
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Avaliação do impacto da
metodologia Computer
Science Peer Instruction

(CSPI) e da Taxonomia de
Bloom na disciplina
Introdutória CS1
Igor M. Omote Ricardo E. Caceffo

Relatório Técnico - IC-PFG-19-03

Projeto Final de Graduação

2019 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Avaliação do impacto da metodologia Computer Science Peer
Instruction (CSPI) e da Taxonomia de Bloom na disciplina

Introdutória CS1
Igor M. Omote∗ Ricardo E. Caceffo†

Resumo

Este trabalho tem como principal objetivo analisar os resultados do CSPI (Computer Sci-
ence Peer Instruction), uma adaptação do Peer Instruction (PI) para disciplinas introdutórias de
programação (CS1). O estudo, com duração de um semestre, foi realizado na disciplina MC102,
ministrada de forma coordenada para cursos de STEM na Unicamp, abrangendo 8 turmas e 766
alunos. Utilizou-se como base de análise um conjunto de questões de múltipla-escolha (N =
10), denominadas de Atividades Conceituais (ACs) a respeito do tópico de ordenação. Os alu-
nos foram divididos em dois grupos: grupo 1 (N = 127 alunos), participantes de uma turma
onde o CSPI foi aplicado e; grupo 2 (N = 639), participantes das 7 turmas onde a aula tradi-
cional foi mantida. Resultados indicam que o desempenho dos alunos nas ACs foi similar em
ambos os grupos. Posteriormente, um conjunto de 15 questões de múltipla-escolha, baseadas na
Taxonomia de Bloom, foi criado também para o tópico de ordenação, sendo aplicado de forma
online para ambos os grupos. Resultados indicam que os alunos que tiveram aula suportadas
com CSPI tiveram um desempenho 27% superior ao demais.

1 Introdução

Dentre as diversas formas de lecionar uma aula, uma das mais tradicionais é a Lecture Learning, na
qual o aluno adquire conhecimento passivamente enquanto o professor palestra. Uma outra forma
que vem crescendo no cenário educacional é o aprendizado ativo [1], no qual o aluno é o centro do
aprendizado pois, além de assistir a uma aula, é incentivado a ler, discutir e resolver problemas.

Este trabalho teve como objetivo estudar a aplicação e resultados de uma metodologia de Active
Learning, o o Computer Science Peer Instruction (CSPI) que será melhor detalhado na seção 2.2,
aplicado na matéria de CS1 da Universidade Estadual de Campinas, chamada de MC102 - Algorit-
mos e Programação de Computadores [2].

Ademais, estudou-se formas de avaliar o aprendizado dos alunos, como a Taxonomia de Bloom
[3] [4] e a identificação de misconceptions [5] para entender todos os impactos da aplicação da
metodologia.

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Pesquisa desenvolvida com
suporte financeiro parcial do PIBIC

†Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP. Processo número
2014/07502-4, Fundacao de Amparo a Pesquisado Estado de Sao Paulo (FAPESP)

1

2 Omote, Caceffo

2 Metodologia

A fim de facilitar o entendimento, esta seção está dividida da seguinte forma: a subseção 2.1 apre-
senta uma introdução histórica referente ao que será abordado; por sua vez, na subseção 2.2 é uma
introdução ao conceito de Peer Instruction [1] com uso de clickers [6]; a subseção 2.3 discute uma
análise do desempenho dos alunos do Professor Ricardo Caceffo que aplicou a metodologia de Peer
Instruction; e, por fim, a subseção 2.4 apresentará como foi construída a proposta para melhorar a
avaliação dos alunos dentro da taxonomia de Bloom e os resultados obtidos após a aplicação pela
plataforma moodle [7]. O trabalho completo pode ser visto na Figura 1.

Figura 1: Fluxograma de trabalho seguido

2.1 Histórico da Taxonomia de Bloom

Conhecida inicialmente por Taxonomia dos objetivos educacionais, a taxonomia de Bloom foi pro-
posta em 1956 por Benjamin S. Bloom em sua publicação "Taxonomy of educational objectives. The
classification of educational goals" [3]. Trata-se de uma padronização em níveis de aprendizado em
três domínios:

• Cognitivo - Objetivos atrelados a lembrar e reconhecer conhecimento e desenvolver habilida-
des intelectuais.

• Afetivo - Objetivos relacionados ao interesse, atitude, valores e desenvolver o apreço.
• Psicomotor - Objetivos relacionados a execução de tarefas que envolvam o sistema motor.
Nessa publicação, o objetivo principal de Bloom era facilitar a comunicação entre professores,

ao padronizar e tornar as discussões acerca dos objetivos educacionais mais diretas e assertivas junto
a uma escala que permite a troca de experiências e informações.

Em 2001, um dos alunos de Bloom juntamente com um dos pesquisadores originais, Lorin An-
derson e David Krathwohl publicaram o livro "A taxonomy for learning, teaching, and assessing:
A revision of Bloom’s taxonomy of educational objectives" [4] em que revisaram a abordagem de
Bloom com foco no domínio cognitivo, resumida na Tabela 1

A forma como Bloom (e posteriormente Anderson e Krathwohl [4]) dividiu os objetivos educa-
cionais foi ampla e genérica, de forma que consiga abrangir qualquer área de conhecimento. Assim,

CSPI e Taxonomia de Bloom para CS1 3

Tabela 1: Descrição de cada nível segundo a revisão de Anderson e Krathwohl
Nível Taxonomia Descrição
Remember Retrieve relevant knowlegd from long-term memory
Understand Construct meaning from instructional messages, including oral,

written, and graphic communication
Apply Carry out or use a procedure in a given situation
Analyze Break material into its constituent parts and determine how the

parts relate to one another and to an overall structure or purpose
Evaluate Make judgments based on criteria and standards
Create Put elements together to form a coherent or function whole; reor-

ganize elemnts into a new pattern or structure

é possível encontrar trabalhos nas mais diversas áreas, dentre elas, na Ciência da Computação. Al-
guns pesquisadores já tentaram utilizar a taxonomia de Bloom para CS1, que é a matéria introdutória
aos primeiros conceitos de Ciência da Computação como pode ser visto em [8] e [9], entretanto en-
contraram algumas dificuldades como a dificuldade em elaborar questões para os níveis mais altos
da taxonomia, visto em [8] e percebeu-se que pesquisadores com contextos diferentes classificam
questões em níveis diferentes da taxonomia [9].

2.2 Peer Instruction suportado por Clicker

Peer Instruction (PI) é uma forma de aprendizado ativo introduzida e popularizada pelo Eric Mazur
[1] em que o aluno responde a questões durante a aula. Inicialmente utilizada em conteúdos de física
na Universidade de Harvard, mas popularizada em várias áreas da ciência, engenharia, matemática
e tecnologia, o Peer Instruction facilita aluno e professor identificar falhas no aprendizado de forma
mais rápida e iterativa. Dada uma questão, a aula só irá prosseguir caso X% dos alunos tenham
acertado, caso contrário, é incentivado que os alunos discutam as respostas dadas e uma nova questão
é apresentada até que o threshold de X% seja atingido.

Por esse motivo, faz-se necessário uma ferramenta para correção automática para que o docente
não tenha de desperdiçar tempo corrigindo, mas lecionando. Assim, surgiu o uso de clickers para
auxiliar na correção automática das questões apresentadas em aula. Como utilizado em [10]: uma
questão é apresentada no slide durante a aula, os alunos respondem à questão pelo dispositivo e,
assim que o tempo pré-determinado passar, o professor apresenta os resultados em sala, de acordo
com o resultado, a aula prossegue ou não.

O professor Ricardo Caceffo aplicou tal metodologia no primeiro semestre de 2018 nas turmas
4,5,6 e 7 de MC102 (Algoritmos e Programação de Computadores), aula correspondente a CS1 na
Universidade Estadual de Campinas. Os resultados serão apresentados na seção 3.

2.3 Análise do desempenho dos Alunos

Em um primeiro momento, foram analisadas duas bases de dados referentes às aulas 20 e 21, cujo
tópico é ordenação: os dados dos clickers, como explicado na sub-seção 2.2 com uma média de de-
zessete (17) respostas por questão e dados da plataforma onlinemoodle, em que as mesmas questões

4 Omote, Caceffo

da aula do professor Ricardo Caceffo foram apresentadas aos demais alunos do curso de MC102,
com 473 respostas, sendo 90 dessas, alunos do professor Ricardo Caceffo.

Os dados dos clickers eram bem limitados, contendo apenas o número de pessoas que tentaram
responder a questão e quantas pessoas assinalaram cada uma das possibilidades (A, B, C, D ou E),
mas sem nenhuma identificação de quem foi o aluno ou quanto tempo levou para respondê-la. Dessa
forma, apesar dos dados do moodle possuirem mais informação (como identificar qual alternativa
cada um dos alunos escolheu, quantas vezes tentou responder ao questionário), não era possível fazer
uma comparação direta.

Para contornar isso, analisou-se questão a questão, verificando seu correspondente nos dados do
clicker e comparou-se a média de acertos em cada questão gerando um HeatMap de cada aula, um
exemplo pode ser visto na tabela 6.

Na análise do moodle tomou-se a decisão de descartar todos os alunos com índice de acerto
inferior a 20%, por ser o threshold da aleatoriedade em uma questão com cinco alternativas, tal
refinamento não foi possível fazer com os dados dos clickers.

Além disso, uma vez que o moodle era aplicado a todas as turmas de MC102, separou-se os
alunos do professor Ricardo Caceffo, já que estes potencialmente haviam tido contato com as ques-
tões em sala de aula (não é possível afirmar isso, uma vez que não houve controle de quais alunos
utilizaram o clicker).

Em seguida, baseado no trabalho do Professor Ricardo Caceffo et. al com a identificação de
falhas de aprendizado (misconceptions) para Python [5], foi possível perceber que faltavam questões
tanto nos slides, quanto no moodle para identificar essas falhas nos alunos. Além disso, para com-
plementar a análise do aprendizado dos alunos como um todo, fez-se uma tentativa de classificar a
forma como a matéria de MC102 encaixa-se na Taxonomia de Bloom, partindo das questões previ-
amentes apresentadas. Isso não foi possível pois as questões apresentadas não seguiam um padrão
nem tinham relação direta com o proposto por Bloom em seu trabalho original.

2.4 Proposta para melhorar a avaliação dos alunos

Dada a situação apresentada anteriormente em 2.3, havia duas frentes de trabalho a seguir: criar
questões que identificassem falhas de aprendizado continuamente (seja por Peer Instruction, ou pelo
próprio moodle) para que o docente tenha um feedback contínuo do aprendizado em cada tópico e
da evolução dos alunos. E elaborar questões que identifiquem como a matéria de MC102 é aplicada
pelo desempenho médio dos alunos segundo a taxonomia de Bloom.

Este relatório técnico irá apresentar os resultados obtidos na segunda frente de trabalho. Uma vez
que a primeira ainda está em elaboração até o presente momento que o relatório está sendo escrito.

Para tal, estudou-se trabalhos anteriores, extraindo duas principais ideias: criar uma tabela com
cada um dos níveis da taxonomia [9] e definir um contexto base para alinhar a expectativa do que é
esperado de uma aula padrão de ordenação para MC102. Adicionalmente, todas as questões criadas
deveriam ser de correção automática para que, futuramente, todos professores tenham um feedback
instantâneo.

Assim, criou-se guidelines para criar questões em cada nível da Taxonomia de Bloom especifica-
das na Tabela 8, com exceção do nível Create, em que os pesquisadores concluíram não haver forma
de criar questões com correção automática, pois esse nível só é atingido quando se tem a capacidade
de montar partes de conhecimento formando um novo todo.

CSPI e Taxonomia de Bloom para CS1 5

Tabela 2: Número de alunos que responderam presencialmente, nas aulas com clickers, as questões
referentes à Aula 20

#Questão A B C D E % acerto
L20-Q01 2 14 2 3 0 14.29%
L20-Q02 1 1 0 6 12 60.00%
L20-Q03 0 0 10 2 5 29.41%
L20-Q04 0 1 13 0 1 86.67%
L20-Q05 0 0 10 4 1 66.67%
L20-Q06 0 0 0 0 7 100.00%

Tabela 3: Número de alunos que responderam presencialmente, nas aulas com clickers, as questões
referentes à Aula 21

#Questão A B C D E % acerto
L21-Q01 5 4 10 1 1 23,81%
L21-Q02 0 2 17 0 0 89,47%
L21-Q03 0 2 1 2 15 75,00%
L21-Q04 0 4 7 2 2 46,67%

Após isso, definiu-se o que é esperado de uma aula padrão de ordenação e fez-se da meto-
dologia de brainstorming para elaborar as questões sobre o mesmo tópico, com auxílio da própria
coordenadora do curso de MC102 do semestre em que este relatório é escrito.

Em sequência, houve a aplicação das questões para todos os alunos, com um total de 168 res-
postas, sendo de 130 alunos diferentes, mas somente 68 respostas concluídas (era possível responder
parcialmente ao questionário). Para a análise do desempenho, considerou-se apenas os alunos que
concluíram o questionário pela primeira vez.

3 Resultados

Nesta seção primeiro serão apresentados todos os resultados obtidos durante a execução do projeto,
incluindo tabelas geradas referentes exclusivamente ao tópico de ordenação, em que houve maior
profundidade.

Seguindo a ordem apresentada na seção 2, o primeiro resultado é referente às respostas dos
alunos do professor Ricardo Caceffo durante suas aulas de MC102 com a utilização dos clickers.

A partir das tabelas 2 e 3 é clara a evolução dos alunos nas questõs L20-Q01 para L20-Q02,
L20-Q03 para L20-Q04, L20-Q05 para L20-Q06. Nas tabelas A-1 e A-2 em anexo estão detalhados
os enunciados e alternativas de cada questão.

Fato que não ocorre pela plataforma moodle, em que as mesmas questões foram dadas à todos
alunos, tanto para turmas do professor Ricardo, quanto nas demais. Os resultados podem ser vistos
nas tabelas 4 e 5.

A partir dos resultados das tabelas 2, 3, 4 e 5, foram feitas duas (2) novas tabelas comparando
somente a porcentagem de acerto nas aulas 20 (Tabela 6) e 21 (Tabela 7 em um HeatMap, em que a

6 Omote, Caceffo

Tabela 4: Comparação entre alunos do Profº Ricardo Caceffo e demais alunos no Moodle Aula 20
20

Turmas do
Profº Ricardo Demais Turmas Todos alunos

Número de Alunos 90 383 473
Acertos L20-Q01 66 (73.33%) 239 (62.40%) 305 (64.48%)
Acertos L20-Q02 66 (73.33%) 261 (68.15%) 327 (69.13%)
Acertos L20-Q03 60 (66.67%) 260 (67.89%) 320 (67.65%)
Acertos L20-Q04 80 (88.89%) 326 (85.12%) 406 (85.84%)
Acertos L20-Q05 70 (77.78%) 303 (79.11%) 373 (78.86%)
Acertos L20-Q06 66 (73.33%) 281 (73.37%) 347 (73.36%)

Tabela 5: Comparação entre alunos do Profº Ricardo Caceffo e demais alunos no Moodle Aula 21
20

Turmas do
Profº Ricardo Demais Turmas Todos alunos

Número de Alunos 86 353 439
Acertos L21-Q01 53 (61.63%) 259 (73.37%) 312 (71.07%)
Acertos L21-Q02 79 (91.86%) 316 (89.52%) 395 (89.98%)
Acertos L21-Q03 71 (82.56%) 281 (79.60%) 352 (80.18%)
Acertos L21-Q04 67 (77.91%) 258 (73.09%) 325 (74.03%)

CSPI e Taxonomia de Bloom para CS1 7

Tabela 6: HeatMap referente a Aula 20
Clicker Moodle
Turmas do Profº Ricardo Turmas do Profº Ricardo Demais Turmas Todos alunos

L20-Q01 14.29% 73.33% 62.40% 64.48%
L20-Q02 60.00% 73.33% 68.15% 69.13%
L20-Q03 29.41% 66.67% 67.89% 67.65%
L20-Q04 86.67% 88.89% 85.12% 85.84%
L20-Q05 66.67% 77.78% 79.11% 78.86%
L20-Q06 100.00% 73.33% 73.37% 73.36%

Tabela 7: HeatMap referente a Aula 21
Clicker Moodle
Turmas do Profº Ricardo Turmas do Profº Ricardo Demais Turmas Todos alunos

L21-Q01 23.81% 61.63% 73.37% 71.07%
L21-Q02 89.47% 91.86% 89.52% 89.98%
L21-Q03 75.00% 82.56% 79.60% 80.18%
L21-Q04 46.67% 77.91% 73.09% 74.03%

cor vermelha é referente a taxas de acerto inferiores a 50%, amarelo para maiores ou iguais a 50% e
inferiores a 75% e verde para taxas maiores ou iguais a 75%. É evidente que a taxa de acerto pelos
clikers é inferior ao da plataforma moodle. Além disso, quando se compara somente na plataforma
moodle, as turmas do professor Ricardo Caceffo tiveram maior taxa de acerto do que as demais.
Mais detalhes serão discutidos na seção 4.

Por fim, houve a tentativa de classificar as turmas de MC102 nos níveis da taxonomia de Bloom,
mas como as questões não foram planejadas para tal, a maioria das questões pertenciam aos ní-
veis Understand e Apply, impedindo a classificação em níveis inferiores (Remember) ou superiores
(Analyze e Evaluate).

Assim, criou-se um conjunto de questões referentes ao tópico de ordenação, sendo quatro refe-
rente ao nível Remember, quatro no nível Understand, duas no nível Apply, quatro no nível Analyze
e uma no nível Evaluate (Tabela A-3) que conseguissem classificar dentro de toda taxonomia de
Bloom. Para tal, desenvolvou-se uma padronização (Tabela 8) para que os problemas apontados
em [9] fossem corrigidos.

Posteriormente, as questões foram aplicadas nos alunos da turma de MC102 do primeiro semes-
tre de 2019 pela plataforma moodle, utilizando a mesma metodologia citada em 2.3. O resultado
segue na tabela 9

4 Discussão

Em relação à Aula 20 do professor Ricardo Caceffo, é possível perceber pela Tabela A-1 que as
questões L20-Q01 e L20-Q02, L20-Q03 e L20-Q04, L20-Q05 e L20-Q06 são pares que tratam do
mesmo assunto dentro do tópico ordenação. Sendo assim, o aumento da porcentagem de acertos

8 Omote, Caceffo

Tabela 8: Padronização para a criação de questões na taxonomia de Bloom
Remember Understand Apply Analyze Evaluate
Conceitos deco-
rado pelos alu-
nos

Reconhecimento
de código simples

Executar o
algoritmo
passo a
passo

Comparação de um
conjunto de algorit-
mos em relação à
sua complexidade
(número de trocas
ou comparações)

Tomar uma de-
cisão e justificá-
la

Está associado
ao que foi ensi-
nado em sala de
aula

Texto na língua
em que a aula foi
lecionada; descre-
vendo o algoritmo

Questões aber-
tas ou que
exigem um raci-
ocínio maior do
aluno (e.g. drag
and drop)

Devem ser no
idioma em que
a aula foi leci-
onada; em alto
nível

Vídeos de simula-
ção de algoritmos

Tabela 9: Resultado das questões relacionadas a taxonomia de Bloom
Turma Prof Ricardo Caceffo Demais Total

% Acerto Remember 75.00% 58.20% 59.93%
% Acerto Understand 78.57% 52.46% 55.15%
% Acerto Apply 28.57% 22.13% 22.79%
% Acerto Analyze 53.57% 46.72% 47.43%
% Acerto Evaluate 71.43% 62.30% 63.24%

CSPI e Taxonomia de Bloom para CS1 9

da primeira questão para a segunda é um indício da evolução dos alunos após a discussão entre eles
como previsto no Peer Instruction.

Já na aula 21, representada na Tabela A-2, percebe-se uma queda na taxa de acertos da L21-Q03
para a L21-Q04, isso ocorre pois a L21-Q04 encaixa-se no nível Analyze da taxonomia de Bloom,
e nenhuma questão apresentada anteriormente alcançou tal nível, assim, era esperado uma queda
no índice de acerto. Entretanto, uma vez que não houve uma segunda questão nesse nível, não é
possível afirmar se o Peer Instruction novamente irá melhorar a performance dos alunos.

Analisando os resultados da plataformamoodle nas Tabelas 4 e 5, a diferença de acertos entre os
alunos do Professor Ricardo Caceffo com os demais é pequena, sendo que as turmas deste atingiram
uma média de 76.69%, enquanto as demais turmas atingiram 75.04%. Entretanto, unindo as tabelas
ao gerar os heatmaps das Tabelas 6 e 7, observa-se aumento significativo nos resultados das turmas
do professor em questão.

Criou-se duas (2) hipóteses para explicar o ocorrido: os alunos podem ter decorado as respostas
das questões, mas é importante ressaltar que há uma diferença considerável entre o número de alunos
que responderam em sala (aproximadamente 17 alunos) e que responderam no moodle (em torno de
88 alunos) ou o Peer Instruction fixou melhor o conteúdo nos alunos.

A partir da hipótese anterior e das questões criadas paramapear os níveis da taxonomia de Bloom,
chegou-se na Tabela 9, nela é possível perceber um desempenho consistentementemelhor nas turmas
do Professor Ricardo Caceffo em todos os níveis. E, poderando a diferença de acertos pelo número
de questões em cada nível, tem-se um aumento de 27.02% nas turmas que foram suportadas pelo
Peer Instruction. Vale ressaltar que nenhuma turma havia tido contato com as questões elaboradas,
logo, o Peer Instruction melhorou o desempenho a longo prazo dos alunos.

Uma detalhe que chamou a atenção dos pesquisadores é o fato dos alunos terem desempenho
melhor no nível Analyze e Evaluate do que no Apply, acredita-se que faltou deixar os códigos dos
algoritmos de ordenação explícitos (como feito no nível de Analyze, vide Tabela A-3) para que os
alunos os executassem, ou seja, criou-se mais uma camada de dificuldade que não existiu nas demais
questões.

5 Conclusão

Como principal conclusão tem-se que a metodologia de Peer Instruction apresenta melhorias no
aprendizado em sala de aula, resultando em melhores resultados na Taxonomia de Bloom, prin-
cipalmente nos níveis de Remember e Understand, o esperado era que o desempenho dos alunos
fosse sendo decrementado conforme as questões evoluíam na Taxonomia de Bloom. Entretando,
verificou-se que a menor taxa de acerto foi no nível Apply, ao passo que houve aumento nos acertos
nos níveis Analyze e Evaluate

Além disso, uma vez definida, a padronização do que é esperado em cada nível da taxonomia
de Bloom para CS1 facilita a criação de questões e acaba com ambiguidade de definições. A forma
como Anderson e Krathwohl [4] revisaram-na em 2001, foi genérica; cada especialista que deseja
usá-la deve refinar para sua área de conhecimento e, a partir disso, criar o questionário.

10 Omote, Caceffo

6 Trabalhos Futuros

Para trabalhos futuros, tem-se a elaboração de questões para identificação das falhas de aprendizado
(misconceptions), como mencionado na seção 2. Dessa forma, os professores terão um feedback
completo da evolução dos alunos a cada aula e no curso como um todo.

Ademais, haverá um trabalho considerável para expandir as questões para todos tópicos deMC102
e entender o resultado obtido nos níveis de Apply, Analyze e Evaluate no tópico de ordenação, uma
vez que era esperado que os alunos que tivessem bom desempenho nos dois últimos níveis citados,
minimamente deveriam ter tido um bom desempenho no Apply.

Com os dois passos anteriores concluídos, será necessário automatizar a criação de relatórios
com um resumo das falhas no aprendizado dos alunos e do nível de aprendizado que se encontram.

7 Agradecimentos

A elaboração do presente relatório teve diversas influências, por isso, agradeço:
Ao PIBIC (Programas de Iniciação Científica e Tecnológica) por financiar a pesquisa que gerou

o relatório e ao processo número 2014/07052-4, Fundação de Amparo à Pesquisado Estado de São
Paulo (FAPESP)

Ao professor doutor Ricardo Caceffo que auxiliou em toda a pesquisa e forneceu todos insumos
necessários para tal e à professora Islene Calciolari Garcia pela confiança ao permitir aplicarmos
nosso questionário com os alunos de MC102.

À Unicamp e todos docentes que tive durante minha graduação, que com suas particularidades
me mostraram diversas formas de lecionar e aprender, e como cada uma delas é importante.

À minha família que deu todas as bases da minha educação, suporte nas maiores dificuldades e
inspiração para superá-las.

E aos amigos que fiz durante essa trajetória que me mostraram a importância do trabalho em
equipe e como é possível atingir resultados excepcionais quando se confia nos outros, todos foram
essenciais na minha vida universitária.

Referências

[1] C. H. Crouch and E. Mazur, “Peer instruction: Ten years of experience and results,”
American Journal of Physics, vol. 69, no. 9, pp. 970–977, 2001. [Online]. Available:
https://doi.org/10.1119/1.1374249

[2] Unicamp. Link para acessar página da ementa de mc102. [Online]. Available:
https://www.ic.unicamp.br/ mc102/pdd.html

[3] B. S. Bloom, M. B. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl, Taxonomy of edu-
cational objectives. The classification of educational goals. Handbook 1: Cognitive domain.
New York: Longmans Green, 1956.

[4] L. W. Anderson, D. R. Krathwohl et al., “A revision of bloom’s taxonomy of educational ob-
jectives,” A Taxonomy for Learning, Teaching and Assessing. Longman, New York, 2001.

CSPI e Taxonomia de Bloom para CS1 11

[5] G. Gama, R. Caceffo, R. Souza, R. Bennati, T. Aparecida, I. Garcia, and R. Azevedo, “An an-
tipattern documentation about misconceptions related to an introductory programming course
in python,” Institute of Computing, University of Campinas, Tech. Rep. IC-18-19, November
2018.

[6] iClicker. Link para acessar página institucional do iclicker. [Online]. Available:
https://www.iclicker.com/

[7] M. HQ. Link para acessar página institucional do moodle. [Online]. Available:
https://docs.moodle.org/37/en/About_Moodle

[8] D. Oliver, T. Dobele, M. Greber, and T. Roberts, “This course has a bloom rating of 3.9,” in
Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30. Aus-
tralian Computer Society, Inc., 2004, pp. 227–231.

[9] R. Gluga, J. Kay, R. Lister, S. Kleitman, and T. Lever, “Coming to terms with bloom: an
online tutorial for teachers of programming fundamentals,” in Proceedings of the Fourteenth
Australasian Computing Education Conference-Volume 123. Australian Computer Society,
Inc., 2012, pp. 147–156.

[10] R. Caceffo, G. Gama, and R. Azevedo, “Exploring active learning approaches to computer
science classes,” in Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’18. New York, NY, USA: ACM, 2018, pp. 922–927. [Online].
Available: http://doi.acm.org/10.1145/3159450.3159585

12 Omote, Caceffo

Anexos

Anexo A
Neste anexo são apresentados as seguintes tabelas: a Tabela A-1 são as questões e alternativas

apresentadas aos alunos na Aula 20; a Tabela A-2 são as questões e alternativas apresentadas aos
alunos na Aula 21; por fim, a Tabela A-3 apresenta as questões e alternativas elaboradas pela equipe
em cada nível da Taxonomia de Bloom.

Tabela A-1: Questões e alternativas da Aula 20

L20-Q01

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o ,
r e t o r n a o INDICE do menor numero
def i nd i ceMenor (l i s t a , i n i c i o) :

i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] > l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i
re turn i nd i c e_meno r

l i s t a = [−123 , 2 , 9 , 7 , 5 , −18 , −10 , 4]
menor = ind i ceMenor (l i s t a , 0)
p r i n t ("menor␣␣=␣ " , menor)

a) Não irá
compilar.

b) menor = -
123

c) menor = 0
d) menor = 2
e) menor = 9

L20-Q02

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o ,
r e t o r n a o INDICE do menor numero
def i nd i ceMenor (l i s t a , i n i c i o) :

i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] < l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i

re turn i nd i c e_meno r
l i s t a = [−123 , 2 , 9 , 7 , 5 , −18 , −10 , 4]
menor = ind i ceMenor (l i s t a , 1)
p r i n t ("menor␣␣=␣ " , menor) :

a) Não irá
compilar.

b) menor = -
18

c) menor =
123

d) menor = 0
e) menor = 5

CSPI e Taxonomia de Bloom para CS1 13

L20-Q03

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o , r e t o r n a o
#INDICE do menor numero
def i nd i ceMenor (l i s t a , i n i c i o) :

i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] < l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i

re turn i nd i c e_meno r
l i s t a = [−3 , 0 , −19]
f o r i in range (l e n (l i s t a) −1) :

min = ind iceMenor (l i s t a , i)
i f (l i s t a [min] < l i s t a [i]) :

#Troca l i s t a [min] com l i s t a [i]
l i s t a [min] = l i s t a [i]
l i s t a [i] = l i s t a [min]

p r i n t (l i s t a)

a) Não irá
compilar.

b) menor =
[0,3,-19]

c) menor = [-
19,-3,0]

d) menor =
[0,-3,19]

e) menor = [-
3,0,0]

L20-Q04

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o , r e t o r n a o
#INDICE do menor numero
def i nd i ceMenor (l i s t a , i n i c i o) :

i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] < l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i

re turn i nd i c e_meno r
l i s t a = [−3 , 0 , −19]

f o r i in range (l e n (l i s t a) −1) :
min = ind iceMenor (l i s t a , i)
i f (l i s t a [min] < l i s t a [i]) :

#Troca l i s t a [min] com l i s t a [i]
aux = l i s t a [min]
l i s t a [min] = l i s t a [i]
l i s t a [i] = aux

p r i n t (l i s t a)

a) Não irá
compilar.

b) menor =
[0,3,-19]

c) menor = [-
19,-3,0]

d) menor =
[0,-3,19]

e) menor = [-
3,0,0]

14 Omote, Caceffo

L20-Q05

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o , r e t o r n a o
#INDICE do menor numero
def i nd i ceMenor (l i s t a , i n i c i o) :

i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] < l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i

re turn i nd i c e_meno r
l i s t a = [−3 , 5 , 2 , 1 , 5]
t r o c a s = 0
f o r i in range (l e n (l i s t a) −1) :

min = ind iceMenor (l i s t a , i)
i f (l i s t a [min] < l i s t a [i]) :

#Troca l i s t a [min] com l i s t a [i]
t r o c a s = t r o c a s + 1
aux = l i s t a [min]
l i s t a [min] = l i s t a [i]
l i s t a [i] = aux

p r i n t (" t r o c a s ␣ " , t r o c a s)

a) Não irá
compilar.

b) trocas 0
c) trocas 1
d) trocas 2
e) trocas 4

L20-Q06

O que o programa irá exibir?
#Dada uma pos i c ao de i n i c i o , r e t o r n a o INDICE
#do menor numero

def i nd i ceMenor (l i s t a , i n i c i o) :
i nd i c e_meno r = i n i c i o
f o r i in range (i n i c i o , l e n (l i s t a)) :

i f l i s t a [i] <= l i s t a [i nd i c e_meno r] :
i nd i c e_meno r = i

re turn i nd i c e_meno r
l i s t a = [−3 , 5 , 2 , 1 , 5]
t r o c a s = 0
f o r i in range (l e n (l i s t a) −1) :

min = ind iceMenor (l i s t a , i)
i f (l i s t a [min] < l i s t a [i]) :

#Troca l i s t a [min] com l i s t a [i]
t r o c a s = t r o c a s + 1
aux = l i s t a [min]
l i s t a [min] = l i s t a [i]
l i s t a [i] = aux

p r i n t (" t r o c a s ␣ " , t r o c a s)

a) Não irá
compilar.

b) trocas 0
c) trocas 1
d) trocas 2
e) trocas 4

CSPI e Taxonomia de Bloom para CS1 15

Tabela A-2: Questões e alternativas da Aula 21

L21-Q01

O programa abaixo implementa o algoritmo do INSERTION
SORT. Quais linhas devem OBRIGATORIAMENTE serem re-
movidas para que o programa funcione como esperado?

1 . l i s t a = [7 , 8 , 5 , 2 , 4 , 6 , 3]
2 . i = 1
3 . f o r i in range (1 , l e n (l i s t a)) :
4 . elem = l i s t a [i]
5 . l o c a l = i
6 . whi le (l o c a l != 0 and l i s t a [l o c a l −1] >

elem) :
7 . l i s t a [l o c a l] = l i s t a [l o c a l −1]
8 . l o c a l = l o c a l − 1
9 . l i s t a [l o c a l] = elem
10 . i = i + 1
11 . p r i n t (" L i s t a ␣ o rdenada ␣=␣ " , l i s t a)

a) Nenhuma
linha
precisa
(embora
eventu-
almente
possa) ser
removida.
Se o có-
digo for
executado
exatamente
como está
o programa
irá funcio-
nar como
esperado.

b) Linha 2
c) Linha 10
d) Linha 2 e

Linha 10
e) Linha 8

L21-Q02

O seguinte programa supostamente implementa o algoritmo do
INSERTION SORT. O que será exibido?
l i s t a = [2 , −1 , 0 , 2]
f o r i in range (1 , l e n (l i s t a)) :

elem = l i s t a [i]
l o c a l = i
whi le (l o c a l != 0 and l i s t a [l o c a l −1] >

elem) :
l i s t a [l o c a l] = l i s t a [l o c a l −1]
l o c a l = l o c a l − 1
l i s t a [l o c a l] = elem

p r i n t (l i s t a)

a) Não irá
compilar

b) [2, -1, 0, 2]
c) [-1, 0, 2, 2]
d) [-1, 0, 2]
e) [0,1, 2, 2]

16 Omote, Caceffo

L21-Q03

O seguinte programa implementa o algoritmo do INSERTION
SORT. O que será exibido?
l i s t a = [4 , 1 , 2]
f o r i in range (1 , l e n (l i s t a)) :

elem = l i s t a [i] l o c a l = i
whi le (l o c a l != 0 and l i s t a [l o c a l −1] <

elem) :
l i s t a [l o c a l] = l i s t a [l o c a l −1]
l o c a l = l o c a l − 1
l i s t a [l o c a l] = elem

p r i n t (l i s t a)

a) Não irá
compilar

b) [4, 1, 2]
c) [1, 4, 2]
d) [1, 2, 4]
e) [4, 2, 1]

L21-Q04

O seguinte programa implementa corretamente o algoritmo do
INSERTION SORT, ordenando de forma crescente uma lista de
inteiros. A variável deslocamento conta quantas vezes um de-
terminado número foi deslocado para uma posição subsequente
(à sua direita). O que será exibido quando o programa for exe-
cutado?
l i s t a = [7 , 8 , 5 , 2 , 4 , 6 , 3]
de s l o camen to = 0
f o r i in range (1 , l e n (l i s t a)) :

elem = l i s t a [i]
l o c a l = i
whi le (l o c a l != 0 and l i s t a [l o c a l −1] >

elem) :
de s l o camen to += 1
l i s t a [l o c a l] = l i s t a [l o c a l −1]
l o c a l = l o c a l − 1
l i s t a [l o c a l] = elem p r i n t (

d e s l o camen to)

a) 10
b) 13
c) 15
d) 17
e) 20

CSPI e Taxonomia de Bloom para CS1 17

Tabela A-3: Questões elaboradas para mapear níveis na Taxonomia de Bloom
Nível Questão Alternativas

Remember

Dada uma lista lista = [2, 3, 4, 1, 5], ao passarmos lista como
parâmetro de uma função foo:
x = foo(lista)
O valor de x é 5, e lista não foi alterada.
A função foo não pode ser um algoritmo de:

a) Identificar
o maior
elemento

b) Ordenar
uma lista

c) Retornar o
tamanho da
lista

d) Buscar a
posição
do maior
elemento

e) Não sei

Remember
Assinale as caixas com os algoritmos de ordenação, ou deixe
todas vazias, se for o caso. Escolha uma ou mais:

@ Identificar
o maior
elemento

@ Ordenar
uma lista

@ Retornar o
tamanho da
lista

@ Buscar a
posição
do maior
elemento

18 Omote, Caceffo

Remember
Qual o efeito dos algoritmos Selection Sort, Bubble Sort, Inser-
tion Sort vistos em sala de aula?

a) Identificar
o maior
elemento

b) Ordenar
uma lista

c) Retornar o
tamanho da
lista

d) Buscar a
posição
do maior
elemento

e) Não sei

Remember

"Suponho que a lista está ordenada até certo ponto, pegue o
próximo elemento e insira na posição adequada”
Assinale a alternativa do algoritmo que o trecho anterior faz
parte:

a) Insertion
Sort

b) Selection
Sort

c) Busca
Binária

d) Bubble Sort
e) Não sei

CSPI e Taxonomia de Bloom para CS1 19

Understand

A seguinte descricao se refere a qual algoritmo de ordenação?
"Transfira o menor valor da lista para a primeira posição, de-
pois o segundo menor valor para a segunda posição, e assim,
sucessivamente com os elementos restantes, por fim, tem-se a
lista ordenada.”

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Quick Sort
e) Não sei

Understand

A seguinte descricao se refere a qual algoritmo de ordenação?
"Percorra a lista de itens do início ao fim, comparando os va-
lores dos elementos dois a dois, e trocando-os de lugar se ne-
cessário. Percorra a lista até que nenhum elemento tenha sido
trocado na passagem anterior”

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Quick Sort
e) Não sei

Understand

A seguinte descricao se refere a qual algoritmo de ordenação?
"Por definição, a primeira posição da lista já está ordenada (uma
vez que é uma sub-lista única), para os elementos seguintes,
coloque-os nas posições adequadas na sub-lista previamente or-
denada”

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Quick Sort
e) Não sei

20 Omote, Caceffo

Understand

Sendo a = 5, b = 3
Em Python, a operação:
a, b = b, a
Irá trocar os valores de a e b, resultando em a = 3, b = 5
1 . def a l g o r i tmo (l i s t a) :
2 . f o r i in range (l e n (l i s t a) − 1) :
3 . minimo = i
4 . f o r j in range (i , l e n (l i s t a))

:
5 . i f l i s t a [min] > l i s t a [j] :
6 . minimo = j
7 . l i s t a [minimo] , l i s t a [i] = l i s t a [

i] , l i s t a [minimo]
O algoritmo acima é um exemplo de:

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Quick Sort
e) Não sei

Apply

Dada uma lista lista = [3,1,5,4,2]
A sequência de iterações a seguir são de qual Algoritmo de or-
denação?
lista = [3, 1, 5, 4, 2]
lista = [1, 3, 5, 4, 2]
lista = [1, 3, 5, 4, 2]
lista = [1, 3, 4, 5, 2]
lista = [1, 2, 3, 4, 5]

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Quick Sort
e) Não sei

Apply

Considere o algoritmo abaixo para a pŕoxima questão:
1 . f o r i in range (l e n (l i s t a)) :
2 . min_idx = i
3 . f o r j in range (i +1 , l e n (l i s t a)) :
4 . i f l i s t a [min_idx] > A[j] :
5 . min_idx = j
6 . l i s t a [i] , l i s t a [min_idx] = l i s t a [

min_idx] , l i s t a [i]
Preencha as caixas com o valor que a variável min_idx assume
ao final das duas primeiras execuções do algoritmo de ordena-
ção acima para a lista: lista = [3, 4, 1, 2]
min_idx =▭
min_idx =▭

min_idx = ▭
(Opções: 1, 2, 3,
4)
min_idx = ▭
(Opções: 1, 2, 3,
4)

CSPI e Taxonomia de Bloom para CS1 21

Analyze

Considere os algoritmos baixo:
1 . def s e l e c t i o n _ s o r t (l i s t a) :
2 . f o r i in range (l e n (l i s t a)) :
3 . min_idx = i
4 . f o r j in range (i +1 , l e n (l i s t a)) :
5 . i f l i s t a [min_idx] > A[j] :
6 . min_idx = j
7 . A[i] , A[min_idx] = A[min_idx] , A

[i]
1 . def i n s e r t i o n _ s o r t (l i s t a) :
2 . f o r i in range (1 , l e n (l i s t a)) :
3 . chave = l i s t a [i]
4 . j = i − 1
5 . whi le (j >= 0 and key < l i s t a [j])

:
6 . l i s t a [j +1] = l i s t a [j]
7 . j = j − 1
8 . l i s t a [j +1] = chave
1 . def b u b b l e _ s o r t (l i s t a) :
2 . tam = l e n (l i s t a)
3 . f o r i in range (tam) :
4 . f o r j in range (0 , n − i − 1) :
5 . i f (l i s t a [j] > l i s t a [j + 1])

:
6 . l i s t a [j] , l i s t a [j + 1] =

l i s t a [j] , l i s t a [j + 1]
E, considere como uma única operação de atribuição qualquer
uma das operações abaixo:
1 . a = b
2 . a , b = b , a
Sendo assim, dado a lista lista = [8, 2, 3, 4, 5, 6, 7, 1], qual
dos algoritmos irá executar o menor número de atribuições e
retornar a lista ordenada? Escolha uma:

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Não sei

22 Omote, Caceffo

Analyze

Considere os algoritmos baixo:
1 . def s e l e c t i o n _ s o r t (l i s t a) :
2 . f o r i in range (l e n (l i s t a)) :
3 . min_idx = i
4 . f o r j in range (i +1 , l e n (l i s t a)) :
5 . i f l i s t a [min_idx] > A[j] :
6 . min_idx = j
7 . A[i] , A[min_idx] = A[min_idx] , A

[i]
1 . def i n s e r t i o n _ s o r t (l i s t a) :
2 . f o r i in range (1 , l e n (l i s t a)) :
3 . chave = l i s t a [i]
4 . j = i − 1
5 . whi le (j >= 0 and key < l i s t a [j])

:
6 . l i s t a [j +1] = l i s t a [j]
7 . j = j − 1
8 . l i s t a [j +1] = chave
1 . def b u b b l e _ s o r t (l i s t a) :
2 . tam = l e n (l i s t a)
3 . f o r i in range (tam) :
4 . f o r j in range (0 , n − i − 1) :
5 . i f (l i s t a [j] > l i s t a [j + 1])

:
6 . l i s t a [j] , l i s t a [j + 1] =

l i s t a [j] , l i s t a [j + 1]
E, considere como uma única operação de atribuição qualquer
uma das operações abaixo:
1 . a = b
2 . a , b = b , a
Sendo assim, dado a lista lista = [8, 7, 6, 5, 4, 3, 2, 1], qual
dos algoritmos irá executar o maior número de atribuições e
retornar a lista ordenada? Escolha uma:

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Não sei

CSPI e Taxonomia de Bloom para CS1 23

Analyze
Dado a lista completamente desordenada: list= [4, 3, 2, 1] Qual
dos algoritmos abaixo irá executar o menor número de trocas
entre posições Escolha uma:

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Não sei

Analyze
Dado a lista completamente desordenada: list= [4, 3, 2, 1] Qual
dos algoritmos abaixo irá executar o maior número de trocas
entre posições Escolha uma:

a) Selection
Sort

b) Insertion
Sort

c) Bubble Sort
d) Não sei

Evaluate

Baseado nas respostas anteriores, para a lista quase ordenada:
lista = [1, 6, 3, 4, 5, 2]. Preencha os campos a seguir com qual
algoritmo de ordenação iria utilizar e o porquê. Irei utilizar o
algoritmo▭ devido ao▭ número de ▭ necessárias.

Irei utilizar o
algoritmo▭ (Op-
ções: Selection
Sort, Insertion
Sort, Bubble
Sort) devido
ao ▭ (Opções:
menor, maior)
número de ▭
(Opções: trocas,
comparações)
necessárias.

