2

4

|

Pontuar Textos Utilizando
RNNs

Gustavo G. Avena

Relatério Técnico - [IC-PFG-18-32
Projeto Final de Graduagdo
2018 - Novembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteido deste relatério é de tnica responsabilidade dos autores.

Pontuar Textos Utilizando RNNs

Gustavo Galvao Avena

Resumo

Esse trabalho tem como objetivo inserir pontuacao em textos em portugués produ-
zidos por servicos de transcrigoes de voz. Para solucionar o problema, uma rede neural
recorrente bi-direcional foi treinada e avaliada com multiplos datasets distintos, cons-
truidos com dados de trés fontes: legendas de videos, artigos de noticia e transcri¢oes de
discursos. As vantagens e desvantagens de cada um dos datasets foram avaliadas junto
com os resultados de precisao e acurdcia de cada um dos seus respectivos modelos.

Além disso, foi treinado um modelo ”hibrido” juntando os discursos com artigos de
tépicos selecionados. Esse modelo obteve a melhor performance, com um F1-Score de
74.9 no seu test dataset.

O tépico central do texto pontuado nao teve uma influéncia grande no resultado de
nenhum dos modelos, mas a fusao de artigos para o treino de um modelo hibrido levou
a uma melhora significativa de performance.

2 G. Avena

Sumario

1 Introdugao 3
2 Redes Neurais 3
2.1 Redes Neurais Artificiais e e 3
2.2 Redes Neurais Recorrentes 3
2.3 Gated Recurrent Unit (GRU) 4

3 Punctuator 5
3.1 Theano e 5

4 Metodologia 6
4.1 Preparacao de Datasets 6
4.1.1 Limpeza e e e e e e 6

4.1.2 Split e 7

4.2 Tamanho da Hidden Layer 7
4.3 Fontes de Dados 7
4.3.1 Youtube 8

4.3.2 Artigos e e 8

4.3.3 DISCUISOS v v i e e e 9

4.4 Dataset Extra: Discursos + Artigos 9
4.5 Google Colab 9

5 Resultados 10
51 YouTube. e 10
5.2 Artigos 10
5.3 DISCUrsosS e e 11
5.4 Discursos + Artigos 11

6 Conclusoes 11

Pontuar Textos Utilizando RNNs 3

1 Introducao

Servicos de speech-to-text possuem intimeras aplicagbes em setores de atendimento a cli-
entes, andlise de dados e comunicacao. Porém, esses servigos fornecem transcrigcoes sem
pontuacao, dificultando a leitura e a compreensao do texto. O objetivo desse trabalho é
prover um sistema de pontuacao que possa ser associado a esses servigos para, possivel-
mente, melhorar seus resultados. Os modelos treinados se restringiram a trés sinais de
pontuagao: ponto, virgula e interrogacao.

Ao contrario das Redes Neurais Feedforward, Redes Neurais Recorrentes (RNNs) pos-
suem "memoéria”, porque podem utilizar seu estado interno para processar sequéncias de
entradas. Por isto, as RNNs sao bastante utilizadas para resolver problemas na area de
linguistica como traducdo e reconhecimento de voz. Baseado no projeto Punctuator!!,
que busca resolver o mesmo problema para textos em inglés e estoniano, foram utilizados
modelos de redes neurais recorrentes utilizando a biblioteca Theanol® para abordar o pro-
blema. Varios scripts foram implementados em Python para a obtengao e limpeza de dados,
construcio de datasets e configuracio do projeto no Google Colabl.

2 Redes Neurais

2.1 Redes Neurais Artificiais

Pesquisas relacionadas a representacao de redes neurais através de modelos matematicos e
computacionais comecaram hd muitas décadas atras. Esses modelos, chamados de Redes
Neurais Artificiais (RNAs), buscam reproduzir componentes do sistema nervoso central
de animais, como neurdnios, para a execucao de tarefas especificas apds um processo de
aprendizagem.

Existem véarios tipos de RNAs, sendo o mais simples uma rede constituida de miiltiplos
perceptrons, unidades que buscam simular neurénios, conectados por arestas com pesos
distintos. Essas redes podem possuir miultiplas camadas e a informagcao é sempre propagada
em uma diregdo (da entrada para saida), por isso sao conhecidas como redes feedforward.
A figura 1 mostra um exemplo de uma rede neural feedforward.

Durante o treino das RNAs, o usudrio fornece dados de entrada com suas respectivas
saidas e a rede atualiza os pesos das arestas buscando definir um modelo cada vez mais
preciso. Devido a sua complexidade, essas redes sao capazes de representar hipéteses nao-
lineares. Porém, dependendo do tamanho da rede, o processo de aprendizagem pode ser
bastante custoso, por se tratar de operagoes envolvendo matrizes de grande porte.

Atualmente, com o grande progresso das GPUs, o treino e uso de RNAs tem se tornado
mais acessivel, porque esses componentes sao capazes de reduzir bastante o tempo necessario
para executar esses calculos.

2.2 Redes Neurais Recorrentes

Em Redes Neurais Recorrentes, a saida das unidades pode ser utilizada como entrada de
alguma unidade da sua camada ou de camadas anteriores. Essa caracteristica fornece um

G. Avena

Hidden
layer

Input

Output
layer

Inputs
Outputs

Figura 1: Rede Neural Artificial

tipo de "meméria’a rede neurall”| j& que a saida de cada célula depende das saidas de

células anteriores e posteriores.
Redes neurais recorrentes sao bastante utilizadas em problemas com dependéncia tem-

poral ou sequencial, como reconhecimento de voz e traducao de méaquina.

t+1

O~
<
T
<
-

y
TWhy . Why WhYT WhyT
f b h, hl
' » > —>0L>0—0"—
Unfold
Wxh Wxh Wxh Wxh
X, X X,

-1 [+1

Figura 2: Rede Neural Recorrente

2.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit, ou GRU, é um tipo de unidade que pode ser usada para compor
redes neurais recorrentes. Sua estrutura pode ser vista na figura 3. Ela foi introduzida em
2014 e tem uma estrutura semelhante a unidades LSTM (Long Short-Term Memory), mas

demonstraram melhor performance em datasets pequenos!©.

Pontuar Textos Utilizando RNNs 5

GRU unit A

- o o — | hys —
tanh |
&) ()

Figura 3: Gated Recurrent Unit

>0
B S -
=
O
=
e

3 Punctuator

Na computagao, a reutilizacao de codigo é algo bastante comum porque evita que muitas
pessoas realizem trabalho repetido desnecessariamente, contribuindo para a criagdo de mais
projetos com impactos maiores. Por isso, no comeco desse trabalho, foram buscadas solugoes
para o problema em questao, para que nao fosse necessario comegar todo o trabalho do zero.

Nessa busca foi encontrado o Punctuator], um projeto que utiliza Redes Neurais Recor-
rentes Bi-Direcionais com mecanismos de aten¢ao para pontuar textos em inglés e estoniano.
Ele possui cédigo que define o modelo da RNN, prepara os dados, treina o modelo e avalia
sua performance. Tudo isso é feito em Python, utilizando a biblioteca Theano.

H&a também a opgao treinar modelos em dois estagios, levando em consideracao pausas
e aspectos prosddicos dos textos. Essa funcionalidade nao foi utilizada nesse projeto por
nao ter sido encontrada uma fonte de dados que pudesse fornecer informagoes prosddicas
de transcrigoes.

O uso do Punctuator nesse projeto permitiu que a maior parte do trabalho envolvesse
a busca e preparacao de dados de boa qualidade para treinar os modelos.

3.1 Theano

Theano é uma biblioteca em Python que otimiza o célculo de expressoes matemaéticas,
especialmente com matrizes, através de compilacao. O uso de Python, uma linguagem
de alto nivel e muito poderosa, com vérias otimizagoes que sao compiladas em C, tornou
Theano uma biblioteca muito atraente para projetos envolvendo aprendizado de méquina e
redes neurais, ja que esses projetos envolvem muitos calculos matematicos com matrizes.

Theano possui cédigo aberto e o seu desenvolvimento foi encerrado em 2017 devido a
presenca de outras bibliotecas que possuiam as mesmas funcionalidade (e.g. TensorFlow,
desenvolvida pelo Google).

6 G. Avena

4 Metodologia

4.1 Preparacao de Datasets

Em qualquer projeto de aprendizado de méquina, a qualidade dos dados utilizados é es-
sencial para obter-se bons resultados. Como as especificacoes da rede neural e o cédigo
usados nesse projeto ja tinham sido desenvolvidos, a maior preocupacao foi a obtencao e
preparacao dos dados que seriam utilizados na rede. O Punctuator obteve bons resultados
com datasets de 40 milhGes de palavras, entao esse tamanho foi utilizado como meta nesse
projeto.

Todos os datasets utilizados para treino, uso e avaliacao do modelo tiveram sua pon-
tuacao ”simplificada”, buscando a otimizacao dos resultados. Eram considerados somente
os sinais de ponto, virgula e interrogacao, entao todos os outros sinais foram mapeados para
um desses trés. Esse mapeamento pode ser visto na tabela 1.

Sinal Original Substituto
Exclamagao (1) Ponto (.)
Dois Pontos (:) Virgula (,)
Ponto e virgula (;) | Ponto (.)
Hifen (-) Virgula (,)

Tabela 1: Mapeamento de sinais de pontuacao

4.1.1 Limpeza

Todas as fontes de dados utilizadas forneciam varios arquivos de texto, que deviam ser
agrupados para posteriormente ser dividido em trés datasets: treino, validagao e teste, cada
um em seu arquivo de texto. Porém, antes de junta-los, cada um desses arquivos passava
por uma limpeza, essencial para o processo de feature engineering que busca otimizar a
qualidade do dataset final. Esse processo de limpeza era especifico de cada fonte de dados,
mas consistia basicamente na remocao de expressoes repetidas e caracteres peculiares.

Praticamente todo essa limpeza foi executada utilizando expressoes regulares. A bi-
blioteca re de Python foi utilizada para encontrar strings com padroes definidos pelas ex-
pressoes regulares e remove-las ou substitui-las por strings apropriadas. Antes de executar
essa remocao, foi necessario definir para cada fonte quais eram os padroes que deveriam
ser encontrados. Para isto, foi utilizado um trecho de cédigo que fornece os n-grams mais
frequentes de um texto. Esse cddigo encontrou os n-grams frequentes de tamanho 1 a 5 e
seu resultado foi utilizado para definir as expressoes regulares utilizadas na limpeza de cada
conjunto de dados. O processo de limpeza e preparagao dos dados era executado por um
script que percorria os arquivos em ordem aleatdria, executava a limpeza e os adicionava
a um arquivo final. Portanto, no fim desse processo, cada fonte de dados fornecia um ar-
quivo de texto contendo todos os dados (e.g. dataset_artigos_clean.txt), que posteriormente
passava pelo processo de split, como descrito na préxima segao.

Pontuar Textos Utilizando RNNs 7

4.1.2 Split

O processo de treino de uma rede neural nao consiste simplesmente da insercao de dados
de entrada. Os algoritmos de treino utilizam um training dataset em conjunto com um
validation dataset para otimizar os parametros da rede. Apds o processo de treino, a
performance da rede deve ser avaliada utilizando-se o test dataset.

Seguindo a sugestdo do Punctuator, os valores de 0.6, 0.2 e 0.2 foram escolhidos inici-
almente como a fracao do dataset completo utilizada para construir os datasets de treino,
validacao e teste, respectivamente. Posteriormente, os valores de 0.7, 0.15 e 0.15 foram uti-
lizados para avaliar como o aumento do training dataset poderia melhorar a performance
do modelo. Durante o relatério, o valor do split ird se referir ao fracao do dataset completo
utilizada no training dataset (e.g. 0.6 ou 0.7).

Como as features utilizadas no modelo eram extraidas de textos, foi extremamente im-
portante definir como os dados serao divididos sem alterar sua qualidade ou inserir qualquer
tipo de informacao errada. Isso poderia acontecer se, por exemplo, frases fossem cortadas
pela metade ou tivessem sua pontuacgao removida.

Algumas ideias para divisao foram avaliadas, como separar os datasets pelo ntmero
de arquivos (e.g. de 1000 arquivos, 600 vao para treino e 200 para validagao e teste) ou
pelo nimero de palavras. A primeira solucdo nao levaria a um resultado muito consistente,
porque o tamanho de cada arquivo variava bastante. No dataset de artigos, por exemplo, o
tamanho dos arquivos variava de 50 bytes a 30 kilobytes.

A segunda solugao, por outro lado, poderia afetar a qualidade dos dados, cortando frases
pela metade e prejudicando o resultado do modelo. Para corrigir esse problema, o numero
de palavras foi utilizado em conjunto com a pontuacgao do texto. O numero de palavras do
arquivo obtido apds a limpeza era contado, e seu valor era utilizado em conjunto com os
valores de split mencionados anteriormente. Porém, o script garantia que nenhuma frase
seria cortada pela metade, levando em consideragao sinais de pontuagao que indicam fim
de sentengas (e.g. ponto, interrogacao).

4.2 Tamanho da Hidden Layer

Além de buscar uma melhora da performance variando o tamanho do traininig dataset, fo-
ram testados multiplos valores de tamanho da hidden layer, ny;q, que representa o niimero
de células presentes em cada hidden layer. Além de 256, como recomendando pelo Punctu-
ator, os valores de 128, 384 e 512 foram testados. O valor de np;q = 512 gerou erros durante
o treino de multiplos modelos, entao foi descartado.

Os resultados melhoraram ao aumentar ny;q de 128 para 256, mas o aumento para 384
nao ofereceu uma melhoria significativa ao levar em consideragao o tempo adicional para
treinar o modelo.

4.3 Fontes de Dados

As trés fontes de dados utilizadas para criacao de datasets e seus respectivos tamanhos
podem ser vistas na tabela 2.

8 G. Avena

Fonte Tamanho (em palavras)
Legendas de videos do YouTube 820 mil
Artigos de noticias do InfoMoney e globo.com 3.6 milhoes
Transcrigoes de discursos do Senado Federal 46.6 milhoes

Tabela 2: Fontes de dados utilizadas para criacao de datasets e seus respectivos tamanhos

A partir desses dados, datasets foram criados para treinar modelos com hiperparametros
diferentes que tiveram sua performance avaliada. Nas préximas trés subsecoes, serd deta-
lhado o processo de obtencao e limpeza dos dados de cada uma dessas fontes.

4.3.1 Youtube

A utilizacao de captions de videos do YouTube foi a escolha inicial para treinar o modelo. A
primeira tarefa foi buscar multiplos canais brasileiros que produziam videos com captions de
boa qualidade. Foram escolhidos canais como TedX Brasil, Manual do Mundo e Vocé Sabia.
Ap6s a selegao do videos, o programa, youtubed! B, que permite o download de recursos do
YouTube através de uma CLI, foi utilizado para obter as legendas.

Os videos obtidos foram utilizados para formar um dataset completo de cerca de 820
mil palavras !. As vantagens do uso de legendas para treinar o modelo eram principalmente
a diversidade das pessoas que falavam (i.e. idade, género, origem) e a variedade dos tépicos
abordados, que evitava que somente um tipo de contetido fosse utilizado no treino.

A maior desvantagem desse dataset era a quantidade de informacao intutil que teve
que ser removida dos dados originais. Foram apagadas muitas frases repetidas, que eram
extremamente comuns em certos canais devido a presenca de vinhetas e “catch phrases” em
todos os seus videos. Além disso, muitos videos eram compostos de didlogos, o que gerava
textos bem diferentes do que era esperado para o modelo. Os didlogos continham muitas
frases curtas, que nao forneciam muito contexto para treinar o modelo.

4.3.2 Artigos

Buscando melhorar a performance e resolver os problemas apresentados pelo dataset ante-
rior, foi utilizado um API de artigos de noticia chamado NewsAPI? para montar um novo
dataset. Este API fornece URLs de artigos de varios topicos da globo.com e da InfoMoney.
Apbs a obtengao de muitos URLs, foi realizado scrapping e download dos textos utilizando
a biblioteca de Python chamada Newspaper!®!.

Esse dataset resolveu alguns problemas do anterior, como o volume de dados disponiveis
e, além disso, facilitou a obtencao dos dados, feita através de um script simples.

Porém, os dados apresentavam outros problemas. Primeiro, poucos artigos possuiam
algum tipo de transcrigao, que era o tipo de texto que essa rede neural é treinada pra
pontuar. Além disso, o problema das expressoes repetidas ainda persistiu nesse dataset. A
remocao dos n-grams consumiu um tempo significativo, porque novas expressoes repetidas

!Dataset completo, antes do split

Pontuar Textos Utilizando RNNs 9

apareciam frequentemente, entdo era necessario remover essas expressoes e recomecar O
processo de limpeza e treino.

4.3.3 Discursos

A terceira fonte de dados foi o Servicos de Dados Abertos do Senado Federal. Esse servico
possui uma vasta quantidade de transcrigoes de discursos, que sao facilmente acessiveis
através de um API. Além de resolver o problema do volume pequeno de dados, conseguindo
atingir o objetivo de 40 milhdes de palavras no dataset de treino?, os discursos do senado
nao possuiam tanto conteido que precisava ser removido. Sua limpeza foi relativamente
simples, feita através da remogao de nomes de senadores e alteracao de alguns pronomes de
tratamento e titulos que apareciam frequentemente.

Os tépicos abordados nos discursos abrangiam diferentes dreas, mas a maior parte era
relacionada a politica. Além disso, a linguagem dos discursos possui uma formalidade acima
da média, por serem retirados do Senado. Essa formalidade maior do que os outros datasets
diverge um pouco dos tipos de texto que a rede é projetada para pontuar, mas os beneficios
obtidos pela organizagéo e o quantidade dos dados compensaram esse defeito, o que levou
a resultados melhores do que os datasets anteriores, como serd discutido nos proximos
capitulos.

4.4 Dataset Extra: Discursos + Artigos

Para avaliar a influéncia dos tépicos na performance dos modelos, foram feitos alguns testes
utilizando datasets que continham artigos de tépicos especificos: politica, esportes, tecno-
logia e famosos. Foi criado um arquivo para cada topico e todos passaram pelo processo
de clean up descrito na secao 4.1.1. Nas proximas secoes, esses arquivos serao chamados de
"arquivos de tépicos”ou ”datasets de tépicos” (e.g. dataset de tecnologia).

Primeiro, o modelo de discursos com split de 0.7 e ny;q = 256 foi utilizado para pontuar
cada um desses arquivos®. Depois, foi treinado um novo modelo, utilizando um dataset
”hibrido” formado por todos os discursos e os datasets de topicos. O dataset hibrido, que
completo possuia 49.3 milhoes de palavras, passou por um split de 0.7 e treinou um modelo
com np;g = 256. Esse novo modelo ”hibrido”foi utilizado para pontuar os arquivos de
tépicos, o test dataset hibrido e o test dataset do modelo de discursos original. Os resultados
desse processo podem ser vistos na secao 5.4.

4.5 Google Colab

Como todo o projeto foi implementado no sistema operacional MacOS, nao foi possivel
utilizar otimizacoes do Theano com o uso da GPU da méaquina local. Portanto, uma tarefa
importante do projeto consistiu na preparacao de uma infraestrutura que permitisse o treino,
uso e avaliagdo dos modelos em tempos aceitaveis. O uso do Google Colab, que fornece
acesso a GPUs Tesla K80 sem nenhum custo ao desenvolvedor, foi essencial para melhorar

?Dataset completo foi de 46.6 milhdes de palavras
3A partir deste ponto, este modelo serd chamado de ”modelo de discursos original”

10 G. Avena

a infraestrutura do projeto. Algumas tarefas, como treino de modelos, tiveram uma redugao
de 95,8% no seu tempo de execugao.

Para permitir a utilizacado do Colab, muita pesquisa foi feita sobre a biblioteca libg-
puarray utilizada pelo Theano e todo o cédigo do Punctuator foi convertido para Python

3.

5 Resultados

Os resultados dos modelos de cada fonte de dados, expressos em F1-Score, podem ser vistos
na tabela 3.

O F1-Score é uma métrica estatistica que leva em consideracao precision e recall. Antes
de explicar o que esse valores representam, é importante definir o que significa um positivo
no nosso modelo. Um positivo serda sempre referente a um sinal de pontuacao especifica,
isto é, a presenca ou nao de um sinal de pontuagao em um ponto do texto. Por exemplo, se
temos no texto original a frase ”Nossa, que legal.”e o modelo produz ”"Nossa. Que legal.”,
temos um falso negativo de uma virgula, um falso positivo de um ponto e um positivo
verdadeiro de um ponto.

Precision representa o ntimero de positivos verdadeiros classificados pelo modelo dividido
pelo nimero total de positivos classificados pelo modelo (verdadeiros e falsos). Recall
representa o niimero de positivos verdadeiros dividido pelo niimero total de positivos reais
(valores que eram pra ter sido classificados como positivos, ou seja, positivos verdadeiros
+ negativos falsos). O F1-Score ¢ obtido através de uma média ponderada dos valores de
precision e recall de cada sinal de pontuacao.

128 256 384
06 | 07 | 06 | 0.7 | 0.6 | 0.7
YouTube | 37.1 | 39.5 | 36.4 | 42.3 | 40.6 | 35.4

Artigos | 57.4 | 58.9 | 58.4 | 58.7 | 59.1 | 56.4
Discursos | 72.5 | 72.9 | 74.5 | 75.2 | 75.4 | 75.6

Tabela 3: F1-Score dos modelos de acordo com o split e npqg

5.1 YouTube

O melhor modelo obtido a partir de legendas do YouTube foi o de split de 0.7 e np;q = 256.
Esse modelo obteve um F1-Score de 42.3, com precision igual a 42.0 e recall igual a 42.5.

5.2 Artigos

O uso de artigos para treinar o modelo levou a um F1-Score maximo de 59.1, no modelo
com split 0.6 e np;q = 384.

Pontuar Textos Utilizando RNNs 11

5.3 Discursos

As transcrigoes de discursos do senado geraram os melhores resultados. O modelo treinado
com np;q = 384 obteve um F1-Score de 75.6, um pouco maior do que o score de 75.2 obtido
pelo modelo com ny;q = 256. Esses scores altos provavelmente sao reflexo do tamanho do
dataset utilizado no treino. Os discursos geraram um dataset completo com aproximada-
mente 46.6 milhoes de palavras, mais de 10 vezes o tamanho do dataset de artigos, que
consistia de aproximadamente 3.6 milhoes.

5.4 Discursos + Artigos

Os resultados dos experimentos que avaliaram a influéncia dos topicos dos textos nos resul-
tados (secdo 4.4) podem ser vistos na tabela 4 .

O uso do modelo de discursos original para pontuar os arquivos de tépicos gerou resulta-
dos relativamente bons (score médio de 55.5), considerando que esses textos foram obtidos
de uma fonte completamente diferente. E importante observar que o arquivo de politica
nao obteve o melhor resultado dos quatro, como era esperado, ji que a maior parte dos
discursos sao relacionados a politica. Isso mostra que o topico abordado pelos textos nao
tem necessariamente uma influéncia muito grande na performance do modelo.

Foi muito interessante observar o impacto que o uso dos artigos teve sobre o novo modelo.
A melhor performance em todos os arquivos foi a do modelo hibrido. Ele nado s6 aumentou
o score médio dos arquivos de topicos para 73.7, como obteve um score de 78.0 no dataset
de discursos original.

" . Discursos + Artigos Discursos
Politica | Tecnologia | Famosos | Esportes e (a5 Do)
Discursos 56.5 57.3 53.4 54.8 - 75.2
Discursos + Artigos 75.7 75.9 71.9 71.2 74.9 78.0

Tabela 4: F1-Score do modelo de discursos original e do novo modelo criado com discursos
e artigos

6 Conclusoes

As transcrigoes dos discursos do senado, apesar de nao formarem um dataset livre de defei-
tos, foram essenciais para obter obter boas performances nos modelos devido a qualidade e
a grande quantidade de textos disponiveis para treino.

Apoés alguns testes com o modelo de discursos original, foi observado que o tépico central
do texto nao necessariamente tem uma grande influéncia na performance do modelo. Mas
foi possivel obter resultados significativamente melhores apds a juncao de artigos com o
dataset de discursos para a criacdo de um modelo ”hibrido”.

Para buscar uma melhora ainda maior, préximos passos que poderiam ser tomados sao:
treinar novos modelos com mais fontes de dados diferentes juntas, avaliar se o aumento dos

40 modelo original de discursos néo foi utilizado para pontuar o test dataset do novo modelo.

12 REFERENCIAS

datasets pode contribuir para a performance e analisar outros possiveis valores de split e
Nhid-

Referéncias

[1] Ottokar Tilk e Tanel Alumée. “Bidirectional Recurrent Neural Network with Attention
Mechanism for Punctuation Restoration”. Em: Interspeech 2016. 2016.

[2] News API. News API Documentation. URL: https://newsapi.org/docs.

[3] Ricardo Garcia Gonzalez. youtube-dl. URL: https://github.com/rg3/youtube-dl.
[4] Google. Introduction to Google Colab.

[5] LISA lab. Theano - API Documentation. URL: http://deeplearning.net/software/

theano/library/index.html.

[6] Wikipedia. Gated Recurrent Unit. URL: https://en.wikipedia.org/wiki/Gated_
recurrent_unit.

[7] Wikipedia. Recurrent Neural Network. URL: https://en.wikipedia . org/wiki /
Recurrent_neural_network.

[8] Lucas Ou-Yang. Newspaper3k: Article scraping curation. URL: https://newspaper .
readthedocs.io/en/latest/.

