2
<

4

Responsabilidades
Arquiteturais para
Experimentacao Online

Chan Kyung Kim Breno Bernard Nicolau de Franga

Relatério Técnico - [IC-PFG-19-15
Projeto Final de Graduagdo
2019 - Julho

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de tnica responsabilidade dos autores.

Responsabilidades Arquiteturais
para Experimentacao Online

Chan Kyung Kim* Breno Bernard Nicolau de Franca*

Resumo

Muitas empresas na industria tiveram que se adaptar para oferecer produtos e
servigos através de software. De forma geral, mesmo um software ja langado pode
ser constantemente melhorado através da Experimentacao Online, também conhecido
como testes A /B, amplamente aplicado no mundo. Porém, para que uma empresa toma
decisoes data-driven para a melhoria do software é importante que exista uma aborda-
gem sistematica para a Experimentacao. Temos como objetivo propor responsabilidades
arquiteturais essenciais que consigam suportar o desenvolvimento, implementacao e ava-
liagao dos experimentos, além de ser capaz de coletar e analisar dados. Para isso, este
trabalho analisa quatro arquiteturas diferentes da academia, identificando pontos em
comum, além de explorar as trés ferramentas mais utilizadas hoje na industria para
testes A/B. A contribuigido deste relatério é uma proposta de uma arquitetura com
componentes essenciais para Experimentos Online. Vemos, também, que a industria e
a academia se relacionam bastante neste tema.

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

2 Kim e Franca

Sumario
1 Introducao 3
2 Justificativa 4
3 Objetivo e Método 5
3.1 Objetivo e 5
3.2 Revisao bibliografica de artigos académicos 5
3.3 Compilagdo das responsabilidades, 5
3.4 Levantamento das ferramentas existentesnaweb 5
3.5 Mapeamento de funcionalidades das ferramentas 6
4 Trabalhos Relacionados 7
4.1 The RIGHT model for Continuous Experimentation 7
4.2 Online controlled experiments at large scale 8
4.3 Your System Gets Better Every Day You Use It: Towards Automated Con-
tinuous Experimentation Lo Lo Lo 10
4.4 Architecture for Large-Scale Innovation Experiment Systems 11
5 Resultados 13
5.1 Sintese de Responsabilidades L. 13
5.2 Ferramentas para Experimentagao Online, 15
5.3 Responsabilidades arquiteturais essenciais 16

6 Conclusao e Trabalhos Futuros 16

Responsabilidades Arquiteturais 3

1 Introducao

Com o crescimento acelerado da digitalizacao na industria, diversos setores tiveram que
se adaptar para alavancar suas vendas, aumentando assim o numero de empresas que se
tornaram provedoras de produtos e servigos por meio do uso de software [1]. Tanto empresas
antigas, quanto novas empresas tiveram que se encaixar a essa nova realidade.

Mesmo que um software ja tenha sido langado, existem diversas flexibilidades que per-
mitem que o produto inicial seja melhorado [1]. Uma das possiveis flexibilidades é a Expe-
rimentacao Online, conhecida também como Testes A/B.

Em sintese, Testes A/B consistem em comparar uma variante A (controle), com uma
variante B (tratamento), dividindo aleatoriamente os usudrios entre as duas variantes, com o
objetivo de melhorar uma métrica especifica [2], [10], como mostrado na Figura 1 (adaptada
do artigo [2]).

A
5000 .h 5000
Users 100% Users Users

Control: Treatment:

Existing System

Bxisting System with Feature X

v

Users interactions instrumented,
analyzed & compared

Y

Analyze at the end of the
experiment

Figura 1: Fluxo high-level de uma experimentacao online

A implementagao da Experimentacao Online traz um bom return-on-investment (ROI)
e, com uma infraestrutura apropriada pode acelerar a inovacao [2]. Além disso, quando
bem conduzidos, de forma sistematica, elas trazem um entendimento mais preciso do que os
clientes priorizam e provém provas para decidir sobre uma métrica chave para a mudanca
especifica de um produto [3]. Ou seja, as decisoes tornam-se data-driven, escutando os
clientes, em vez de serem baseados no HiPPO (Highest Paid Person’s Opinion), opinides de
desenvolvedores ou gerentes. [4][7][9].

Assim, uma empresa consegue impulsionar inovagao por meio da experimentagao. Isso
faz com que os custos de testes e falhas experimentais tornem-se pequenos, auxiliando com
propostas de novas ideias a serem implementadas, fazendo com que as empresas tenham seu
sucesso alavancado. Diversos artigos mostram melhoria nos produtos/servi¢os por meio dos
beneficios provenientes dos experimentos online. Tanto na academia quanto na industria,
em empresas como Microsoft, Google, Facebook, entre outras [1][3][5][6][8], foi possivel
observar resultados expressivos.

O desenvolvimento de novas features deve ser feito, idealmente, de forma sistematica

4 Kim e Franca

e data-driven [7]. Dado isso, para que os experimentos onlines sejam devidamente im-
plementados, é necessario uma arquitetura que suporte tanto o desenvolvimento, quanto a
implementacao e avaliagdo dos experimentos, junto com uma infraestrutura capaz de coletar
e analisar os dados, utilizando feedbacks de usudrios reais em grande escala [9].

2 Justificativa

Empresas que estao trilhando em direcao ao desenvolvimento baseado em experimentos,
enfrentam diversos desafios. O custo e consumo de tempo elevados, diferentes times que
podem levar a objetivos conflitantes e, falta de uma abordagem sistematica para rodar
experimentos em diferentes dominios, leva as empresas a criarem diversas plataformas de
experimentos [2][7].

[1] também afirma que ainda nao existe um framework detalhado para realizar desen-
volvimento de software baseado em experimentacao de forma sistematica. E necessdrio um
framework que englobe uma infraestrutura técnica do produto; um processo de desenvolvi-
mento do software; requerimentos acerca de competéncias que os desenvolvedores precisam
para projetar, executar, analisar e interpretar experimentos; e os recursos que a empresa
precisa para operar e gerenciar baseada experimentagao.

Além disso, em [11] vemos que, apesar de muitas empresas se interessarem pela expe-
rimentacao online, nem todas conseguem a incorporar aos negbcios. Entre as principais
dificuldades (Figura 2, adaptada do artigo [11]), sao citados como principais causas: pro-
blemas com arquitetura, falta de expertise, base de usudrios pequena e falta de interesse
em investir por motivos comerciais.

Type of experiment

@ Regression [Buiness

-% Other

B Lack of

(=9

= users

g

-§ Lackl of

2 expertise

=

§ Business

2 reasons

8 .

é Architectural
issues

=]

=]

0% 20% 40% 60%

Percentage of respondents

Figura 2: Principais obstdculos para implementacao de experimentagao

Responsabilidades Arquiteturais 5

3 Objetivo e Método

3.1 Objetivo

Esse trabalho tem como objetivo explorar as arquiteturas e ferramentas existentes hoje
na academia e plataformas de experimentagao (Optimizely, Google Optimize e VWO) na
industria para propor responsabilidades arquiteturais essenciais para a execugao de experi-
mentos online e ver como elas se relacionam com as plataformas online.

3.2 Revisao bibliografica de artigos académicos

A principio, foi realizada uma pesquisa na literatura técnico-cientifica para levantar artigos
que abordassem sobre o tema “Experimentacao Online” e, especificamente, sobre aspectos
relacionados a arquitetura. Foram utilizados, na ferramenta Google Scholar, os termos
”online controlled experiments”, ” architecture continuous experimentation”e” architecture
mnovation experiment”.

Para este trabalho, foram considerados os artigos [1], [5], [7] e [9], e suas arquiteturas.
A seguir, seguem os detalhes de cada arquitetura apresentada nos artigos e suas principais
contribuigoes.

3.3 Compilagao das responsabilidades

Revisando os artigos, percebe-se que ha uma diferenca em granularidade dos detalhes de
cada arquitetura, assim, foram escolhidas as responsabilidades de uma forma que fosse mais
detalhada, dentro do conjunto de responsabilidades dos quatro artigos. Feito isso, foram
mapeadas os componentes menos detalhados que abrangiam mais func¢ées em multiplas res-
ponsabilidades. Foram considerados as responsabilidades que foram explicitamente citados
nos artigos.

Além disso, os nomes de cada componente foram mantidos para cada artigo e compi-
lados em uma tabela a ser mostrada na secao 5. As descrigoes de cada responsabilidade
foram feitas de uma forma a abranger os quatro artigos. Especificamente, para a arquite-
tura RIGHT, no lugar de fungGes de trabalho, as responsabilidades foram adaptadas para
refletirem os componentes da arquitetura.

3.4 Levantamento das ferramentas existentes na web

Por conta da grande quantidade de ferramentas presentes hoje na web para experimentos
online, além de diversas funcionalidades que cada um ferramentas consegue oferecer, foi
feita uma anélise das ferramentas mais utilizadas. Os critérios de selegao foram:

e Ferramentas que rodam testes A/B
e Os top 100 mil sites em trafego que utilizam plataformas de experimentacao online

Com a ajuda de alguns sites [12], [13], [14] que medem o market share da utilizacao das
ferramentas, foram levantadas as trés que sao utilizadas no mercado e muito citadas por
sites de indicagao de melhores ferramentas de testes A/B [18][19][]20][21][22]. Sao elas:

6 Kim e Franca

e Google Optimize

e Optimizely

o VWO - Visual Website Optimizer

Como podemos ver na Figura 3, todas as 3 ferramentas aparecem nos top 3 em market
share em utilizagdo, seguindo os critérios citados acima. Conseguimos afirmar que para o
critério utilizado, as trés ferramentas possuem um market share significativo de mais de
60%. Para o market share da SimilarTech foram consideradas apenas as 8 top ferramentas.

100% B Others

I Convert

B Maxymiser

B Optimizely X

B Omniture Adobe test and Target
B Mixpanel

B ABTasty

B Google Optimize with GTM
B Adobe Target

B UserZoom

B JustUno

B Oracle Maxymiser

75%

50%

B Google Analytics Experiments
B Google Optimize

B vwo

B Optimizely

25%

0%

Datanyze BuiltWith SimilarTech

Figura 3: Market share Datanyze, BuiltWith e SimilarTech

3.5 Mapeamento de funcionalidades das ferramentas

Foram pesquisadas funcionalidades em cada ferramenta que se relacionassem com as res-
ponsabilidades ja mapeadas pelos artigos. Para isso, foram exploradas os sites de cada
ferramenta ([15], [16], [17]), coletando as funcionalidades que cada uma oferecia, pesqui-
sando na drea de resources e, além disso, foi feita uma pesquisa de casos de usos exemplos e
reais utilizando as ferramentas passo-a-passo. Paralelamente, foi feita uma comparagao com
as responsabilidades dos artigos e fazendo um check nos itens que as ferramentas possufam.

Responsabilidades Arquiteturais 7

4 Trabalhos Relacionados

4.1 The RIGHT model for Continuous Experimentation

Neste artigo, Fagerholm [1] tem como objetivo examinar as pré-condigdes para estabelecer
um sistema de experimentagdo para experimentos continuos com clientes, respondendo a
pergunta: Como a Experimentagao Continua de produtos e servigos altamente dependentes
de software pode ser organizada de forma sistemética? Em seguida, a pergunta é dividida
em duas:

e Qual é o modelo de processo adequado para Experimentacao Continua de produtos e
servigos altamente dependentes de software?

e Qual é o infraestrutura da arquitetura adequada para Experimentacdo Continua de
produtos e servigos altamente dependentes de software?

No que diz respeito a parte arquitetural do trabalho, o autor propoe um modelo de Ex-
perimentagdo Continua chamada RIGHT (Rapid Iterative value creation Gained through
High-frequency Testing) que possui a infraestrutura de arquitetura apresentada na Figura
4, adaptada do artigo [1].

w AR X AKX XA

Business Product Data Software Quality DevOps Release

Analyst Owner Scientist Developer Assurance Engineer Engineer
Task Create & Iterate |] Design, Execute, | o Develop PR Deplay
Roadmap Analyse Experiments [Product - Product

e e T T o =

Technical

Infrastructure APLF I | |

| Experiment DB | Analytics Toals | Instrumentation | Continuous Continuous

T - Integration [#=p Delivery
- Front-end System System
System

i+ Back-end R
11 System ‘

I
iy

- e
‘)

Information ~ jteeem e e e -

Artefacts

B 1 S| Vol
l Raw Data l l Experiment Plans l

Figura 4: Infraestrutura de arquitetura do modelo RIGHT

e Business Analyst ou Product Owner, ou a equipe de Product management

— Responséaveis para a criacao e iteracao dos roteiros dos experimentos;
— Consultam planos, resultados e aprendizados de experimentos existentes;

— Trabalham com o Data Scientist para comunicar as suposi¢oes do roteiro e as
dreas que precisam ser testadas.

8 Kim e Franca

e Data Scientist

— Projetam, executam e analisam os experimentos;

— Acessam raw datas pelo back-end system, acessam planos dos experimentos e
realizam as analises;

— Armazenam os resultados produzidos em forma de aprendizados no back-end
system;

— Se comunicam com os Developers e Quality Assurance.
e Developer e Quality Assurance

— Cuidam do desenvolvimento do MVP (Minimum Viable Product)/MVF (Mini-
mum Viable Feature) e do produto final;

— Cuidam da instrumentacao apropriada para o front-end system, parte que sera
mostrada ao usuério;

— Trabalham para desenvolver e otimizar as features necessarias e submeter para
producao;

— MVP/MVF /Produtos finais sdo implementados através do Continuous Integra-
tion System e Continuous Delivery System.

e DevOps
— Fazem a ponte entre o time de desenvolvimento e operagoes.
e Release Engineer

— Supervisionam e gerenciam distribuigbes em producao.

Uma das principais fun¢ées do Continuous Delivery System é a informagao do status do
roll-out do software que ele provém, permitindo a outras fungoes monitorar a execucao do
experimento, e obtendo, por exemplo, as condi¢gbes em que um software foi implementado
e 0 response rate.

Apesar de bastante detalhado, o autor ainda expée a arquitetura de uma forma nao
exaustiva e alto-nivel e afirma que varias funcoes relacionadas a operagoes foram omitidas,
por exemplo, reliability engineer. Além disso, foram omitidas quais informagoes deveriam
ser visiveis para quais fungoes.

4.2 Online controlled experiments at large scale

Neste artigo, Kohavi [5] implementa uma sistema de experimentagao online na Microsoft,
especificamente na Bing, chamada Bing Ezperimentation System, que ajudou a trazer re-
sultados expressivos para a empresa rodando mais de 200 experimentos ao mesmo tempo.
A arquitetura do sistema é dividida em 3 grandes partes, como mostrada na Figura 5,
adaptada do artigo [5]:

Responsabilidades Arquiteturais 9

Online Infrastructure Experiment Management
Experiment & Flight

) =iy

End)) A <M Pﬁ;I Experimenter
User Nalysis Manageme nt Cantrol T’DWE[

Front-end ’/E\J \\
=]« Offline Anajyfs
= %
Analysis API T rd

[—1—] * / Scorecards
!!!_‘_»@\ Analysis Management
[l

] [~
Back-end System Logs Statistical Analysis

Alerting

Figura 5: Arquitetura do Bing Experimentation System

e Online Infrastructure:
— Os servidores frontend realizam o assignment cada requisicao aos diversos flights
(como sao chamadas as variantes na Bing) a medida que sao recebidas;

— E feita uma pseudo randomizagao dos user id para garantir consisténcia nos
assignments;

— Informagoes de logs do sistema, incluindo as assignments das variantes, sao guar-
dadas para serem processadas e analisadas offline.

o Experiment Management:

— E o responsavel pelo Control Tower para gerenciar os experimentos;
— Utiliza APIs para definir e executar experimentos;

— Configuration API permite aos desenvolvedores a criarem as configuragdes de um
experimento.

e Offline Analysis:
— E gerada um scorecard, um resumo do experimento, pelo fluxo de andlise offline

do experimento, que gerencia grandes quantidades de dados e experimentos;

— Scorecards sao utilizados para acompanhar os impactos das mudangas do expe-
rimento ao longo do tempo;

— Gerencia e otimiza o fluxo de execugao de miltiplas andlises utilizando os logs;

— Monitora e alerta os sistema, detectando automaticamente tanto a qualidade dos
dados quanto um evento de impacto negativo aos usuarios.

10

4.3 Your System Gets Better Every Day You Use It: Towards Automated

Continuous Experimentation

Neste artigo, Mattos, Bosch e Olsson [7] realizaram uma andlise de diversas arquiteturas
e suas qualidades relacionadas a sistemas auto-adaptativas e, em seguida, desenvolvem
um framework de arquitetura que suporta experimentagao continua automatizada baseado
nessa andlise. Tal arquitetura, mostrada na Figura 6 adaptada do artigo [7], é composta
pelos seguintes componentes, podendo-se retirar um ou mais componentes para alguma

aplicagao especifica:

System under Experimentation (SuE)

Value - -
function

Global
metrics
Experiment
boundaries

Figura 6: Framework da arquitetura da Experimentagao Continua Automatizada

e Monitor

— Responsavel pela coleta de dados locais e globais, vindos do SuE (System under

Probe A Version input
h 4 Automated Continuous
Monitor Effector Experimentation (ACE)
Automated version
Machine Learning
Experiment algorithm
Datpa Effector
\ersion Version
Version Generator
. . Version
Metric Analysis Manager
Eoeriment Knowledge and
erime i
Experiment p Infermation Exchange
metries Experi_mem: Run-time
Coordinator Conflict | conflict list
Experiment Conditions -
Watchdog Conflict
Manager

Ezxperimentation).

e Effector

— Responsavel pela interface com o sistema gerenciado.

e Experiment coordinator

— Responsavel por rodar o experimento e coordenar com o Version Manager;

— Fazer Testes A/A (sanity check), A/B/n (experimentos com mais de uma vari-

ante de tratamento) e explorar experimentos cruzados;

Kim e Franca

Responsabilidades Arquiteturais 11

— Monitora quando e se um experimento deve rodar, nimero de experimentos que
devem ser realizados e quais solugoes sao mais significantes;

— Recebe inputs do Conflict-list Manager e Experiment Watchdog.

Version Manager

— Gerenciar e gerar diferentes versoes para os experimentos, mudando pardmetros
e variantes;

— Mantém uma lista das versoes ja usadas e recebe inputs do Knowledge Exchange
e Version Generator.

Version Generator

— Adapta diferentes algoritmos de inteligéncia artificial para os testes.
e Experiment Watchdog

— Checa as condi¢Oes para rodar um experimento, como: quando um experimento
deve continuar ou parar;

— Para um experimento se o mesmo passar dos limites pré-definidos ou esta preju-
dicando alguma métrica global.

Conflict-list manager

— Monitora quais componentes estao em experimentacao e quais fatores elas afe-
tam.

Metric Analysis

— Monitorar o comportamento do experimento;

— Rodar analises estatisticas e realizar um reflexao da qualidade do desempenho.

Knowledge and Information Exchange

— Responsavel por compartilhar as solucoes descobertas no processo de experi-
mentacao e aprender sobre as solucoes validadas.

4.4 Architecture for Large-Scale Innovation Experiment Systems

Eklund e Bosch [9] procuram, neste artigo, responder a seguinte pergunta: Quais sao os
principios de uma arquitetura de software para concretizar um sistema de experimentos de
inovacao em larga escala para sistemas com software embarcado?

A seguir, os autores propéem uma arquitetura mostrada na Figura 7, adaptada do artigo
[9], que suporta a implementagao de experimentacao de multiplas partes do software e que
controla de forma auténoma quando um teste deve ser rodado, permitindo até testes A/B
locais. Leituras e andlises sao feitas em tempo real e de forma embarcada. A arquitetura
consiste nas seguintes partes:

12

Kim e Franca

=" advanced . Unit of
! experiment | replacement
*. management - Tl .
v s Running entity fo————
Experiment N
manager T
.‘ 1
\ Experiment
wrapper
1
b 0. a.r

Logger ! "I Probes

Software part under
experiment

Invariant software
parts

Applications

Operating System

Figura 7: Arquitetura de gerenciamento dos experimentos

Experiment manager:

Experiment wrapper:

— Parte do software que estd sendo testado.

Logger e On-board storage:

Unit of replacement:

— Responsavel por decidir quais experimentos serao executados, rodar o experi-
mento e juntar e analisar os dados coletados.

— Permite ao Manager decidir em tempo de execugao quais experimentos rodar,
permitindo o teste A/B ou revertendo para default.

— Guarda os dados coletados e analisados providos pela sistema embarcado para
serem uploaded para analises futuras.

— Cuida tanto da parte de implementacao quanto do versionamento do software

Os autores também propdem incluir um mecanismo para mitigacao de riscos para ex-
perimentos criticos para a segurancga. Tal componente, mostrado na Figura 8 adaptada do
artigo, seria responsavel por:

e Avaliar se a aplicacao estd rodando em limites seguros;

Responsabilidades Arquiteturais 13

e Controlar e configurar a operacgao para rodar em limites seguros.

s "™, Monitor i
. Safety pattern r-------- » Monitor
-1-—'“:’“' 1
i . - 1
' ™ Experiment
Saf i x
ey E):E'IFIJ[I\I'E' . . software
,;, 1 FECOV
1 -
Safety Fail-safe
executive |1 1. +| software

Figura 8: Safety Pattern

5 Resultados

5.1 Sintese de Responsabilidades

Uma vez mapeadas todos os componentes das arquiteturas dos artigos, foi feita uma andlise
das responsabilidades e foram compiladas de forma exaustiva na Tabela 1. Para cada artigo,
foram colocados os nomes de cada componente de forma a refletir o artigo e para facilitar
futuras consultas.

14

Kim e Franca

#|Responsabilidade do componente (1] (5] (7] 9]
1 |Coleta de dados Backend system Infrgsrtliﬁlceicure Monitor Logger
- . fhi Metri E i t
2 |Analise dos dados coletados Analytics Tools Aonall;s?s AHZ]}I‘IIS(;S }r{rf);f;?eegl
3 Interface com o sistema Instrumentation Online Effector
em experimento (Frontend system)|Infrastructure
. Backend system/ | Experiment | Experiment | Experiment
4 |Rodar o experimento Analytics Tools | Management | coordinator manager
. (. li
5 |Segmentagao de usudrios - Infrgsrtlrfceture - -
6 Gerenciar e/ou gerar diferentes Experiment Version Experiment
versoes de experimentos Management Manager manager
7 Uso de algoritmos de TA Version
para os experimentos Generator
Determinar as condigoes para Experiment DB Offline Experiment
8 rodar os experimentos (Backend system)| Analysis Watchdog Safety Pattern
9 Monitorar os componentes/variantes Conflict-list | Experiment
que estao em experimentagao Manager wrapper
Monitorar o comportamento Continuous Offline Metric
10|do sistema em experimento e Delivery Analvsis Analvsis -
avaliar seu desempenho System Y Y
. - Knowl
Compartilhar solugoes descobertas now edge. and
1170 . Backend system - Information -
e licoes aprendidas Exchange
Continuous
- - Integration/ Unit of
12Implementacao para producao Delivery - - replacement
System

Tabela 1: Responsabilidades e componentes dos artigos

A seguir, temos as descrigoes de cada responsabilidade citada na Tabela 1:

0 experimento

. Dados locais e globais provenientes do experimento sao coletados

mentos com mais de uma variante tratamento) ou experimentos cruzados.

de uma forma aleatdria e consistente

e variantes

. E feita a analise dos dados previamente coletados, podendo ser ja processados

E um ponto de contato com o experimento, onde hd uma interface para interacao com
Experimentos sao realizadas através de testes A/A (sanity checks), A/B/n (experi-
. E feita uma divisao de quais usudrios recebem quais variantes e quais experimentos

Experimentos sao gerenciados podendo ser gerados ou modificados, mudando parametros

Responsabilidades Arquiteturais 15

7. Sao utilizados algoritmos de TA para experimentacao

8. Define se um sistema deve continuar um experimento e quando deve parar. Pode
parar um experimento caso saia dos limites estabelecidos ou esteja danificando alguma
métrica global.

9. Monitoramento em tempo real dos componentes/variantes sendo testados e quais fa-
tores as afetam, de forma a evitar confusdo entre experimentos

10. Monitoramento do experimento, fazendo avaliacao do desempenho e anélises estatisticas

11. Compartilhamento das solugoes descobertas e ligdes aprendidas através de uma infra-
estrutura interna

12. Implementacao da variante vencedora para producgao

5.2 Ferramentas para Experimentacao Online

Tendo sido mapeadas as responsabilidades, foram feitas os checks com as funcionalidades
das ferramentas online e compilados na Tabela 2, em que “X” representa que tal ferramenta
possui a funcionalidade e “*”, que possui parcialmente.

- .. Google

| Responsabilidade do componente | Optimizely Optimize VWO

1 | Coleta de dados X X X

2 | Analise dos dados coletados * X b
Interface com o sistema

3 . X X X
em experimento

4 | Rodar o experimento X X X

5 | Segmentagao de usuérios X X X
Gerenciar e/ou gerar diferentes

6 - ; X X X
versoes de experimentos

7 Uso de algoritmos de TA

para os experimentos

Determinar as condigoes para

rodar os experimentos

Monitorar os componentes/variantes

9 ~ . ~
que estao em experimentacao
Monitorar o comportamento

10 | do sistema em experimento e X X X
avaliar seu desempenho

1 Compartilhar solucoes descobertas % % %

e ligoes aprendidas
12 | Implementacao para produgao

Tabela 2: Responsabilidades e funcionalidades das ferramentas

Podemos observar que as ferramentas possuem basicamente as mesmas funcionalidades,
tanto pela questao técnica quanto pela questao competitiva, em que uma ferramenta que

16 Kim e Franca

nao oferece alguma funcionalidade béasica ou geral, pode perder ou até mesmo nao conseguir
atrair novos clientes.

Por exemplo uma fungao em comum que todas as ferramentas possuem é a interface com
o sistema de experimentacdo, em que o experimentador pode configurar um experimento
visualmente, sem ser programaticamente, através de um editor WYSIWYG (What You See
Is What You Get), modificando componentes dentro de uma pégina web ou aplicativo.

No caso da analise de dados coletados para o Optimizely, a ferramenta permite inte-
gracao com outras ferramentas como o Google Analytics, porém nao possui uma plataforma
prépria para analise dos dados. Para o compartilhamento das solucoes, todas ferramentas
mantém um histérico dos testes feitos que ficam armazenados de forma organizada, porém
seria necessario um time para que o compartilhamento fosse feito de forma ativa para o
conhecimento das pessoas e grupos de pessoas interessadas.

As funcionalidades que nao sdo cobertas pelas ferramentas devem ser incorporadas pelo
time de desenvolvimento para que, por exemplo, nao tenham conflitos entre experimentos
ou para implementar a solugao vencedora para a producgao.

5.3 Responsabilidades arquiteturais essenciais

Fazendo uma andlise das tabelas, foram consideradas essenciais as seguintes responsabili-
dades: 1, 2, 3, 4, 6, 8, 10 e 12, sendo estas encontradas em pelo menos 3 das 4 arquiteturas
analisadas. Algumas razoes justificam a nao-inclusao das responsabilidades nao considera-
das essenciais:

e 5: A segmentacao de usuarios, apesar de importante para a consisténcia dos dados
coletados, ndo impedem de um experimento rodar. Apesar disso, podemos observar
que todas as ferramentas possuem essa funcionalidade.

e 7: Apesar de algoritmos de IA serem um adicional com grande potencial, elas nao sao
necessarias para rodar um experimento. Nenhuma ferramenta permite essa funciona-

lidade.

e 9: Apesar de bastante importante uma equipe tomar cuidado para que dois expe-
rimentos nao se interfiram, experimentos criados com certo cuidado e senso critico
podem evitar possiveis colisdes entre variantes. Também nao é um bloqueio para
rodar um experimento

e 11: Compartilhar solugoes podem ser bastante tteis quando feito de forma estrutu-
rada, porém também nao impedem de um experimento rodar

A tnica excecao entre os componentes que nao estao em 3 das 4 das arquiteturas, é
o 12. Pode ser considerada essencial que, apds um experimento bem sucedido, a variante
vencedora seja implementada para que tenha impacto na métrica estabelecida pela empresa.

6 Conclusao e Trabalhos Futuros

H& uma grande importancia em implementar um Experimento Online de forma sistematica
capaz de gerar decisoes data-driven. E para que isso ocorra, é necessaria uma arquitetura

Responsabilidades Arquiteturais 17

que suporte tanto o desenvolvimento, quanto a implementagao e avaliagao dos experimentos,
junto com uma infraestrutura capaz de coletar e analisar os dados.

Neste trabalho, analisando as arquiteturas presentes na literatura, vimos que existem
muitos componentes em comum que sao essenciais para o desenvolvimento de um Experi-
mento Online. Paralelamente, as ferramentas que encontramos hoje na internet se relacio-
nam bastante com as arquiteturas apresentadas, mostrando que, de certa forma, a academia
e a industria possuem bastante pontos em comum.

Por se tratar de um tema mais especifico, onde ainda existem poucos artigos falando es-
pecificamente sobre o assunto, podemos pensar como préximos passos, a implementacao da
arquitetura com os componentes essenciais num projeto real a fim de verificar a funcionali-
dade da arquitetura. Um outro projeto que pode se extender, seria o entendimento em como
as reponsabilidades levantadas neste trabalho sao tratadas nas empresas, fazendo pesquisas
diretamente com equipes que trabalham com isso nas empresas por meio de entrevistas e
coleta de dados.

Referéncias

[1] FAGERHOLM, F. et al. The RIGHT model for Continuous Experimentation. Journal
Of Systems And Software, v. 12 3, p.292-305, jan. 2017.

[2] KOHAVI, R. et al. Controlled experiments on the web: survey and practical guide.
Data Mining And Knowledge Discovery, v. 18, n. 1, p.140-181, 30 jul. 2008.

[3] FABIJAN, A. et al. The Benefits of Controlled Experimentation at Scale. 2017 43rd
Euromicro Conference On Software Engineering And Advanced Applications (seaa),
p-18-26, ago. 2017.

[4] ExP - Ezperimentation Platform: Accelerating software innovation through trustworthy
experimentation. Disponivel em https://exp-platform.com/hippo/ [acesso em 07/2019].

[5]) KOHAVI, R. et al. Online controlled experiments at large scale. Proceedings Of The
19th Acm Sigkdd International Conference On Knowledge Discovery And Data Mining
- Kdd ’13, p.1-9, 2013

[6) KOHAVI, R. et al. Seven rules of thumb for web site experimenters. Proceedings Of
The 20th Acm Sigkdd International Conference On Knowledge Discovery And Data
Mining - Kdd ’14, p.1-11, 2014.

[7] MATTOS, D. I.; BOSCH, J.; OLSSON, H. H. Your System Gets Better Every Day
You Use It: Towards Automated Continuous Experimentation. 2017 48rd Euromicro
Conference On Software Engineering And Advanced Applications (seaa), p.256-265,
ago. 2017

[8] KOHAVI, Ron et al. Online Experimentation at Microsoft. Third Workshop On Data
Mining Case Studies And Practice Prize, p.1-16, 2009.

18

[9]

[10]

[11]

[12]

[13]

[14]

Kim e Franca

EKLUND, U.; BOSCH, J. Architecture for Large-Scale Innovation Experiment Sys-
tems. 2012 Joint Working Conference On Software Architecture € 6th European Con-
ference On Software Architecture, Sweden, p.244-248, 2012.

KOHAVI, Ron; LONGBOTHAM, Roger. Online Controlled Experiments and A/B
Testing. Encyclopedia Of Machine Learning And Data Mining, [s.1.], p.33-48, 2017.

SCHERMANN, Gerald; CITO, Jurgen; LEITNER, Philipp. Continuous Experimen-
tation: Challenges, Implementation Techniques, and Current Research. leee Software,
[s.1.], v. 35, n. 2, p.26-31, mar. 2018.

Datanyze. Disponivel em https://www.datanyze.com/market-share/testing-and-
optimization/Alexa%20top%20100K [acesso em 07/2019].

Built with: https://trends.builtwith.com/analytics/a-b-testing/traffic/ Top-100k
[acesso em 07/2019].

Similar Tech: https://www.similartech.com/categories/a-b-testing [acesso em
07/2019).

Google Optimize: https://optimize.google.com/ [acesso em 07/2019].
Optimizely: https://www.optimizely.com/ [acesso em 07/2019].
VWO: https://vwo.com/ [acesso em 07/2019].

VentureHarbour: https://www.ventureharbour.com/best-a-b-testing-tools/ [acesso em
07/2019].

HubSpot: https://blog.hubspot.com/marketing/a-b-testing-tools [acesso em 07/2019].

Software Testing Help: https://www.softwaretestinghelp.com /best-ab-testing-tools/
[acesso em 07/2019].

Quick Sprout: https://www.quicksprout.com/ab-testing-tools/ [acesso em 07/2019].

FitSmallBusiness: https://fitsmallbusiness.com/best-a-b-testing-tools/ [acesso em
07/2019).

