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Resumo

Este relatório descreve um projeto no qual foi realizada uma implementação de
indicadores descritos na literatura de processamento de imagens digitais, os quais quan-
tificam a resolução e o grau de borramento de imagens digitais. Estes indicadores
foram utilizados em um banco de imagens para validar se eles podem ser utilizados
para classificar se uma imagem está ou não borrada. Com base nestes indicadores e
aplicando técnicas de aprendizado de máquina, conclui-se que é posśıvel criar um clas-
sificador de imagens borradas e não borradas, utilizando tanto o algoritmo de Support
Vector Classification (SVC) quanto o AdaBoost. Além disso, avaliou-se a necessidade
de redimensionalidade das imagens originais para ganho de precisão do sistema ou de
velocidade de processamento.
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Acrônimos

ACMO Absolute Central Moment

BREN Brenner’s Focus Measure

CONT Image Contrast

GDER Gaussian Derivative

GLLV Graylevel Local Variance

GLVA Graylevel Variance

GRAE Energy of Gradient

GRAS Squared Gradient

GRAT Threshold Gradient

HELM Helmli’s Mean Method

HISE Histogram Entropy

HISR Histogram Range

LAPD Diagonal Laplacian

LAPE Energy of Laplacian

LAPM Modified Laplacian

LAPV Variance of Laplacian

SFF Spectral Feature Fitting

SFIL Steerable Filters

SFRQ Spatial Frequency

SVC Support Vector Classification

TENG Tenengrad

TENV Tenengrad Variance
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Este trabalho é dedicado aos meus amigos que me auxiliaram ao longo da minha
graduação, prestando suporte e conselhos, tanto didáticos quanto emocionais; aos meus
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1 Introdução

A área de processamento digital de imagens é um vasto campo na área da computação, cujo
principal objetivo é ser uma ferramenta que auxilia diversos campos acadêmicos e indus-
triais, de maneira a melhorar a qualidade ou compreensão de imagens para a interpretação
humana, seja esta através de quantificação de atributos qualitativos de uma imagem, ou
então na alteração de imagens para empregar uma melhoria na interpretação automática
ou manual das imagens analisadas.

Uma das dificuldades desta área ocorre quando uma imagem é obtida por meio de um
meio instável ou um equipamento com qualidade duvidosa, acarretando em imagens de
péssima qualidade para seus observadores, tais como imagens borradas.

Borramento é o fenômeno descrito quando a qualidade de resolução de uma imagem é
inferior à esperada pelos observadores e/ou para quem fotografou a imagem no respectivo
momento. Este fenômeno pode ocorrer devido a vários motivos, tais como os descritos
previamente.

A resolução de uma imagem pode ser mensurada por meio de várias métricas, cujos
indicadores já foram discutidos ocasionalmente na literatura acadêmica. Entretanto, há
ainda poucas abordagens que utilizam um conjunto destes indicadores para classificar, de
maneira automática, se uma imagem está ou não borrada.

2 Objetivos

O principal objetivo deste trabalho é, com base em heuŕısticas e metodologias válidas em
diferentes campos de estudo, determinar de maneira automática se uma imagem está bor-
rada ou não, utilizando diferentes indicadores baseados na resolução de uma imagem, e
empregando análises qualitativas, com processamentos de aprendizado de máquina na de-
finição do classificador, tanto com um conjunto de imagens que são utilizadas originalmente
(sem modificações) quanto com uma nova imagem obtida por meio de filtros que forçam o
borramento das imagens originais.

Este estudo será feito tanto com um conjunto de imagens originais (o qual será descrito
adiante) quanto com versões destas imagens sofrendo modificação de tamanho, para avaliar
se essa mudança altera significativamente a qualidade do classificador.

Acredita-se que é posśıvel categorizar imagens que estão borradas sem depender da
avaliação supervisionada humana, desde que haja um conhecimento prévio se o conjunto de
imagens do conjunto estão ou não borradas. Caso o conjunto de amostras só possua imagens
não borradas, uma amostra de imagens borradas pode ser gerada de maneira procedural,
aplicando filtros de borramento, tal como foi empregado neste projeto.

O sucesso deste experimento não deve ser inferido no conjunto de imagens utilizado,
mas sim na metodologia aplicada e descrita ao longo do relatório.

3 Metodologia

Esta seção descreve as principais etapas que compõem a metodologia proposta.
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3.1 Fluxograma do Modelo

O sistema de classificação de imagens borradas possui alguns fluxos principais para que sua
funcionalidade ocorra. Para isso, os seguintes passos devem ser realizados:

• As imagens devem ser processadas, para que todos os indicadores sejam computados
e registrados.

• Com os dados gerados no item anterior, estes dados devem ser processados em uma
estratégia de validação cruzada, bem como na seleção do melhor algoritmo de apren-
dizado de máquina posśıvel. O procedimento para realização do aprendizado será
descrito mais adiante no relatório.

• Para os melhores algoritmos, será gerada a matriz de confusão do sistema, para avaliar
a eficácia dos algoritmos empregados.

Para o experimento, alguns aspectos devem ser destacados:

• Analisou-se se a modificação do tamanho das imagens influencia os resultados. Então,
o fluxo descrito foi feito com um conjunto de imagens nos seus tamanhos originais e,
as mesmas imagens após sofrerem modificação de tamanho para 256×256 e 512×512.
O impacto destas modificações será discutido na seção de resultados.

• Em um conjunto real de dados, recomenda-se que seja selecionada uma amostra de
imagens borradas e imagens não borradas. Como na realização dos experimentos não
havia um conjunto de imagens com garantia de que estivessem borradas, o banco de
imagens empregado supõe-se como imagens não borradas, e as imagens borradas foram
geradas artificialmente, aplicando-se filtros de borramentos da biblioteca OpenCV [1].

3.2 Arquivos de Implementação

Para realizar os objetivos previamente listados, foi implementado um programa em lingua-
gem de programação Python com várias funcionalidades e módulos. A seguir, serão listados
os nomes dos arquivos da aplicação e suas principais funcionalidades no projeto:

• indicators.py: implementa a iteração entre todas as imagens do diretório das ima-
gens, com todos os indicadores implementados.

• fmeasure.py: implementa todos os indicadores de borramento, que serão descritos
posteriormente.

• plotter.py: implementa os algoritmos de aprendizado de máquina no fluxograma e
de processamento dos dados computados no indicators.py.

• opener.py: implementa uma classe responsável pela abertura das imagens utilizando
o OpenCV.
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• fileManager.py: implementa algumas funções de gerenciamento de arquivos, como
localizar todas as imagens recursivamente em um diretório, ou mover todos os arquivos
de um caminho para outro.

• converter.py: classe que converte as entradas de imagens coloridas em um modelo
diferente. Neste trabalho, todas as imagens utilizadas foram convertidas para a escala
de cinza.

• main.py: arquivo que faz as chamadas de função dos principais módulos (ou seja, o
indicators e o plotter).

3.3 Indicadores de Foco

A seguir, serão explicadas quais foram as funções matemáticas dos operadores de foco [2]
que servirão como indicadores para descrever se uma imagem encontra-se borrada ou não,
pelo classificador implementado no projeto. Os nomes das funções serão escritos em inglês,
mas os operadores serão descritos em português.

3.3.1 ACMO

Shirvaikar et al. [3] propuseram uma medida de foco, denominada ACMO, baseada em
medidas estat́ısticas.

A definição da ACMO é dada pela operação realizada no histograma H da imagem:

ACMO =
L
∑

k=1

|k − µ|Pk, (1)

em que µ é o valor de intensidade média de H, L são os ńıveis de escalas de cinza da imagem
e Pk é a frequência relativa da imagem no k-ésimo ńıvel da escala de cinza.

Espera-se que imagens borradas possuam menos resolução do que imagens não borradas.
Isto implica que o histograma será mais agrupado para valores similares, o que faz com que
o resultado geral da ACMO seja menor nas imagens borradas do que nas imagens não
borradas.

3.3.2 BREN

Uma medida de foco baseada na segunda diferença de uma imagem I em ńıvel de cinza é
definida por [4–6]:

φ =
∑

(i,j)

max(|I(i,j) − I(i+2,j)|, |I(i,j) − I(i,j+2)|)2. (2)

Essa medida considera tanto a segunda diferença no eixo X, quanto no eixo Y [5].
Espera-se que o resultado deste operador seja menor para imagens borradas do que para
imagens não borradas.
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3.3.3 CONT

Nanda et al. [7] utilizaram o contraste de imagem como medida de foco para auto-foco:

C(x,y) =
x+1
∑

i=x−1

y+1
∑

j=y−1

|I(x,y) − I(i,j)|. (3)

Essa medida considera tanto a segunda diferença no eixo X quanto no eixo Y . Espera-se
que o resultado deste operador seja menor para imagens borradas do que para imagens não
borradas.

3.3.4 GDER

Baseado no modelo de defoco, Geusebroek et al. [8] propuseram uma medida de foco para
auto-foco em microscópios baseada na primeira ordem da derivada da Gaussiana [8, 9]:

φ =
∑

(x,y)

((I ∗ Γx)
2 + (I ∗ Γy)

2), (4)

em que Γx e Γy são as derivadas parciais da função Gaussiana Γ(x,y,γ), a qual é definida por:

Γ(x,y,γ) =
1

2πγ
e
−

x
2
+y

2

2γ2 . (5)

Como operador de defoco, é esperado que, para imagens borradas, este valor seja menor
do que para imagens sem borramento.

3.3.5 GLVA

A medida GLVA de uma imagem em escala de cinza é um dos métodos mais populares para
computar o foco de uma imagem. Ela é aplicada tanto para auto-foco [4–6, 10–20] quanto
para Spectral Feature Fitting (SFF) [21–24]:

φx,y =
∑

(i,j)∈Ω(x,y)

(I(i, j)− µ)2, (6)

em que µ é a média dos pixels pertencentes a Ω(x, y). É esperado que, para imagens
borradas, este valor seja menor do que para imagens sem ou com poucos borramentos.

3.3.6 GLLV

Pech et al. [25] propuseram o GLLV como uma medida de foco para auto-foco de diatomáceas
em microscopia de campo claro. Para essa aplicação da medida SFF, este operador é
reformulado como:

φx,y =
∑

(i,j)∈Ω(x,y)

(Lv(i, j)− L̄v)
2, (7)

em que Lv(i, j) é computado como a variância dos niveis de escala de cinza com uma
vizinhança de tamanho Wx×Wy, centralizada em (i, j). L̄v é a média de Lv. É esperado
que o valor da medida em imagens borradas seja menor do que para imagens não borradas.
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3.3.7 GRAE

A soma dos quadrados da primeira derivada nas direções dos eixos X e Y de uma imagem
também já foram propostos como medida de foco [10, 11, 23]:

φx,y =
∑

(i,j)∈Ω(x,y)

(Ix(x, y)
2 + Iy(x, y)

2). (8)

Espera-se que o resultado da medida em imagens borradas seja menor do que em imagens
não borradas.

3.3.8 GRAT

Uma variação da medida GRAE é o GRAT, que considera um limiar T para definir a soma
da média da operação [5]:

φ =
∑

(i,j)∈Ω(x,y)

max(|Ix(i, j)|, |Iy(i, j)|), para max(|Ix(i, j)|, |Iy(i, j)|) ≥ T. (9)

A eficácia dessa medida é afetada pela seleção de T . Por questão de generalidade e para
se basear na referência bibliográfica que define a medida, o limiar T foi definido como 0.
É esperado que imagens borradas possuam valores menores para esta medida do que as
imagens não borradas.

3.3.9 GRAS

Ao invés de aplicar GRAT, as primeiras derivada são elevadas ao quadrado, para aumentar a
influência de gradientes maiores [5,6,11,26]. Além disso, ao invés de considerar os dois eixos
X e Y , como foi considerado na medida GRAT, o valor de GRAS somente foi computado
com o eixo X.

Tal como em GRAT, espera-se que o valor computado em imagens borradas seja menor
do que em imagens não borradas.

3.3.10 HELM

Helmli e Scherer [21] propuseram uma medida de contraste local, computando a razão
R(x, y), entre os ńıveis de intensidade entre todos os pixels I(x, y) e a média da escala de
cinza na vizinhança µ(x, y):

R(x, y) =















µ(x, y)

I(x, y)
, se µ(x, y) ≥ I(x, y)

I(x, y)

µ(x, y)
, caso contrário

(10)

Essa razão será igual a 1 quando a região tiver valor constante ou de baixo contraste.
Uma vizinhança M × N , centralizada em (x, y) é usada para computar µ(x, y). O valor
do foco para I(x, y) é computado somando-se todos os valores de R(x, y) em uma região
Ω(x, y). É esperado que o valor desse indicador seja menor em imagens borradas do que
em imagens não borradas.
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3.3.11 HISE

Como imagens focadas costumam possuir um ńıvel maior de conteúdo de informação, a
entropia de uma imagem e a área de alcance de seu histograma podem ser utilizadas como
medida de foco [4–6,12, 13, 19].

A medida HISE é definida por:

φ = −
L
∑

k=1

(Pk log2(Pk)), (11)

em que Pk é a frequência relativa do k-ésimo nivel de cinza da imagem. Vale a ressalva de
que valores menores são esperados em imagens borradas do que em relação a imagens não
borradas.

3.3.12 HISR

O indicador HISR tem sido utilizado como medida de foco e auto foco como [4–6]:

φ = max(k|H > 0)−min(k|H > 0). (12)

É esperado que imagens borradas tenham um valor menor desta medida do que em
imagens não borradas, por possuir uma carga de informação menor do que as imagens não
borradas.

3.3.13 LAPE

A energia da segunda derivativa de uma imagem tem sido utilizado como medida tanto para
auto foco [6, 9–12,14–16,18, 19, 27] quanto para SFF [28]:

φx,y =
∑

(i,j)∈Ω(x,y)

∆I(i, j)2, (13)

em que ∆I é a imagem Laplaciana obtida ao se aplicar uma convolução entre a imagem I

e o filtro Laplaciano.
É esperado que o valor da medida em imagens borradas seja menor do que em imagens

não borradas.

3.3.14 LAPM

Nayar [29] propôs uma medida de foco baseada em uma definição alternativa do Laplaciano:

φx,y =
∑

(i,j)∈Ω(x,y)

∆mI(i, j), (14)

em que ∆mI é uma modificação do Laplaciano de I, computada como:

∆mI(i, j) = |I ∗ ℵx|+ |I ∗ ℵy|. (15)
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As máscaras de convolução utilizadas para computar o Laplaciano modificado são:

ℵx =
[

−1 2 −1
]

(16)

e
ℵy = ℵT

x . (17)

Esperam-se as mesmas conclusões de LAPE e LAPM.

3.3.15 LAPV

Essa medida utiliza a variância de uma imagem laplaciana como uma medida de foco para
auto foco [25]. Em SFF, essa medida pode ser definida como:

φx,y =
∑

(i,j)∈Ω(x,y)

(∆I(i, j)− ∆̄I)2, (18)

em que ∆̄I é a média do valor da imagem laplaciana em Ω(x, y).
Esperam-se as mesmas conclusões de LAPE se apliquem em LAPV.

3.3.16 LAPD

Thelen et al. [30] também inclúıram variações na vertical em uma imagem para computar
uma versão modificada da Laplaciana da imagem:

∆mI(i, j) = |I ∗ ℵx|+ |I ∗ ℵy|+ |I ∗ ℵx1|+ |I ∗ ℵx2|, (19)

em que ℵx e ℵy foram definidos anteriormente, e ℵx1 e ℵx2 são definidos por:

ℵx1 =
1√
2





0 0 1
0 −2 0
1 0 0





ℵx2 =
1√
2





1 0 0
0 −2 0
0 0 1



 .

3.3.17 SFIL

Minhas et al. [22] propuseram uma medida de foco baseada em uma versão filtrada da
imagem If :

φx,y =
∑

(i,j)∈Ω(x,y)

If (x, y), (20)

em que If é definida como:
If (x, y) = maxRΘn

(i,j , (21)

em que RΘn , n = 1, 2, ...N , é a imagem responsável pela n-ésima rotação do filtro definido
por [31]:

RΘn = cos(Θn)(I ∗ Γx) + sin(Θn)(I ∗ Γy), (22)

em que Γx e Γy são as derivadas da Gaussiana nos eixos X e Y , respectivamente.
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3.3.18 SFRQ

Este operador [11] foi proposto para fusão de imagens multi-focais:

φx,y =

√

∑

(i,j)∈Ω(x,y)

Ix(i, j)2 +
∑

(i,j)∈Ω(x,y)

Iy(i, j)2, (23)

em que Ix e Iy denotam a primeira derivada da imagem na direção dos eixos X e Y ,
respectivamente.

3.3.19 TENG

Este é um operador de medida de foco baseado na magnitude do gradiente da imagem,
definido por [5, 6, 10–18,21–23,25, 27, 32]:

φx,y =
∑

(i,j)∈Ω(x,y)

(Gx(x, y)
2 +Gy(x, y)

2) (24)

em que Gx e Gy são os gradientes nos eixosX e Y computados pela convolução da respectiva
imagem com o operador de Sobel.

3.3.20 TENV

Este operador usa a variância do gradiente da imagem como medida de foco. Ele origi-
nalmente foi utilizado como medida de auto-foco [25], mas também pode ser aplicado para
SFF:

φx,y =
∑

(i,j)∈Ω(x,y)

(G(x, y)− ¯G(x, y))2, (25)

em que ¯G(x, y) é a média do valor em Ω(x, y) do gradiente da magnitude, o qual é calculado
como:

G =
√

Gx(x, y)2 +Gy(x, y)2 (26)

3.4 Imagens

As imagens foram obtidas de acervos digitais públicos [33,34] de estudos em processamento
de imagens. No total, foram utilizadas cerca de 9.000 imagens ao longo do estudo. Todas as
imagens utilizadas foram consideradas não borradas e foram catalogadas no processamento
dos indicadores como não borradas.

Para gerar o acervo de imagens borradas, foram aplicados dois filtros da biblioteca
OpenCV [1]: o filtro blur e o filtro Gaussiano. Além disso, para realizar a análise qua-
litativa do sistema de classificação, foi questionado se o tamanho da imagem influencia
nos resultados. Portanto, foram geradas 3 amostras de dados para o mesmo conjunto de
imagens no sistema como um todo: (a) as imagens no tamanho original; (b) as imagens
com mudança de escala para 256×256 pixels; (c) as imagens com mudança de escala para
512×512 pixels.

Estes conjuntos foram analisados separadamente pelos algoritmos de aprendizado de
máquina e serão discutidos brevemente na seção de resultados.



Instituto de Computação 13

3.5 Aprendizado de Máquina

No módulo de aprendizado de máquina, utilizou-se a biblioteca em linguagem de pro-
gramação Python chamada scikit-learn [35]. Ela possui uma documentação clara de
como utilizar os algoritmos mais populares, assim como uma descrição matemática dos
mesmos.

Para realizar o treinamento, a seguinte lista de algoritmos descritos na biblioteca foi
utilizada:

• SVC [36].

• Classificador AdaBoost [37].

• Classificador de Perceptron multicamada [38].

• Um classificador de decisão em árvore [39].

• Um classificador de árvore aleatória [40].

• Algoritmo de classificação de Näıve Bayes Gaussiano [41].

• Um classificador implementando o voto do k-ésimo vizinho próximo [42].

Para a seleção do melhor algoritmo, foi utilizada a técnica de validação cruzada [43],
separando o conjunto de teste com razão de 15% em relação ao conjunto de todos os dados,
sendo o remanescente para o conjunto de treinamento. Dentro do conjunto de treinamento,
foi realizado um particionamento de 5 partes utilizando a estratégia K-Fold [44], sendo que
o melhor conjunto de dados obtido foi avaliado nos demais algoritmos.

Para os três melhores algoritmos, foi gerada a matriz confusão [45] para avaliar o de-
sempenho dos algoritmos. Deve-se ressaltar que alguns dos classificadores necessita fazer
um afinamento dos hiper-parâmetros junto com a validação cruzada [46]. Outra observação
é que o conjunto de testes foi avaliado com a melhor partição detectada durante o peŕıodo
de treinamento, não utilizando todo o conjunto de treinamento no mesmo.

4 Resultados

Esta seção descreve os resultados experimentos obtidos com a metodologia proposta neste
trabalho.

4.1 Melhores Algoritmos

Na Tabela 1, são apresentados os três melhores algoritmos para cada modelo do banco de
dados registrado. Como podemos notar, não há modificação em relação aos 2 melhores
algoritmos para todos os modelos, tendo soberania no modelo SVC. Vale a ressalva de que
o modelo mais preciso de todos se encontrou nas imagens que não sofreram modificação de
tamanho, enquanto que os menos precisos se encontraram na modificação de tamanho de
512x512.
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Sem mudança de tamanho 256×256 512×512

1o SVC (0,9969) SVC (0,9964) SVC (0,9816)
2o AdaBoost (0,9968) AdaBoost (0,9957) AdaBoost (0,9799)

3o Multi Layer Perceptron (0,9935) Multi Layer Perceptron (0,9955) Árvore de Decisão (0,9795)

Tabela 1: Resultados de acurácia dos melhores algoritmos, para todos os conjuntos de dados
extráıdos (considerando se houve mudança de tamanho e quais são os novos tamanhos, se
houve).

Logo, pode-se inferir que não é necessário modificar o tamanho da imagem para au-
mentar a acurária do sistema de aprendizado de máquina. O que se ganha fazendo isso é
velocidade de processamento da parte da geração dos indicadores, no cenário em que houve
redução do tamanho da imagem original (caso isto não se aplique, não há ganho algum em
reduzir o tamanho da imagem).

4.2 Matrizes de Confusão

Nesta seção, são apresentadas as matrizes de confusão da solução sem re-escala de tamanho,
dos melhores algoritmos calculados.

1. SVC: Acurária de 99,76% com conjunto de teste. Matriz mostrada na Tabela 2.

Predição
Não Borrado Borrado

Valor Real
Não Borrado 1361 9
Borrado 1 2753

Tabela 2: Matriz de confusão do SVC.

2. Classificador AdaBoost: Acurária de 99,52% no conjunto de teste. Matriz mostrada
na Tabela 3.

Predição
Não Borrado Borrado

Valor Real
Não Borrado 1356 14
Borrado 6 2748

Tabela 3: Matriz de confusão do classificador AdaBoost.

3. Classificador Multicamadas Perceptron: Acurácia de 99,37% no conjunto de teste.
Matriz mostrada na Tabela 4.
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Predição
Não Borrado Borrado

Valor Real
Não Borrado 1346 24
Borrado 2 2752

Tabela 4: Matriz de confusão do classificador Multicamadas Perceptron.

Como é posśıvel observar, no conjunto de teste, o resultado de alta acurácia e acertos
ainda é válido para os mesmos algoritmos no conjunto de treinamento. Além disso, pode-se
notar que há poucas incidências de falsos positivos em todos os cenários.

4.3 Conclusões

A partir dos resultados gerados neste trabalho, os indicadores de resolução foram aptos a
descrever, de maneira satisfatória, se uma imagem está ou não borrada, dado um conjunto
de imagens borradas e não borradas, com o uso de algoritmos de aprendizado de máquina. A
lógica de gerar imagens borradas a partir de imagens não borradas foi realizada somente para
obter um conjunto de imagens borradas e, em cenários menos controlados, é recomendado
que o usuário possua tanto imagens borradas quanto não borradas.

O SVC foi o melhor algoritmo para todos os conjuntos de imagens, entretanto, seu
treinamento, por exigir a utilização de hiper-parâmetros, é um dos mais custosos em tempo
para gerar o aprendizado. O AdaBoost também é uma solução prática interessante e possui
um treinamento mais rápido do que seu concorrente. Logo, se tempo para realização do
aprendizado for um critério mais importante do que eficácia, o AdaBoost é uma opção
interessante.

O redimensionamento das imagens não alterou significativamente a eficácia do sistema.
No entanto, caso seja necessário que a computação dos indicadores seja mais rápida, sugere-
se que a proporção entre os eixos x e y da imagem sejam preservados e que a redimensão
seja em escalas pequenas em relação à original, caso contrário, pode haver perda de precisão
no sistema de classificação.

Referências

[1] OpenCV, “OpenCV Modules,” https://docs.opencv.org/3.4.0/index.html, (Acesso em
22/06/2019).

[2] S. Pertuz, D. Puig, and M. A. Garcia, “Analysis of Focus Measure Operators for
Shape-from-Focus,” Pattern Recognition, vol. 46, no. 5, pp. 1415–1432, 2013.

[3] M. V. Shirvaikar, “An Optimal Measure for Camera Focus and Exposure,” in Thirty-
Sixth Southeastern Symposium on System Theory. IEEE, 2004, pp. 472–475.

[4] L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston Jr, “Comparison of Autofo-
cus Methods for Automated Microscopy,” Cytometry: The Journal of the International
Society for Analytical Cytology, vol. 12, no. 3, pp. 195–206, 1991.



16 Meireles e Pedrini
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