
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Pontuar Textos Utilizando
RNNs

Gustavo G. Avena

Relatório Técnico - IC-PFG-18-32

Projeto Final de Graduação

2018 - Novembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Pontuar Textos Utilizando RNNs

Gustavo Galvão Avena

Resumo

Esse trabalho tem como objetivo inserir pontuação em textos em português produ-
zidos por serviços de transcrições de voz. Para solucionar o problema, uma rede neural
recorrente bi-direcional foi treinada e avaliada com múltiplos datasets distintos, cons-
trúıdos com dados de três fontes: legendas de v́ıdeos, artigos de not́ıcia e transcrições de
discursos. As vantagens e desvantagens de cada um dos datasets foram avaliadas junto
com os resultados de precisão e acurácia de cada um dos seus respectivos modelos.

Além disso, foi treinado um modelo ”h́ıbrido”juntando os discursos com artigos de
tópicos selecionados. Esse modelo obteve a melhor performance, com um F1-Score de
74.9 no seu test dataset.

O tópico central do texto pontuado não teve uma influência grande no resultado de
nenhum dos modelos, mas a fusão de artigos para o treino de um modelo h́ıbrido levou
a uma melhora significativa de performance.

1

2 G. Avena

Sumário

1 Introdução 3

2 Redes Neurais 3
2.1 Redes Neurais Artificiais . 3
2.2 Redes Neurais Recorrentes . 3
2.3 Gated Recurrent Unit (GRU) . 4

3 Punctuator 5
3.1 Theano . 5

4 Metodologia 6
4.1 Preparação de Datasets . 6

4.1.1 Limpeza . 6
4.1.2 Split . 7

4.2 Tamanho da Hidden Layer . 7
4.3 Fontes de Dados . 7

4.3.1 Youtube . 8
4.3.2 Artigos . 8
4.3.3 Discursos . 9

4.4 Dataset Extra: Discursos + Artigos . 9
4.5 Google Colab . 9

5 Resultados 10
5.1 YouTube . 10
5.2 Artigos . 10
5.3 Discursos . 11
5.4 Discursos + Artigos . 11

6 Conclusões 11

Pontuar Textos Utilizando RNNs 3

1 Introdução

Serviços de speech-to-text possuem inúmeras aplicações em setores de atendimento a cli-
entes, análise de dados e comunicação. Porém, esses serviços fornecem transcrições sem
pontuação, dificultando a leitura e a compreensão do texto. O objetivo desse trabalho é
prover um sistema de pontuação que possa ser associado a esses serviços para, possivel-
mente, melhorar seus resultados. Os modelos treinados se restringiram a três sinais de
pontuação: ponto, v́ırgula e interrogação.

Ao contrário das Redes Neurais Feedforward, Redes Neurais Recorrentes (RNNs) pos-
suem ”memória”, porque podem utilizar seu estado interno para processar sequências de
entradas. Por isto, as RNNs são bastante utilizadas para resolver problemas na área de
lingúıstica como tradução e reconhecimento de voz. Baseado no projeto Punctuator[1],
que busca resolver o mesmo problema para textos em inglês e estoniano, foram utilizados
modelos de redes neurais recorrentes utilizando a biblioteca Theano[5] para abordar o pro-
blema. Vários scripts foram implementados em Python para a obtenção e limpeza de dados,
construção de datasets e configuração do projeto no Google Colab[4].

2 Redes Neurais

2.1 Redes Neurais Artificiais

Pesquisas relacionadas a representação de redes neurais através de modelos matemáticos e
computacionais começaram há muitas décadas atrás. Esses modelos, chamados de Redes
Neurais Artificiais (RNAs), buscam reproduzir componentes do sistema nervoso central
de animais, como neurônios, para a execução de tarefas espećıficas após um processo de
aprendizagem.

Existem vários tipos de RNAs, sendo o mais simples uma rede constitúıda de múltiplos
perceptrons, unidades que buscam simular neurônios, conectados por arestas com pesos
distintos. Essas redes podem possuir múltiplas camadas e a informação é sempre propagada
em uma direção (da entrada para sáıda), por isso são conhecidas como redes feedforward.
A figura 1 mostra um exemplo de uma rede neural feedforward.

Durante o treino das RNAs, o usuário fornece dados de entrada com suas respectivas
sáıdas e a rede atualiza os pesos das arestas buscando definir um modelo cada vez mais
preciso. Devido a sua complexidade, essas redes são capazes de representar hipóteses não-
lineares. Porém, dependendo do tamanho da rede, o processo de aprendizagem pode ser
bastante custoso, por se tratar de operações envolvendo matrizes de grande porte.

Atualmente, com o grande progresso das GPUs, o treino e uso de RNAs tem se tornado
mais acesśıvel, porque esses componentes são capazes de reduzir bastante o tempo necessário
para executar esses cálculos.

2.2 Redes Neurais Recorrentes

Em Redes Neurais Recorrentes, a sáıda das unidades pode ser utilizada como entrada de
alguma unidade da sua camada ou de camadas anteriores. Essa caracteŕıstica fornece um

4 G. Avena

Figura 1: Rede Neural Artificial

tipo de ”memória”a rede neural[7], já que a sáıda de cada célula depende das sáıdas de
células anteriores e posteriores.

Redes neurais recorrentes são bastante utilizadas em problemas com dependência tem-
poral ou sequencial, como reconhecimento de voz e tradução de máquina.

Figura 2: Rede Neural Recorrente

2.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit, ou GRU, é um tipo de unidade que pode ser usada para compor
redes neurais recorrentes. Sua estrutura pode ser vista na figura 3. Ela foi introduzida em
2014 e tem uma estrutura semelhante a unidades LSTM (Long Short-Term Memory), mas
demonstraram melhor performance em datasets pequenos[6].

Pontuar Textos Utilizando RNNs 5

Figura 3: Gated Recurrent Unit

3 Punctuator

Na computação, a reutilização de código é algo bastante comum porque evita que muitas
pessoas realizem trabalho repetido desnecessariamente, contribuindo para a criação de mais
projetos com impactos maiores. Por isso, no começo desse trabalho, foram buscadas soluções
para o problema em questão, para que não fosse necessário começar todo o trabalho do zero.

Nessa busca foi encontrado o Punctuator [1], um projeto que utiliza Redes Neurais Recor-
rentes Bi-Direcionais com mecanismos de atenção para pontuar textos em inglês e estoniano.
Ele possui código que define o modelo da RNN, prepara os dados, treina o modelo e avalia
sua performance. Tudo isso é feito em Python, utilizando a biblioteca Theano.

Há também a opção treinar modelos em dois estágios, levando em consideração pausas
e aspectos prosódicos dos textos. Essa funcionalidade não foi utilizada nesse projeto por
não ter sido encontrada uma fonte de dados que pudesse fornecer informações prosódicas
de transcrições.

O uso do Punctuator nesse projeto permitiu que a maior parte do trabalho envolvesse
a busca e preparação de dados de boa qualidade para treinar os modelos.

3.1 Theano

Theano é uma biblioteca em Python que otimiza o cálculo de expressões matemáticas,
especialmente com matrizes, através de compilação. O uso de Python, uma linguagem
de alto ńıvel e muito poderosa, com várias otimizações que são compiladas em C, tornou
Theano uma biblioteca muito atraente para projetos envolvendo aprendizado de máquina e
redes neurais, já que esses projetos envolvem muitos cálculos matemáticos com matrizes.

Theano possui código aberto e o seu desenvolvimento foi encerrado em 2017 devido a
presença de outras bibliotecas que possúıam as mesmas funcionalidade (e.g. TensorFlow,
desenvolvida pelo Google).

6 G. Avena

4 Metodologia

4.1 Preparação de Datasets

Em qualquer projeto de aprendizado de máquina, a qualidade dos dados utilizados é es-
sencial para obter-se bons resultados. Como as especificações da rede neural e o código
usados nesse projeto já tinham sido desenvolvidos, a maior preocupação foi a obtenção e
preparação dos dados que seriam utilizados na rede. O Punctuator obteve bons resultados
com datasets de 40 milhões de palavras, então esse tamanho foi utilizado como meta nesse
projeto.

Todos os datasets utilizados para treino, uso e avaliação do modelo tiveram sua pon-
tuação ”simplificada”, buscando a otimização dos resultados. Eram considerados somente
os sinais de ponto, v́ırgula e interrogação, então todos os outros sinais foram mapeados para
um desses três. Esse mapeamento pode ser visto na tabela 1.

Sinal Original Substituto

Exclamação (!) Ponto (.)

Dois Pontos (:) Vı́rgula (,)

Ponto e v́ırgula (;) Ponto (.)

Hı́fen (-) Vı́rgula (,)

Tabela 1: Mapeamento de sinais de pontuação

4.1.1 Limpeza

Todas as fontes de dados utilizadas forneciam vários arquivos de texto, que deviam ser
agrupados para posteriormente ser dividido em três datasets: treino, validação e teste, cada
um em seu arquivo de texto. Porém, antes de junta-los, cada um desses arquivos passava
por uma limpeza, essencial para o processo de feature engineering que busca otimizar a
qualidade do dataset final. Esse processo de limpeza era espećıfico de cada fonte de dados,
mas consistia basicamente na remoção de expressões repetidas e caracteres peculiares.

Praticamente todo essa limpeza foi executada utilizando expressões regulares. A bi-
blioteca re de Python foi utilizada para encontrar strings com padrões definidos pelas ex-
pressões regulares e remove-las ou substitui-las por strings apropriadas. Antes de executar
essa remoção, foi necessário definir para cada fonte quais eram os padrões que deveriam
ser encontrados. Para isto, foi utilizado um trecho de código que fornece os n-grams mais
frequentes de um texto. Esse código encontrou os n-grams frequentes de tamanho 1 a 5 e
seu resultado foi utilizado para definir as expressões regulares utilizadas na limpeza de cada
conjunto de dados. O processo de limpeza e preparação dos dados era executado por um
script que percorria os arquivos em ordem aleatória, executava a limpeza e os adicionava
a um arquivo final. Portanto, no fim desse processo, cada fonte de dados fornecia um ar-
quivo de texto contendo todos os dados (e.g. dataset artigos clean.txt), que posteriormente
passava pelo processo de split, como descrito na próxima seção.

Pontuar Textos Utilizando RNNs 7

4.1.2 Split

O processo de treino de uma rede neural não consiste simplesmente da inserção de dados
de entrada. Os algoritmos de treino utilizam um training dataset em conjunto com um
validation dataset para otimizar os parâmetros da rede. Após o processo de treino, a
performance da rede deve ser avaliada utilizando-se o test dataset.

Seguindo a sugestão do Punctuator, os valores de 0.6, 0.2 e 0.2 foram escolhidos inici-
almente como a fração do dataset completo utilizada para construir os datasets de treino,
validação e teste, respectivamente. Posteriormente, os valores de 0.7, 0.15 e 0.15 foram uti-
lizados para avaliar como o aumento do training dataset poderia melhorar a performance
do modelo. Durante o relatório, o valor do split irá se referir ao fração do dataset completo
utilizada no training dataset (e.g. 0.6 ou 0.7).

Como as features utilizadas no modelo eram extráıdas de textos, foi extremamente im-
portante definir como os dados serão divididos sem alterar sua qualidade ou inserir qualquer
tipo de informação errada. Isso poderia acontecer se, por exemplo, frases fossem cortadas
pela metade ou tivessem sua pontuação removida.

Algumas ideias para divisão foram avaliadas, como separar os datasets pelo número
de arquivos (e.g. de 1000 arquivos, 600 vão para treino e 200 para validação e teste) ou
pelo número de palavras. A primeira solução não levaria a um resultado muito consistente,
porque o tamanho de cada arquivo variava bastante. No dataset de artigos, por exemplo, o
tamanho dos arquivos variava de 50 bytes a 30 kilobytes.

A segunda solução, por outro lado, poderia afetar a qualidade dos dados, cortando frases
pela metade e prejudicando o resultado do modelo. Para corrigir esse problema, o numero
de palavras foi utilizado em conjunto com a pontuação do texto. O número de palavras do
arquivo obtido após a limpeza era contado, e seu valor era utilizado em conjunto com os
valores de split mencionados anteriormente. Porém, o script garantia que nenhuma frase
seria cortada pela metade, levando em consideração sinais de pontuação que indicam fim
de sentenças (e.g. ponto, interrogação).

4.2 Tamanho da Hidden Layer

Além de buscar uma melhora da performance variando o tamanho do traininig dataset, fo-
ram testados múltiplos valores de tamanho da hidden layer, nhid, que representa o número
de células presentes em cada hidden layer. Além de 256, como recomendando pelo Punctu-
ator, os valores de 128, 384 e 512 foram testados. O valor de nhid = 512 gerou erros durante
o treino de múltiplos modelos, então foi descartado.

Os resultados melhoraram ao aumentar nhid de 128 para 256, mas o aumento para 384
não ofereceu uma melhoria significativa ao levar em consideração o tempo adicional para
treinar o modelo.

4.3 Fontes de Dados

As três fontes de dados utilizadas para criação de datasets e seus respectivos tamanhos
podem ser vistas na tabela 2.

8 G. Avena

Fonte Tamanho (em palavras)

Legendas de v́ıdeos do YouTube 820 mil

Artigos de not́ıcias do InfoMoney e globo.com 3.6 milhões

Transcrições de discursos do Senado Federal 46.6 milhões

Tabela 2: Fontes de dados utilizadas para criação de datasets e seus respectivos tamanhos

A partir desses dados, datasets foram criados para treinar modelos com hiperparâmetros
diferentes que tiveram sua performance avaliada. Nas próximas três subseções, será deta-
lhado o processo de obtenção e limpeza dos dados de cada uma dessas fontes.

4.3.1 Youtube

A utilização de captions de v́ıdeos do YouTube foi a escolha inicial para treinar o modelo. A
primeira tarefa foi buscar múltiplos canais brasileiros que produziam v́ıdeos com captions de
boa qualidade. Foram escolhidos canais como TedX Brasil, Manual do Mundo e Você Sabia.
Após a seleção do v́ıdeos, o programa youtubedl [3], que permite o download de recursos do
YouTube através de uma CLI, foi utilizado para obter as legendas.

Os v́ıdeos obtidos foram utilizados para formar um dataset completo de cerca de 820
mil palavras 1. As vantagens do uso de legendas para treinar o modelo eram principalmente
a diversidade das pessoas que falavam (i.e. idade, gênero, origem) e a variedade dos tópicos
abordados, que evitava que somente um tipo de conteúdo fosse utilizado no treino.

A maior desvantagem desse dataset era a quantidade de informação inútil que teve
que ser removida dos dados originais. Foram apagadas muitas frases repetidas, que eram
extremamente comuns em certos canais devido a presença de vinhetas e “catch phrases” em
todos os seus v́ıdeos. Além disso, muitos v́ıdeos eram compostos de diálogos, o que gerava
textos bem diferentes do que era esperado para o modelo. Os diálogos continham muitas
frases curtas, que não forneciam muito contexto para treinar o modelo.

4.3.2 Artigos

Buscando melhorar a performance e resolver os problemas apresentados pelo dataset ante-
rior, foi utilizado um API de artigos de not́ıcia chamado NewsAPI [2] para montar um novo
dataset. Este API fornece URLs de artigos de vários tópicos da globo.com e da InfoMoney.
Após a obtenção de muitos URLs, foi realizado scrapping e download dos textos utilizando
a biblioteca de Python chamada Newspaper [8].

Esse dataset resolveu alguns problemas do anterior, como o volume de dados dispońıveis
e, além disso, facilitou a obtenção dos dados, feita através de um script simples.

Porém, os dados apresentavam outros problemas. Primeiro, poucos artigos possúıam
algum tipo de transcrição, que era o tipo de texto que essa rede neural é treinada pra
pontuar. Além disso, o problema das expressões repetidas ainda persistiu nesse dataset. A
remoção dos n-grams consumiu um tempo significativo, porque novas expressões repetidas

1Dataset completo, antes do split

Pontuar Textos Utilizando RNNs 9

apareciam frequentemente, então era necessário remover essas expressões e recomeçar o
processo de limpeza e treino.

4.3.3 Discursos

A terceira fonte de dados foi o Serviços de Dados Abertos do Senado Federal. Esse serviço
possui uma vasta quantidade de transcrições de discursos, que são facilmente acesśıveis
através de um API. Além de resolver o problema do volume pequeno de dados, conseguindo
atingir o objetivo de 40 milhões de palavras no dataset de treino2, os discursos do senado
não possúıam tanto conteúdo que precisava ser removido. Sua limpeza foi relativamente
simples, feita através da remoção de nomes de senadores e alteração de alguns pronomes de
tratamento e t́ıtulos que apareciam frequentemente.

Os tópicos abordados nos discursos abrangiam diferentes áreas, mas a maior parte era
relacionada à poĺıtica. Além disso, a linguagem dos discursos possui uma formalidade acima
da média, por serem retirados do Senado. Essa formalidade maior do que os outros datasets
diverge um pouco dos tipos de texto que a rede é projetada para pontuar, mas os benef́ıcios
obtidos pela organização e o quantidade dos dados compensaram esse defeito, o que levou
a resultados melhores do que os datasets anteriores, como será discutido nos próximos
caṕıtulos.

4.4 Dataset Extra: Discursos + Artigos

Para avaliar a influência dos tópicos na performance dos modelos, foram feitos alguns testes
utilizando datasets que continham artigos de tópicos espećıficos: poĺıtica, esportes, tecno-
logia e famosos. Foi criado um arquivo para cada tópico e todos passaram pelo processo
de clean up descrito na seção 4.1.1. Nas próximas seções, esses arquivos serão chamados de
”arquivos de tópicos”ou ”datasets de tópicos”(e.g. dataset de tecnologia).

Primeiro, o modelo de discursos com split de 0.7 e nhid = 256 foi utilizado para pontuar
cada um desses arquivos3. Depois, foi treinado um novo modelo, utilizando um dataset
”h́ıbrido”formado por todos os discursos e os datasets de tópicos. O dataset h́ıbrido, que
completo possúıa 49.3 milhões de palavras, passou por um split de 0.7 e treinou um modelo
com nhid = 256. Esse novo modelo ”h́ıbrido”foi utilizado para pontuar os arquivos de
tópicos, o test dataset h́ıbrido e o test dataset do modelo de discursos original. Os resultados
desse processo podem ser vistos na seção 5.4.

4.5 Google Colab

Como todo o projeto foi implementado no sistema operacional MacOS, não foi posśıvel
utilizar otimizações do Theano com o uso da GPU da máquina local. Portanto, uma tarefa
importante do projeto consistiu na preparação de uma infraestrutura que permitisse o treino,
uso e avaliação dos modelos em tempos aceitáveis. O uso do Google Colab, que fornece
acesso a GPUs Tesla K80 sem nenhum custo ao desenvolvedor, foi essencial para melhorar

2Dataset completo foi de 46.6 milhões de palavras
3A partir deste ponto, este modelo será chamado de ”modelo de discursos original”

10 G. Avena

a infraestrutura do projeto. Algumas tarefas, como treino de modelos, tiveram uma redução
de 95,8% no seu tempo de execução.

Para permitir a utilização do Colab, muita pesquisa foi feita sobre a biblioteca libg-
puarray utilizada pelo Theano e todo o código do Punctuator foi convertido para Python
3.

5 Resultados

Os resultados dos modelos de cada fonte de dados, expressos em F1-Score, podem ser vistos
na tabela 3.

O F1-Score é uma métrica estat́ıstica que leva em consideração precision e recall. Antes
de explicar o que esse valores representam, é importante definir o que significa um positivo
no nosso modelo. Um positivo será sempre referente a um sinal de pontuação espećıfica,
isto é, a presença ou não de um sinal de pontuação em um ponto do texto. Por exemplo, se
temos no texto original a frase ”Nossa, que legal.”e o modelo produz ”Nossa. Que legal.”,
temos um falso negativo de uma v́ırgula, um falso positivo de um ponto e um positivo
verdadeiro de um ponto.

Precision representa o número de positivos verdadeiros classificados pelo modelo dividido
pelo número total de positivos classificados pelo modelo (verdadeiros e falsos). Recall
representa o número de positivos verdadeiros dividido pelo número total de positivos reais
(valores que eram pra ter sido classificados como positivos, ou seja, positivos verdadeiros
+ negativos falsos). O F1-Score é obtido através de uma média ponderada dos valores de
precision e recall de cada sinal de pontuação.

128 256 384
0.6 0.7 0.6 0.7 0.6 0.7

YouTube 37.1 39.5 36.4 42.3 40.6 35.4

Artigos 57.4 58.9 58.4 58.7 59.1 56.4

Discursos 72.5 72.9 74.5 75.2 75.4 75.6

Tabela 3: F1-Score dos modelos de acordo com o split e nhid

5.1 YouTube

O melhor modelo obtido a partir de legendas do YouTube foi o de split de 0.7 e nhid = 256.
Esse modelo obteve um F1-Score de 42.3, com precision igual a 42.0 e recall igual a 42.5.

5.2 Artigos

O uso de artigos para treinar o modelo levou a um F1-Score máximo de 59.1, no modelo
com split 0.6 e nhid = 384.

Pontuar Textos Utilizando RNNs 11

5.3 Discursos

As transcrições de discursos do senado geraram os melhores resultados. O modelo treinado
com nhid = 384 obteve um F1-Score de 75.6, um pouco maior do que o score de 75.2 obtido
pelo modelo com nhid = 256. Esses scores altos provavelmente são reflexo do tamanho do
dataset utilizado no treino. Os discursos geraram um dataset completo com aproximada-
mente 46.6 milhões de palavras, mais de 10 vezes o tamanho do dataset de artigos, que
consistia de aproximadamente 3.6 milhões.

5.4 Discursos + Artigos

Os resultados dos experimentos que avaliaram a influência dos tópicos dos textos nos resul-
tados (seção 4.4) podem ser vistos na tabela 4 4.

O uso do modelo de discursos original para pontuar os arquivos de tópicos gerou resulta-
dos relativamente bons (score médio de 55.5), considerando que esses textos foram obtidos
de uma fonte completamente diferente. É importante observar que o arquivo de poĺıtica
não obteve o melhor resultado dos quatro, como era esperado, já que a maior parte dos
discursos são relacionados a poĺıtica. Isso mostra que o tópico abordado pelos textos não
tem necessariamente uma influência muito grande na performance do modelo.

Foi muito interessante observar o impacto que o uso dos artigos teve sobre o novo modelo.
A melhor performance em todos os arquivos foi a do modelo h́ıbrido. Ele não só aumentou
o score médio dos arquivos de tópicos para 73.7, como obteve um score de 78.0 no dataset
de discursos original.

Politica Tecnologia Famosos Esportes
Discursos + Artigos

(Test Dataset)
Discursos

(Test Dataset)

Discursos 56.5 57.3 53.4 54.8 - 75.2

Discursos + Artigos 75.7 75.9 71.9 71.2 74.9 78.0

Tabela 4: F1-Score do modelo de discursos original e do novo modelo criado com discursos
e artigos

6 Conclusões

As transcrições dos discursos do senado, apesar de não formarem um dataset livre de defei-
tos, foram essenciais para obter obter boas performances nos modelos devido a qualidade e
a grande quantidade de textos dispońıveis para treino.

Após alguns testes com o modelo de discursos original, foi observado que o tópico central
do texto não necessariamente tem uma grande influência na performance do modelo. Mas
foi posśıvel obter resultados significativamente melhores após a junção de artigos com o
dataset de discursos para a criação de um modelo ”h́ıbrido”.

Para buscar uma melhora ainda maior, próximos passos que poderiam ser tomados são:
treinar novos modelos com mais fontes de dados diferentes juntas, avaliar se o aumento dos

4O modelo original de discursos não foi utilizado para pontuar o test dataset do novo modelo.

12 REFERÊNCIAS

datasets pode contribuir para a performance e analisar outros posśıveis valores de split e
nhid.

Referências

[1] Ottokar Tilk e Tanel Alumäe. “Bidirectional Recurrent Neural Network with Attention
Mechanism for Punctuation Restoration”. Em: Interspeech 2016. 2016.

[2] News API. News API Documentation. url: https://newsapi.org/docs.

[3] Ricardo Garcia Gonzalez. youtube-dl. url: https://github.com/rg3/youtube-dl.

[4] Google. Introduction to Google Colab.

[5] LISA lab. Theano - API Documentation. url: http://deeplearning.net/software/
theano/library/index.html.

[6] Wikipedia. Gated Recurrent Unit. url: https://en.wikipedia.org/wiki/Gated_
recurrent_unit.

[7] Wikipedia. Recurrent Neural Network. url: https://en.wikipedia.org/wiki/

Recurrent_neural_network.

[8] Lucas Ou-Yang. Newspaper3k: Article scraping curation. url: https://newspaper.
readthedocs.io/en/latest/.

