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Resumo. O objetivo deste projeto de final de curso foi explorar os módulos de atenção baseados no                 

CONAIM (Conscious Attention-Based Integrated Model) recentemente incorporados ao CST (Cognitive          

Systems Tool-kit). O CST é um framework geral para a construção de arquiteturas cognitivas que permite                

a utilização e integração de diversas tecnologias. Nosso propósito com este estudo é validar os processos                

atencionais definidos pelo CONAIM que foram implementados no CST na forma de módulos. Para isso,               

um conjunto de experimentos utilizando aprendizado de reforço foram definidos e implementados em um              

simulador robótico de alta fidelidade, e assim foi possibilitada a validação dos processos atencionais. 
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1. Introdução 
Ao longo da evolução da humanidade, e principalmente no mundo moderno, a mente foi              

vista como um artefato de imensa complexidade e importância em nossas vidas. Indagar sobre              

seu funcionamento trás a tona questões filosóficas que talvez nunca seremos capazes de sanar,              

mas diversas teorias foram e estão sendo criadas a fim de embasar, compreender e reproduzir               

como esta máquina super potente que está sempre presente conosco funciona. 

A filosofia foi a pioneira na tentativa de explicar como o conhecimento e o              

comportamento humano se organizavam e o que era exatamente a cognição. Mais recentemente,             

cientistas voltados para áreas tecnológicas estão explorando extensivamente o assunto e a            

robótica foi uma das áreas que mais avançou em estruturar inteligência em agentes, com              

objetivos de executar as tarefas das mais simples até as mais complexas.  

A fim de reproduzir em seres artificiais a competência humana de aprender, planejar,             

decidir e entender certos aspectos do ambiente, foi preciso ao longo do tempo desenvolver              

modelos teóricos que mapeiam como o cérebro realiza tais processos. Neste contexto, muitos             

modelos para diferentes capacidades inteligentes vieram a tona: aprendizado, atenção, tomada de            

decisão, memória, percepção, geração de comportamento, etc. 

Ao associar um modelo cognitivo a sistemas computacionais, temos as chamadas           

arquiteturas cognitivas, que normalmente juntam tanto aspectos teóricos quanto frameworks de           

software para que possam ser utilizadas em diferentes aplicações. 

Como arquitetura cognitiva utilizamos neste projeto o Cognitive System Toolkit [1], [2].            

O CST possui vários componentes implementados, sendo necessária sua adaptação para a            

aplicação em questão, e este trabalho utiliza somente os componentes de memória, atenção e              

aprendizado para realizar experimentos. 

Como modelo para embasar nossa implementação, escolhemos o Modelo Atencional          

CONAIM [3]. Ser apto a focar seu ciclo cognitivo em partes diferentes do ambiente ao longo do                 

tempo é algo muito corriqueiro para o ser humano, algo que nem percebemos no nosso dia a dia,                  

mas para robôs é um aspecto essencial. A quantidade de sensores e dados que chegam até eles                 
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tende a ficar cada vez maior, e por isso é necessário um meio de decidir quais destes dados e                   

medidas são mais importantes naquele momento.  

Módulos atencionais em robôs possuem diversas aplicações, especialmente quando         

relacionadas a alguma inteligência. A capacidade de focar a atenção no objeto mais rápido de               

uma cena, por exemplo, pode compor um robô que tem como função perseguir carros que andam                

em alta velocidade nas estradas. Além disso, agentes que são capazes de absorver detalhes              

diferentes da cena ao longo do tempo são muito mais adaptáveis, já que esta é uma das maiores                  

dificuldades da robótica fora de ambientes simulados: cenas que se alteram muito e não seguem               

regras pré-definidas. 

Para demonstrar a usabilidade da atenção em agentes, vamos utilizar o output do nosso              

modelo atencional como entrada para um componente de aprendizado que deverá aprender a             

realizar um conjunto de tarefas via interação com o ambiente.  

 

2. Objetivo 
O objetivo deste Trabalho Final de Graduação é realizar um conjunto de experimentos             

para validar a implementação do módulo atencional do CST baseado no CONAIM e verificar a               

possibilidade de que um robô aprenda comportamentos inteligentes sobre o espaço atencional ao             

invés do espaço de features. Para tal, serão utilizadas features obtidas a partir da execução do                

ciclo atencional do CONAIM no CST a fim de que o robô aprenda a realizar tarefas                

pré-definidas. 

Mais especificamente objetivamos: 

1. Estudar o modelo atencional proposto pelo CONAIM 

2. Estudar a implementação de 1. No CST 

3. Construir features a partir dos dados sensórios 

4. Combinar as features para construção dos mapas atencionais e de saliência 

5. Validar individualmente as features assim como a composição das mesmas 

6. Implementar o módulo de aprendizado por reforço no CST sobre o espaço atencional 

7. Executar experimentos para aprendizado de tarefas  
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3. Materiais 

Todos os experimentos foram realizados utilizando o simulador de alta finalidade V-REP.            

Para que fosse possível executar o código do CST no simulador, foi necessário configurar sua               

remoteAPI do cliente [4], isto é, além de adicionar os arquivos especiais da API na pasta do                 

projeto, foi preciso adicionar as bibliotecas no caminho do Java: ​-Djava.library.path=.  

Um robô do tipo Pioneer P3DX serviu como agente atencional capaz de percorrer o              

ambiente e aprender como chegar ao seu objetivo através de features atencionais. O robô estava               

equipado de 16 sensores sonares, 8 deles nos 180º da parte dianteira, e os outros 8 nos 180º da                   

parte traseira, além de um sensor laser posicionado acima de sua lataria, no centro. O sensor de                 

laser era capaz de obter 180 leituras a cada ciclo, referente aos dados da parte frontal do robô. 
 

3.1 CST - The Cognitive System Toolkit 
O CST possui diversos módulos implementados, mas existem dois conceitos primordiais 

na sua arquitetura: codelets e memory objects, conforme apresentado na Figura 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figura (1) Representação esquemática dos codelets do CST.​ ​Referência: [5] 
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Codelets são pequeno componentes responsáveis por pequenas partes de processamento          

do sistema cognitivo. Eles podem ser por exemplo, divididos em codelet de percepção, codelet              

atencional, codelet de aprendizado, etc, variando com a aplicação. Cada codelet possui seu             

próprio input e output, que são memory objects, e estão agrupados em um Coderack. A cada                

ciclo atencional, todos os codelets de um codeRack serão executados, recebendo seus memory             

objects de entrada, fazendo seu devido processamento, e escrevendo em seus memory objects de              

saída. 

  
3.2 O modelo atencional 

Como proposto por [6], o modelo atencional utilizado neste projeto foi o definido pelo              

CONAIM. Existem diversos tipos de modelagem que visam explicar como funciona a atenção             

humana, mas este modelo o faz separando o processo atencional em dois componentes:             

bottom-up e top-down. O componente bottom-up se responsabiliza por processar os estímulos do             

ambiente tais como eles vem, dando importância para aqueles que mais se sobressaem. No              

top-down, existe um estímulo externo, uma tarefa ou objetivo, que guia a atenção do agente. Para                

este projeto, iremos abordar somente o componente bottom-up. A Figura 2 ilustra o             

funcionamento do sistema. 

A cada ciclo atencional, espera-se que inúmeros dados de diversos sensores sejam            

captados e partir dos mesmos são construídos mapas de características (ou features). Para             

condensar tais dados, é preciso gerar um mapa de features combinadas, que deixe todas as               

features com a mesma dimensão em um só mapa. Da perspectiva bottom-up, o mapa de features                

serve como um indício do que deverá ser percebido no ambiente. Ao decidir qual das regiões do                 

mapa de saliência é a vencedora, a partir da estratégia Winner Takes it All (ou seja, a feature                  

mais sobressaltada vence), o vencedor é adicionado a uma lista de vencedores e seu ciclo               

atencional se inicia. Durante certo período de tempo, a região vencedora será realçada pelo mapa               

atencional, e depois entrará em um período inibitório. Durante este período, esta região fica              

como negativa no mapa atencional, para que outras possam ser atendidas pelo agente. Este              

processo é chamado de Inibição de Retorno (Inhibition Of Return - IOR). O mapa de saliência é                 
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resultado da multiplicação do mapa atencional com o mapa de features combinadas, e será              

utilizado para uma super representação do ambiente percebido. 

 

  

 

   

Figura (2) Ilustra o funcionamento do modelo atencional CONAIM. Referência: [6] 

 
3.3 Implementação do modelo atencional no CST 
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Como mencionado previamente, o código base para o desenvolvimento dos experimentos           

foi desenvolvido a partir do Módulo Atencional do CST [7] e do próprio CST na branch                

atencional [8]. 

A implementação do modelo atencional proposto no CST segue a estrutura apresentada na             

Figura 3. 

 

 

   

Figura (3). (1) Representa Memory Objects do CST. (2), (3) (4) Representa Codelets Motores, Sensoriais e 

Atencionais, respectivamente e (5) Representa as classes de comunicação externa com a remoteAPI do V-REP, que 

acessa o robô. 

 

Os codelets mais primitivos são representados pelos MotorCodelet (a), SonarCodelet (b)           

e LaserCodelet (c). Estes componentes estão diretamente ligados com a remoteAPI do simulador             

V-REP e fazem a comunicação direta com o Pioneer, ou seja, eles interagem diretamente com o                

ambiente de estudo. 
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Pode-se perceber, portanto, que os dados brutos de distância vem diretamente dos            

Memory Objects do SonarCodelet e do LaserCodelet e são, então, utilizados para computar os              

valores de distância e direção do robô, através dos codelets DirectionCodelet (d) e             

DistanceCodelet (e). A distância é um cálculo direto dos valores computados pelo laser (as              

medidas são apenas normalizadas), enquanto que a direção é obtida através de uma combinação              

entre os valores de laser e sonar, e sua dimensão final é igual à dimensão do sonar: oito,                  

referentes aos sonares dianteiros. 

Estes valores são alocados em seus respectivos Memory Objects e passados para o             

codelet CombinedFeatureCodelet (f), cuja função é combinar estas duas features em um único             

espaço dimensional (que será novamente de tamanho oito, por conta dos sonares dianteiros).             

Assim o Memory Object que representa o output do codelet (f) são as features que escolhemos                

para caracterizar o ambiente, combinadas. Estas features foram distância (computada pelo laser)            

e direção (computada como um conjunto de laser e sonar). 

Estes passos anteriores foram feitos somente para a aquisição de features, e o mapa final               

de features combinadas será passado como entrada para o SaliencyMapCodelet (g). A finalidade             

deste codelet é somente multiplicar o mapa atencional (que é inicializado com valores unitários,              

simulando um ambiente sem vencedores), pelo mapa de combined features. 

A saída deste codelets, que é o mapa de saliências, é passada como entrada para o último                 

codelet: DecisionMakingCodelet (h), que implementa em si o modelo atencional proposto. A            

partir do mapa de saliência, a função principal deste codelet irá calcular a feature vencedora               

daquele instante de tempo , adicioná-la à lista de vencedores e verificar as curvas de atenção    vt             

para todos os vencedores da lista, para assim poder atualizar o mapa atencional, realimentando o               

ciclo. 

Todos codelets ficam contidos em um CodeRank, e após o início do ciclo atencional, a               

função principal de todos eles roda em Threads paralelas, alimentando seus devidos Memory             

Objects de output. 
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4. Modelo Proposto 

A fim de realizar experimentos inteligentes no módulo atencional, o primeiro passo foi             

verificar se seu funcionamento básico estava correto. Esta validação refere-se ao Experimento 1. 

Após esta análise, nossa proposta foi implementar um codelet inteligente, que utilizasse            

algum algoritmo de Aprendizado por Reforço [9] para realizar tarefas. O CST já possuía uma               

implementação de QLearning [10] interna, entretanto foi necessário modelar como as saídas do             

módulo atencional poderiam alimentar o algoritmo. 

 

4.1 QLearning 

QLearning é um algoritmo de Aprendizado por Reforço que capacita agentes a aprender a              

agir de forma ótima em ambientes dinâmicos. Algoritmos de aprendizado de reforço tem por              

objetivo aprender a realizar uma tarefa pré-determinada maximizando o valor total de            

recompensas que são obtidas realizando certas ações e consequentemente atingindo          

determinados estados. 

Um agente em um ambiente tem como conjuntos de ações , por exemplo, e pode          A      

encontrar-se em um conjunto de estados no ambiente. Ao realizar uma ação que leva      S        a ∈ A    

de um estado a outro sendo , é recebida uma recompensa numérica.      s1 → s2  s , s1  2 ∈ S       r   

Assim, ao final de inúmeras iterações, o agente vai ser capaz de deduzir o melhor conjunto de                 

ações que leva ao estado final (que completa a tarefa) com o valor ótimo de recompensas. 

Para realizar o processo de aprender qual é o conjunto de ações ótimos para o problema,                

o QLeaning mantém uma tabela de dimensões onde cada elemento representa a um        x AS    xij    

valor relacionado ao estado inicial a ação que foi executada para sair daquele estado. A    si     aj         

cada iteração este valor é atualizado seguindo a Equação 1. 
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Q(s,a)= Q(s,a) +  * (r(s) +  * max​a'​(s',a') - Q(s,a))α γ      

   Eq. 1 

 

Onde é a taxa de aprendizado e é a taxa de desconto temporal. ​Após a alteração na tabela, α       γ             

a próxima ação ótima é selecionada, escolhendo-se dentre duas opções: a ação cujo valor              

correspondente ao estado corrente é máximo, ou uma ação aleatória. A possibilidade de escolher              

entre estas alternativas permite o agente a explorar o conhecimento que já adquiriu sobre o               

ambiente e também a explorar novas partes do ambiente ainda desconhecidas.  

Com este mecanismo, é possível aprender a melhor política de seleção de ações para              

qualquer tarefa. 

   

5. Implementação 
5.1 LearnerCodelet 
Um novo codelet, chamado de LearnerCodelet, foi implementado para utilizar a classe            

QLearning e reunir os componentes de memória necessários para fazer o agente atencional             

aprender. Na Figura 4 está o esquema final de codelets e classes após a adição de nossas                 

modificações. 
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Figura (4).: (1) Representa Memory Objects do CST. (2), (3), (4) e (5) Representa Codelets Motores, Sensoriais e 

Atencionais e de Aprendizado, respectivamente e (6) Representa as classes de comunicação externa com a 

remoteAPI do V-REP, que acessa o robô. 

 

Para alimentar o algoritmo de aprendizado de reforço escolhido, foi necessário definir            

algumas diretivas: ​ações​​, ​estados​​ e ​recompensas​​. 

A lista de ações está diretamente relacionada à tarefa que o agente deve aprender a               

realizar. Por exemplo, se essa tarefa for seguir o vencedor encontrado pelo módulo atencional,              

um possível conjunto de ações pode ser o listado seguindo a Equação 2.  

 

 { a , a ,  a  }A =  1  2  3  

 

a Andar até o v 1 →  t  

a Girar em direção ao v 2 →  t   

a azer nada 3 → F  
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ndice da feature vencedora do instante t, onde indice  [0, ] }vt → Í  ∈ { 7

 

Eq. 2 

As ações traduzem-se em ações para o motor, assim os objetos de memória   e  aa1 2             

referentes à velocidade dos motores deveriam ser saídas do LearnerCodelet. Quando a ação             

selecionada pelo algoritmo era , a mesma velocidade era passada para estes dois objetos.a1   

A fim de decidir para qual lado o agente deveria rodar quando ação era selecionada,             a2   

foi necessário também ter acesso à orientação do Pioneer no V-REP, e da orientação do sonar                

referente à feature de .vt  

Obtidos estes valores, foi calculada a diferença entre eles e uma velocidade fixa foi              

setada na roda correta. A figura 5 apresenta o esquema lógico correspondente. 

 

 

Figura (5) Esquema que ilustra a lógica de decisão de giro do robô 

 

 

Para adquirir a orientação do agente via V-REP, foi criada uma nova classe             

OrientationClass, que conseguia capturar estes valores no simulador. 

Os possíveis estados estão diretamente ligados ao mapa de saliências . O mapa possui 8          S      

dimensões possíveis, e portanto foi necessário mapear estes valores para um só, que             

representasse o estado naquele instante de tempo: .St ⇒ Et  
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Como indicado na Figura 6, para realizar o procedimento de mapeamento, primeiramente            

é preciso normalizar cada um dos valores de entre 0 e 1. Para calcular o valor normalizado,        St          

utiliza-se a fórmula apresentada na Equação 3. 

 

  ni =  s  − min(S )i t
max (S ) − min (S ) t t

Eq 3 

 

Para transformar estes 8 valores em um só, é preciso escolher uma base numérica para               

servir de multiplicador. Em nossos experimentos escolhemos a base 5. Assim, cada valor é             ni  

discretizado em 5 intervalos possíveis, dando origem ao mapa intermediário . Cada valor          N t    

desse mapa é multiplicado por seu respectivo multiplicador da base 5, e quando somados eles               

dão origem ao estado  .Et  

 

 

 

Figura (6). Esquema que ilustra o processo de discretização do mapa de saliência em um único estado 

 

Portanto, dado um mapa de saliências, conseguimos inferir seu respectivo estado. Os            

estados, dada a escolha de base 5, variam entre 0 e e esta é uma das dimensões da tabela do           58          

algoritmo de QLearnig. A outra dimensão é a mesma dimensão das Ações, ou seja, 3.  
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Para realizar o aprendizado, ou seja, atualizar a tabela em cada iteração, o algoritmo              

precisa ainda da recompensa que aquele estado ocasiona. A recompensa varia muito dependendo             

do objetivo do experimento. Um exemplo seria a Equação 4. 

 

 {    10.0, se v  foi atingido em t ,rt =   t  

          0.0, se outro objeto foi atingido em t , − 1   

}               0, caso contrário  Eq. 4 

 

A averiguação para saber se o agente atingiu qualquer objeto é feita através dos valores               

brutos dos sonares, já que eles possuem a mesma dimensão de todos os mapas atencionais e da                 

lista de vencedores. Foi definido um valor de threshold para determinar se uma leitura do sensor                

era próxima demais e significava uma batida naquela posição. 

No início de cada iteração do LearnerCodelet, primeiramente eram adquiridos o estado e             

ação do instante anterior . Com estas variáveis em mãos, e calculando-se a recompensa     e aet−1 t−1           

que o instante atual proporciona, a tabela de aprendizado era atualizada na posiçãort               e aet−1 t−1

com o valor .rt  

Após a atualização, a próxima ação era selecionada através da função getAction()            

passando-se como estado. A velocidade definida através da ação era passada para os objetos et              

de memória dos motores, e o agente se atualizava e se locomovia no ambiente, reiniciando o                

ciclo. 
   

6. Desenvolvimento dos Experimentos 
Cada experimento possuía um objetivo específico mas os que utilizaram aprendizado           

para validação dos módulo tinham uma estrutura comum. Um processo de aprendizado por             

reforço pode ser dividido em duas partes: aprendizado e exploração. Para aprender, é necessário              

fazer uma série de rodadas de simulações, sorteando aleatoriamente a posição inicial do agente e               

definindo uma condição de parada para ressetar a rodada e iniciar uma nova simulação,              
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mantendo-se a tabela Q. Foi estipulado um número de 500 ações por rodada como número               

máximo.  

Além disso, alguns parâmetros do algoritmo de QLearning foram comuns entre os            

experimentos de aprendizado, sendo: 

 

ction Grid 0.1A =   

  0.5  α =   

 0.9  γ =    

 0.95β =   

 

O valor de ​se refere a probabilidade de o algoritmo escolher a melhor ação   ction GridA             

ao invés de uma ação randômica. Escolher somente a melhor ação em todas as iterações significa                

que o agente não será capaz de explorar a tabela inteira. O valor se refere ao learning rate,             lphaA       

ao discount factor e a probabilidade da escolha randômica de ação selecionar a nãoammaG     etaB           

anterior ao invés de uma ação verdadeiramente randômica. 

Ambos os experimentos de aprendizado utilizaram a cena ilustrada pela Figura 17 como 

ambiente. 

 

6.1 Experimento de Validação Básica dos Módulos Atencionais 

 

Como um primeiro experimento de validação básica, propusemos uma simulação          

simples, com o robô pioneer parado em um ambiente estático com um único objeto cruzando seu                

campo de visão. 

Este experimento teve como objetivo testar o funcionamento dos módulos atencionais do            

framework, e verificar se eles estavam funcionando como o proposto. É de extrema importância              

que todos os codelets estejam funcionando de forma correta, já que se houver algum erro de                

implementação neste estágio, é impossível desenvolver qualquer tipo de feature adicional no            

modelo.  
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Os codelets mais básicos de sensores (sonar e laser) devem coletar as informações do              

ambiente e passá-las para os codelets de features (distância, direção e o combined features). O               

codelet que monta o mapa de saliência deve estar multiplicando corretamente o mapa de features               

com o mapa atencional. Por fim, o codelet DecisionMaking, o mais complexo, deve montar              

corretamente o próximo mapa atencional e definir o vencedor daquele timestamp, baseado no             

mapa  de saliência e nos ciclos inibitórios e excitatórios do modelo Bottom Up.  

Para que fosse possível rodar a iteração completa do ciclo atencional, foi necessário             

realizar alterações no codelet DecisionMaking. Primeiramente, de acordo com o modelo teórico,            

uma feature só é adicionada à lista de vencedores caso ela seja a vencedora do mapa de saliência                  

e ela não estava previamente na lista. Esta última condição se traduz em: a feature só pode voltar                  

a entrar na lista de vencedores caso ela já tenha passado por seu ciclo excitatório, inibitório, e ela                  

tenha saído da curva atencional. No código anterior, isso não estava ocorrendo, já que para o                

ambiente estático do experimento, a cada iteração a mesma feature era adicionada novamente             

como vencedora. Esse detalhe foi então corrigido. Outros aspectos pequenos do código foram             

alterados: constantes da curva gaussiana e ampliação correta da curva nas features que não foram               

vencedoras. 

Para validar este experimento, foram gerados gráficos de todos os mapas gerados por             

cada um dos codelets mencionados. 

 

6.2 Experimento de Utilização do Codelet de Aprendizado 

 

O segundo experimento visava em realmente testar e validar o modelo atencional            

utilizando sua saída (o mapa de saliências) como entrada para o algoritmo de aprendizado. O               

objetivo era fazer o robô aprender a explorar ao máximo o ambiente, utilizando somente o mapa                

de saliência.  

Definimos que uma simulação iria se iniciar novamente quando o robô se chocasse com              

qualquer objeto ou um número de 500 ações fossem completadas. O sistema de recompensa foi               

definido segundo a Equação 5. 
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 {    1, se nenhum objeto foi atingido em  t   } rt =   Eq 5 

 

Assim, quanto mais ações fossem realizadas sem colisão, mais alta seria a recompensa             

acumulada. Caso o agente se chocasse com algum objeto antes do fim das 500 ações, sua                

recompensa acumulada seria menor. 

Com estes dados de recompensa acumulada por rodada, foi possível plotar um gráfico             

que mostra a curva de aprendizado do robô. 

Para validar a política de escolhas que o agente aprendeu, rodamos algumas vezes a              

simulação, dessa vez em modo de exploração, somente escolhendo a próxima ação baseado nos              

valores da tabela Q, sem atualizá-la com recompensas.  

  

6.3 Experimento de Tentativa de Melhoria do Sistema de Aprendizado 

 

Como último experimento, foram feitas algumas alterações em pequenos parâmetros          

visando melhorar a política aprendida no Experimento 6.2. 

Primeiramente, o conjunto de ações foi modificado para atender melhor ao objetivo: ao             

invés do conjunto de ações citado na seção anterior, modificamos a configuração para: 

 { a , a ,  a  }A =  1  2  3  

 

a Andar até o v 1 →  t  

a Girar em direção oposta ao v 2 →  t   

a azer nada 3 → F  

 

ndice da feature vencedora do instante t, onde indice  [0, ] }vt → I  ∈ { 7  

 

Assim, a informação de quem é o vencedor ajuda o agente a não se colidir com ele, pois                  

ele pode girar em direção oposta. 

Além disso, aumentamos o número de rodadas para 100 no total, deixando a recompensa              

acumulada máxima em 50.000, ao invés de 25.000 como na seção anterior. 
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Os mesmos gráficos foram gerados para comparação com o Experimento 6.2. 

   

7. Resultados 

 
7.1 Resultados Experimento 6.1 

 
Neste experimento foram realizados testes para avaliação dos codelets de Sensores,           

CombinedFeature (Distância + Direção), de Saliência e Atencional. A Figura 7 mostra as saídas              

de cada mapa gerado com relação ao tempo. Eles foram coletados em uma cena simples e                

estática (seu printscreen está na Figura 8). 
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Figura (7). Outputs dos codelets de Sonar, CombinedFeature, Attentional e Saliency com relação ao tempo 

 

 

 
Figura (8) Cena estática utilizada no experimento 6.1 

 

7.2 Resultados Experimento 6.2 
Este experimento tem como objetivo validar o aprendizado utilizando QLearning          

realizando 50 rodadas, cada uma com 500 ações no máximo ou até colidir. Toda ação gerava                

uma recompensa de 1, e o agente poderia girar na direção da feature vencedora. 

Foram plotados a curva de aprendizado (reforço acumulado com relação ao tempo) na             

Figura 9. As Figuras 10, 11 e 12 apresentam trajetos realizados pelo robô utilizando a política                

aprendida a partir de poses iniciais distintas. 
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Figura (9) Curva de aprendizado no experimento 6.2 
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  Figuras (10) Trajeto aprendido no experimento 6.2 

 

 

  Figuras (11) Trajeto aprendido no experimento 6.2 
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  Figuras (12) Trajeto aprendido no experimento 6.2 

 

7.3 Resultados Experimento 6.3 
Neste experimento, o algoritmo de aprendizado utilizando QLearning foi executado por           

realizando 100 rodadas, cada uma com 500 ações no máximo ou até colidir. Toda ação gerava                

uma recompensa de 1, e o agente poderia girar somente na direção oposta a da feature vencedora. 

Foram plotados a curva de aprendizado (reforço acumulado com relação ao tempo) na 

Figura 13 e trajetos realizados pelo  robô utilizando somente a política aprendida nas Figuras 14, 

15 e 16. 
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Figura (13) Curva de aprendizado no experimento 6.3 
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  Figuras (14) Trajeto aprendido no experimento 6.3 
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  Figuras (15) Trajeto aprendido no experimento 6.3 

 

  Figuras (16) Trajeto aprendido no experimento 6.3 

 

 
Figura (17) Cena utilizada pelos experimentos 6.2 e 6.3. 

25 



4. Conclusões 
A partir dos experimentos é possível concluir que utilizar o mapa atencional, mais             

especificamente o de saliências, como entrada para um algoritmo de aprendizado de reforço             

produz resultados bastante positivos. Um dos pontos negativos é que, por exemplo, ao identificar              

pontos que não possuem saliências (como paredes), ele acaba indo diretamente de encontro a              

elas. Isto pode indicar que o mapa de saliência pode ser usado como fruto do aprendizado, mas                 

podendo ser necessário realizar observações sobre os mapas de características originais para            

decisões mais complexas. 

Comparando-se os experimentos 2 e 3 é possível notar que o conjunto de ações implica               

diretamente na qualidade do aprendizado, e que ter um conjunto que se relaciona perfeitamente              

com o objetivo em questão é fundamental. 

Finalmente, concluímos que o trabalho de verificação, validação e utilização do modelo            

atencional utilizando o CST conforme proposto inicialmente foram realizados com sucesso.           

Todos os códigos implementados podem ser encontrados no github em [7] na branch             

“experiments”. 

 

9. Trabalhos Futuros 

Para melhorar a implementação do modelo atencional CONAIM no CST e ampliar suas             

possíveis aplicações, pode ser adicionado o curso TOP-DOWN do modelo, aumentando assim a             

gama de problemas que podem ser resolvidos, e tornando o modelo ainda mais real. 

Mesmo sem implementar esta parte mais complexa, poderia ser feito um novo            

experimento com o objetivo de seguir o objeto mais rápido da cena, por exemplo. Seria               

necessário somente aumentar o peso da feature de direção no CombinedFeatureMap e mudar as              

recompensas para incentivar o agente a bater no vencedor. 
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