2
<

4

Desenvolvimento de

ferramenta para otimizacao
de custo na AWS

Nicholas T. Okita Tiago A. Coimbra Charles B. Rodamilans
Edson Borin

Relatério Técnico - IC-PFG-18-30
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteiido deste relatério é de tnica responsabilidade dos autores.

Desenvolvimento de ferramenta para otimizacao de custo na

AWS

Nicholas T. Okita* Tiago A. Coimbral Charles B. Rodamilans
Edson Borin®

Resumo

A nuvem computacional viabiliza a execucao de programas de alto desempenho sem
a necessidade de aquisi¢ao de clusters e de forma flexivel, sendo oferecido diferentes re-
cursos computacionais a pregos diferenciados. Neste trabalho exploramos como executar
um programa de alto desempenho da drea de geofisica utilizando o provedor Amazon
Web Services (AWS) e o modelo de programagao Scalable Partially Idempotent Task
System (SPITS). Porém, além da execugdo, também exploramos como minimizar seu
custo utilizando algoritmos para escolha das melhores instancias para nosso programa
e as instancias do mercado Spot da AWS. Propomos trés novos algoritmos para troca
de instancias e todos foram capazes de ajustar durante tempo de execucao as instancias
utilizadas para obtermos melhores custos.

1 Introducao

O modelo de negécios de infraestrutura como servigo (Infrastructure as a Service - TaaS)
é oferecido para os usudrios pelos principais provedores de servigo em nuvem computacional,
tais como, Amazon Web Services (AWS) da Amazon [8], Azure da Microsoft [9] e Google
Cloud Platform [14], da Google. Neste modelo é permitido aos usudrios a instanciacao de
maquinas virtuais com diferentes combinacoes de hardware, como nimero de nucleos de
processamento e quantidade de memoria RAM, e a configuragdo com sua prépria pilha de
software.

Neste relatério documentamos o estudo sobre o servigo de computagdao em nuvem AWS
e suas limitagOes, como usamos a plataforma SPITS na nuvem computacional e por fim
implementacoes de algoritmos para otimizacao do custo de execucao e seus resultados.

* Aluno, Instituto de Computacdo, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

tCo-Orientador, Centro de Estudos de Petrdleo, Universidade Estadual de Campinas, 13083-896 Campi-
nas, SP.

*Colaborador, Faculdade de Computagéo e Informatica (FCI), Universidade Presbiteriana Mackenzie,
01302-000 Sao Paulo, SP.

§Orientador, Instituto de Computacio, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

2 Okita et al

1.1 Motivacao e Objetivos

A computagao de alto desempenho em nuvem é uma forte alternativa para a aquisi¢ao
de clusters. Além de oferecer maior flexibilidade na execugdo, dado que no modelo IaaS
o usudrio escolhe as configuracoes de hardware e o software instalado nas maquinas, em
algumas cargas de trabalho a nuvem pode oferecer um custo inferior ao da execugao em
clusters [15].

Entretanto, para usufruirmos da possibilidade de redugoes de custo ao utilizar a nuvem,
enfrentamos dificuldades na selecdo de hardware, haja vista que diferentes configuracoes
possuem diferentes custos. Nao somente isso, mas existem também varias formas de se
contratar o servigo (afetando seu custo e funcionalidade) e opgoes para armazenamento de
dados, além de outros desafios que serao explicadas na subsecao 1.2.

As dificuldades encontradas para reducao de custo motivaram este trabalho cujos obje-
tivos sao: (i) a execugao de um programa de alto desempenho distribuido na nuvem AWS;
(ii) a minimizagao do custo de execugao deste programa.

1.2 Amazon Web Services

A Amazon Web Services (AWS) é uma plataforma de servigos de computacao em nuvem
oferecida pela Amazon que prové servigos de computacao, armazenamento, banco de da-
dos, machine learning, etc. O servigo que usaremos é voltado para computacao e é chamado
Elastic Computer Cloud (EC2), o qual disponibiliza maquinas virtuais com diferentes confi-
guracgoes sob diferentes custos dependendo da configuracao escolhida e do tipo de contrato.

1.2.1 Elastic Computer Cloud

A precificacao dos servicos varia de acordo com o servigo contratado, o contrato firmado,
a regiao e zona de disponibilidade escolhidas. No caso do servigo que usaremos (EC2), sao
disponibilizados trés contratos para adquirir uma maquina virtual. Em instancias On-
Demand alugamos uma configuracao de maquina virtual e pagamos por hora de uso; em
instancias Reserved é realizada uma negociacao com a Amazon e contrata-se uma maquina
virtual por um periodo extenso de tempo (meses, por exemplo), sendo que é oferecido um
custo por hora reduzido devido ao compromisso de longo termo; por fim em instancias Spot
o usudrio contrata recursos computacionais que nao estao sendo utilizados pelo provedor,
podendo pagar taxas mais baixas - reguladas por oferta e demanda - porém correndo o risco
de terminacao pelo provedor quando esses recursos forem necessarios.

Na Tabela 1 sao mostradas algumas configuracoes disponiveis na zona de disponibilidade
us-east-1a e seus respectivos custos ao usar o contrato de instancias On-Demand. Nela temos
o nome da instancia seguido do ntimero de nicleos virtuais disponiveis para esta instancia
(threads), quantidade de meméria RAM, o custo por hora na zona de disponibilidade us-
east-1a para o contrato On-Demand e por fim a finalidade da instancia de acordo com a
provedora de servigo. Por exemplo a instancia m5.12xlarge possui 48 threads do processador
Xeon Platinum 8175 2.5GHz com 192GB de RAM voltada para uso geral e custa US$2,304
por hora de uso.

Otimizacao de custo na AWS

Tabela 1: Instancias AWS

Instancia VEPUS RAM Custo Otimizagao
(ntimero de nicleos virtuais) (GB) | (USD/h)
c4d.4xlarge 16(Xeon E5-2666 v3 Haswell) 30 0,796 Computacao
c4.8xlarge 32(Xeon E5-2666 v3 Haswell) 60 1,591 Computacao
cb.4xlarge 16(Xeon Platinum 8124 3GHz) 32 0,680 Computacao
c5.9xlarge 36(Xeon Platinum 8124 3GHz) 72 1,530 Computacao
cb.18xlarge 72(Xeon Platinum 8124 3GHz) 144 3,060 Computacio
d2.4xlarge 16(Xeon E5-2676 v3 Haswell) 122 2,760 Armazenamento
d2.8xlarge 36(Xeon E5-2676 v3 Haswell) 244 5,520 Armazenamento
m4.4xlarge 16(Xeon E5-2676 v3 Haswell) 64 0,800 Uso geral
m4.10xlarge 40(Xeon E5-2676 v3 Haswell) 160 2,000 Uso geral
mb.4xlarge | 16(Xeon Platinum 8175 2.5GHz) 64 0,768 Uso geral
mb.12xlarge | 48(Xeon Platinum 8175 2.5GHz) 192 2,304 Uso geral
mb.24xlarge | 96(Xeon Platinum 8175 2.5GHz) 384 4,608 Uso geral
r4.4xlarge 16(Xeon E5-2686 v4 Broadwell) 122 1,064 Memoria
r4.8xlarge 32(Xeon E5-2686 v4 Broadwell) 244 2,128 Memoéria
rd.16xlarge | 64(Xeon E5-2686 v4 Broadwell) 488 4,256 Memoria

1.2.2 Zonas de Disponibilidade

A Amazon possui datacenters em diferentes regioes no mundo, sendo que cada regiao é
isolada geograficamente de outra, isto é, instancias de uma regiao nao podem se comunicar
diretamente (por IP privado) com instancias de outras regioves. Porém, dentro das regides
temos conexoes de baixa laténcia conectando os datacenters, separando eles nas chamadas
zonas de disponibilidade. Podemos criar instancias em quaisquer zonas de disponibilidade
de uma regiao e elas poderao se comunicar entre si livremente.

As zonas de disponibilidade sao identificadas por uma letra apds o nome da regido,
por exemplo: us-east-la refere-se a zona de disponibilidade ’a’ na regido us-east-1 (que
representa Virginia do Norte).

1.2.3 Armazenamento

Ademais, ainda existem gastos relacionados ao tipo de dispositivo de armazenamento
alocado para a instancia (chamado de FElastic Block Storage (EBS)), sendo disponibilizados
quatro tipos com diferentes custos para diferentes desempenhos (medido em Input Output
Operations per Second (IOPS) para os SSDs ou throughput em MB/s para os HDDs) [2],
assim como mostrado na Tabela 2.

O dispositivo utilizado como padrao para instanciacdo de novas maquinas atualmente
é o gp2, apresentando desempenho superior as opgoes de HDD. Para os dispositivos gp2,
st1 e scl o desempenho varia com o espago alocado, sendo que quanto maior o tamanho do
dispositivo, maior serd seu desempenho. Por exemplo, um armazenamento do tipo gp2 com
100GB alocados possui 300I0PS de desempenho (max(100 IOPS, 3I0PS/GB x 100GB)),
enquanto um armazenamento gp2 com 20GB alocados possui 100 IOPS. Por outro lado,
o dispositivo iol tem sue desempenho definido pelo usudario. Descrevemos na Equacao 1
a relacao de custos e tempos para decidir quando o uso do dispositivo gp2 oferece melhor

4 Okita et al

Tabela 2: Dispositivos de Armazenamento EBS

Tipo de dispositivos de Desempenho Custo
armazenamento (IOPS/throughput)
General Purpose SSD (gp2) max(100 IOPS, 3 IOPS/GB) 0,1/(Gxmés)
Provisioned IOPS SSD (iol) IOPS definido pelo usuério 0,125/(GB xmés)
+ 0,065/(I0PSx més)
Throughput Optimized HDD (st1) 40MB/s/TiB 0,045/(GB xmés)
Cold DD (scl) 12MB/s/TiB 0,025/(GBxmés)

valor.

top2 tgp2
<gp_1> Cinst+<tgp _CV) CgpQ_ﬂSO (1)

tiol i0l

Na Equacao 1 temos que tgp2 € tj01 sao os tempos que a instancia permanecera ligada
com o dispositivo do tipo gp2 e iol, respectivamente. c;,s é 0 custo por hora da instancia
selecionada assim como cgp2 é 0 custo por hora do dispositivo gp2 de tamanho definido
pelo usudrio. A constante « representa a razao de custo por hora do dispositivo iol pelo
dispositivo gp2 considerando somente o armazenamento e que ambos possuem O mesmo
tamanho, atualmente (como mostrado na Tabela 2) este valor é a = 1.25, enquanto a
constante (representa o custo por hora da escolha de IOPS para o dispositivo iol.

Como exemplo de uso desta equagado, dada uma aplicacao CPU bound com um longo
tempo de execucao, tal que t;,1 ~ tgp2, vemos que ig—pf ~ 1. Além disso, sabemos pela
Tabela 2 que o = 1.25 e consideramos que alocamos um dispositivo de 200GB tanto para
gp2 quanto para iol (cgp2 ~ 0.03USTD), e no caso do dispositivo iol escolhemos 1000 IOPS
(portanto temos [= O.l%). Por fim, aplicando estes valores na Equacao 1 temos:
(0—0.25 x 0.03 — O.I)USTD = —1.075USTD < 0. Concluindo que para este exemplo o uso do
dispositivo gp2 oferece melhor custo.

Por fim, as opg¢oes com HDD (stl e scl) s@o mais voltadas para instancias que armaze-
narao grandes volumes de dados por longos periodos de tempo, sem a necessidade de alto
desempenho de 10.

Outrossim, utilizamos os servigos de armazenamento da AWS para armazenar progra-
mas, dados e resultados de execucao. Sao disponibilizados dois servigos além das opcoes do
EBS: Simple Storage Service (S3) e Elastic File System (EFS).

O servigo S3 é voltado para o armazenamento de objetos em buckets [6]. Podemos
armazenar quaisquer objetos com menos de 5TB e quantos objetos quisermos dentro de um
bucket. Além disso, seu acesso é controlado pelo usuério criador ou administrador da conta.

Para utilizar um objeto em um bucket é necessario fazer seu download para a instancia,
nao é possivel acessar diretamente o S3 como um file system. Seu custo é composto pelo
nimero de bytes transferidos de um bucket para uma instancia ou um computador local,
pela quantidade de dados armazenados em buckets [7].

Por outro lado o servigo EFS oferece um sistema de arquivos que pode ser compartilhado
entre diferentes instancias [3]. Por se tratar de um sistema de arquivos, podemos acesséa-lo
tanto para escrita quanto para leitura assim como fazemos com dispositivos montados nas
instancias, tornando seu uso para sistemas distribuidos e clusters mais simples do que o

Otimizacao de custo na AWS 5

S3. Entretanto, o EFS apresenta um custo superior ao outro servigo de armazenamento da
AWS;, sendo cerca de dez vezes mais caro por gigabyte armazenado [4].

1.2.4 Spot

Instancias Spot sao instancias de maquinas virtuais que sao oferecidas por custo menor
mas com menos garantias. Estas instancias podem sofrer flutuagao de custo, encerramento
precoce por parte do provedor e indisponibilidade. Ainda, neste tipo de contrato a diferenca
de custos entre zonas de disponibilidade é significativo, como visto na Figura 1, na qual
comparamos o custo da instancia c¢5.18xlarge em diferentes zonas de disponibilidade no
decorrer do més de abril na regiao us-east-1. Nesta figura, vemos que a variacao de custo
entre zonas de disponibilidade pode chegar a 30%, como ocorreu no dia 6 de abril de 2018
entre a zona us-east-1c e us-east-1f.

1.9
—s—us-east-1a us-east-1b us-east-1c us-east-1d ~e—us-east-1f

v

/r"'“/

¥

Custo por hora (USD/h)
= = = = I =
w B v [} ~ [

=
N

,_.
N
¥
3
>
[
s
3
1
1
1

1
2018-04-01 2018-04-06 2018-04-11 2018-04-16 2018-04-21 2018-04-26 2018-05-01
Dia
Figura 1: Variagao do custo da instancia c¢5.18zlarge no modelo Spot em diferentes zonas
de disponibilidade ao longo do més de abril de 2018

No contrato de instancias Spot, o usuario define um valor méximo a ser pago pela
instancia. O momento que o custo da maquina superar este valor maximo ou a Amazon
necessitar de mais recursos computacionais, a instancia é terminada e o usudrio deve entao
fazer um novo pedido. Vale ressaltar que o custo das maquinas varia no decorrer do tempo
(como visto na Figura 1) de acordo com oferta e demanda.

Portanto, devido a essas condi¢bes no contrato Spot, concluimos que nosso programa
deve ser tolerante a falhas e possuir provisionamento dindmico de recursos. A tolerancia
a falhas é necessaria para o programa continuar executando na situagao de encerramento
de instancias pela AWS. O provisionamento dindmico permite a adigdo de novas maquinas
virtuais durante a execucao do programa, o que viabiliza o aumento do poder computacional
ou migracao da computacao para novas maquinas virtuais.

6 Okita et al

c5.9xlarge interpolagées/segundo 2018-11-19 (04:50:00) - 2018-11-19 (04:59:00) ~ Line - Actions ~ = - 7]

Count

3147
33T

3zt
04:50 04:50 04:51 04:51 04:52 04:52 04:53 04:53 04:54 04:54 04:55 04:55 04:56 04:56 04:57 04:57 04:58 04:58 04:59

@ nickokita_costperinterp

All metrics Graphed metrics (1) Graph options Source

All > Performance > Instance Id, Type i-080c59ec43a42b69%b @ | Q

Instance Id (6) Type Metric Name
i-080c59ec43a42b69b c5.9xlarge nickokita_priceperminute
v -080c59ec43a42b6Ib c5.9xlarge nickokita_costperinterp

Figura 2: Visualizagao grafica de métrica no Cloud Watch

1.2.5 Cloudwatch e Lambda

CloudWatch é uma plataforma da AWS para monitoramento e gerenciamento de instancias
e servicos da AWS [1]. Resumidamente, com esta plataforma podemos coletar métricas e
relatérios de uso de nossas instancias, analisd-las com graficos e aplicar medidas corretivas
(como auto escalabilidade baseada em uso de CPU). Além disso, existe a possibilidade de
ativar alarmes alertar quando alguma métrica estd se comportando de forma indesejavel.
Apesar de existirem mais funcionalidades, essas sao as que interessam neste trabalho.

O CloudWatch ja oferece algumas métricas, por exemplo a medi¢ao do uso de CPU e
de memoria RAM de instancias EC2. Entretanto, a plataforma permite a implementacao
de nossas proprias métricas. Dessa forma, podemos extrair informacoes relevantes para
nossa aplicacao utilizando a prépria plataforma da AWS, somente com a necessidade de
implementacao do envio dessas métricas.

Como exemplo para visualizagao das métricas colocamos na Figura 2 a visualizacao em
forma de gréafico de linha de uma métrica que implementamos. Neste exemplo escolhemos
a métrica de nome nickokita_costperinterp (métrica de interpolagdes por US$, que serd
explicada na secao 2.3.1) para a instancia de id i-080c59ec43a42b69b durante o periodo de
4:50 a 4:59 do dia 19 de novembro de 2018.

Além de permitir visualizacao de nossas métricas, a utilizacao da plataforma Cloud Watch
permite o uso do servico Lambda para aplicarmos nossas acoes corretivas.

Lambda é um servigo da AWS que executa cédigos (scripts Python ou NodeJS por
exemplo) sem a necessidade de alocagao de recurso computacional por parte do usudrio [5].
O servigo pode ser utilizado para execucao de cddigo em resposta a eventos, como os gerados
pelo CloudWatch, por exemplo.

A vantagem de utilizagao desses servigos é a automatizagao de monitoramento e respos-
tas. Ou seja, além de monitorar recursos utilizando o Cloud Watch, podemos gerar eventos

Otimizacao de custo na AWS 7

para serem processados pelo Lambda automaticamente.

1.3 SPITS

O modelo de programacao Scalable Partially Idempotent Task Systems (SPITS) foi de-
senvolvido no laboratério High Performance Geophysics (HPG) e é utilizado para imple-
mentar programas em sistemas distribuidos utilizando tarefas idempotentes [12] [11] [10].
Sendo que, uma tarefa idempotente é uma tarefa que nao depende do resultado de outras
e ao ser executada multiplas vezes retorna sempre o mesmo resultado.

O modelo SPITS envolve a divisdo do programa em trés partes independentes entre si:
Job Manager (JM), Worker (WK) e Committer (CO). O Job Manager é responsavel pela
geracao de tarefas, as quais sao repassadas para os Workers que processam essas tarefas e
enviam o resultado para o Committer que serializa e armazena o resultado da computacao,
assim como exemplificado na Figura 3.

N6 1
P I
I |
I Worker i
N6 2
Job "] e mmmmm—— -
Manager t2 ! :
: Worker | . = Committer
I |

. ; -
. -
|
|
|

tm ey

=
O =
2

Figura 3: Fluxo de geragao e execugao de tarefas no SPITS

O paralelismo no SPITS se dd nos Workers, criamos um Worker por méquina e en-
viamos tarefas geradas pelo Job Manager para cada um deles. Esse modelo permite por
consequéncia o provisionamento dinamico de recursos, haja vista que basta a insercao de
um novo Worker em tempo de execugao para aumentarmos a quantidade de recursos dis-
poniveis para a execucao. Permite também arquiteturas heterogéneas, pois podemos ter
Workers com CPUs ou GPUs e cada Worker implementa seu cédigo (desde que a entrada e
a saida possuam o mesmo formato). Por fim possui tolerancia a falhas porque se um Wor-
ker for desativado por alguma falha, a propriedade de idempoténcia das tarefas permite
que elas sejam redistribuidas entre os Workers que ainda funcionam e o processo continue
corretamente.

8 Okita et al

Escolhemos o modelo de programacao SPITS pois ao trabalhar com instancias Spot
lidamos com o risco de termos nossas instancias encerradas abruptamente pelo provedor de
servigos. Além disso, como queremos otimizar o custo escolhendo as melhores instancias,
iniciaremos e encerraremos instancias no decorrer da execugao, portanto provisionamento
dindmico é um recurso necessario e esta disponivel no SPITS.

Além destes requisitos necessarios, o SPITS oferece alguns recursos que sao desejdveis
para nosso programa. Nao somente é uma plataforma simples de programar, utilizamos o
runtime PY-PITS [11] o qual necessita somente de Python para ser executado, um pacote
disponivel em todas distribuigoes Linuz atuais.

1.3.1 SPITS na nuvem

Para utilizar o SPITS na nuvem nao foi necessario nenhuma alteragdo no cédigo do
programa desenvolvido utilizando o modelo de programacao nem no runtime PY-PITS,
haja vista que o modelo ja é voltado para sistemas distribuidos. Quanto a infraestrutura
na nuvem, foi necessario somente configurar as instancias para permitir comunicacao entre
si por quaisquer portas na rede local (caracterizada pela regiao). Como a execucao do PY-
PITS depende de um diretério compartilhado, utilizamos o servico EFS para compartilhar
o sistema de arquivos entre as diferentes maquinas no sistema.

Utilizamos o modelo mostrado na Figura 4 para executar programas SPITS na nuvem
computacional. Neste modelo utilizamos uma instancia do tipo On-Demand para ambos Job
Manager e Committer, varias instancias Spot para os Workers e o sistema de arquivos EFS
para armazenar os dados (tanto para leitura dos dados, quanto para escrita dos resultados).

_On-Demand o Spot On-Demand
I I I [F““""‘j
Job 1 1 1
: Manager I t : Workers i r 1 Committer :
[[I I [:

EFS

Figura 4: Fluxo de informagoes entre o EFS e os médulos do SPITS

Na Figura 4, vemos o fluxo de informagoes entre os médulos do SPITS. O Job Manager
e os Workers leem o dado de entrada a partir do EFS, em seguida o Job Manager envia
tarefas aos Workers, que por sua vez processam e enviam o resultado para o Committer
que salva o resultado consolidado de volta no EFS.

Otimizacao de custo na AWS 9

1.3.2 Reconfiguracao PY-PITS na Spot

Uma das pastas dentro do diretério compartilhado do PY-PITS possui arquivos com
o endereco e a porta dos Workers na rede, o qual é utilizado pelo Job Manager e pelo
Committer para se conectar aos Workers a fim de enviar e receber tarefas e resultados.
Se uma instancia falha, seu arquivo contendo seu endereco e porta permanece na pasta e
eventualmente o Job Manager tenta conexao, porém como a instancia nao responde, temos
que aguardar o timeout do TCP para tentar conexao com outras instancias (2 minutos).

J

/.

-]
10/11 10/11 10/11 10/11 10/11 10/11 10/11
29:55 23:00 23:05 23:10 23:15 23:20 23:25

Figura 5: Uso de CPU no decorrer do tempo em instancias

Este problema de timeout acarretou em problemas de desempenho como visto na Fi-
gura 5, em que uma instancia é encerrada pela AWS e causa perda de desempenho em
outras instancias. Além disso, percebemos que algumas execugbes nunca encerravam e
encontramos que o problema era o timeout na espera de envios e recebimentos de pacotes.

Para corrigir o problema, simplesmente colocamos flags para o runtime PY-PITS reduzir
todos timeouts para 5 segundos. Isto é, ao tentar conectar em um né desativado o Job
Manager aguarda somente 5 segundos até tentar conectar no préximo né. Este tempo foi
suficiente para resolver o problema de desempenho e nao causou instabilidades na execugao.

2 Metodologia

Nesta secao serao discutidas as propostas para otimizacao de custo na AWS bem como
os experimentos realizados.

10 Okita et al

2.1 Ferramental

Para a realizacao dos experimentos que serao discutidos nas préximas subsecoes utili-
zamos o sistema mostrado na Figura 4 com uma instancia cs.4zlarge como Job Manager e
Committer e as as instancia mostradas na Tabela 1 como Workers.

Foi utilizado um programa de processamento sismico de alto desempenho que tem como
finalidade a computacao dos parametros do método Non-hyperbolic Common Reflective
Surface, ou NCRS [13]. Este programa foi implementado utilizando o modelo SPITS e
utilizamos o runtime PY-PITS [11] para sua execugao. Além disso, a implementacdo do
programa utiliza a heuristica Differential Evolution (DE) [18] para realizar a busca dos
parametros.

O programa NCRS foi compilado utilizando o compilador gcc versao 5.4.0 com a flag
de compilagao -038, enquanto que o motor PY-PITS foi executado utilizando python versao
3.5.2. A entrada do programa foi um dado sismico de aproximadamente 1,3 GB e escolheu-se
para o DE uma populacao de tamanho 31 iterando por 31 geracoes.

Em cada instancia utilizamos um disco de 20GB do tipo iol com 1000 IOPS, haja vista
que calibramos nossos testes para serem de curta duragao, sendo mais vantajoso a utilizacao
de um disco mais rapido. Este disco foi inicializado a partir de uma imagem baseada em
Ubuntu 16.04, o qual possui diversos pacotes ja instalados (awscli, binutils, cloud-utils, efs-
utils, gcc, make, python3-pip, sshpass, unzip e zip), uma pasta para o EFS montado e uma
c6pia do dado sismico de entrada. O programa e os resultados foram armazenados no EFS.

Os scripts que desenvolvemos (mostrados na Segao 2.3.1) foram implementados em
python 3.6 e sao executados utilizando o servico Lambda. Além disso utilizamos o servigo
CloudWatch para monitorar as instancias e armazenar informacoes durante a execugao para
serem utilizadas pelo Lambda.

Por fim, por simplicidade, consideramos somente o custo das instancias ao computar o
custo total de execucao, desconsiderando, portanto, o custo dos discos EBS, do EFS, das
transferéncias de bytes entre zonas de disponibilidade e dos servigos Lambda e Cloud Waich.
Vale destacar que estes custos sao pequenos quando comparados aos custos das maquinas
virtuais.

2.2 Curva Pareto

Uma das maiores dificuldades para otimizacao de custo é a escolha adequada de maquinas
para determinada aplicagdo. Para resolver este problema a curva Pareto é utilizada como
guia para escolher méquinas que apresentem melhor custo ou tempo de execugao [16].

A curva Pareto é composta por pontos p;, tal que um ponto p; nao seja dominado por
nenhum ponto p;j. No nosso caso, consideramos o conjunto de pontos P como pares de
coordenadas (x,y) no plano cartesiano R?. E definimos o conjunto de pontos P’ que domina
um ponto p; como:

Pl(pi):{pep:xp>xp¢/\yp>yppp7épi} (2)

Logo, consideramos que um ponto estd na curva Pareto P, se:

P,={peP:P(p) =0} (3)

Otimizacao de custo na AWS 11

Para nosso trabalho usamos um plano R? tal que o eixo das abscissas (x) representa o
tempo de execugao do programa e o eixo das ordenadas (y) representa o custo de execucao
do programa. Nosso conjunto de pontos P; representa os diferentes tipos de méquina,
mostrando entao para aquela uma dada instancia qual seu tempo de execucao e qual seu
custo. Por fim, definimos que uma instancia I; domina outra I; quando I; apresenta ambos
tempo de execugao e custo menores que o de I;, portanto redefinimos a Equagao 2 como:

P’(Ii):{IEPI:x1>:v]i/\y1>y1i,17é1}} (4)

Sendo assim, a curva Pareto é composta por um conjunto de pontos F,, tal que nenhum
ponto seja dominado por quaisquer outros pontos, isto é:

P, ={pe Pr: P(p)=0} (5)

Com conhecimento dessas relagoes podemos escolher as instancias que executam o pro-
grama de forma mais eficiente, isto é, podemos tracar a curva Pareto e encontrar instancias
que executam em menor periodo de tempo ou com menor custo.

Vale ressaltar que como estamos trabalhando com instancias Spot esse grafico é varidvel
com o tempo, ja que o custo de um tipo de maquina pode variar. Entretanto, para nossos
experimentos desconsideramos essa possibilidade, visto que o curto periodo de tempo que
estamos executando nao se mostrou suficiente para variar os custos de forma a alterar a
curva.

2.3 Otimizacao de custo

A curva Pareto em nossos resultados experimentais mostrou que de fato existe uma
grande diferenca no custo de execugao entre diferentes tipos de maquinas. Logo, a escolha
de méquinas é o problema mais significativo para a minimizacao de custo da execugao do
programa. Ademais, vimos que as instancias Spot oferecem desempenho muito semelhante
as instancias On-Demand porém com um custo cerca de trés vezes menor, portanto de fato
utilizar a arquitetura de SPITS na nuvem com Workers do tipo Spot pode representar uma
redugao significativa de custo.

Dessa forma, escolhemos otimizar o custo de execucdo utilizando instancias Spot como
Workers, sendo a proposta de solugao selecionar as melhores instancias para o programa
dinamicamente. A proposta dinamica é interessante pois podemos ter alteragoes de custo no
decorrer do tempo (tendo em vista o mercado de instancias Spot) e permite que executemos
a aplicacao ja encaminhando para o resultado desejado sem a necessidade de conhecer
caracteristicas nem das maquinas e nem da aplicagao previamente.

2.3.1 Politicas de troca

A proposta de solugao foi inicializar o processo com um grupo pré definido de maquinas
(por exemplo, as instancias mostradas na Tabela 1). Extraimos informagoes sobre o de-
sempenho da aplicagdo durante sua execugao (medido em interpolagées por segundo para
o programa NCRS) e o custo por hora de cada maquina, medindo entdo sua relagao de

12 Okita et al

desempenho por custo (no caso do programa NCRS em interpolagoes por US$ [15]). Por
fim, com a relacao de desempenho por custo podemos selecionar as instancias que propiciam
o menor custo para a execugao da aplicagao, encerrando as outras.

Uma primeira versao deste algoritmo de ajuste dinamico é mostrado no Algoritmo 1 e foi
implementada por Okita no trabalho Otimizagao automatica do custo de processamento de
programas SPITS na AWS [17]. Esta versao considera apenas trocas em intervalos regulares
de tempo e uma instancia de cada vez, trocando a instancia que apresenta pior medida de
interpolagoes por US$ pela instancia que apresenta a melhor medida. Consideramos que
houve convergéncia quando a instancia que apresenta este pior resultado é a mesma da
instancia que apresenta o melhor resultado.

Além disso, em cada troca escolhemos a zona de disponibilidade que possui menor
custo para a instancia desejada. Entretanto neste exemplo nao consideramos nem casos de
instancias com medidas de desempenho por custo muito préximo a ponto de nao valer a
pena a troca, nem a possibilidade de trocar a zona de disponibilidade de uma instancia se
o custo dela aumentar na zona atual e ficar inferior em outra.

Algorithm 1 Algoritmo de Troca

1: L: Lista de tuplas (id, tipo, custo beneficio) > Em ordem cresc. de interpolagoes por
US$

2: procedure TROCA DE INSTANCIA(L)

3 if L[1].tipo # L[len(L)].tipo then

4: z < zona de disponibilidade de menor custo para instancia L[len(L)].tipo

5 crie uma instancia nova do tipo L[len(L)].tipo em z

6 encerre a instancia L[1].id

Para nossos parametros de entrada o programa executava em no maximo cerca de uma
hora, isto é, o tempo nao era suficiente para existir problema com alteracoes de pregos
nas zonas de disponibilidade. Porém o problema das medidas semelhantes ainda existia,
por conseguinte criamos uma versao revisada deste algoritmo - a qual estd mostrada no
Algoritmo 2 - que considera o desvio padrao para a escolha das melhores instancias. Isto é,
nao consideramos somente o desempenho imediato, mas sim o histérico do desempenho da
instancia no decorrer da execucao da aplicagao, computamos entao a média e o desvio padrao
deste historico de desempenho. Consideramos que uma instancia X apresenta melhor custo
por desempenho que uma instancia Y se:

(Mx — ony) - (My + ory)
cx cy

(6)

Sendo que M x representa a média das medidas de desempenho da instancia X, oy,
representa o desvio padrao dessas medidas e cx representa o custo por hora da instancia
X. O significado das varidveis é andlogo para Y. Os valores de M x e o/, sdo calculados
na instancia e enviados para o Cloud Watch, permitindo que o script Lambda apenas tome
decisoes de troca de instancias.

Otimizacao de custo na AWS 13

Por simplicidade de notagao, nos préximos paragrafos assumiremos que:

M
px = C; (7)
Px = % 8)

Sendo que px é a média das medidas de custo beneficio para a instancia X e ©¥x seu
desvio padrao. No Algoritmo 1 podemos substituir a expressao custo beneficio por px sem
perda de significado. Além disso, podemos reescrever a Equacao 6 usando essa notacao:

px — x> py + vy 9)

Algorithm 2 Algoritmo de Troca Revisado

1. L: Lista de tuplas (id, tipo, ttiq, ¥id) > Em ordem cresc. de ;4
2: procedure TROCA DE INSTANCIA(L)
if L[1].tipo # L[len(L)].tipo then
if L[1].u+ L[1].¢p < L[len(L)].pn — L{len(L)].4) then
z + zona de disponibilidade de menor custo para instancia L[len(L)].tipo
crie uma instancia nova do tipo L[len(L)].tipo em z
encerre a instancia L[1].id

Neste algoritmo ainda trocamos apenas uma instancia a cada periodo de tempo, con-
sequentemente para atingir convergéncia na escolha de instancias levamos pelo menos o
intervalo de trocas multiplicado pelo nimero de maquinas. Surge entao a questao de troca
de mais de uma instancia a cada periodo que o algoritmo é executado, implementamos
entdo uma nova versao do algoritmo de trocas (mostrado no Algoritmo 3). Nesta versao
escolhemos uma porcentagem P de instancias para serem trocadas a cada periodo de tempo,
consequentemente, se nao fizermos escolhas erradas, a convergéncia ocorrerd apés 100/ P
iteracoes.

Algorithm 3 Algoritmo de Troca em Lotes

1: L: Lista de tuplas (id, tipo, ttiq, ¥id) > Em ordem cresc. de ;g
2: P: Porcentagem de instancias para serem trocadas > Em valores de 0 a 1
3: procedure TROCA DE INSTANCIA(L, P)
i=1;lim =max(len(L) * P,1)
for i <len(L) * P do
if L[i].tipo # L[len(L)].tipo then
if L[i].p+ L[i].¢p < Lllen(L)].;p — L{len(L)].1) then
z < zona de disponibilidade de menor custo para instancia L[len(L)].tipo
crie uma instancia nova do tipo L[len(L)].tipo em z
10: encerre a instancia L[i].id

14 Okita et al

Vale ressaltar que trocar apenas uma instancia é uma opgao mais segura com relacao
a escolhas erradas, haja vista que durante momentos iniciais da execucao a instancia que
apresenta melhor custo beneficio pode nao ter ainda reportado seu desempenho. Porém, é
importante balancear o tempo de convergéncia (consequentemente a reducao de custo) com
as perdas causadas por decisoes erradas.

Quanto a otimizagao de desempenho (como tempo de execugao) ao invés de custo,
basta substituirmos nos algoritmos mostrados anteriormente sy e ;4 por Mg e OMy s
respectivamente.

2.4 Otimizagao de custo/beneficio

Apesar de considerarmos a nuvem contendo recursos computacionais ilimitados, isso
nao acontece na pratica. O servigo da AWS possui limitacao em quantas maquinas virtuais
podemos ter instanciadas em um momento. Tendo isso em vista, todos algoritmos aqui
mostrados consideram essa restricao no nimero de instancias, logo nunca aumentamos esta
quantidade além das maquinas inicialmente criadas.

Tendo essa restricao em vista, implementamos um algoritmo que balanceia custo e tempo
de execugao. Isto é, desejamos encontrar a instancia que além de apresentar bom custo para
a tarefa também realize a tarefa em um menor periodo de tempo, haja vista que, algumas
decisoes de reducao de custo nao sao suficientes para compensar a perda de desempenho
que pode ocorrer consequentemente, especialmente considerando que temos um nimero fixo
de maquinas.

Essa proposta de balanceamento de custo e tempo de execucao foi implementada como
o Algoritmo 4. Neste algoritmo normalizamos as medidas de desempenho (em interpolagoes
por segundo) e as medidas de custo (em interpolagdes por US$) e somamos ambas dado
um peso de entrada (wse. para a medida de desempenho, w,sq para a medida de custo).
Definimos as medidas com pesos usando 7 e phi da forma mostrada pelas equagoes 10 e 11:

MX X
77X - wsec X —=— + wusd X M (10)
mazx Mmax
QZ)X = Wgec X % + Wysd X L2 (11)
max Hmax

Sendo que fimqe representa a melhor medida de desempenho por custo encontrado na
lista de instancias, assim como M, representa a melhor medida de desempenho na lista
de instancias. O significado das outras varidveis é o mesmo das equagoes anteriores. Vale
ressaltar que nao existem regras para a definicdo dos pesos wysq € Wsee. Espera-se que estes
pesos sejam definidos pelo usudrio, com base no quanto ele esta disposto a pagar por ganho
de desempenho.

Analogamente a equagéo 9, uma instancia X serd considerada melhor que uma instancia
Y se:

nx —¢x >ny + ¢y (12)

Otimizacao de custo na AWS

Vale destacar que se usarmos wge. = 0 € wysqg = 1 nas equagoes 10 e 11 temos a mesma
definicao das equacoes 7 e 8. Ou seja, o algoritmo de trocas 4 é uma generalizagao do

algoritmo de trocas 3.

Algorithm 4 Algoritmo de Troca Ponderada

1: Lysq: Lista de tuplas (id, tipo, pid, ¥iq) > Em ordem cresc. de id
2: Lgee: Lista de tuplas (id, tipo, M4, o) > Em ordem cresc. de id
3: P: Porcentagem de instancias para serem trocadas > Em valores de 0 a 1
4: Wysq: Peso da medida de desempenho por custo

5: Wgee: Peso da medida de desempenho somente

6: procedure TROCA DE INSTANCIA(Lysd, Lsec, Py Wysd, Wsee)

T Hmaz =0

8: for inst in L,z do > Encontra fiy,q, - melhor custo
9: if Lysq-pt > tmae then
10: Hmaz = Lusdw“’
11: M oz =0
12: for inst in Lge. do > Encontra M., - melhor desempenho
13: if Lyee.M > M4, then
14: M nazr = Lsee. M
15: Ltina = {} > Lista de tuplas (id, tipo, 74, ®id)
16: i=1;lim = Lge
17: for i <len(L) do > Cria nova lista com as medidas 7 e ¢
18: inst.id = Lysq[i].id ; inst.tipo = Lysq[i].tipo

19: Nst.n = Wygq * 7LZST:£'“ + Wgee * Lsccli]. M
20: inst. = Wysq * 7&;;%];#} + Wgee * 7LS%M'UM
21: L finq-insert(inst) "
22: L tina1-sort(n) > Ordena lista pela medida ponderada eta
23: =1
24: lim = len(L finq1) * P
25: for i < lim do > Cria novas instancias
26: if Ltinali].tipo # Ltinallen(L)].tipo then
27: if Lfinal [l]n + Lfinal [l]¢ < Lfinal [len(L)]n — sz'nal [len(L)]qﬁ then
28: z < zona de disponibilidade de menor custo para L finq(len(L)].tipo
29: crie uma instancia nova do tipo L finq[len(L)].tipo em z
30: encerre a instancia L pinq[i].id

No Algoritmo 4 temos a realizacao da normalizacao e do calculo das novas varidveis

de medida de desempenho. Essas varidveis sao utilizadas no final para selecionar as me-
lhores instancias, convergindo para um tipo ou para instancias que apresentem resultado
semelhante (isto é, com uma diferenca inferior ao seu desvio padrao).

16 Okita et al

2.5 Implementacao e Experimentacgao

Assim como mencionado na Segao 2.1 implementamos os algoritmos em python 3.6 e
utilizamos o servigo CloudWatch para armazenar as medidas de desempenho e o servigo
Lambda para executar os algoritmos.

O programa foi instrumentado para medir o desempenho da aplicacao NCRS em inter-
polagoes por segundo. Scripts em bash e python foram utilizados para extrair informacoes
dos logs do programa durante sua execugao enviando para o CloudWatch as informagoes
necessarias.

Além disso, na Secao 2.3.1 generalizamos o conceito de intervalos de tempos. Como esses
intervalos afetam o resultado final testamos diferentes periodos de tempo para a chamada
das funcoes, especificamente testamos um minuto, trés minutos e cinco minutos.

Nao somente isso, mas os algoritmos 3 e 4 apresentam a varidavel de porcentagem de
instancias a serem trocadas a cada chamada. Escolhemos 20%, 50% e 100% para nossos
testes.

Nossa implementagao dos algoritmos considera apenas as maquinas virtuais que ja re-
portaram resultados de desempenho no CloudWatch, ou seja, instancias que ainda nao en-
cerraram a execuc¢ao de pelo menos uma tarefa nao serao considerados na lista de instancias.
Isso permite que todas as instancias executem ao menos uma tarefa e seu desempenho seja
observado antes de decidir se nao é uma instancia desejavel para o programa. Portanto
quando selecionamos 100% como porcentagem de troca, nao necessariamente estamos tro-
cando todas as instancias vivas, mas apenas as que encerraram alguma tarefa.

Por fim, consideramos um limite de dezesseis instancias ao mesmo tempo. Uma é ocu-
pada pelo Job Manager e Committer, enquanto as quinze restante serao nossos Workers,
que podem ser trocados livremente.

3 Resultados

3.1 Curva Pareto

A curva Pareto da Figura 6 foi extraida do trabalho que publicamos nos anais do XIX
Simpo6sio em Sistemas Computacionais de Alto Desempenho [17]. Esta curva foi montada
utilizando as mesmas instancias das mostradas na Tabela 1 para o mesmo programa NCRS
e seu eixo de custo (eixo das ordenadas) estd em escala logaritmica de base dois para melhor
visualizagao. Como o programa foi executado somente em uma instancia de cada vez, o
tamanho do dado foi reduzido para cerca de 200MB para tornar o tempo de execugao viavel.

E perceptivel na Figura 6 que as instancias do tipo Spot de fato apresentam o mesmo
desempenho para um custo cerca de trés vezes menor. Além disso, percebemos que existe
um grupo de trés instancias (c5.9xlarge, c5.18xlarge e mb.24xlarge) que configuram a fron-
teira Pareto, isto é, nenhuma outra instancia apresenta custo e desempenho melhores a
essas instancias (considerando este programa e os pregos delas no mercado Spot no dia da
execugao).

Além disso, essa figura reforca a importancia da escolha de instancias adequada para
o programa a ser executado. Para este benchmark, a instancia c5.18xlarge no mercado

Otimizacao de custo na AWS 17

= On Demand - — Fronteira Pareto On-Demand
. = d2.4xlarge
Spot Fronteira Pareto Spot » d2.8xlarge
2
Pareto On-Demand
Pareto Spot
El * r4.16xlarge = r4.8xlarge ® r4.4xlarge
@
2 = m4.10xlarge i 12.4xlarge
2 ® m4.16xlarge : d2,8§|arge a m4.g>aargg 8
%
3 % m5.24xlarge ® ch.dxlarge
%.5 \\‘ = m5.12xlarge * c4.8xlarge = m5.4xlarge
#-c5:18xlarge- - = v uean #.c5,9xlarge = c5.4xlarge
w.m4.4xlarge
0.25 « rd.16xlarge = s r4.4xlarge
« m4.16xlarge + m4.10xlargé r4-8xlarge
4 m5.24xlarge « m5.12xlarge c4.8xlarge ~=-mb5.4xlarge » c4.4xlarge
+c5.18xlarge ».¢5.9xlarge + c5.4xlarge
0.125
0 500 1000 1500 Tempo (s) 2000 2500 3000 3500

Figura 6: Curva Pareto para instancias da Tabela 1

Spot apresenta um custo cinco vezes inferior ao da instancia d2.4xlarge no mercado Spot
(podendo chegar a dezessete vezes para a d2.4xlarge On-Demand), enquanto possui um
desempenho sete vezes superior.

3.2 Otimizacao de Custo

Tendo em vista a importancia da escolha de instancias para a reducao do custo de
execuc¢ao do programa, mostramos a motivacao para a implementagao de politicas de troca.
Nesta subsecdo mostraremos os resultados experimentais da execucao dos algoritmos de
trocas, dadas as configuragoes da subsecao 2.5. Como existe variacao de precificacao das
instancias em diferentes dias, os teste foram executados no decorrer de apenas dois dias (18
de novembro de 2018 e 19 de novembro de 2018) para comparar os métodos.

Além dos experimentos com as politicas de trocas, criamos um baseline que envolvia a
utilizacao de uma instancia de cada tipo dentre os mostrados na Tabela 1, sem nenhuma
troca. Este baseline é mostrado em todos graficos de custo, sendo utilizado para comparagao
entre uma execuc¢ao ingénua do programa contra nossa otimizacao.

3.2.1 Custo com o Algoritmo 2

Tendo como base o Algoritmo 1 implementamos uma versao revisada que usa de medidas
estatisticas (especificamente desvio padrao) para decidir se uma instancia é de fato melhor
que outra. Nao executamos o Algoritmo 1, pois temos resultados ja publicados no nosso
trabalho nos anais do XIX Simpdsio em Sistemas Computacionais de Alto Desempenho [17],
nele utilizamos o mesmo conjunto de méaquinas iniciais, 0 mesmo programa e a mesma
entrada que os descritos na Segao 2. Resumidamente, no Algoritmo 1 observamos redugao
significativa no custo com relagao a execucao de apenas o conjunto inicial de maquinas,
entretanto percebemos que algumas vezes as instancias trocadas apresentavam custo por

18 Okita et al

desempenho muito semelhante as novas instancias.

Executamos o Algoritmo 2 para trés intervalos de tempo, isto é, trocamos uma maquina
a cada um minuto, trés minutos e cinco minutos. Na Figura 7 mostramos a evolucao do custo
acumulado no decorrer do tempo de execugao, isto é, quanto era o total que pagariamos
(considerando somente o custo das instancias) depois de cada minuto de execucao.

=]

——1min 3min 5min Baseline X
4.5 X
4 X
3.5
3
fa)
(%]
2
5 2.5
i
]
O 2
15
1
0.5
0
0 5 10 15 20 25

Tempo de execugdo (minutos)

Figura 7: Evolucao do custo de execugao utilizando o Algoritmo 2

Na Figura 7 mostra a evolucdo do custo de execucao no decorrer do tempo. Seleci-
onamos cores diferentes para cada intervalo utilizado e o baseline, além disso marcamos
com um ”X”vermelho o momento em que a execugao foi terminada (consequentemente as
instancias encerradas e nao existe mais evolugao de custo). Assim como desejado, tivemos
custos inferiores ao do baseline, ou seja, nosso algoritmo nao realizou escolhas que afetavam
negativamente o custo total. Além disso obtemos ganhos em tempo também, visto que as
instancias que selecionamos além de oferecerem melhor custo também ofereceram melhor
desempenho (apesar que este algoritmo nao prevé que isso ocorra).

Percebemos também na Figura 7 que nenhuma politica de troca apresentou o mesmo
conjunto de maquinas ao final da execucdo. Parte do problema foi o tempo total de
execugao, como a execucao levou menos de 26 minutos, as politicas de trocas em inter-
valos de trés e cinco minutos ndo conseguiram convergir para uma tunica instancia (como
temos 15 méaquinas, seriam necessarios pelo menos 45 e 75 minutos de tempo de execugao,
respectivamente). Mas nao somente isso, observamos que o angulo da evolugao de custo de
com intervalo de trés minutos é muito diferente com relagdo aos outros (sendo inclusive su-
perior ao do Baseline), isso apresenta dois resultados: (i) apesar do custo maior por unidade
de tempo, como o programa encerrou em menor periodo de tempo o custo total ainda foi
inferior ao Baseline; (ii) o algoritmo escolheu instancias diferentes nessas duas execugoes.

Nas Figuras 8a e 8b temos o tempo de vida das instancias no decorrer da execucao

©

Otimizacao de custo na AWS

c5.4xlarge

c5.4xlarge
mé4.4xlarge

d2.8xlarge
m4.10xlarge
d2.4xlarge

mé4.4xlarge
d2.4xlarge

d2.8xlarge
r4.16xlarge
rd.4xlarge
c4.8xlarge

rd.16xlarge

rd.4xlarge

mb5.24xlarge r4.8xlarge
m5.12xlarge
c4.Axlarge

mb5.4xlarge

mb5.4xlarge

m5.24xlarge
c5.18xlarge
c5.4xlarge
c5.9xlarge
rd.8xlarge

mb5.12xlarge

m4.10xlarge

c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge

c5.4xlarge

c5.18xlarge

c4.8xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge

c4.4xlarge

c5.18xlarge

c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge

c5.18xlarge
c5.18xlarge

c5.18xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge

c5.18xlarge

c5.9xlarge

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10 0:23:02 0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10
Tempo de execugdo (H:MM:SS) Tempo de execugdo (H:MM:SS)

(a) Um minuto (b) Trés minutos

Figura 8: Tempo de vida das instancias para intervalos de tempo

do programa utilizando trocas a cada um minuto e a cada trés minutos, respectivamente.
Nestas figuras observamos os tipos de instancias que estavam ativas durante a execugao do
programa, a primeira instancia em ambos gréficos (c5.4xlarge) é o Job Manager, permane-
cendo ativo desde o inicio da execugao até o tltimo instante.

Além disso, percebe-se na Figura 8a que a instancia r4.8xlarge demorou para ser inicada,
isso ocorreu devido a indisponibilidade de instancias Spot na zona de disponibilidade pedida
inicialmente, sendo necessério requisitar em outra. Os algoritmos implementados nao sao
afetados pela inicializagao tardia da instancia, entretanto nenhum deles oferece robustez
para realizar outra requisicao se existir indisponibilidade no momento da troca.

Assim como sugerido anteriormente, de fato tivemos escolhas diferentes para a melhor
instancia, a execucao do algoritmo com intervalos de um minuto selecionou a instancia
cH.9xlarge como melhor opc¢ao de custo enquanto a execucao com intervalos de trés minutos
escolheu a instancia cb.18xlarge na maior parte da execucao, sendo que no final a instancia
c5.9xlarge foi escolhida. Uma causa para escolhas de diferentes instancias é a variacao de
custo em diferentes dias (ou até mesmo horas do dia). Entretanto, nao houve alteragao
de precificacdo nem da instancias c5.9xlarge nem da c5.18xlarge entre as execugoes (mais
especificamente, no dia 19 de novembro de 2018). Portanto, a causa para essa diferenga
na escolha foi oscilacao no desempenho, especialmente visivel na selecdo de uma instancia

20 Okita et al

c5.9xlarge apds cinco escolhas das instancias c5.18xlarge na Figura 8b.

Ademais, apesar da escolha diferente, o custo total de execugao foi conforme o esperado:
superior ao valor pago usando trocas de um em um minuto, enquanto inferior ao valor das
trocas de cinco em cinco minutos. Reforgando que todos intervalos de tempo apresentaram
custo de execucao inferior a Baseline. Por fim, para esta politica de troca nao observamos
a necessidade do desvio padrao para analisar se a troca de instancia era valida. Isto é, na
escolha da melhor maquina, o niimero de interpolacoes por US$ das instancias diferiam em
mais de um intervalo de desvio padrao. Porém é importante destacar que em outros testes
(como o mostrado na Figura 12c) observamos que o nimero de interpolagoes por US$ das
instancias ¢b.18xlarge e ¢5.9xlarge diferiu em menos de um intervalo de desvio padrao, nao
sendo entao trocadas uma pela outra.

3.2.2 Custo com o Algoritmo 3

Os resultados mostrados na Secao 3.2.1 ja apresentaram melhoria no custo de execucao.
Entretanto percebemos que nao houve convergéncia em duas das trés execucoes do algoritmo
por falta de tempo, além disso é perceptivel que o menor intervalo de tempo resultou
no melhor custo, ou seja, convergir mais rapidamente para instancias que apresentam as
melhores relagoes de desempenho por custo resulta em melhorias de custo significativas.

Para tentar obter maior rapidez na convergéncia para as melhores instancias temos a
politica de trocas mostrada no Algoritmo 3, em que trocamos uma porcentagem do total de
instancias de cada vez. A troca de uma porcentagem de instancias tem como consequéncia
reducao no numero de iteracoes para convergirmos. Para testar o algoritmo, foram realiza-
dos nove experimentos, sendo eles a combinagao das varidveis de intervalos de tempo (um
minuto, trés minutos e cinco minutos) e agora porcentagens das instancias serao trocadas
(20%, 50%, 100%).

Na Figura 9 colocamos a evolucao do custo de execugao no decorrer do tempo para cada
experimento. Novamente usamos cores diferentes para diferenciar os intervalos de troca,
enquanto usamos marcadores diferentes para diferenciar a porcentagem trocada. O fim
da execugao é quando o custo no decorrer do tempo para de aumentar, isto representa o
momento que todas instancias foram desligadas. Deixamos a reta constante para facilitar
a comparagcao de custo entre os diferentes experimentos.

Apesar da densidade de informacoes na Figura 9 dificultar a andlise dos resultados
individualmente, ainda é possivel extrair algumas conclusoes. A primeira conclusio é que
as trocas em intervalos de um minuto e trés minutos apresentaram custos semelhantes para
quaisquer porcentagem trocada (em torno de US$3.5), enquanto as trocas em intervalos de
cinco minutos reduziram o custo de acordo com o aumento da porcentagem de instancias
trocadas. Além disso, novamente obtemos custos inferiores ao Baseline, com uma reducao
no tempo de execugao, provando novamente a efetividade do algoritmo de trocas.

Separamos a Figura 9 em trés partes, mostradas na Figura 10, para melhor visualizagao.
Cada uma das Figuras 10a, 10b e 10c apresenta a evolucao do custo por tempo de execucao
trocando-se 20%, 50% e 100% das instancias a cada iteracao, respectivamente. Além disso
comparamos para cada porcentagem a diferenca no intervalo de trocas.

E perceptivel que a troca de 20% das instancias de cinco em cinco minutos apresentou

Otimizacao de custo na AWS 21

075 Baseline -+1min/20% -+«1min/50% -=-1min/100% 3min/20% 3min/50% 3min/100% 5min/20% 5min/50% 5min/100%

0 5 10 15 20 25 30
Tempo de execugdo (minutos)

Figura 9: Evolugdo do custo de execugao utilizando o Algoritmo 3

s as
—-1min/20% —+-3min/20% -e-Smin/20% - 1min/50% —-3min/50% -+-5min/50% - 1min/100% -+-3min/100% —+5min/100%

4

5 5 T 5

3 3 3

2 g
15 7 15 15

)Y
1%

1 1 1
05 05 05

0 0 o

0 5 10 15 20 25 30 o 5 10 15 20 25 30

) 5 10 15 20 25 30
Tempo de execugao (minutos) Tempo de execugdo (minutos)

Custo (USD)

Tempo de execugio (minutos)

(a) 20% de instancias trocadas (b) 50% de instancias trocadas (c) 100% de instancias trocadas
por iteracao por iteracao por iteracao

Figura 10: Custo no decorrer do tempo para o Algoritmo 3 separado em porcentagens

os piores resultados, enquanto trocar 100% das instancias apresentou os melhores custos.
Entretanto, é mais notavel que no final da execucao todas retas apresentaram aproxima-
damente o mesmo angulo com relacao ao eixo das abscissas, isto é, apresentavam a mesma
derivada com relagdo ao tempo. O significado da derivada com relagao ao tempo nestas figu-
ras ¢ o custo por unidade de tempo (no caso minutos). Logo, se os experimentos apresentam
a mesma derivada, significa que convergimos para as mesmas instancias. Isso implica que a
diferenga de custo (no geral) estd relacionada com o tempo de inicializac¢ao das instancias e
o tempo para convergéncia e no decorrer da execugao o custo acumulard igualmente.

Vamos agora analisar o tempo de vida das instancias para alguns experimentos. Primei-
ramente, selecionamos a troca de 100% a cada minuto para observamos o melhor resultado
de custo. Este resultado, mostrado na Figura 11, indica rapidamente que todas as instancias
foram trocadas para um unico tipo (cb.9xlarge).

Nesta figura percebemos que rapidamente todas instancias foram desligadas (exceto a

22 Okita et al

c5.4xlarge
m4.10xlarge
c5.18xlarge
mb5.4xlarge
m5.12xlarge
rd.8xlarge
mé4.4xlarge
d2.4xlarge
rd.4xlarge
r4.16xlarge
m5.24xlarge
c4.4xlarge
d2.8xlarge
c5.4xlarge
c5.9xlarge
c4.8xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10 0:23:02
Tempo de execugdo (H:MM:SS)

Figura 11: Tempo de vida das instancias no decorrer da execugao utilizando o Algoritmo 3
em intervalos de um minuto e 100% das instancias trocadas

instancia cb.4xlarge Job Manager e a prépria c¢5.9xlarge) e substituidas por instancias do
tipo ¢b.9xlarge. Essa rapidez na substituicao das instancias foi o motivo para apresentarem
o melhor resultado de custo.

Além disso, é perceptivel que houve um pequeno atraso para serem inicializadas algumas
instancias. Esse atraso nao afeta a execucao do programa e pode ter sido causado simples-
mente pelo tempo do proprio Algoritmo percorrer a lista de instancias e inicializd-las. Por
fim, percebemos que uma das instancias nao chegou ao final da execugao, sendo encerrada
prematuramente. Acreditamos que a instancia tenha sido encerrada pelo provedor AWS e
percebe-se que, devido a robustez a falhas nos Workers do SPITS, o programa ainda foi
capaz de executar o iltimo minuto normalmente gerando o resultado desejado.

Em seguida na Figura 12 mostramos a diferenca do tempo de vida de instancias para
diferentes porcentagens de troca em intervalos de cinco minutos.

Observamos que em todos os casos nem todas insténcias foram substituidas pela c5.9xlarge
(que repetidamente apresentou a melhor medida de desempenho por custo). As instancias do
tipo cb.4xlarge e cb.18xlarge continuaram no processamento mesmo apds o tempo necessario
para convergéncia, implicando que a medida de desempenho por custo para estas instancias
diferia em menos de um desvio padrao da instancia c5.9xlarge (aplicando a equagao 9).

E notdvel que a ordem das instancias a serem encerradas foi semelhante nestes experi-
mentos, mostrando que a diferenca de custo realmente surgiu do intervalo mais longo entre
as trocas. Além disso, é perceptivel que a troca de 100% de instancias ocorreu em passos,
isto é, algumas instancias foram encerradas antes de outras e as novas instancias nao foram
colocadas ao mesmo tempo. Nao conseguimos detectar o motivo para este problema.

Otimizacao de custo na AWS 23

m4.10xlarge c5.axlarge

cs.axlarge r4.8xlarge

cd.axlarge
d2.4xlarge
2 8xlarge

d2.4xlarge
d2.8xlarge

ma.axlarge r4.8xlarge

c5.184large

4.4xar
c rlaree caaxlarge

r4.16xlarge c5.axlarge

mS.axarge

r4.4xlarge €5.9xlarge

ms.12xlarge

r4.8xlarge c5.axlarge

5.24x];
ma.10xlarge r4.16xlarge m5.2axlarge
ms.24xlarge md.axlarge

d2.8xlarge

mS.12xlarge ma. 10xarge

2 4xlarge
r4.16xlarge
rd.ddarge

ms.axlarge

mS.2axarge

e axarge

ca.8xlarge c5.9xlarge

cs.18xlarge
c5.9xlarge €5 9xlarge

c5.9xlarge

€5.9xlarge c5.9xlarge

c5.9xlarge

c5.9xlarge €5.9xlarge

c5.9xlarge

c5.9xlarge €5.9xlarge

c5.9xlarge

€5 9xlarge cs.9xlarge
€5 9xlarge €5 9xlarge €5 9xlarge
€5 xlarge €5 xlarge €5 9xlarge
€5 9xlarge €5 9xlarge €5.xlarge
€5 9xlarge

es.9xlarge cs.9xlarge

cs.9xlarge cs.9xlarge c5.Sxlarge

c5.9xlarge cs.9xlarge €5 9xdarge

c5.9xlarge c5.9xlarge c5.9xlarge

00000 00419 00838 01258 0:17:17 02136 02555 0:0000 00419 00838 01258 01717 02136 02555 00000 00419 00838 01258 0:17:17 02136 02555
Tempo de execug3o (H:MM:SS) Tempo de execug3o (H:MM:SS) Tempo de execugao (H:MM:SS)

(a) 20% de instancias trocadas (b) 50% de instancias trocadas (c) 100% de instancias trocadas
por iteracao por iteracao por iteracao

Figura 12: Tempo de vida das instancias no decorrer da execucao do programa utilizando
o Algoritmo 3 em intervalos de cinco minutos

Por fim, apesar dos melhores resultados surgirem das trocas de 100% das instancias,
nao acreditamos que seja a melhor forma de realizar escolhas. Como visto na Figura 8b,
podemos fazer escolhas erradas durante a execugao do algoritmo. Isto é, uma instancia que
apresenta melhor desempenho por custo em determinado momento pode nao ser de fato
a melhor escolha (nos nossos experimentos essa escolha foi a c5.9xlarge, entretanto alguns
experimentos optaram pela c¢5.18xlarge inicialmente). Além disso, como mencionado na
Secao 2.5, somente consideramos que a instancia pode ser descartada apds a execucao da
primeira tarefa, gerando o seguinte problema:

Supondo uma situagdo que trocamos 100% das instancias exceto a melhor (pois ela
ainda nao terminou a primeira tarefa), teremos que trocar todas instancias novamente apos
o término da execucao da melhor instancia acarretando maior tempo de execucao e custo
aguardando a inicializacao das novas instancias.

Concluimos que essa politica de trocas oferece uma proposta de convergéncia para a
instancia de melhor desempenho por custo em menos iteragoes com riscos como os supra-
citados. Como vimos, no final obtemos a convergéncia para o mesmo tipo de instancia,
portanto é necessario balancear o tempo de execucao total com os gastos adicionais para
utilizar uma solugao mais segura. Ou seja, se o tempo de execugao total for longo suficiente
podemos utilizar uma porcentagem mais baixa de instancias a serem trocadas (ou mesmo
somente uma de cada vez) para reduzir o risco de escolhas erradas. Por outro lado, em um
experimento de execugdo mais rédpida (como o mostrado neste trabalho) pode ser valido
arriscar porcentagens mais altas para convergir mais rapidamente.

24 Okita et al

3.3 Otimizagao de Custo/Beneficio

Os algoritmos mostrados nos resultados anteriores somente otimizam o custo da aplicacao,
desconsiderando o desempenho. Porém como mostrado na Figura 6 a instancia ¢5.18xlarge
executou com um custo semelhante a c¢5.9xlarge porém em um tempo inferior. Mostrare-
mos nesta subsecdo os resultados da execucao do Algoritmo 4, em que ponderamos custo e
desempenho, sacrificando um pouco de custo para ganhar desempenho.

3.3.1 Custo com o Algoritmo 4

Assim como nos testes da subsegdo 3.2.2 executamos nove experimentos, combinando
diferentes intervalos de tempo com diferentes porcentagens trocadas. Similarmente, esco-
lhemos um minuto, trés minutos e cinco minutos para os intervalos, e 20%, 50% e 100% para
as porcentagens. Testamos apenas com pesos iguais para custo e desempenho, portanto o
algoritmo de trocas escolhe instancias com o mesmo viés para as medidas.

Na Figura 13 mostramos a evolucao do custo por tempo de execucao utilizando essa
politica de trocas. Assim como na subsecao 3.2.2 utilizamos cores diferentes para marcar
os diferentes intervalos de troca e usamos marcadores diferentes para as diferentes por-
centagens, enquanto o baseline nao possui marcador. E novamente, o fim da execucao é
indicado quando o custo no decorrer do tempo nao varia, representando o momento que
todas instancias foram desligadas. Deixamos a reta constante para facilitar a comparacao
de custo entre os diferentes experimentos.

Baseline -#-1min/20% 41min/50% -#1min/100% 3min/20% 3min/50% 3min/100% 5min/20% 5min/50% 5min/100%

45

35

Custo (USD)
&

05

0 5 10 15 20 25 30
Tempo de execugdo (minutos)

Figura 13: Evolugao do custo de execugao utilizando o Algoritmo 4

E perceptivel na Figura 13 que as execugoes acabaram consideravelmente mais rapido
que o Baseline, enquanto ainda apresentam custos inferiores. Além disso, notamos que
a maior parte das execugoes custou cerca de US$4, US$0.5 a mais do que a maior parte
das execugoes utilizando o algoritmo 3, enquanto trés execucoes se destacam: as execugoes
com 50% de trocas a cada um minuto e 20% de trocas a cada cinco minutos se destacam

Otimizacao de custo na AWS 25

—Amin/20% 3min/20% 5min/20% —Amin/50% 3min/s0% Smin/50% ——1min/100% 3min/100% Smin/100%

(a) 20% de instancias trocadas (b) 50% de instancias trocadas (c) 100% de instancias trocadas
por iteracao por iteragao por iteragao

Figura 14: Custo no decorrer do tempo para o Algoritmo 3 separado em porcentagens

negativamente devido ao elevado custo, enquanto a execugao com 100% de trocas a cada
cinco minutos se destaca positivamente devido ao seu baixo custo (US$3.5).

Antes de analisar o tempo de vida das instancias para alguns experimentos, separamos
a Figura 13 em trés painéis, cada qual representando uma porcentagem trocada, a fim de
compararmos os intervalos de troca considerando a porcentagem fixa. Esses painéis estao
representados na Figura 14.

Percebemos que o algoritmo de selecao de instancias tomou decisoes que aumentaram o
custo de execucao para uma unidade de tempo, entretanto como essas instancias encerram a
tarefa mais rapidamente por possuirem um bom desempenho o custo total termina inferior
a0 baseline. Além disso, exceto para 20% de trocas a cada cinco minutos, todos os testes
encerraram entre 10 e 15 minutos. Ressaltamos que o tempo de execucao do baseline foram
26 minutos, portanto a execugao foi executada em aproximadamente duas vezes menos
tempo.

Na Figura 14c notamos que os intervalos de troca de um e trés minutos escolheram
o mesmo tipo de instancia e manteve essa instancia por toda execugao enquanto a troca
de cinco minutos optou por outro tipo de instancia (como visto pelo coeficiente angular
da reta). Por outro lado, na Figura 14a notamos que somente o intervalo de trocas de
um minuto convergiu, haja vista que nao tivemos tempo suficiente para convergéncia dos
outros intervalos. Percebemos como a convergéncia beneficia em custo e tempo de execugao
0 experimento.

Vamos analisar agora as instdncias que foram utilizadas no decorrer da execugao de
alguns experimentos. Escolhemos os trés experimentos que se destacaram (50% de trocas
a cada um minuto, 20% de trocas a cada cinco minutos e 100% de trocas a cada cinco
minutos) e o experimento de trocas a cada minuto com 20% das instancias trocadas para
visualizar o comportamento do algoritmo (haja vista que trocamos apenas trés instancias a
cada minuto) e devido ao seu tempo de execugao. Colocamos todos os gréficos na Figura 15.

Na Figura 15a observamos o comportamento esperado do nosso algoritmo. A cada cha-
mada do script, isto é, a cada minuto, trocamos cerca de trés instancias por instancias
que apresentam a melhor medida ponderada de desempenho mais custo por desempenho.
Observamos que uma das instancias demorou para ser inicializada (c4.8xlarge), sendo que

26 Okita et al

<5 4xlarge <5 4xlarge

d2.4xiarge — r4.8xlarge ———————

md.dxlarge — d2.4xiarge ———————
m4.10xlarge — c5.9xarge ————————

d2.8xlarge —— rd.4xlarge ————————

¢5.18xlarge — m4.10xlarge 1 —

r4.4xlarge —— md.axlarge ————————

r4.8xlarge I c5.4xlarge 1 —

4 4xlarge — d2.8xlarge ———————

m5.4xlarge —— c4.4xlarge ———————

r4.16xlarge — mS.12xlarge
mS.12xlarge ————————— mS.dxlarge ————————

c5.9xlarge ——————— ré.16xlarge ————————

<5 dxlarge —————— mS.24xlarge ——————
mS.24xlarge c5.18xlarge

<4 8xlarge — <4 8xlarge ——
mS.24xlarge c5.18xlarge —————————————
mS.24xlarge c5.18xlarge ———————————
mS.24xlarge 18xlar, —————————————
mS.24xlarge c5.18xlarge ———————————
mS.24xlarge c5.18xlarge —————————————
mS.24xlarge c5.18xlarge ———————————
mS.24xlarge c5.18xlarge —————————————
mS.24xlarge c5.18xlarge ——————————
mS.24xlarge c5.18xlarge ———————————
mS.24xlarge c5.18xlarge ——————————
m5.24xlarge c5.18xlarge N
mS.24xlarge ———————— c5.18xlarge ————————————
mS.24xlarge c5.18xlarge
mS.24xlarge c5.18xlarge

0:00:00 0:02:53 0:05:46 0:08:38 01131 0:14:24 0:00:00 0:02:53 0:05:46 008:38 011:31 0:14:24
Tempo de execugdo (H:MM:SS) Tempo de execugdo (H:MM:SS)

(a) 20% de instancias trocadas a cada minuto (b) 100% de instancias trocadas a cada 5 min.

r4.axlarge <5 axlarge
c5.axarge md.axlarge —
d2.4xarge d2.4xlarge —
a1 c5.18xlarge —
ca.axlarge d2.8xlarge —
mS.dxlarge —
r4.8xlarge
r4.4xlarge —
ma.10xlarge
ma.10xlarge —
mS.axlarge
r4.8xlarge ——
<5.18arge r4.16xlarge —
<5.9xlarge c5.9xlarge —
mS5.24xlarge c5.4xlarge ——
c5.axarge ms.12xlarge ———
d2.8xlarge c4.axlarge
mS.12xlarge mS.24xlarge
r4.16xlarge c4.Bularge —
<4 Brlarge ms.24xlarge
mS.24xlarge mS.24xlarge
mS.24xlarge ms.24xlarge
S 24xlarge mS.24xlarge
mS.24xlarge mz.;:x:arge
mS.24xlarge —— me.2axaree
o ms.24xlarge
——
mo-2dxiarge mS.24xlarge
——
mS.24xlarge mS.24xlarge
mS.24xlarge —— s 24xlarge
mS.24xlarge - mS.24xlarge
mS.24xlarge - mS.24xlarge
mS.24xlarge - mS.24xlarge
mS.24xlarge - mS.24xlarge
0:00:00 00253 00546 00838 01131 0:14:24 01717 0:00:00 00253 005:46 0:08:38 01131 0:14:24
Tempo de execugdo (H:MM:SS) Tempo de execugdo (H:MM:SS)

(¢) 20% de instancias trocadas a cada 5 min. (d) 50% de instancias trocadas a cada minuto

Figura 15: Tempo de vida das instancias utilizando o Algoritmo 4

0 motivo para essa demora foi a indisponibilidade desse tipo de instancia na zona de dispo-
nibilidade requisitada, sendo necessario pedir a instancia em outra zona. O rapido tempo
de execucao ocorreu devido a poucas instancias serem terminadas durante uma troca, haja
vista que quando terminamos uma instancia que ja estava executando nao necessariamente
a nova instancia ja comegou seu processamento (é necessario aguardar tempo de boot e
leitura de dado, por exemplo). E apesar da pouca quantidade de instancias sendo troca-
das, as novas instancias apresentam desempenho superior as demais (assim como visto na
Figura 6).

—~

Em seguida vamos analisar a Figura 15b, haja vista que foi o experimento que apresentou
o melhor custo. O motivo para esta diferenga de custo estd na instancia selecionada pelo
algoritmo. Enquanto nos outros experimentos foi escolhida a instancia do tipo m5.24xlarge,
neste experimento escolheu-se a instancia c5.18xlarge. Como visto na curva Pareto da

Otimizacao de custo na AWS 27

Figura 6, a instancia c5.18xlarge apresenta custo muito semelhante & instancia c5.9xlarge
porém mais desempenho. Experimentalmente observamos esse fato, haja vista que nas
politicas de troca anteriores observamos a convergéncia para a instancia c¢b5.9xlarge com
custo em torno de US$3,5, enquanto neste experimento observamos a convergéncia para a
instancia ¢5.18xlarge com custo em torno de US$3,5 novamente, porém com um tempo de
€xXecucao menor.

Todavia, a escolha das instancias mb.24xlarge foi mais comum nos experimentos desta
subsecao. Isso mostra que mesmo tendo um viés para desempenho além do custo, o algo-
ritmo escolheu uma instancia que estava na curva Pareto da Figura 6. Essa escolha mostra
um custo superior a escolha de outras instancias, porém seu tempo de execucao é inferior.

Na Figura 15c observamos o motivo para o custo préximo do baseline no experimento
trocando 20% das instancias a cada minuto. Como nossa execucao levou somente entre
dezessete e dezoito minutos, efetivamente somente tivemos a oportunidade de trocar 40%
das instancias (os tltimos 20% foram encerrados pouco depois de iniciados), sendo que essas
trocas foram para instancias do tipo m5.24xlarge, as quais sao mais custosas que 13 das 14
outras instancias que utilizamos.

Por fim, na Figura 15d tentamos entender o motivo para a execucao destas configuragoes
ter produzido custo mais elevado que as demais. Observando quais instancias foram utili-
zadas nao é suficiente para obter conclusoes, haja vista que a selegdo ocorreu normalmente,
sendo que as instancias foram trocadas para a mb5.24xlarge assim como nas outras selecoes.

Percebemos pela Figura 14b que quaisquer intervalos de tempo produziu convergéncia
para a m5.24xlarge (dado o coeficiente angular da reta), porém a execugado com um minuto
de intervalo levou mais tempo que o esperado para gerar o resultado, quando comparamos
a média de custo. A causa para esse tempo mais longo provavelmente foi maior tempo
de inicializacao ou leitura do dado, fazendo com que nosso programa trabalhe com menos
instancias por alguns minutos, ja que encerramos elas antes do inicio de execugao das novas
instancias, gerando um ou dois minutos a mais de execugao que causaram essa discrepancia
de custo.

Por fim, mostramos que o algoritmo de troca ponderada pode trazer bons resultados
de custo em conjunto com bons tempos de execucao, assim como visto na Figura 15b.
Porém os pesos escolhidos causaram um viés maior para tempo de execucgao, fazendo com
que todas outras execugOes optassem pela instancia m5.24xlarge (que apresenta o melhor
desempenho). Experimentagdes com outros pesos poderiam ser tteis para convergéncia a
instancia que apresenta bom balan¢o de custo e tempo de execugao (como é o caso da
ch.18xlarge na Figura 6).

3.4 Comparacoes de resultados

Por fim, selecionamos um resultado de cada subsecao anterior para comparar as politicas
de troca. Montamos o grafico da Figura 16 comparando os custos e tempos de execugao
do baseline com o Algoritmo 2 com trocas em intervalos de um minuto, o Algoritmo 3 com
trocas de 50% das instancias a cada trés minutos e o Algoritmo 4 com trocas de 100% das
instancias a cada cinco minutos. Nesta figura utilizamos cores diferentes para diferenciar
cada algoritmo e o baseline. Mantivemos retas constantes para indicar o custo no final

28 Okita et al

da execugao de cada experimento, isto é, quando o custo nao varia mais indicia que o
experimento foi encerrado e todas suas instancias foram terminadas.

Baseline Algoritmo 2 Algoritmo 3 ~-Algoritmo 4

a5

Custo (USD)
&

) /
0
0 5 10 15 20 25 30
Tempo de execugdo (minutos)

Figura 16: Comparacao da evolugao de custo por tempo de execucao entre algoritmos

Percebemos na Figura 16 que nossas escolhas possuem custo semelhante. Nao optamos
pela substituicao de 100% das instancias utilizando o Algoritmo 3 devido aos problemas que
podem advir dessa substituicdo. Porém escolhemos a substitui¢ao de 100% das instancias a
cada cinco minutos para o Algoritmo 4 para mostrar como seu custo de fato se é semelhante
aos demais porém encerrando a execucao em 30% menos tempo.

Além disso mostramos que mesmo a escolha mais conservadora de apenas uma instancia
a cada minuto oferece pequena diferenca de custo total, sendo essa diferenca somente cau-
sada pelo tempo a mais para convergéncia.

Por fim, concluimos que todos algoritmos mostrados sao vidveis. A escolha de qual deles
utilizar depende do risco que o usuério esta disposto a correr para corrigir escolhas erradas,
ou se ¢é interessante colocar um viés de desempenho.

4 Conclusoes

Neste trabalho estudamos a infraestrutura da AWS e como utilizar seus servicos para a
execucao de programas de alto desempenho. Dada a facilidade para adaptar nosso programa
para a infraestrutura em nuvem, acreditamos que a nuvem computacional é de fato uma
boa alternativa a compra de clusters convencionais.

Utilizamos um programa com o modelo de programagao SPITS, e seu funcionamento foi
também facilmente adaptavel & nuvem. Além disso, o uso do SPITS permite que utilizemos
instancias do mercado Spot da AWS como Workers, permitindo que a redugéo de custos
para a execucao de nosso codigo, sendo que essa redugao de custo pode ser de até trés vezes
para a mesma instancia (logo provendo o mesmo desempenho).

Mostramos ainda neste trabalho a importancia da selecao do tipo de instancia para
a aplicacao a ser executada, sendo que podemos ter um desempenho mais lento e custos

Otimizacao de custo na AWS 29

maiores para selecoes ruins. Para solucionar esse problema, desenvolvemos algoritmos que
se utilizam de informacgoes do desempenho do programa para tomar decisdes sobre quais
instancias devemos utilizar e quais instancias atualmente utilizadas devem ser descartadas.

Nossos resultados para os algoritmos de trocas de instancias mostrou-se bastante pro-
missor, em especial o resultado utilizando o Algoritmo 4 com 100% de trocas a cada cinco
minutos, haja vista que ele selecionou a instancia que apresentava custo quase tao bom
quanto a instancia de melhor custo porém um tempo de execucao consideravelmente me-
nor. Em todas situactes nossos algoritmos foram capazes de apresentar custos inferiores
ao de uma execuc¢ao ingénua com varias instancias de um mix inicial e em todas execugoes
observamos convergéncia para instancias que estavam na nossa curva Pareto (c5.9xlarge e
ch.18xlarge).

Verificamos também que a convergéncia mais veloz no Algoritmo 3 de trocas em lotes
proveu menores custos, assim como visto na Figura 9 quando trocamos 100% das instancias
contra 20% das instancias ou os resultados da Figura 7. Entretanto, é importante destacar
que essa convergéncia em menor periodo de tempo traz riscos, pois em programas com
desempenho varidvel podemos estar substituindo erroneamente instancias por uma nova
que nao ¢é a 6tima (apenas mostrou melhor desempenho naquele momento). Tendo isso em
vista, entao é necessario balancear os riscos e ganhos ao selecionar o algoritmo, o intervalo
de trocas e o tamanho do lote a ser trocado.

Concluimos que a utilizacao de SPITS e das politicas de troca na nuvem AWS facilitam
a minimizagdo do custo (ou da medida ponderada do Algoritmo 4) para a execucdo de
programas de alto desempenho na nuvem computacional.

5 Generalizacao do Problema

Utilizamos o algoritmo para um programa que possui desempenho bem comportado
desde o comeco de sua execucao. Este comportamento estd mostrado na Figura 17, em que
observamos que a variagdo no desempenho (representado em interpolagdes por segundo) é
muito pequena.

Percebemos que a instancia cb.9xlarge necessitou de cerca de quinze tarefas para atingir
essa estabilidade, enquanto instancias com maior poder computacional (como a c5.18xlarge
e mb.24xlarge) oscilaram em torno do estavel, porém essas oscilagoes foram pequenas. As
tarefas que a instancia cb.9xlarge executou antes da estabilidade representaram somente
cerca de doze segundos de tempo execucao, portanto nao afetariam as tomadas de decisao
(que levam no minimo um minuto). Ademais, o desempenho foi inferior ao esperado para
essas tarefas, pois nao faziam uso de toda CPU da instancia por serem muito pequenas. Vale
destacar que nao observamos isso nas outras instancias pois executamos uma unica tarefa
com esses Workers, portanto, das maquinas selecionadas, somente a c5.9xlarge recebeu essas
tarefas pequenas referentes ao inicio do dado.

Esse tipo de comportamento permite que nossos algoritmos tomem decisoes logo no
inicio da execucao e que no decorrer da aplicacao nossas escolhas nao serao diferentes. Nao
somente isso, mas tomando uma decisao de trocar lotes no inicio da execucao permite a
convergéncia em menor tempo e, consequentemente, menor custo, assim como discutido

30 Okita et al

1.40E+10
~-c5.18xlarge --m5.12xlarge —-m5.24xlarge ~r4.16xlarge --r4.8xlarge --c5.9xlarge

1.20E+10
1.00E+10
8.00E+09

6.00E+09 4z sk datdutdipaess = 4 - .ty = < otediatag N N &/

T e L IR S WP DS NP S NS NP S S VU N SUPUDUUY N ST DUy SPUSI ey S

Desempenho (Interpolagdes/Segundo)

4.00E409 |

2.00E+09

0.00E+00
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Tarefas processadas

Figura 17: Comportamento do desempenho da aplicagao em algumas maquinas no decorrer
da execucao

anteriormente. Entretanto, outras aplicagoes podem ter cargas de trabalho que possuem
variacao de desempenho com o tempo, exemplificada na Figura 18. Esses tipos de carga de
trabalho possuiriam dinamicas para sele¢do de instancias diferentes das que observamos na
Figura 17.

9E+09

—Ex.1 —Ex.2 Ex. 3
8E+09
7E+09

6E+09 .

5E+09

4£+09 7/7/77]
36409
2E+09
1E+09
0 \ J \
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Tarefas processadas

Desempenho

Figura 18: Exemplo de variacbes no desempenho no decorrer de execucao de outras
aplicagoes

Ainda nao testamos nem validamos nossos algoritmos para programas com esse tipo de
comportamento. E possivel que nossos métodos de escolha apresentem dificuldades, tendo
em vista que teriamos muitas corretivas, isto €, trocariamos instancias que estavam com
bom desempenho e em seguida, devido a variacao, essas novas instancias seriam trocadas

Otimizacao de custo na AWS 31

novamente.

Em suma, mostramos que nosso algoritmo apresenta bons resultados para cargas bem
comportadas, como as mostradas na Figura 17. O problema de otimizagdo de custo e
desempenho para aplicagoes com comportamento como o mostrado na Figura 18 ainda nao
foi testado nem resolvido neste trabalho. Porém supomos que uma troca em lotes que cresce
exponencialmente o niimero de maquinas trocadas poderia ser utilizado para lidar com esse
tipo de comportamento de desempenho.

6 Agradecimentos

Agradecemos ao laboratério High Performance Geophysics (HPG) e LMCAD pela infra-
estrutura e suporte computacional. Também agradecemos & Petrobras, a Fapesp, ao CNPq
e a CAPES pelo apoio financeiro.

Referéncias

[1] Amazon. Amazon cloudwatch. https://aws.amazon.com/cloudwatch/features/,

2018. Acessado em 20/11/2018.

[2] Amazon. Amazon ebs features. https://aws.amazon.com/ebs/features/, 2018.
Acessado em 15/11/2018.

[3] Amazon. Amazon efs features. https://aws.amazon.com/efs/features/, 2018.
Acessado em 15/11/2018.

[4] Amazon. Amazon efs pricing. https://aws.amazon.com/efs/pricing/, 2018. Aces-
sado em 15/11/2018.

[5] Amazon. Amazon lambda. https://aws.amazon.com/lambda/features/, 2018.
Acessado em 20/11/2018.

[6] Amazon. Amazon s3 features. https://aws.amazon.com/s3/features/, 2018. Aces-
sado em 15/11/2018.

[7] Amazon. Amazon s3 pricing. https://aws.amazon.com/s3/pricing/, 2018. Acessado
em 15/11/2018.

[8] Amazon. Amazon web services (aws). https://aws.amazon.com, 2018. Acessado em
20/07/2018.

[9] Azure. Microsoft azure. https://azure.microsoft.com/, 2018. Acessado em
20/07/2018.

[10] C. Benedicto, I. L. Rodrigues, M. Tygel, M. Breternitz, and E. Borin. Harvesting
the computational power of heterogeneous clusters to accelerate seismic processing. In
15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio
de Janeiro, Brazil, 31 July-3 August 2017. Brazilian Geophysical Society, Agosto 2017.

32

[11]

[12]

18]

Okita et al

E. Borin, C. Benedicto, I. L. Rodrigues, F. Pisani, M. Tygel, and M. Breternitz. Py-pits:
A scalable python runtime system for the computation of partially idempotent tasks.

In 2016 International Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW), pages 7-12, Outubro 2016.

E. Borin, I. L. Rodrigues, A. Novo, J. Sacramento, M. Breternitz, and M. Tygel. Effici-
ent and fault tolerant computation of partially idempotent tasks. In 14th International
Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil,
3-6 August 2015. Brazilian Geophysical Society, Agosto 2015.

Sergey Fomel and Roman Kazinnik. Non-hyperbolic common reflection surface. Ge-
ophysical Prospecting, 61(1):21-27, Abril 2012.

Google. Google cloud. https://cloud.google.com, 2018. Acessado em 20/07/2018.

N. Okita, T. Coimbra, and E. Borin. Anilise de custo da nuvem computacional para
a execucao de algoritmos no processamento sismico. In ERAD-SP 2018, Sao José dos
Campos, 13-15 April 2018. SBC, Abril 2018.

N. Okita, T. Coimbra, C. Rodamilans, M. Tygel, and E. Borin. Using spits to opti-
mize the cost of high-performance geophysics processing on the cloud. In First FAGE

Workshop on High Performance Computing for Upstream in Latin America, Santan-
der, Colombia, 21-22 September 2018. EAGE, Setembro 2018.

N. Okita, C. Rodamilans, T. Coimbra, M. Tygel, and E. Borin. Otimizacao automatica
do custo de processamento de programas spits na aws. In Anais da Trilha Principal
do XIX Simpdsio em Sistemas Computacionais de Alto Desempenho (WSCAD 2018),
pages 196-207. SBC, Outubro 2018.

Rainer Storn and Kenneth Price. Journal of Global Optimization, 11(4):341-359, 1997.

