»

2
<

4

Aprendendo sobre
o Espaco Atencional
no CST
- The Cognitive Systems
Toolkit

C. Regattiert E. Colombini

Relatério Técnico - [1C-PFG-18-31
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE  CAMPINAS
INSTITUTO DE  COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de Gnica responsabilidade dos autores.




Aprendendo sobre o Espaco Atencional no CST

The Cognitive System Toolkit

Carolina Regattieri de Biase Nicolini Delgado’, Esther Colombini?

! NeuralMind, carolina.regattieri@neuralmind.ai
* Instituto de Computagdo Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6176

13083-970 Campinas-SP, Brasil

esther@ic.unicamp.br

Resumo. O objetivo deste projeto de final de curso foi explorar os modulos de atencdo baseados no
CONAIM (Conscious Attention-Based Integrated Model) recentemente incorporados ao CST (Cognitive
Systems Tool-kit). O CST ¢ um framework geral para a construg@o de arquiteturas cognitivas que permite
a utilizacdo e integragdo de diversas tecnologias. Nosso propdsito com este estudo ¢ validar os processos
atencionais definidos pelo CONAIM que foram implementados no CST na forma de modulos. Para isso,
um conjunto de experimentos utilizando aprendizado de refor¢o foram definidos e implementados em um

simulador robotico de alta fidelidade, e assim foi possibilitada a validagdo dos processos atencionais.
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1. Introducao

Ao longo da evolu¢ao da humanidade, e principalmente no mundo moderno, a mente foi
vista como um artefato de imensa complexidade e importancia em nossas vidas. Indagar sobre
seu funcionamento tras a tona questoes filosoficas que talvez nunca seremos capazes de sanar,
mas diversas teorias foram e estdo sendo criadas a fim de embasar, compreender e reproduzir
como esta maquina super potente que estd sempre presente conosco funciona.

A filosofia foi a pioneira na tentativa de explicar como o conhecimento e o
comportamento humano se organizavam e o que era exatamente a cogni¢do. Mais recentemente,
cientistas voltados para areas tecnologicas estdo explorando extensivamente o assunto € a
robotica foi uma das areas que mais avangou em estruturar inteligéncia em agentes, com
objetivos de executar as tarefas das mais simples até as mais complexas.

A fim de reproduzir em seres artificiais a competéncia humana de aprender, planejar,
decidir e entender certos aspectos do ambiente, foi preciso ao longo do tempo desenvolver
modelos tedricos que mapeiam como o cérebro realiza tais processos. Neste contexto, muitos
modelos para diferentes capacidades inteligentes vieram a tona: aprendizado, atengdo, tomada de
decisdo, memoria, percepgdo, geragao de comportamento, etc.

Ao associar um modelo cognitivo a sistemas computacionais, temos as chamadas
arquiteturas cognitivas, que normalmente juntam tanto aspectos teoricos quanto frameworks de
software para que possam ser utilizadas em diferentes aplicagdes.

Como arquitetura cognitiva utilizamos neste projeto o Cognitive System Toolkit [1], [2].
O CST possui varios componentes implementados, sendo necessaria sua adaptagdo para a
aplicagdo em questdo, e este trabalho utiliza somente os componentes de memoria, atencao e
aprendizado para realizar experimentos.

Como modelo para embasar nossa implementag¢do, escolhemos o Modelo Atencional
CONAIM [3]. Ser apto a focar seu ciclo cognitivo em partes diferentes do ambiente ao longo do
tempo ¢ algo muito corriqueiro para o ser humano, algo que nem percebemos no nosso dia a dia,

mas para robos ¢ um aspecto essencial. A quantidade de sensores e dados que chegam até eles



tende a ficar cada vez maior, e por isso ¢ necessario um meio de decidir quais destes dados e
medidas sdo mais importantes naquele momento.

Modulos atencionais em robds possuem diversas aplicagdes, especialmente quando
relacionadas a alguma inteligéncia. A capacidade de focar a aten¢do no objeto mais rapido de
uma cena, por exemplo, pode compor um robd que tem como fungdo perseguir carros que andam
em alta velocidade nas estradas. Além disso, agentes que sdo capazes de absorver detalhes
diferentes da cena ao longo do tempo sdao muito mais adaptaveis, ja que esta ¢ uma das maiores
dificuldades da robdtica fora de ambientes simulados: cenas que se alteram muito e ndo seguem
regras pré-definidas.

Para demonstrar a usabilidade da atencdo em agentes, vamos utilizar o output do nosso
modelo atencional como entrada para um componente de aprendizado que deverd aprender a

realizar um conjunto de tarefas via interagdo com o ambiente.

2. Objetivo

O objetivo deste Trabalho Final de Graduagdo ¢ realizar um conjunto de experimentos
para validar a implementacdo do modulo atencional do CST baseado no CONAIM e verificar a
possibilidade de que um robd aprenda comportamentos inteligentes sobre o espacgo atencional ao
invés do espaco de features. Para tal, serdo utilizadas features obtidas a partir da execugdo do
ciclo atencional do CONAIM no CST a fim de que o rob0o aprenda a realizar tarefas
pré-definidas.
Mais especificamente objetivamos:

1. Estudar o modelo atencional proposto pelo CONAIM

Estudar a implementagdo de 1. No CST
Construir features a partir dos dados sensorios
Combinar as features para construcao dos mapas atencionais e de saliéncia
Validar individualmente as features assim como a composi¢ao das mesmas

Implementar o modulo de aprendizado por refor¢o no CST sobre o espago atencional

A U R e

Executar experimentos para aprendizado de tarefas



3. Materiais

Todos os experimentos foram realizados utilizando o simulador de alta finalidade V-REP.
Para que fosse possivel executar o codigo do CST no simulador, foi necessario configurar sua
remoteAPI do cliente [4], isto ¢, além de adicionar os arquivos especiais da API na pasta do
projeto, foi preciso adicionar as bibliotecas no caminho do Java: -Djava.library.path=.

Um robo6 do tipo Pioneer P3DX serviu como agente atencional capaz de percorrer o
ambiente e aprender como chegar ao seu objetivo através de features atencionais. O robd estava
equipado de 16 sensores sonares, 8 deles nos 180° da parte dianteira, e os outros 8 nos 180° da
parte traseira, além de um sensor laser posicionado acima de sua lataria, no centro. O sensor de

laser era capaz de obter 180 leituras a cada ciclo, referente aos dados da parte frontal do robd.

3.1 CST - The Cognitive System Toolkit

O CST possui diversos mddulos implementados, mas existem dois conceitos primordiais

na sua arquitetura: codelets e memory objects, conforme apresentado na Figura 1.
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Figura (1) Representacdo esquematica dos codelets do CST. Referéncia: [5]



Codelets sdao pequeno componentes responsaveis por pequenas partes de processamento
do sistema cognitivo. Eles podem ser por exemplo, divididos em codelet de percepcao, codelet
atencional, codelet de aprendizado, etc, variando com a aplicacdo. Cada codelet possui seu
proprio input e output, que sdo memory objects, e estdo agrupados em um Coderack. A cada
ciclo atencional, todos os codelets de um codeRack serdo executados, recebendo seus memory
objects de entrada, fazendo seu devido processamento, ¢ escrevendo em seus memory objects de

saida.

3.2 O modelo atencional

Como proposto por [6], o modelo atencional utilizado neste projeto foi o definido pelo
CONAIM. Existem diversos tipos de modelagem que visam explicar como funciona a atencao
humana, mas este modelo o faz separando o processo atencional em dois componentes:
bottom-up e top-down. O componente bottom-up se responsabiliza por processar os estimulos do
ambiente tais como eles vem, dando importancia para aqueles que mais se sobressaem. No
top-down, existe um estimulo externo, uma tarefa ou objetivo, que guia a atengao do agente. Para
este projeto, iremos abordar somente o componente bottom-up. A Figura 2 ilustra o
funcionamento do sistema.

A cada ciclo atencional, espera-se que inumeros dados de diversos sensores sejam
captados e partir dos mesmos sdo construidos mapas de caracteristicas (ou features). Para
condensar tais dados, € preciso gerar um mapa de features combinadas, que deixe todas as
features com a mesma dimensao em um sé mapa. Da perspectiva bottom-up, o mapa de features
serve como um indicio do que devera ser percebido no ambiente. Ao decidir qual das regides do
mapa de saliéncia € a vencedora, a partir da estratégia Winner Takes it All (ou seja, a feature
mais sobressaltada vence), o vencedor ¢ adicionado a uma lista de vencedores e seu ciclo
atencional se inicia. Durante certo periodo de tempo, a regido vencedora serd realgada pelo mapa
atencional, e depois entrara em um periodo inibitorio. Durante este periodo, esta regido fica
como negativa no mapa atencional, para que outras possam ser atendidas pelo agente. Este

processo ¢ chamado de Inibicdo de Retorno (Inhibition Of Return - IOR). O mapa de saliéncia ¢
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resultado da multiplicagdo do mapa atencional com o mapa de features combinadas, e serad

utilizado para uma super representagao do ambiente percebido.
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Figura (2) Ilustra o funcionamento do modelo atencional CONAIM. Referéncia: [6]

3.3 Implementagdo do modelo atencional no CST



Como mencionado previamente, o codigo base para o desenvolvimento dos experimentos

foi desenvolvido a partir do Modulo Atencional do CST [7] e do proprio CST na branch

atencional [8].

A implementagdo do modelo atencional proposto no CST segue a estrutura apresentada na

Figura 3.
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Figura (3). (1) Representa Memory Objects do CST. (2), (3) (4) Representa Codelets Motores, Sensoriais e
Atencionais, respectivamente e (5) Representa as classes de comunicagdo externa com a remoteAPI do V-REP, que

acessa o robd.

Os codelets mais primitivos sdo representados pelos MotorCodelet (a), SonarCodelet (b)
e LaserCodelet (c). Estes componentes estdao diretamente ligados com a remote API do simulador
V-REP e fazem a comunicagdo direta com o Pioneer, ou seja, eles interagem diretamente com o

ambiente de estudo.



Pode-se perceber, portanto, que os dados brutos de distdncia vem diretamente dos
Memory Objects do SonarCodelet e do LaserCodelet e sao, entdo, utilizados para computar os
valores de distancia e direcdo do robd, através dos codelets DirectionCodelet (d) e
DistanceCodelet (e). A distancia ¢ um célculo direto dos valores computados pelo laser (as
medidas sdo apenas normalizadas), enquanto que a direcdo ¢ obtida através de uma combinagao
entre os valores de laser e sonar, e sua dimensdo final ¢ igual a dimensdo do sonar: oito,
referentes aos sonares dianteiros.

Estes valores sdo alocados em seus respectivos Memory Objects e passados para o
codelet CombinedFeatureCodelet (f), cuja funcdo ¢ combinar estas duas features em um tnico
espaco dimensional (que serd novamente de tamanho oito, por conta dos sonares dianteiros).
Assim o Memory Object que representa o output do codelet (f) sdo as features que escolhemos
para caracterizar o ambiente, combinadas. Estas features foram distdncia (computada pelo laser)
e dire¢do (computada como um conjunto de laser e sonar).

Estes passos anteriores foram feitos somente para a aquisicao de features, e o mapa final
de features combinadas sera passado como entrada para o SaliencyMapCodelet (g). A finalidade
deste codelet ¢ somente multiplicar o mapa atencional (que € inicializado com valores unitarios,
simulando um ambiente sem vencedores), pelo mapa de combined features.

A saida deste codelets, que ¢ o mapa de saliéncias, € passada como entrada para o tltimo
codelet: DecisionMakingCodelet (h), que implementa em si o modelo atencional proposto. A
partir do mapa de saliéncia, a funcdo principal deste codelet ird calcular a feature vencedora
daquele instante de tempo v,, adiciona-la a lista de vencedores e verificar as curvas de ateng¢do
para todos os vencedores da lista, para assim poder atualizar o mapa atencional, realimentando o
ciclo.

Todos codelets ficam contidos em um CodeRank, e apos o inicio do ciclo atencional, a
funcdo principal de todos eles roda em Threads paralelas, alimentando seus devidos Memory

Objects de output.



4. Modelo Proposto

A fim de realizar experimentos inteligentes no méddulo atencional, o primeiro passo foi
verificar se seu funcionamento bésico estava correto. Esta validagao refere-se ao Experimento 1.

ApoOs esta analise, nossa proposta foi implementar um codelet inteligente, que utilizasse
algum algoritmo de Aprendizado por Refor¢o [9] para realizar tarefas. O CST ja possuia uma
implementagdo de QLearning [10] interna, entretanto foi necessario modelar como as saidas do

modulo atencional poderiam alimentar o algoritmo.

4.1 QLearning

QLearning ¢ um algoritmo de Aprendizado por Refor¢o que capacita agentes a aprender a
agir de forma otima em ambientes dindmicos. Algoritmos de aprendizado de refor¢co tem por
objetivo aprender a realizar uma tarefa pré-determinada maximizando o valor total de
recompensas que sdao obtidas realizando certas acdes e consequentemente atingindo
determinados estados.

Um agente em um ambiente tem como conjuntos de agdes A, por exemplo, e pode
encontrar-se em um conjunto de estados S no ambiente. Ao realizar uma agcdo a € A4 que leva
de um estado a outros;, — s, sendo s, s, € S , € recebida uma recompensa r numérica.
Assim, ao final de inimeras iteracdes, o agente vai ser capaz de deduzir o melhor conjunto de
acOes que leva ao estado final (que completa a tarefa) com o valor 6timo de recompensas.

Para realizar o processo de aprender qual € o conjunto de agdes 6timos para o problema,

o QLeaning mantém uma tabela de dimensdes S x 4 onde cada elemento x; representa a um
valor relacionado ao estado s; inicial a a¢do a /; que foi executada para sair daquele estado. A

cada iteracdo este valor ¢ atualizado seguindo a Equacdo 1.



Q(s,a)= Q(s,a) + a * (r(s) + vy * max,(s,a") - Q(s,a))
Eq. 1

Onde ¢ a taxa de aprendizado e y ¢ a taxa de desconto temporal. Apds a alteracdo na tabela,
a proxima agdo Otima ¢ selecionada, escolhendo-se dentre duas opgdes: a agdo cujo valor
correspondente ao estado corrente ¢ maximo, ou uma agao aleatdria. A possibilidade de escolher
entre estas alternativas permite o agente a explorar o conhecimento que j& adquiriu sobre o
ambiente e também a explorar novas partes do ambiente ainda desconhecidas.

Com este mecanismo, ¢ possivel aprender a melhor politica de selecdo de agdes para

qualquer tarefa.

5. Implementagao

5.1 LearnerCodelet

Um novo codelet, chamado de LearnerCodelet, foi implementado para utilizar a classe
QLearning e reunir os componentes de memoria necessarios para fazer o agente atencional
aprender. Na Figura 4 estd o esquema final de codelets e classes apos a adigdo de nossas

modificagoes.
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Figura (4).: (1) Representa Memory Objects do CST. (2), (3), (4) e (5) Representa Codelets Motores, Sensoriais e
Atencionais e de Aprendizado, respectivamente e (6) Representa as classes de comunicagdo externa com a

remoteAPI do V-REP, que acessa o robd.

Para alimentar o algoritmo de aprendizado de refor¢o escolhido, foi necessario definir
algumas diretivas: acdes, estados ¢ recompensas.

A lista de acdes esta diretamente relacionada a tarefa que o agente deve aprender a
realizar. Por exemplo, se essa tarefa for seguir o vencedor encontrado pelo modulo atencional,

um possivel conjunto de agdes pode ser o listado seguindo a Equagao 2.

A = {a]aaza a3}

a, — Andar atéov,
a, — Girar em diregdo ao v,

a, — Fazer nada
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v, — indice da feature vencedora do instante t, onde indice € {[0,7]}

Eq.2

As agles a, e a, traduzem-se em agdes para 0 motor, assim os objetos de memoria
referentes a velocidade dos motores deveriam ser saidas do LearnerCodelet. Quando a acao
selecionada pelo algoritmo era a, , a mesma velocidade era passada para estes dois objetos.

A fim de decidir para qual lado o agente deveria rodar quando agdo a, era selecionada,
foi necessario também ter acesso a orientagao do Pioneer no V-REP, ¢ da orientagdo do sonar
referente a feature de v, .

Obtidos estes valores, foi calculada a diferenga entre cles e uma velocidade fixa foi

setada na roda correta. A figura 5 apresenta o esquema logico correspondente.

Vi Vi
0 .0
™~ T
Setting LeftMotor Speed Setting RightMotor Speed

Figura (5) Esquema que ilustra a logica de decis@o de giro do robd

Para adquirir a orientacio do agente via V-REP, foi criada uma nova classe
OrientationClass, que conseguia capturar estes valores no simulador.

Os possiveis estados estdo diretamente ligados ao mapa de saliéncias S. O mapa possui 8
dimensdes possiveis, e portanto foi necessario mapear estes valores para um sO, que

representasse o estado naquele instante de tempo: §, = E|,.
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Como indicado na Figura 6, para realizar o procedimento de mapeamento, primeiramente
¢ preciso normalizar cada um dos valores de S, entre 0 e 1. Para calcular o valor normalizado,
utiliza-se a formula apresentada na Equacao 3.

_ s, min(S)
np = max (S,) — min (S,) Eq 3

Para transformar estes 8 valores em um s0, € preciso escolher uma base numérica para
servir de multiplicador. Em nossos experimentos escolhemos a base 5. Assim, cada valor n, ¢
discretizado em 5 intervalos possiveis, dando origem ao mapa intermediario N,. Cada valor
desse mapa ¢ multiplicado por seu respectivo multiplicador da base 5, e quando somados eles

ddo origem ao estado E,.

Normalizing _
0.1 = — | Sum(Dy

E:

Figura (6). Esquema que ilustra o processo de discretizagdo do mapa de saliéncia em um unico estado

Portanto, dado um mapa de saliéncias, conseguimos inferir seu respectivo estado. Os
estados, dada a escolha de base 5, variam entre 0 ¢ 5% ¢ esta é uma das dimensdes da tabela do

algoritmo de QLearnig. A outra dimensao ¢ a mesma dimensao das Ag¢des, ou seja, 3.
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Para realizar o aprendizado, ou seja, atualizar a tabela em cada iteracdo, o algoritmo
precisa ainda da recompensa que aquele estado ocasiona. A recompensa varia muito dependendo
do objetivo do experimento. Um exemplo seria a Equacdo 4.

r, = { 10.0, sev, foi atingido em t,
—10.0, se outro objeto foi atingido em t ,

0, caso contrario } Eq. 4

A averiguacdo para saber se o agente atingiu qualquer objeto ¢ feita através dos valores
brutos dos sonares, ja que eles possuem a mesma dimensdo de todos os mapas atencionais e da
lista de vencedores. Foi definido um valor de threshold para determinar se uma leitura do sensor
era proxima demais e significava uma batida naquela posi¢ao.

No inicio de cada iteracdo do LearnerCodelet, primeiramente eram adquiridos o estado e
a¢do do instante anterior e, , e a,_, . Com estas variaveis em maos, ¢ calculando-se a recompensa
r,que o instante atual proporciona, a tabela de aprendizado era atualizada na posi¢do e, ea,_,
com o valor 7,.

Apos a atualizagdo, a proxima agdao era selecionada através da funcao getAction()
passando-se e, como estado. A velocidade definida através da agdo era passada para os objetos
de memoria dos motores, e o agente se atualizava e se locomovia no ambiente, reiniciando o

ciclo.

6. Desenvolvimento dos Experimentos

Cada experimento possuia um objetivo especifico mas os que utilizaram aprendizado
para validagdo dos moédulo tinham uma estrutura comum. Um processo de aprendizado por
refor¢o pode ser dividido em duas partes: aprendizado e exploragdo. Para aprender, € necessario
fazer uma série de rodadas de simulagdes, sorteando aleatoriamente a posicao inicial do agente e

definindo uma condicdo de parada para ressetar a rodada e iniciar uma nova simulagao,
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mantendo-se a tabela Q. Foi estipulado um numero de 500 a¢des por rodada como ntimero
maximo.
Além disso, alguns pardmetros do algoritmo de QLearning foram comuns entre os

experimentos de aprendizado, sendo:

Action Grid = 0.1

o = 0.5
y = 0.9
B = 0.95

O valor de Action Grid se refere a probabilidade de o algoritmo escolher a melhor agao
ao invés de uma a¢do randomica. Escolher somente a melhor agao em todas as iteragdes significa
que o agente ndo sera capaz de explorar a tabela inteira. O valor Alpha se refere ao learning rate,
Gamma ao discount factor e Beta a probabilidade da escolha randomica de agdo selecionar a nao
anterior ao invés de uma agao verdadeiramente randémica.

Ambos os experimentos de aprendizado utilizaram a cena ilustrada pela Figura 17 como

ambiente.

6.1 Experimento de Validagdo Basica dos Mddulos Atencionais

Como um primeiro experimento de validagdo basica, propusemos uma simulagdo
simples, com o robd pioneer parado em um ambiente estitico com um unico objeto cruzando seu
campo de visao.

Este experimento teve como objetivo testar o funcionamento dos mddulos atencionais do
framework, e verificar se eles estavam funcionando como o proposto. E de extrema importancia
que todos os codelets estejam funcionando de forma correta, ja que se houver algum erro de
implementagdo neste estagio, ¢ impossivel desenvolver qualquer tipo de feature adicional no

modelo.
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Os codelets mais basicos de sensores (sonar e laser) devem coletar as informagdes do
ambiente e passa-las para os codelets de features (distancia, direcdo e o combined features). O
codelet que monta o mapa de saliéncia deve estar multiplicando corretamente o mapa de features
com o mapa atencional. Por fim, o codelet DecisionMaking, o mais complexo, deve montar
corretamente o proximo mapa atencional e definir o vencedor daquele timestamp, baseado no
mapa de saliéncia e nos ciclos inibitdrios e excitatorios do modelo Bottom Up.

Para que fosse possivel rodar a iteracdo completa do ciclo atencional, foi necessario
realizar alteragdes no codelet DecisionMaking. Primeiramente, de acordo com o modelo tedrico,
uma feature so ¢ adicionada a lista de vencedores caso ela seja a vencedora do mapa de saliéncia
e ela ndo estava previamente na lista. Esta Gltima condicao se traduz em: a feature so6 pode voltar
a entrar na lista de vencedores caso ela ja tenha passado por seu ciclo excitatério, inibitério, e ela
tenha saido da curva atencional. No cddigo anterior, isso ndo estava ocorrendo, j4 que para o
ambiente estatico do experimento, a cada iteracdo a mesma feature era adicionada novamente
como vencedora. Esse detalhe foi entdo corrigido. Outros aspectos pequenos do codigo foram
alterados: constantes da curva gaussiana e ampliagdo correta da curva nas features que nao foram
vencedoras.

Para validar este experimento, foram gerados graficos de todos os mapas gerados por

cada um dos codelets mencionados.

6.2 Experimento de Utilizacao do Codelet de Aprendizado

O segundo experimento visava em realmente testar e validar o modelo atencional
utilizando sua saida (o mapa de saliéncias) como entrada para o algoritmo de aprendizado. O
objetivo era fazer o robo aprender a explorar ao maximo o ambiente, utilizando somente o mapa
de saliéncia.

Definimos que uma simulag¢do iria se iniciar novamente quando o robd se chocasse com
qualquer objeto ou um nimero de 500 agdes fossem completadas. O sistema de recompensa foi

definido segundo a Equagao 5.
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r, = { 1, se nenhum objeto foi atingido em t } Eq5

Assim, quanto mais agdes fossem realizadas sem colisdo, mais alta seria a recompensa
acumulada. Caso o agente se chocasse com algum objeto antes do fim das 500 agdes, sua
recompensa acumulada seria menor.

Com estes dados de recompensa acumulada por rodada, foi possivel plotar um grafico
que mostra a curva de aprendizado do robo.

Para validar a politica de escolhas que o agente aprendeu, rodamos algumas vezes a
simula¢do, dessa vez em modo de exploracdo, somente escolhendo a proxima agdo baseado nos

valores da tabela Q, sem atualiza-la com recompensas.

6.3 Experimento de Tentativa de Melhoria do Sistema de Aprendizado

Como ultimo experimento, foram feitas algumas alteracdes em pequenos parametros
visando melhorar a politica aprendida no Experimento 6.2.

Primeiramente, o conjunto de acdes foi modificado para atender melhor ao objetivo: ao
invés do conjunto de acdes citado na se¢do anterior, modificamos a configuracao para:

A= {ay, a5 a3}

a, — Andar atéov,
a, — Girar em diregdo oposta ao v,

a, — Fazer nada

v, — Indice da feature vencedora do instante t, onde indice € {[0,7] }

Assim, a informagdo de quem ¢ o vencedor ajuda o agente a ndo se colidir com ele, pois
ele pode girar em dire¢do oposta.
Além disso, aumentamos o nimero de rodadas para 100 no total, deixando a recompensa

acumulada maxima em 50.000, ao invés de 25.000 como na sec¢ao anterior.
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Os mesmos graficos foram gerados para comparacao com o Experimento 6.2.

7. Resultados

7.1 Resultados Experimento 6.1

Neste experimento foram realizados testes para avaliacdo dos codelets de Sensores,
CombinedFeature (Distancia + Dire¢ao), de Saliéncia e Atencional. A Figura 7 mostra as saidas
de cada mapa gerado com relagdo ao tempo. Eles foram coletados em uma cena simples e

estatica (seu printscreen estd na Figura 8).

o
S g

= T.||T.||Il': F4d4 ": a a .:r-.ﬂ.lﬁ. 9 o 5

Altentional Map Saliency Map
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Figura (7). Outputs dos codelets de Sonar, CombinedFeature, Attentional e Saliency com relacdo ao tempo

% [= Selected ohjects:
(| Last selected object fame:
Last selected ohject type
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Last selected object orientadi
Simulation time:
Script(s) executed e g hisats {1 ms)
Caollision handling enabled Calculations: 0. detediuns.
Distance handlit Calculations: 0 (0 ms) ]

1 Yision_sensor

Fioneer pidx

Shape (multishape, pure)

x-0.0334 w-01527 =z +01384

a; +00064 b:-000.0057 o:+059.64
g ms)

Figura (8) Cena estatica utilizada no experimento 6.1

7.2 Resultados Experimento 6.2

Este experimento tem como objetivo validar o aprendizado utilizando QLearning
realizando 50 rodadas, cada uma com 500 agdes no maximo ou até colidir. Toda acdo gerava
uma recompensa de 1, e o agente poderia girar na direcdo da feature vencedora.

Foram plotados a curva de aprendizado (refor¢o acumulado com relagcao ao tempo) na
Figura 9. As Figuras 10, 11 e 12 apresentam trajetos realizados pelo robo utilizando a politica

aprendida a partir de poses iniciais distintas.
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recompensa

Curva de aprendizado por Numero de Rodadas
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Figura (9) Curva de aprendizado no experimento 6.2
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Trajeto aprendido pelo agente -- 389 acbes completas
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Figuras (10) Trajeto aprendido no experimento 6.2
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Trajeto aprendido pelo agente -- 540 acoes completas
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Figuras (11) Trajeto aprendido no experimento 6.2
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Trajeto aprendido pelo agente -- 378 acbes completas
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Figuras (12) Trajeto aprendido no experimento 6.2

7.3 Resultados Experimento 6.3
Neste experimento, o algoritmo de aprendizado utilizando QLearning foi executado por
realizando 100 rodadas, cada uma com 500 acdes no méximo ou até colidir. Toda acdo gerava
uma recompensa de 1, e o agente poderia girar somente na direcao oposta a da feature vencedora.
Foram plotados a curva de aprendizado (refor¢o acumulado com relagdo ao tempo) na
Figura 13 e trajetos realizados pelo robo6 utilizando somente a politica aprendida nas Figuras 14,

15¢e 16.
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recompensa

Curva de aprendizado por Numero de Rodadas
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Figura (13) Curva de aprendizado no experimento 6.3
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Trajeto aprendido pelo agente -- 492 acoes completas
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Figuras (14) Trajeto aprendido no experimento 6.3
Trajeto aprendido pelo agente -- 613 acdes completas
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Figuras (15) Trajeto aprendido no experimento 6.3

Trajeto aprendido pelo agente -- 460 acoes completas
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Figuras (16) Trajeto aprendido no experimento 6.3
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Figura (17) Cena utilizada pelos experimentos 6.2 e 6.3.
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4. Conclusoes

A partir dos experimentos € possivel concluir que utilizar o mapa atencional, mais
especificamente o de saliéncias, como entrada para um algoritmo de aprendizado de reforco
produz resultados bastante positivos. Um dos pontos negativos € que, por exemplo, ao identificar
pontos que ndo possuem saliéncias (como paredes), ele acaba indo diretamente de encontro a
elas. Isto pode indicar que o mapa de saliéncia pode ser usado como fruto do aprendizado, mas
podendo ser necessario realizar observacdes sobre os mapas de caracteristicas originais para
decisdes mais complexas.

Comparando-se os experimentos 2 ¢ 3 ¢ possivel notar que o conjunto de agdes implica
diretamente na qualidade do aprendizado, e que ter um conjunto que se relaciona perfeitamente
com o objetivo em questdo ¢ fundamental.

Finalmente, concluimos que o trabalho de verificacdo, validacao e utilizacdo do modelo
atencional utilizando o CST conforme proposto inicialmente foram realizados com sucesso.
Todos os codigos implementados podem ser encontrados no github em [7] na branch

“experiments”.

9. Trabalhos Futuros

Para melhorar a implementagdo do modelo atencional CONAIM no CST e ampliar suas
possiveis aplicagdes, pode ser adicionado o curso TOP-DOWN do modelo, aumentando assim a
gama de problemas que podem ser resolvidos, e tornando o modelo ainda mais real.

Mesmo sem implementar esta parte mais complexa, poderia ser feito um novo
experimento com o objetivo de seguir o objeto mais rapido da cena, por exemplo. Seria
necessario somente aumentar o peso da feature de direcdo no CombinedFeatureMap e mudar as

recompensas para incentivar o agente a bater no vencedor.
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