possúıam.

Responsabilidades Arquiteturais 7

4 Trabalhos Relacionados

4.1 The RIGHT model for Continuous Experimentation

Neste artigo, Fagerholm [1] tem como objetivo examinar as pré-condições para estabelecer
um sistema de experimentação para experimentos cont́ınuos com clientes, respondendo a
pergunta: Como a Experimentação Cont́ınua de produtos e serviços altamente dependentes
de software pode ser organizada de forma sistemática? Em seguida, a pergunta é dividida
em duas:

• Qual é o modelo de processo adequado para Experimentação Cont́ınua de produtos e
serviços altamente dependentes de software?

• Qual é o infraestrutura da arquitetura adequada para Experimentação Cont́ınua de
produtos e serviços altamente dependentes de software?

No que diz respeito à parte arquitetural do trabalho, o autor propõe um modelo de Ex-
perimentação Cont́ınua chamada RIGHT (Rapid Iterative value creation Gained through
High-frequency Testing) que possui a infraestrutura de arquitetura apresentada na Figura
4, adaptada do artigo [1].

Figura 4: Infraestrutura de arquitetura do modelo RIGHT

• Business Analyst ou Product Owner, ou a equipe de Product management

– Responsáveis para a criação e iteração dos roteiros dos experimentos;

– Consultam planos, resultados e aprendizados de experimentos existentes;

– Trabalham com o Data Scientist para comunicar as suposições do roteiro e as
áreas que precisam ser testadas.

8 Kim e França

• Data Scientist

– Projetam, executam e analisam os experimentos;

– Acessam raw datas pelo back-end system, acessam planos dos experimentos e
realizam as análises;

– Armazenam os resultados produzidos em forma de aprendizados no back-end
system;

– Se comunicam com os Developers e Quality Assurance.

• Developer e Quality Assurance

– Cuidam do desenvolvimento do MVP (Minimum Viable Product)/MVF (Mini-
mum Viable Feature) e do produto final;

– Cuidam da instrumentação apropriada para o front-end system, parte que será
mostrada ao usuário;

– Trabalham para desenvolver e otimizar as features necessárias e submeter para
produção;

– MVP/MVF/Produtos finais são implementados através do Continuous Integra-
tion System e Continuous Delivery System.

• DevOps

– Fazem a ponte entre o time de desenvolvimento e operações.

• Release Engineer

– Supervisionam e gerenciam distribuições em produção.

Uma das principais funções do Continuous Delivery System é a informação do status do
roll-out do software que ele provém, permitindo a outras funções monitorar a execução do
experimento, e obtendo, por exemplo, as condições em que um software foi implementado
e o response rate.

Apesar de bastante detalhado, o autor ainda expõe a arquitetura de uma forma não
exaustiva e alto-ńıvel e afirma que várias funções relacionadas a operações foram omitidas,
por exemplo, reliability engineer. Além disso, foram omitidas quais informações deveriam
ser viśıveis para quais funções.

4.2 Online controlled experiments at large scale

Neste artigo, Kohavi [5] implementa uma sistema de experimentação online na Microsoft,
especificamente na Bing, chamada Bing Experimentation System, que ajudou a trazer re-
sultados expressivos para a empresa rodando mais de 200 experimentos ao mesmo tempo.
A arquitetura do sistema é dividida em 3 grandes partes, como mostrada na Figura 5,
adaptada do artigo [5]:

Responsabilidades Arquiteturais 9

Figura 5: Arquitetura do Bing Experimentation System

• Online Infrastructure:

– Os servidores frontend realizam o assignment cada requisição aos diversos flights
(como são chamadas as variantes na Bing) à medida que são recebidas;

– É feita uma pseudo randomização dos user id para garantir consistência nos
assignments;

– Informações de logs do sistema, incluindo as assignments das variantes, são guar-
dadas para serem processadas e analisadas offline.

• Experiment Management:

– É o responsável pelo Control Tower para gerenciar os experimentos;

– Utiliza APIs para definir e executar experimentos;

– Configuration API permite aos desenvolvedores a criarem as configurações de um
experimento.

• Offline Analysis:

– É gerada um scorecard, um resumo do experimento, pelo fluxo de análise offline
do experimento, que gerencia grandes quantidades de dados e experimentos;

– Scorecards são utilizados para acompanhar os impactos das mudanças do expe-
rimento ao longo do tempo;

– Gerencia e otimiza o fluxo de execução de múltiplas análises utilizando os logs;

– Monitora e alerta os sistema, detectando automaticamente tanto a qualidade dos
dados quanto um evento de impacto negativo aos usuários.

10 Kim e França

4.3 Your System Gets Better Every Day You Use It: Towards Automated
Continuous Experimentation

Neste artigo, Mattos, Bosch e Olsson [7] realizaram uma análise de diversas arquiteturas
e suas qualidades relacionadas a sistemas auto-adaptativas e, em seguida, desenvolvem
um framework de arquitetura que suporta experimentação cont́ınua automatizada baseado
nessa análise. Tal arquitetura, mostrada na Figura 6 adaptada do artigo [7], é composta
pelos seguintes componentes, podendo-se retirar um ou mais componentes para alguma
aplicação espećıfica:

Figura 6: Framework da arquitetura da Experimentação Cont́ınua Automatizada

• Monitor

– Responsável pela coleta de dados locais e globais, vindos do SuE (System under
Experimentation).

• Effector

– Responsável pela interface com o sistema gerenciado.

• Experiment coordinator

– Responsável por rodar o experimento e coordenar com o Version Manager;

– Fazer Testes A/A (sanity check), A/B/n (experimentos com mais de uma vari-
ante de tratamento) e explorar experimentos cruzados;

Responsabilidades Arquiteturais 11

– Monitora quando e se um experimento deve rodar, número de experimentos que
devem ser realizados e quais soluções são mais significantes;

– Recebe inputs do Conflict-list Manager e Experiment Watchdog.

• Version Manager

– Gerenciar e gerar diferentes versões para os experimentos, mudando parâmetros
e variantes;

– Mantém uma lista das versões já usadas e recebe inputs do Knowledge Exchange
e Version Generator.

• Version Generator

– Adapta diferentes algoritmos de inteligência artificial para os testes.

• Experiment Watchdog

– Checa as condições para rodar um experimento, como: quando um experimento
deve continuar ou parar;

– Para um experimento se o mesmo passar dos limites pré-definidos ou está preju-
dicando alguma métrica global.

• Conflict-list manager

– Monitora quais componentes estão em experimentação e quais fatores elas afe-
tam.

• Metric Analysis

– Monitorar o comportamento do experimento;

– Rodar análises estat́ısticas e realizar um reflexão da qualidade do desempenho.

• Knowledge and Information Exchange

– Responsável por compartilhar as soluções descobertas no processo de experi-
mentação e aprender sobre as soluções validadas.

4.4 Architecture for Large-Scale Innovation Experiment Systems

Eklund e Bosch [9] procuram, neste artigo, responder a seguinte pergunta: Quais são os
prinćıpios de uma arquitetura de software para concretizar um sistema de experimentos de
inovação em larga escala para sistemas com software embarcado?

A seguir, os autores propõem uma arquitetura mostrada na Figura 7, adaptada do artigo
[9], que suporta a implementação de experimentação de múltiplas partes do software e que
controla de forma autônoma quando um teste deve ser rodado, permitindo até testes A/B
locais. Leituras e análises são feitas em tempo real e de forma embarcada. A arquitetura
consiste nas seguintes partes:

12 Kim e França

Figura 7: Arquitetura de gerenciamento dos experimentos

• Experiment manager:

– Responsável por decidir quais experimentos serão executados, rodar o experi-
mento e juntar e analisar os dados coletados.

• Experiment wrapper:

– Permite ao Manager decidir em tempo de execução quais experimentos rodar,
permitindo o teste A/B ou revertendo para default.

• Probe:

– Parte do software que está sendo testado.

• Logger e On-board storage:

– Guarda os dados coletados e analisados providos pela sistema embarcado para
serem uploaded para análises futuras.

• Unit of replacement:

– Cuida tanto da parte de implementação quanto do versionamento do software

Os autores também propõem incluir um mecanismo para mitigação de riscos para ex-
perimentos cŕıticos para a segurança. Tal componente, mostrado na Figura 8 adaptada do
artigo, seria responsável por:

• Avaliar se a aplicação está rodando em limites seguros;

Responsabilidades Arquiteturais 13

• Controlar e configurar a operação para rodar em limites seguros.

Figura 8: Safety Pattern

5 Resultados

5.1 Śıntese de Responsabilidades

Uma vez mapeadas todos os componentes das arquiteturas dos artigos, foi feita uma análise
das responsabilidades e foram compiladas de forma exaustiva na Tabela 1. Para cada artigo,
foram colocados os nomes de cada componente de forma a refletir o artigo e para facilitar
futuras consultas.

14 Kim e França

Responsabilidade do componente [1] [5] [7] [9]

1 Coleta de dados Backend system
Online

Infrastructure
Monitor Logger

2 Análise dos dados coletados Analytics Tools
Offline

Analysis
Metric

Analysis
Experiment

manager

3
Interface com o sistema
em experimento

Instrumentation
(Frontend system)

Online
Infrastructure

Effector -

4 Rodar o experimento
Backend system/
Analytics Tools

Experiment
Management

Experiment
coordinator

Experiment
manager

5 Segmentação de usuários -
Online

Infrastructure
- -

6
Gerenciar e/ou gerar diferentes
versões de experimentos

-
Experiment
Management

Version
Manager

Experiment
manager

7
Uso de algoritmos de IA
para os experimentos

- -
Version

Generator
-

8
Determinar as condições para
rodar os experimentos

Experiment DB
(Backend system)

Offline
Analysis

Experiment
Watchdog

Safety Pattern

9
Monitorar os componentes/variantes
que estão em experimentação

- -
Conflict-list

Manager
Experiment

wrapper

10
Monitorar o comportamento
do sistema em experimento e
avaliar seu desempenho

Continuous
Delivery
System

Offline
Analysis

Metric
Analysis

-

11
Compartilhar soluções descobertas
e lições aprendidas

Backend system -
Knowledge and

Information
Exchange

-

12 Implementação para produção

Continuous
Integration/

Delivery
System

- -
Unit of

replacement

Tabela 1: Responsabilidades e componentes dos artigos

A seguir, temos as descrições de cada responsabilidade citada na Tabela 1:

1. Dados locais e globais provenientes do experimento são coletados

2. É feita a análise dos dados previamente coletados, podendo ser já processados

3. É um ponto de contato com o experimento, onde há uma interface para interação com
o experimento

4. Experimentos são realizadas através de testes A/A (sanity checks), A/B/n (experi-
mentos com mais de uma variante tratamento) ou experimentos cruzados.

5. É feita uma divisão de quais usuários recebem quais variantes e quais experimentos
de uma forma aleatória e consistente

6. Experimentos são gerenciados podendo ser gerados ou modificados, mudando parâmetros
e variantes

Responsabilidades Arquiteturais 15

7. São utilizados algoritmos de IA para experimentação

8. Define se um sistema deve continuar um experimento e quando deve parar. Pode
parar um experimento caso saia dos limites estabelecidos ou esteja danificando alguma
métrica global.

9. Monitoramento em tempo real dos componentes/variantes sendo testados e quais fa-
tores as afetam, de forma a evitar confusão entre experimentos

10. Monitoramento do experimento, fazendo avaliação do desempenho e análises estat́ısticas

11. Compartilhamento das soluções descobertas e lições aprendidas através de uma infra-
estrutura interna

12. Implementação da variante vencedora para produção

5.2 Ferramentas para Experimentação Online

Tendo sido mapeadas as responsabilidades, foram feitas os checks com as funcionalidades
das ferramentas online e compilados na Tabela 2, em que “X” representa que tal ferramenta
possui a funcionalidade e “*”, que possui parcialmente.

Responsabilidade do componente Optimizely
Google

Optimize
VWO

1 Coleta de dados x x x
2 Análise dos dados coletados * x x

3
Interface com o sistema
em experimento

x x x

4 Rodar o experimento x x x
5 Segmentação de usuários x x x

6
Gerenciar e/ou gerar diferentes
versões de experimentos

x x x

7
Uso de algoritmos de IA
para os experimentos

8
Determinar as condições para
rodar os experimentos

x x x

9
Monitorar os componentes/variantes
que estão em experimentação

10
Monitorar o comportamento
do sistema em experimento e
avaliar seu desempenho

x x x

11
Compartilhar soluções descobertas
e lições aprendidas

* * *

12 Implementação para produção

Tabela 2: Responsabilidades e funcionalidades das ferramentas

Podemos observar que as ferramentas possuem basicamente as mesmas funcionalidades,
tanto pela questão técnica quanto pela questão competitiva, em que uma ferramenta que

16 Kim e França

não oferece alguma funcionalidade básica ou geral, pode perder ou até mesmo não conseguir
atrair novos clientes.

Por exemplo uma função em comum que todas as ferramentas possuem é a interface com
o sistema de experimentação, em que o experimentador pode configurar um experimento
visualmente, sem ser programaticamente, através de um editor WYSIWYG (What You See
Is What You Get), modificando componentes dentro de uma página web ou aplicativo.

No caso da análise de dados coletados para o Optimizely, a ferramenta permite inte-
gração com outras ferramentas como o Google Analytics, porém não possui uma plataforma
própria para análise dos dados. Para o compartilhamento das soluções, todas ferramentas
mantém um histórico dos testes feitos que ficam armazenados de forma organizada, porém
seria necessário um time para que o compartilhamento fosse feito de forma ativa para o
conhecimento das pessoas e grupos de pessoas interessadas.

As funcionalidades que não são cobertas pelas ferramentas devem ser incorporadas pelo
time de desenvolvimento para que, por exemplo, não tenham conflitos entre experimentos
ou para implementar a solução vencedora para a produção.

5.3 Responsabilidades arquiteturais essenciais

Fazendo uma análise das tabelas, foram consideradas essenciais as seguintes responsabili-
dades: 1, 2, 3, 4, 6, 8, 10 e 12, sendo estas encontradas em pelo menos 3 das 4 arquiteturas
analisadas. Algumas razões justificam a não-inclusão das responsabilidades não considera-
das essenciais:

• 5: A segmentação de usuários, apesar de importante para a consistência dos dados
coletados, não impedem de um experimento rodar. Apesar disso, podemos observar
que todas as ferramentas possuem essa funcionalidade.

• 7: Apesar de algoritmos de IA serem um adicional com grande potencial, elas não são
necessárias para rodar um experimento. Nenhuma ferramenta permite essa funciona-
lidade.

• 9: Apesar de bastante importante uma equipe tomar cuidado para que dois expe-
rimentos não se interfiram, experimentos criados com certo cuidado e senso cŕıtico
podem evitar posśıveis colisões entre variantes. Também não é um bloqueio para
rodar um experimento

• 11: Compartilhar soluções podem ser bastante úteis quando feito de forma estrutu-
rada, porém também não impedem de um experimento rodar

A única exceção entre os componentes que não estão em 3 das 4 das arquiteturas, é
o 12. Pode ser considerada essencial que, após um experimento bem sucedido, a variante
vencedora seja implementada para que tenha impacto na métrica estabelecida pela empresa.

6 Conclusão e Trabalhos Futuros

Há uma grande importância em implementar um Experimento Online de forma sistemática
capaz de gerar decisões data-driven. E para que isso ocorra, é necessária uma arquitetura

Responsabilidades Arquiteturais 17

que suporte tanto o desenvolvimento, quanto a implementação e avaliação dos experimentos,
junto com uma infraestrutura capaz de coletar e analisar os dados.

Neste trabalho, analisando as arquiteturas presentes na literatura, vimos que existem
muitos componentes em comum que são essenciais para o desenvolvimento de um Experi-
mento Online. Paralelamente, as ferramentas que encontramos hoje na internet se relacio-
nam bastante com as arquiteturas apresentadas, mostrando que, de certa forma, a academia
e a indústria possuem bastante pontos em comum.

Por se tratar de um tema mais espećıfico, onde ainda existem poucos artigos falando es-
pecificamente sobre o assunto, podemos pensar como próximos passos, a implementação da
arquitetura com os componentes essenciais num projeto real a fim de verificar a funcionali-
dade da arquitetura. Um outro projeto que pode se extender, seria o entendimento em como
as reponsabilidades levantadas neste trabalho são tratadas nas empresas, fazendo pesquisas
diretamente com equipes que trabalham com isso nas empresas por meio de entrevistas e
coleta de dados.

Referências

[1] FAGERHOLM, F. et al. The RIGHT model for Continuous Experimentation. Journal
Of Systems And Software, v. 12 3, p.292-305, jan. 2017.

[2] KOHAVI, R. et al. Controlled experiments on the web: survey and practical guide.
Data Mining And Knowledge Discovery, v. 18, n. 1, p.140-181, 30 jul. 2008.

[3] FABIJAN, A. et al. The Benefits of Controlled Experimentation at Scale. 2017 43rd
Euromicro Conference On Software Engineering And Advanced Applications (seaa),
p.18-26, ago. 2017.

[4] ExP - Experimentation Platform: Accelerating software innovation through trustworthy
experimentation. Dispońıvel em https://exp-platform.com/hippo/ [acesso em 07/2019].

[5] KOHAVI, R. et al. Online controlled experiments at large scale. Proceedings Of The
19th Acm Sigkdd International Conference On Knowledge Discovery And Data Mining
- Kdd ’13, p.1-9, 2013

[6] KOHAVI, R. et al. Seven rules of thumb for web site experimenters. Proceedings Of
The 20th Acm Sigkdd International Conference On Knowledge Discovery And Data
Mining - Kdd ’14, p.1-11, 2014.

[7] MATTOS, D. I.; BOSCH, J.; OLSSON, H. H. Your System Gets Better Every Day
You Use It: Towards Automated Continuous Experimentation. 2017 43rd Euromicro
Conference On Software Engineering And Advanced Applications (seaa), p.256-265,
ago. 2017

[8] KOHAVI, Ron et al. Online Experimentation at Microsoft. Third Workshop On Data
Mining Case Studies And Practice Prize, p.1-16, 2009.

18 Kim e França

[9] EKLUND, U.; BOSCH, J. Architecture for Large-Scale Innovation Experiment Sys-
tems. 2012 Joint Working Conference On Software Architecture & 6th European Con-
ference On Software Architecture, Sweden, p.244-248, 2012.

[10] KOHAVI, Ron; LONGBOTHAM, Roger. Online Controlled Experiments and A/B
Testing. Encyclopedia Of Machine Learning And Data Mining, [s.l.], p.33-48, 2017.

[11] SCHERMANN, Gerald; CITO, Jurgen; LEITNER, Philipp. Continuous Experimen-
tation: Challenges, Implementation Techniques, and Current Research. Ieee Software,
[s.l.], v. 35, n. 2, p.26-31, mar. 2018.

[12] Datanyze. Dispońıvel em https://www.datanyze.com/market-share/testing-and-
optimization/Alexa%20top%20100K [acesso em 07/2019].

[13] Built with: https://trends.builtwith.com/analytics/a-b-testing/traffic/Top-100k
[acesso em 07/2019].

[14] SimilarTech: https://www.similartech.com/categories/a-b-testing [acesso em
07/2019].

[15] Google Optimize: https://optimize.google.com/ [acesso em 07/2019].

[16] Optimizely : https://www.optimizely.com/ [acesso em 07/2019].

[17] VWO : https://vwo.com/ [acesso em 07/2019].

[18] VentureHarbour : https://www.ventureharbour.com/best-a-b-testing-tools/ [acesso em
07/2019].

[19] HubSpot : https://blog.hubspot.com/marketing/a-b-testing-tools [acesso em 07/2019].

[20] Software Testing Help: https://www.softwaretestinghelp.com/best-ab-testing-tools/
[acesso em 07/2019].

[21] Quick Sprout : https://www.quicksprout.com/ab-testing-tools/ [acesso em 07/2019].

[22] FitSmallBusiness: https://fitsmallbusiness.com/best-a-b-testing-tools/ [acesso em
07/2019].

