
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Aprendendo sobre
o Espaço Atencional

no CST
- The Cognitive Systems

Toolkit
C. Regattieri E. Colombini

Relatório Técnico - IC-PFG-18-31

Projeto Final de Graduação

2018 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Aprendendo sobre o Espaço Atencional no CST

-

The Cognitive System Toolkit

Carolina Regattieri de Biase Nicolini Delgado​1​, Esther Colombini​2

1​ NeuralMind, carolina.regattieri@neuralmind.ai

2​ ​Instituto de Computação Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6176

13083-970 Campinas-SP, Brasil

esther@ic.unicamp.br

Resumo. O objetivo deste projeto de final de curso foi explorar os módulos de atenção baseados no

CONAIM (Conscious Attention-Based Integrated Model) recentemente incorporados ao CST (Cognitive

Systems Tool-kit). O CST é um framework geral para a construção de arquiteturas cognitivas que permite

a utilização e integração de diversas tecnologias. Nosso propósito com este estudo é validar os processos

atencionais definidos pelo CONAIM que foram implementados no CST na forma de módulos. Para isso,

um conjunto de experimentos utilizando aprendizado de reforço foram definidos e implementados em um

simulador robótico de alta fidelidade, e assim foi possibilitada a validação dos processos atencionais.

Palavras-Chave: ​​Aprendizado por reforço, QLearning, CST, Modelo Atencional, CONAIM

1

1. Introdução
Ao longo da evolução da humanidade, e principalmente no mundo moderno, a mente foi

vista como um artefato de imensa complexidade e importância em nossas vidas. Indagar sobre

seu funcionamento trás a tona questões filosóficas que talvez nunca seremos capazes de sanar,

mas diversas teorias foram e estão sendo criadas a fim de embasar, compreender e reproduzir

como esta máquina super potente que está sempre presente conosco funciona.

A filosofia foi a pioneira na tentativa de explicar como o conhecimento e o

comportamento humano se organizavam e o que era exatamente a cognição. Mais recentemente,

cientistas voltados para áreas tecnológicas estão explorando extensivamente o assunto e a

robótica foi uma das áreas que mais avançou em estruturar inteligência em agentes, com

objetivos de executar as tarefas das mais simples até as mais complexas.

A fim de reproduzir em seres artificiais a competência humana de aprender, planejar,

decidir e entender certos aspectos do ambiente, foi preciso ao longo do tempo desenvolver

modelos teóricos que mapeiam como o cérebro realiza tais processos. Neste contexto, muitos

modelos para diferentes capacidades inteligentes vieram a tona: aprendizado, atenção, tomada de

decisão, memória, percepção, geração de comportamento, etc.

Ao associar um modelo cognitivo a sistemas computacionais, temos as chamadas

arquiteturas cognitivas, que normalmente juntam tanto aspectos teóricos quanto frameworks de

software para que possam ser utilizadas em diferentes aplicações.

Como arquitetura cognitiva utilizamos neste projeto o Cognitive System Toolkit [1], [2].

O CST possui vários componentes implementados, sendo necessária sua adaptação para a

aplicação em questão, e este trabalho utiliza somente os componentes de memória, atenção e

aprendizado para realizar experimentos.

Como modelo para embasar nossa implementação, escolhemos o Modelo Atencional

CONAIM [3]. Ser apto a focar seu ciclo cognitivo em partes diferentes do ambiente ao longo do

tempo é algo muito corriqueiro para o ser humano, algo que nem percebemos no nosso dia a dia,

mas para robôs é um aspecto essencial. A quantidade de sensores e dados que chegam até eles

2

tende a ficar cada vez maior, e por isso é necessário um meio de decidir quais destes dados e

medidas são mais importantes naquele momento.

Módulos atencionais em robôs possuem diversas aplicações, especialmente quando

relacionadas a alguma inteligência. A capacidade de focar a atenção no objeto mais rápido de

uma cena, por exemplo, pode compor um robô que tem como função perseguir carros que andam

em alta velocidade nas estradas. Além disso, agentes que são capazes de absorver detalhes

diferentes da cena ao longo do tempo são muito mais adaptáveis, já que esta é uma das maiores

dificuldades da robótica fora de ambientes simulados: cenas que se alteram muito e não seguem

regras pré-definidas.

Para demonstrar a usabilidade da atenção em agentes, vamos utilizar o output do nosso

modelo atencional como entrada para um componente de aprendizado que deverá aprender a

realizar um conjunto de tarefas via interação com o ambiente.

2. Objetivo
O objetivo deste Trabalho Final de Graduação é realizar um conjunto de experimentos

para validar a implementação do módulo atencional do CST baseado no CONAIM e verificar a

possibilidade de que um robô aprenda comportamentos inteligentes sobre o espaço atencional ao

invés do espaço de features. Para tal, serão utilizadas features obtidas a partir da execução do

ciclo atencional do CONAIM no CST a fim de que o robô aprenda a realizar tarefas

pré-definidas.

Mais especificamente objetivamos:

1. Estudar o modelo atencional proposto pelo CONAIM

2. Estudar a implementação de 1. No CST

3. Construir features a partir dos dados sensórios

4. Combinar as features para construção dos mapas atencionais e de saliência

5. Validar individualmente as features assim como a composição das mesmas

6. Implementar o módulo de aprendizado por reforço no CST sobre o espaço atencional

7. Executar experimentos para aprendizado de tarefas

3

3. Materiais

Todos os experimentos foram realizados utilizando o simulador de alta finalidade V-REP.

Para que fosse possível executar o código do CST no simulador, foi necessário configurar sua

remoteAPI do cliente [4], isto é, além de adicionar os arquivos especiais da API na pasta do

projeto, foi preciso adicionar as bibliotecas no caminho do Java: ​-Djava.library.path=.

Um robô do tipo Pioneer P3DX serviu como agente atencional capaz de percorrer o

ambiente e aprender como chegar ao seu objetivo através de features atencionais. O robô estava

equipado de 16 sensores sonares, 8 deles nos 180º da parte dianteira, e os outros 8 nos 180º da

parte traseira, além de um sensor laser posicionado acima de sua lataria, no centro. O sensor de

laser era capaz de obter 180 leituras a cada ciclo, referente aos dados da parte frontal do robô.

3.1 CST - The Cognitive System Toolkit
O CST possui diversos módulos implementados, mas existem dois conceitos primordiais

na sua arquitetura: codelets e memory objects, conforme apresentado na Figura 1.

Figura (1) Representação esquemática dos codelets do CST.​ ​Referência: [5]

4

Codelets são pequeno componentes responsáveis por pequenas partes de processamento

do sistema cognitivo. Eles podem ser por exemplo, divididos em codelet de percepção, codelet

atencional, codelet de aprendizado, etc, variando com a aplicação. Cada codelet possui seu

próprio input e output, que são memory objects, e estão agrupados em um Coderack. A cada

ciclo atencional, todos os codelets de um codeRack serão executados, recebendo seus memory

objects de entrada, fazendo seu devido processamento, e escrevendo em seus memory objects de

saída.

3.2 O modelo atencional

Como proposto por [6], o modelo atencional utilizado neste projeto foi o definido pelo

CONAIM. Existem diversos tipos de modelagem que visam explicar como funciona a atenção

humana, mas este modelo o faz separando o processo atencional em dois componentes:

bottom-up e top-down. O componente bottom-up se responsabiliza por processar os estímulos do

ambiente tais como eles vem, dando importância para aqueles que mais se sobressaem. No

top-down, existe um estímulo externo, uma tarefa ou objetivo, que guia a atenção do agente. Para

este projeto, iremos abordar somente o componente bottom-up. A Figura 2 ilustra o

funcionamento do sistema.

A cada ciclo atencional, espera-se que inúmeros dados de diversos sensores sejam

captados e partir dos mesmos são construídos mapas de características (ou features). Para

condensar tais dados, é preciso gerar um mapa de features combinadas, que deixe todas as

features com a mesma dimensão em um só mapa. Da perspectiva bottom-up, o mapa de features

serve como um indício do que deverá ser percebido no ambiente. Ao decidir qual das regiões do

mapa de saliência é a vencedora, a partir da estratégia Winner Takes it All (ou seja, a feature

mais sobressaltada vence), o vencedor é adicionado a uma lista de vencedores e seu ciclo

atencional se inicia. Durante certo período de tempo, a região vencedora será realçada pelo mapa

atencional, e depois entrará em um período inibitório. Durante este período, esta região fica

como negativa no mapa atencional, para que outras possam ser atendidas pelo agente. Este

processo é chamado de Inibição de Retorno (Inhibition Of Return - IOR). O mapa de saliência é

5

resultado da multiplicação do mapa atencional com o mapa de features combinadas, e será

utilizado para uma super representação do ambiente percebido.

Figura (2) Ilustra o funcionamento do modelo atencional CONAIM. Referência: [6]

3.3 Implementação do modelo atencional no CST

6

Como mencionado previamente, o código base para o desenvolvimento dos experimentos

foi desenvolvido a partir do Módulo Atencional do CST [7] e do próprio CST na branch

atencional [8].

A implementação do modelo atencional proposto no CST segue a estrutura apresentada na

Figura 3.

Figura (3). (1) Representa Memory Objects do CST. (2), (3) (4) Representa Codelets Motores, Sensoriais e

Atencionais, respectivamente e (5) Representa as classes de comunicação externa com a remoteAPI do V-REP, que

acessa o robô.

Os codelets mais primitivos são representados pelos MotorCodelet (a), SonarCodelet (b)

e LaserCodelet (c). Estes componentes estão diretamente ligados com a remoteAPI do simulador

V-REP e fazem a comunicação direta com o Pioneer, ou seja, eles interagem diretamente com o

ambiente de estudo.

7

Pode-se perceber, portanto, que os dados brutos de distância vem diretamente dos

Memory Objects do SonarCodelet e do LaserCodelet e são, então, utilizados para computar os

valores de distância e direção do robô, através dos codelets DirectionCodelet (d) e

DistanceCodelet (e). A distância é um cálculo direto dos valores computados pelo laser (as

medidas são apenas normalizadas), enquanto que a direção é obtida através de uma combinação

entre os valores de laser e sonar, e sua dimensão final é igual à dimensão do sonar: oito,

referentes aos sonares dianteiros.

Estes valores são alocados em seus respectivos Memory Objects e passados para o

codelet CombinedFeatureCodelet (f), cuja função é combinar estas duas features em um único

espaço dimensional (que será novamente de tamanho oito, por conta dos sonares dianteiros).

Assim o Memory Object que representa o output do codelet (f) são as features que escolhemos

para caracterizar o ambiente, combinadas. Estas features foram distância (computada pelo laser)

e direção (computada como um conjunto de laser e sonar).

Estes passos anteriores foram feitos somente para a aquisição de features, e o mapa final

de features combinadas será passado como entrada para o SaliencyMapCodelet (g). A finalidade

deste codelet é somente multiplicar o mapa atencional (que é inicializado com valores unitários,

simulando um ambiente sem vencedores), pelo mapa de combined features.

A saída deste codelets, que é o mapa de saliências, é passada como entrada para o último

codelet: DecisionMakingCodelet (h), que implementa em si o modelo atencional proposto. A

partir do mapa de saliência, a função principal deste codelet irá calcular a feature vencedora

daquele instante de tempo , adicioná-la à lista de vencedores e verificar as curvas de atenção vt

para todos os vencedores da lista, para assim poder atualizar o mapa atencional, realimentando o

ciclo.

Todos codelets ficam contidos em um CodeRank, e após o início do ciclo atencional, a

função principal de todos eles roda em Threads paralelas, alimentando seus devidos Memory

Objects de output.

8

4. Modelo Proposto

A fim de realizar experimentos inteligentes no módulo atencional, o primeiro passo foi

verificar se seu funcionamento básico estava correto. Esta validação refere-se ao Experimento 1.

Após esta análise, nossa proposta foi implementar um codelet inteligente, que utilizasse

algum algoritmo de Aprendizado por Reforço [9] para realizar tarefas. O CST já possuía uma

implementação de QLearning [10] interna, entretanto foi necessário modelar como as saídas do

módulo atencional poderiam alimentar o algoritmo.

4.1 QLearning

QLearning é um algoritmo de Aprendizado por Reforço que capacita agentes a aprender a

agir de forma ótima em ambientes dinâmicos. Algoritmos de aprendizado de reforço tem por

objetivo aprender a realizar uma tarefa pré-determinada maximizando o valor total de

recompensas que são obtidas realizando certas ações e consequentemente atingindo

determinados estados.

Um agente em um ambiente tem como conjuntos de ações , por exemplo, e pode A

encontrar-se em um conjunto de estados no ambiente. Ao realizar uma ação que leva S a ∈ A

de um estado a outro sendo , é recebida uma recompensa numérica. s1 → s2 s , s1 2 ∈ S r

Assim, ao final de inúmeras iterações, o agente vai ser capaz de deduzir o melhor conjunto de

ações que leva ao estado final (que completa a tarefa) com o valor ótimo de recompensas.

Para realizar o processo de aprender qual é o conjunto de ações ótimos para o problema,

o QLeaning mantém uma tabela de dimensões onde cada elemento representa a um x AS xij

valor relacionado ao estado inicial a ação que foi executada para sair daquele estado. A si aj

cada iteração este valor é atualizado seguindo a Equação 1.

9

Q(s,a)= Q(s,a) + * (r(s) + * max​a'​(s',a') - Q(s,a))α γ

 Eq. 1

Onde é a taxa de aprendizado e é a taxa de desconto temporal. ​Após a alteração na tabela, α γ

a próxima ação ótima é selecionada, escolhendo-se dentre duas opções: a ação cujo valor

correspondente ao estado corrente é máximo, ou uma ação aleatória. A possibilidade de escolher

entre estas alternativas permite o agente a explorar o conhecimento que já adquiriu sobre o

ambiente e também a explorar novas partes do ambiente ainda desconhecidas.

Com este mecanismo, é possível aprender a melhor política de seleção de ações para

qualquer tarefa.

5. Implementação
5.1 LearnerCodelet
Um novo codelet, chamado de LearnerCodelet, foi implementado para utilizar a classe

QLearning e reunir os componentes de memória necessários para fazer o agente atencional

aprender. Na Figura 4 está o esquema final de codelets e classes após a adição de nossas

modificações.

10

Figura (4).: (1) Representa Memory Objects do CST. (2), (3), (4) e (5) Representa Codelets Motores, Sensoriais e

Atencionais e de Aprendizado, respectivamente e (6) Representa as classes de comunicação externa com a

remoteAPI do V-REP, que acessa o robô.

Para alimentar o algoritmo de aprendizado de reforço escolhido, foi necessário definir

algumas diretivas: ​ações​​, ​estados​​ e ​recompensas​​.

A lista de ações está diretamente relacionada à tarefa que o agente deve aprender a

realizar. Por exemplo, se essa tarefa for seguir o vencedor encontrado pelo módulo atencional,

um possível conjunto de ações pode ser o listado seguindo a Equação 2.

 { a , a , a }A = 1 2 3

a Andar até o v 1 → t

a Girar em direção ao v 2 → t

a azer nada 3 → F

11

ndice da feature vencedora do instante t, onde indice [0,] }vt → Í ∈ { 7

Eq. 2

As ações traduzem-se em ações para o motor, assim os objetos de memória e aa1 2

referentes à velocidade dos motores deveriam ser saídas do LearnerCodelet. Quando a ação

selecionada pelo algoritmo era , a mesma velocidade era passada para estes dois objetos.a1

A fim de decidir para qual lado o agente deveria rodar quando ação era selecionada, a2

foi necessário também ter acesso à orientação do Pioneer no V-REP, e da orientação do sonar

referente à feature de .vt

Obtidos estes valores, foi calculada a diferença entre eles e uma velocidade fixa foi

setada na roda correta. A figura 5 apresenta o esquema lógico correspondente.

Figura (5) Esquema que ilustra a lógica de decisão de giro do robô

Para adquirir a orientação do agente via V-REP, foi criada uma nova classe

OrientationClass, que conseguia capturar estes valores no simulador.

Os possíveis estados estão diretamente ligados ao mapa de saliências . O mapa possui 8 S

dimensões possíveis, e portanto foi necessário mapear estes valores para um só, que

representasse o estado naquele instante de tempo: .St ⇒ Et

12

Como indicado na Figura 6, para realizar o procedimento de mapeamento, primeiramente

é preciso normalizar cada um dos valores de entre 0 e 1. Para calcular o valor normalizado, St

utiliza-se a fórmula apresentada na Equação 3.

 ni = s − min(S)i t
max (S) − min (S) t t

Eq 3

Para transformar estes 8 valores em um só, é preciso escolher uma base numérica para

servir de multiplicador. Em nossos experimentos escolhemos a base 5. Assim, cada valor é ni

discretizado em 5 intervalos possíveis, dando origem ao mapa intermediário . Cada valor N t

desse mapa é multiplicado por seu respectivo multiplicador da base 5, e quando somados eles

dão origem ao estado .Et

Figura (6). Esquema que ilustra o processo de discretização do mapa de saliência em um único estado

Portanto, dado um mapa de saliências, conseguimos inferir seu respectivo estado. Os

estados, dada a escolha de base 5, variam entre 0 e e esta é uma das dimensões da tabela do 58

algoritmo de QLearnig. A outra dimensão é a mesma dimensão das Ações, ou seja, 3.

13

Para realizar o aprendizado, ou seja, atualizar a tabela em cada iteração, o algoritmo

precisa ainda da recompensa que aquele estado ocasiona. A recompensa varia muito dependendo

do objetivo do experimento. Um exemplo seria a Equação 4.

 { 10.0, se v foi atingido em t ,rt = t

 0.0, se outro objeto foi atingido em t , − 1

} 0, caso contrário Eq. 4

A averiguação para saber se o agente atingiu qualquer objeto é feita através dos valores

brutos dos sonares, já que eles possuem a mesma dimensão de todos os mapas atencionais e da

lista de vencedores. Foi definido um valor de threshold para determinar se uma leitura do sensor

era próxima demais e significava uma batida naquela posição.

No início de cada iteração do LearnerCodelet, primeiramente eram adquiridos o estado e

ação do instante anterior . Com estas variáveis em mãos, e calculando-se a recompensa e aet−1 t−1

que o instante atual proporciona, a tabela de aprendizado era atualizada na posiçãort e aet−1 t−1

com o valor .rt

Após a atualização, a próxima ação era selecionada através da função getAction()

passando-se como estado. A velocidade definida através da ação era passada para os objetos et

de memória dos motores, e o agente se atualizava e se locomovia no ambiente, reiniciando o

ciclo.

6. Desenvolvimento dos Experimentos
Cada experimento possuía um objetivo específico mas os que utilizaram aprendizado

para validação dos módulo tinham uma estrutura comum. Um processo de aprendizado por

reforço pode ser dividido em duas partes: aprendizado e exploração. Para aprender, é necessário

fazer uma série de rodadas de simulações, sorteando aleatoriamente a posição inicial do agente e

definindo uma condição de parada para ressetar a rodada e iniciar uma nova simulação,

14

mantendo-se a tabela Q. Foi estipulado um número de 500 ações por rodada como número

máximo.

Além disso, alguns parâmetros do algoritmo de QLearning foram comuns entre os

experimentos de aprendizado, sendo:

ction Grid 0.1A =

 0.5 α =

 0.9 γ =

 0.95β =

O valor de ​se refere a probabilidade de o algoritmo escolher a melhor ação ction GridA

ao invés de uma ação randômica. Escolher somente a melhor ação em todas as iterações significa

que o agente não será capaz de explorar a tabela inteira. O valor se refere ao learning rate, lphaA

ao discount factor e a probabilidade da escolha randômica de ação selecionar a nãoammaG etaB

anterior ao invés de uma ação verdadeiramente randômica.

Ambos os experimentos de aprendizado utilizaram a cena ilustrada pela Figura 17 como

ambiente.

6.1 Experimento de Validação Básica dos Módulos Atencionais

Como um primeiro experimento de validação básica, propusemos uma simulação

simples, com o robô pioneer parado em um ambiente estático com um único objeto cruzando seu

campo de visão.

Este experimento teve como objetivo testar o funcionamento dos módulos atencionais do

framework, e verificar se eles estavam funcionando como o proposto. É de extrema importância

que todos os codelets estejam funcionando de forma correta, já que se houver algum erro de

implementação neste estágio, é impossível desenvolver qualquer tipo de feature adicional no

modelo.

15

Os codelets mais básicos de sensores (sonar e laser) devem coletar as informações do

ambiente e passá-las para os codelets de features (distância, direção e o combined features). O

codelet que monta o mapa de saliência deve estar multiplicando corretamente o mapa de features

com o mapa atencional. Por fim, o codelet DecisionMaking, o mais complexo, deve montar

corretamente o próximo mapa atencional e definir o vencedor daquele timestamp, baseado no

mapa de saliência e nos ciclos inibitórios e excitatórios do modelo Bottom Up.

Para que fosse possível rodar a iteração completa do ciclo atencional, foi necessário

realizar alterações no codelet DecisionMaking. Primeiramente, de acordo com o modelo teórico,

uma feature só é adicionada à lista de vencedores caso ela seja a vencedora do mapa de saliência

e ela não estava previamente na lista. Esta última condição se traduz em: a feature só pode voltar

a entrar na lista de vencedores caso ela já tenha passado por seu ciclo excitatório, inibitório, e ela

tenha saído da curva atencional. No código anterior, isso não estava ocorrendo, já que para o

ambiente estático do experimento, a cada iteração a mesma feature era adicionada novamente

como vencedora. Esse detalhe foi então corrigido. Outros aspectos pequenos do código foram

alterados: constantes da curva gaussiana e ampliação correta da curva nas features que não foram

vencedoras.

Para validar este experimento, foram gerados gráficos de todos os mapas gerados por

cada um dos codelets mencionados.

6.2 Experimento de Utilização do Codelet de Aprendizado

O segundo experimento visava em realmente testar e validar o modelo atencional

utilizando sua saída (o mapa de saliências) como entrada para o algoritmo de aprendizado. O

objetivo era fazer o robô aprender a explorar ao máximo o ambiente, utilizando somente o mapa

de saliência.

Definimos que uma simulação iria se iniciar novamente quando o robô se chocasse com

qualquer objeto ou um número de 500 ações fossem completadas. O sistema de recompensa foi

definido segundo a Equação 5.

16

 { 1, se nenhum objeto foi atingido em t } rt = Eq 5

Assim, quanto mais ações fossem realizadas sem colisão, mais alta seria a recompensa

acumulada. Caso o agente se chocasse com algum objeto antes do fim das 500 ações, sua

recompensa acumulada seria menor.

Com estes dados de recompensa acumulada por rodada, foi possível plotar um gráfico

que mostra a curva de aprendizado do robô.

Para validar a política de escolhas que o agente aprendeu, rodamos algumas vezes a

simulação, dessa vez em modo de exploração, somente escolhendo a próxima ação baseado nos

valores da tabela Q, sem atualizá-la com recompensas.

6.3 Experimento de Tentativa de Melhoria do Sistema de Aprendizado

Como último experimento, foram feitas algumas alterações em pequenos parâmetros

visando melhorar a política aprendida no Experimento 6.2.

Primeiramente, o conjunto de ações foi modificado para atender melhor ao objetivo: ao

invés do conjunto de ações citado na seção anterior, modificamos a configuração para:

 { a , a , a }A = 1 2 3

a Andar até o v 1 → t

a Girar em direção oposta ao v 2 → t

a azer nada 3 → F

ndice da feature vencedora do instante t, onde indice [0,] }vt → I ∈ { 7

Assim, a informação de quem é o vencedor ajuda o agente a não se colidir com ele, pois

ele pode girar em direção oposta.

Além disso, aumentamos o número de rodadas para 100 no total, deixando a recompensa

acumulada máxima em 50.000, ao invés de 25.000 como na seção anterior.

17

Os mesmos gráficos foram gerados para comparação com o Experimento 6.2.

7. Resultados

7.1 Resultados Experimento 6.1

Neste experimento foram realizados testes para avaliação dos codelets de Sensores,

CombinedFeature (Distância + Direção), de Saliência e Atencional. A Figura 7 mostra as saídas

de cada mapa gerado com relação ao tempo. Eles foram coletados em uma cena simples e

estática (seu printscreen está na Figura 8).

18

Figura (7). Outputs dos codelets de Sonar, CombinedFeature, Attentional e Saliency com relação ao tempo

Figura (8) Cena estática utilizada no experimento 6.1

7.2 Resultados Experimento 6.2
Este experimento tem como objetivo validar o aprendizado utilizando QLearning

realizando 50 rodadas, cada uma com 500 ações no máximo ou até colidir. Toda ação gerava

uma recompensa de 1, e o agente poderia girar na direção da feature vencedora.

Foram plotados a curva de aprendizado (reforço acumulado com relação ao tempo) na

Figura 9. As Figuras 10, 11 e 12 apresentam trajetos realizados pelo robô utilizando a política

aprendida a partir de poses iniciais distintas.

19

Figura (9) Curva de aprendizado no experimento 6.2

20

 Figuras (10) Trajeto aprendido no experimento 6.2

 Figuras (11) Trajeto aprendido no experimento 6.2

21

 Figuras (12) Trajeto aprendido no experimento 6.2

7.3 Resultados Experimento 6.3
Neste experimento, o algoritmo de aprendizado utilizando QLearning foi executado por

realizando 100 rodadas, cada uma com 500 ações no máximo ou até colidir. Toda ação gerava

uma recompensa de 1, e o agente poderia girar somente na direção oposta a da feature vencedora.

Foram plotados a curva de aprendizado (reforço acumulado com relação ao tempo) na

Figura 13 e trajetos realizados pelo robô utilizando somente a política aprendida nas Figuras 14,

15 e 16.

22

Figura (13) Curva de aprendizado no experimento 6.3

23

 Figuras (14) Trajeto aprendido no experimento 6.3

24

 Figuras (15) Trajeto aprendido no experimento 6.3

 Figuras (16) Trajeto aprendido no experimento 6.3

Figura (17) Cena utilizada pelos experimentos 6.2 e 6.3.

25

4. Conclusões
A partir dos experimentos é possível concluir que utilizar o mapa atencional, mais

especificamente o de saliências, como entrada para um algoritmo de aprendizado de reforço

produz resultados bastante positivos. Um dos pontos negativos é que, por exemplo, ao identificar

pontos que não possuem saliências (como paredes), ele acaba indo diretamente de encontro a

elas. Isto pode indicar que o mapa de saliência pode ser usado como fruto do aprendizado, mas

podendo ser necessário realizar observações sobre os mapas de características originais para

decisões mais complexas.

Comparando-se os experimentos 2 e 3 é possível notar que o conjunto de ações implica

diretamente na qualidade do aprendizado, e que ter um conjunto que se relaciona perfeitamente

com o objetivo em questão é fundamental.

Finalmente, concluímos que o trabalho de verificação, validação e utilização do modelo

atencional utilizando o CST conforme proposto inicialmente foram realizados com sucesso.

Todos os códigos implementados podem ser encontrados no github em [7] na branch

“experiments”.

9. Trabalhos Futuros

Para melhorar a implementação do modelo atencional CONAIM no CST e ampliar suas

possíveis aplicações, pode ser adicionado o curso TOP-DOWN do modelo, aumentando assim a

gama de problemas que podem ser resolvidos, e tornando o modelo ainda mais real.

Mesmo sem implementar esta parte mais complexa, poderia ser feito um novo

experimento com o objetivo de seguir o objeto mais rápido da cena, por exemplo. Seria

necessário somente aumentar o peso da feature de direção no CombinedFeatureMap e mudar as

recompensas para incentivar o agente a bater no vencedor.

26

Referências

[1] Raizer, K.; Paraense, A.L.O.; Gudwin, R. R. - A Cognitive Architecture with Incremental

Levels of Machine Consciousness Inspired by Cognitive Neuroscience, International Journal of

Machine Consciousness, Vol. 4, No. 2 (2012) 335-352, World Scientific Publishing Company,

[2] Castro, E.C.; Gudwin, R.R. - A Scene-Based Episodic Memory System for a Simulated

Autonomous Creature, International Journal of Synthetic Emotions, 4(1), 32-64, January-June

2013, IGI Global.

[3] A.S. Simões. CONAIM: A Conscious Attention-Based Integrated Model for Human-Like

Robots. Disponível em: ​http://ieeexplore.ieee.org/document/7383269/​.

[4] Remote API de JAVA. Disponível em:

 ​http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsJava.htm

[5] CST - The Cognitive Systems Toolkit. Disponível em: ​http://cst.fee.unicamp.br​.

[6] E.L. Colombini. An Attentional Model for Intelligent Robotics Agents. http://www.bdita.

bibl.ita.br/tesesdigitais/lista_resumo.php?num_tese=66528

[7] GitHub Módulo Atencional do CST. Disponível em:

https://github.com/leandrones/CST_AttMod_App

[8] GitHub CST - The Cognitive Systems Toolkit. Disponível em:

https://github.com/CST-Group/cst

[9] SUTTON, R. S. Temporal Credit Assignment in Reinforcement Learning. University of

Massachusetts, The MIT Press, 1984.

[10] Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis, University of

Cambridge, England. Werbos, P.J. (1977).

27

http://ieeexplore.ieee.org/document/7383269/
http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsJava.htm
http://cst.fee.unicamp.br/
https://github.com/leandrones/CST_AttMod_App
https://github.com/CST-Group/cst

