
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Desenvolvimento de
ferramenta para otimização

de custo na AWS
Nicholas T. Okita Tiago A. Coimbra Charles B. Rodamilans

Edson Borin

Relatório Técnico - IC-PFG-18-30

Projeto Final de Graduação

2018 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Desenvolvimento de ferramenta para otimização de custo na

AWS

Nicholas T. Okita∗ Tiago A. Coimbra† Charles B. Rodamilans‡

Edson Borin§

Resumo

A nuvem computacional viabiliza a execução de programas de alto desempenho sem
a necessidade de aquisição de clusters e de forma flex́ıvel, sendo oferecido diferentes re-
cursos computacionais a preços diferenciados. Neste trabalho exploramos como executar
um programa de alto desempenho da área de geof́ısica utilizando o provedor Amazon
Web Services (AWS) e o modelo de programação Scalable Partially Idempotent Task
System (SPITS). Porém, além da execução, também exploramos como minimizar seu
custo utilizando algoritmos para escolha das melhores instâncias para nosso programa
e as instâncias do mercado Spot da AWS. Propomos três novos algoritmos para troca
de instâncias e todos foram capazes de ajustar durante tempo de execução as instâncias
utilizadas para obtermos melhores custos.

1 Introdução

O modelo de negócios de infraestrutura como serviço (Infrastructure as a Service - IaaS)
é oferecido para os usuários pelos principais provedores de serviço em nuvem computacional,
tais como, Amazon Web Services (AWS) da Amazon [8], Azure da Microsoft [9] e Google
Cloud Platform [14], da Google. Neste modelo é permitido aos usuários a instanciação de
máquinas virtuais com diferentes combinações de hardware, como número de núcleos de
processamento e quantidade de memória RAM, e a configuração com sua própria pilha de
software.

Neste relatório documentamos o estudo sobre o serviço de computação em nuvem AWS
e suas limitações, como usamos a plataforma SPITS na nuvem computacional e por fim
implementações de algoritmos para otimização do custo de execução e seus resultados.

∗Aluno, Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.
†Co-Orientador, Centro de Estudos de Petróleo, Universidade Estadual de Campinas, 13083-896 Campi-

nas, SP.
‡Colaborador, Faculdade de Computação e Informática (FCI), Universidade Presbiteriana Mackenzie,

01302-000 São Paulo, SP.
§Orientador, Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1

2 Okita et al

1.1 Motivação e Objetivos

A computação de alto desempenho em nuvem é uma forte alternativa para a aquisição
de clusters. Além de oferecer maior flexibilidade na execução, dado que no modelo IaaS
o usuário escolhe as configurações de hardware e o software instalado nas máquinas, em
algumas cargas de trabalho a nuvem pode oferecer um custo inferior ao da execução em
clusters [15].

Entretanto, para usufruirmos da possibilidade de reduções de custo ao utilizar a nuvem,
enfrentamos dificuldades na seleção de hardware, haja vista que diferentes configurações
possuem diferentes custos. Não somente isso, mas existem também várias formas de se
contratar o serviço (afetando seu custo e funcionalidade) e opções para armazenamento de
dados, além de outros desafios que serão explicadas na subseção 1.2.

As dificuldades encontradas para redução de custo motivaram este trabalho cujos obje-
tivos são: (i) a execução de um programa de alto desempenho distribúıdo na nuvem AWS;
(ii) a minimização do custo de execução deste programa.

1.2 Amazon Web Services

A Amazon Web Services (AWS) é uma plataforma de serviços de computação em nuvem
oferecida pela Amazon que provê serviços de computação, armazenamento, banco de da-
dos, machine learning, etc. O serviço que usaremos é voltado para computação e é chamado
Elastic Computer Cloud (EC2), o qual disponibiliza máquinas virtuais com diferentes confi-
gurações sob diferentes custos dependendo da configuração escolhida e do tipo de contrato.

1.2.1 Elastic Computer Cloud

A precificação dos serviços varia de acordo com o serviço contratado, o contrato firmado,
a região e zona de disponibilidade escolhidas. No caso do serviço que usaremos (EC2), são
disponibilizados três contratos para adquirir uma máquina virtual. Em instâncias On-
Demand alugamos uma configuração de máquina virtual e pagamos por hora de uso; em
instâncias Reserved é realizada uma negociação com a Amazon e contrata-se uma máquina
virtual por um peŕıodo extenso de tempo (meses, por exemplo), sendo que é oferecido um
custo por hora reduzido devido ao compromisso de longo termo; por fim em instâncias Spot
o usuário contrata recursos computacionais que não estão sendo utilizados pelo provedor,
podendo pagar taxas mais baixas - reguladas por oferta e demanda - porém correndo o risco
de terminação pelo provedor quando esses recursos forem necessários.

Na Tabela 1 são mostradas algumas configurações dispońıveis na zona de disponibilidade
us-east-1a e seus respectivos custos ao usar o contrato de instâncias On-Demand. Nela temos
o nome da instância seguido do número de núcleos virtuais dispońıveis para esta instância
(threads), quantidade de memória RAM, o custo por hora na zona de disponibilidade us-
east-1a para o contrato On-Demand e por fim a finalidade da instância de acordo com a
provedora de serviço. Por exemplo a instância m5.12xlarge possui 48 threads do processador
Xeon Platinum 8175 2.5GHz com 192GB de RAM voltada para uso geral e custa US$2,304
por hora de uso.

Otimização de custo na AWS 3

Tabela 1: Instâncias AWS

Instância
vCPUS

(número de núcleos virtuais)
RAM
(GB)

Custo
(USD/h)

Otimização

c4.4xlarge 16(Xeon E5-2666 v3 Haswell) 30 0,796 Computação

c4.8xlarge 32(Xeon E5-2666 v3 Haswell) 60 1,591 Computação

c5.4xlarge 16(Xeon Platinum 8124 3GHz) 32 0,680 Computação

c5.9xlarge 36(Xeon Platinum 8124 3GHz) 72 1,530 Computação

c5.18xlarge 72(Xeon Platinum 8124 3GHz) 144 3,060 Computação

d2.4xlarge 16(Xeon E5-2676 v3 Haswell) 122 2,760 Armazenamento

d2.8xlarge 36(Xeon E5-2676 v3 Haswell) 244 5,520 Armazenamento

m4.4xlarge 16(Xeon E5-2676 v3 Haswell) 64 0,800 Uso geral

m4.10xlarge 40(Xeon E5-2676 v3 Haswell) 160 2,000 Uso geral

m5.4xlarge 16(Xeon Platinum 8175 2.5GHz) 64 0,768 Uso geral

m5.12xlarge 48(Xeon Platinum 8175 2.5GHz) 192 2,304 Uso geral

m5.24xlarge 96(Xeon Platinum 8175 2.5GHz) 384 4,608 Uso geral

r4.4xlarge 16(Xeon E5-2686 v4 Broadwell) 122 1,064 Memória

r4.8xlarge 32(Xeon E5-2686 v4 Broadwell) 244 2,128 Memória

r4.16xlarge 64(Xeon E5-2686 v4 Broadwell) 488 4,256 Memória

1.2.2 Zonas de Disponibilidade

A Amazon possui datacenters em diferentes regiões no mundo, sendo que cada região é
isolada geograficamente de outra, isto é, instâncias de uma região não podem se comunicar
diretamente (por IP privado) com instâncias de outras regiões. Porém, dentro das regiões
temos conexões de baixa latência conectando os datacenters, separando eles nas chamadas
zonas de disponibilidade. Podemos criar instâncias em quaisquer zonas de disponibilidade
de uma região e elas poderão se comunicar entre si livremente.

As zonas de disponibilidade são identificadas por uma letra após o nome da região,
por exemplo: us-east-1a refere-se à zona de disponibilidade ’a’ na região us-east-1 (que
representa Virǵınia do Norte).

1.2.3 Armazenamento

Ademais, ainda existem gastos relacionados ao tipo de dispositivo de armazenamento
alocado para a instância (chamado de Elastic Block Storage (EBS)), sendo disponibilizados
quatro tipos com diferentes custos para diferentes desempenhos (medido em Input Output
Operations per Second (IOPS) para os SSDs ou throughput em MB/s para os HDDs) [2],
assim como mostrado na Tabela 2.

O dispositivo utilizado como padrão para instanciação de novas máquinas atualmente
é o gp2, apresentando desempenho superior às opções de HDD. Para os dispositivos gp2,
st1 e sc1 o desempenho varia com o espaço alocado, sendo que quanto maior o tamanho do
dispositivo, maior será seu desempenho. Por exemplo, um armazenamento do tipo gp2 com
100GB alocados possui 300IOPS de desempenho (max(100 IOPS, 3IOPS/GB × 100GB)),
enquanto um armazenamento gp2 com 20GB alocados possui 100 IOPS. Por outro lado,
o dispositivo io1 tem sue desempenho definido pelo usuário. Descrevemos na Equação 1
a relação de custos e tempos para decidir quando o uso do dispositivo gp2 oferece melhor

4 Okita et al

Tabela 2: Dispositivos de Armazenamento EBS

Tipo de dispositivos de
armazenamento

Desempenho
(IOPS/throughput)

Custo

General Purpose SSD (gp2) max(100 IOPS, 3 IOPS/GB) 0,1/(G×mês)

Provisioned IOPS SSD (io1) IOPS definido pelo usuário
0,125/(GB×mês)

+ 0,065/(IOPS×mês)

Throughput Optimized HDD (st1) 40MB/s/TiB 0,045/(GB×mês)

Cold HDD (sc1) 12MB/s/TiB 0,025/(GB×mês)

valor. (
tgp2
tio1
− 1

)
cinst +

(
tgp2
tio1
− α

)
cgp2 − β ≤ 0 (1)

Na Equação 1 temos que tgp2 e tio1 são os tempos que a instância permanecerá ligada
com o dispositivo do tipo gp2 e io1, respectivamente. cinst é o custo por hora da instância
selecionada assim como cgp2 é o custo por hora do dispositivo gp2 de tamanho definido
pelo usuário. A constante α representa a razão de custo por hora do dispositivo io1 pelo
dispositivo gp2 considerando somente o armazenamento e que ambos possuem o mesmo
tamanho, atualmente (como mostrado na Tabela 2) este valor é α = 1.25, enquanto a
constante β representa o custo por hora da escolha de IOPS para o dispositivo io1.

Como exemplo de uso desta equação, dada uma aplicação CPU bound com um longo
tempo de execução, tal que tio1 ≈ tgp2, vemos que

tgp2
tio1
≈ 1. Além disso, sabemos pela

Tabela 2 que α = 1.25 e consideramos que alocamos um dispositivo de 200GB tanto para
gp2 quanto para io1 (cgp2 ≈ 0.03USDh), e no caso do dispositivo io1 escolhemos 1000 IOPS
(portanto temos β ≈ 0.1USDh). Por fim, aplicando estes valores na Equação 1 temos:
(0− 0.25× 0.03− 0.1)USDh = −1.075USDh ≤ 0. Concluindo que para este exemplo o uso do
dispositivo gp2 oferece melhor custo.

Por fim, as opções com HDD (st1 e sc1) são mais voltadas para instâncias que armaze-
narão grandes volumes de dados por longos peŕıodos de tempo, sem a necessidade de alto
desempenho de IO.

Outrossim, utilizamos os serviços de armazenamento da AWS para armazenar progra-
mas, dados e resultados de execução. São disponibilizados dois serviços além das opções do
EBS: Simple Storage Service (S3) e Elastic File System (EFS).

O serviço S3 é voltado para o armazenamento de objetos em buckets [6]. Podemos
armazenar quaisquer objetos com menos de 5TB e quantos objetos quisermos dentro de um
bucket. Além disso, seu acesso é controlado pelo usuário criador ou administrador da conta.

Para utilizar um objeto em um bucket é necessário fazer seu download para a instância,
não é posśıvel acessar diretamente o S3 como um file system. Seu custo é composto pelo
número de bytes transferidos de um bucket para uma instância ou um computador local,
pela quantidade de dados armazenados em buckets [7].

Por outro lado o serviço EFS oferece um sistema de arquivos que pode ser compartilhado
entre diferentes instâncias [3]. Por se tratar de um sistema de arquivos, podemos acessá-lo
tanto para escrita quanto para leitura assim como fazemos com dispositivos montados nas
instâncias, tornando seu uso para sistemas distribúıdos e clusters mais simples do que o

Otimização de custo na AWS 5

S3. Entretanto, o EFS apresenta um custo superior ao outro serviço de armazenamento da
AWS, sendo cerca de dez vezes mais caro por gigabyte armazenado [4].

1.2.4 Spot

Instâncias Spot são instâncias de máquinas virtuais que são oferecidas por custo menor
mas com menos garantias. Estas instâncias podem sofrer flutuação de custo, encerramento
precoce por parte do provedor e indisponibilidade. Ainda, neste tipo de contrato a diferença
de custos entre zonas de disponibilidade é significativo, como visto na Figura 1, na qual
comparamos o custo da instância c5.18xlarge em diferentes zonas de disponibilidade no
decorrer do mês de abril na região us-east-1. Nesta figura, vemos que a variação de custo
entre zonas de disponibilidade pode chegar a 30%, como ocorreu no dia 6 de abril de 2018
entre a zona us-east-1c e us-east-1f.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2018-04-01 2018-04-06 2018-04-11 2018-04-16 2018-04-21 2018-04-26 2018-05-01

Cu
st

o
po

r h
or

a
(U

SD
/h

)

Dia

us-east-1a us-east-1b us-east-1c us-east-1d us-east-1f

Figura 1: Variação do custo da instância c5.18xlarge no modelo Spot em diferentes zonas
de disponibilidade ao longo do mês de abril de 2018

No contrato de instâncias Spot, o usuário define um valor máximo a ser pago pela
instância. O momento que o custo da máquina superar este valor máximo ou a Amazon
necessitar de mais recursos computacionais, a instância é terminada e o usuário deve então
fazer um novo pedido. Vale ressaltar que o custo das máquinas varia no decorrer do tempo
(como visto na Figura 1) de acordo com oferta e demanda.

Portanto, devido a essas condições no contrato Spot, conclúımos que nosso programa
deve ser tolerante a falhas e possuir provisionamento dinâmico de recursos. A tolerância
a falhas é necessária para o programa continuar executando na situação de encerramento
de instâncias pela AWS. O provisionamento dinâmico permite a adição de novas máquinas
virtuais durante a execução do programa, o que viabiliza o aumento do poder computacional
ou migração da computação para novas máquinas virtuais.

6 Okita et al

Figura 2: Visualização gráfica de métrica no CloudWatch

1.2.5 Cloudwatch e Lambda

CloudWatch é uma plataforma da AWS para monitoramento e gerenciamento de instâncias
e serviços da AWS [1]. Resumidamente, com esta plataforma podemos coletar métricas e
relatórios de uso de nossas instâncias, analisá-las com gráficos e aplicar medidas corretivas
(como auto escalabilidade baseada em uso de CPU). Além disso, existe a possibilidade de
ativar alarmes alertar quando alguma métrica está se comportando de forma indesejável.
Apesar de existirem mais funcionalidades, essas são as que interessam neste trabalho.

O CloudWatch já oferece algumas métricas, por exemplo a medição do uso de CPU e
de memória RAM de instâncias EC2. Entretanto, a plataforma permite a implementação
de nossas próprias métricas. Dessa forma, podemos extrair informações relevantes para
nossa aplicação utilizando a própria plataforma da AWS, somente com a necessidade de
implementação do envio dessas métricas.

Como exemplo para visualização das métricas colocamos na Figura 2 a visualização em
forma de gráfico de linha de uma métrica que implementamos. Neste exemplo escolhemos
a métrica de nome nickokita costperinterp (métrica de interpolações por US$, que será
explicada na seção 2.3.1) para a instância de id i-080c59ec43a42b69b durante o peŕıodo de
4:50 a 4:59 do dia 19 de novembro de 2018.

Além de permitir visualização de nossas métricas, a utilização da plataforma CloudWatch
permite o uso do serviço Lambda para aplicarmos nossas ações corretivas.

Lambda é um serviço da AWS que executa códigos (scripts Python ou NodeJS por
exemplo) sem a necessidade de alocação de recurso computacional por parte do usuário [5].
O serviço pode ser utilizado para execução de código em resposta a eventos, como os gerados
pelo CloudWatch, por exemplo.

A vantagem de utilização desses serviços é a automatização de monitoramento e respos-
tas. Ou seja, além de monitorar recursos utilizando o CloudWatch, podemos gerar eventos

Otimização de custo na AWS 7

para serem processados pelo Lambda automaticamente.

1.3 SPITS

O modelo de programação Scalable Partially Idempotent Task Systems (SPITS) foi de-
senvolvido no laboratório High Performance Geophysics (HPG) e é utilizado para imple-
mentar programas em sistemas distribúıdos utilizando tarefas idempotentes [12] [11] [10].
Sendo que, uma tarefa idempotente é uma tarefa que não depende do resultado de outras
e ao ser executada múltiplas vezes retorna sempre o mesmo resultado.

O modelo SPITS envolve a divisão do programa em três partes independentes entre si:
Job Manager (JM), Worker (WK) e Committer (CO). O Job Manager é responsável pela
geração de tarefas, as quais são repassadas para os Workers que processam essas tarefas e
enviam o resultado para o Committer que serializa e armazena o resultado da computação,
assim como exemplificado na Figura 3.

Job
Manager

Worker

Worker

CommitterWorker

Nó 2

Nó 1

Nó N

t1

t2

tm

t4

t3

r1

r2

r3

r1

r2

r3

t1

t2

t3

Figura 3: Fluxo de geração e execução de tarefas no SPITS

O paralelismo no SPITS se dá nos Workers, criamos um Worker por máquina e en-
viamos tarefas geradas pelo Job Manager para cada um deles. Esse modelo permite por
consequência o provisionamento dinâmico de recursos, haja vista que basta a inserção de
um novo Worker em tempo de execução para aumentarmos a quantidade de recursos dis-
pońıveis para a execução. Permite também arquiteturas heterogêneas, pois podemos ter
Workers com CPUs ou GPUs e cada Worker implementa seu código (desde que a entrada e
a sáıda possuam o mesmo formato). Por fim possui tolerância a falhas porque se um Wor-
ker for desativado por alguma falha, a propriedade de idempotência das tarefas permite
que elas sejam redistribúıdas entre os Workers que ainda funcionam e o processo continue
corretamente.

8 Okita et al

Escolhemos o modelo de programação SPITS pois ao trabalhar com instâncias Spot
lidamos com o risco de termos nossas instâncias encerradas abruptamente pelo provedor de
serviços. Além disso, como queremos otimizar o custo escolhendo as melhores instâncias,
iniciaremos e encerraremos instâncias no decorrer da execução, portanto provisionamento
dinâmico é um recurso necessário e está dispońıvel no SPITS.

Além destes requisitos necessários, o SPITS oferece alguns recursos que são desejáveis
para nosso programa. Não somente é uma plataforma simples de programar, utilizamos o
runtime PY-PITS [11] o qual necessita somente de Python para ser executado, um pacote
dispońıvel em todas distribuições Linux atuais.

1.3.1 SPITS na nuvem

Para utilizar o SPITS na nuvem não foi necessário nenhuma alteração no código do
programa desenvolvido utilizando o modelo de programação nem no runtime PY-PITS,
haja vista que o modelo já é voltado para sistemas distribúıdos. Quanto a infraestrutura
na nuvem, foi necessário somente configurar as instâncias para permitir comunicação entre
si por quaisquer portas na rede local (caracterizada pela região). Como a execução do PY-
PITS depende de um diretório compartilhado, utilizamos o serviço EFS para compartilhar
o sistema de arquivos entre as diferentes máquinas no sistema.

Utilizamos o modelo mostrado na Figura 4 para executar programas SPITS na nuvem
computacional. Neste modelo utilizamos uma instância do tipo On-Demand para ambos Job
Manager e Committer, várias instâncias Spot para os Workers e o sistema de arquivos EFS
para armazenar os dados (tanto para leitura dos dados, quanto para escrita dos resultados).

Job
Manager CommitterWorkers

SpotOn-Demand On-Demand

EFS

t r

d
d

r

Figura 4: Fluxo de informações entre o EFS e os módulos do SPITS

Na Figura 4, vemos o fluxo de informações entre os módulos do SPITS. O Job Manager
e os Workers leem o dado de entrada a partir do EFS, em seguida o Job Manager envia
tarefas aos Workers, que por sua vez processam e enviam o resultado para o Committer
que salva o resultado consolidado de volta no EFS.

Otimização de custo na AWS 9

1.3.2 Reconfiguração PY-PITS na Spot

Uma das pastas dentro do diretório compartilhado do PY-PITS possui arquivos com
o endereço e a porta dos Workers na rede, o qual é utilizado pelo Job Manager e pelo
Committer para se conectar aos Workers a fim de enviar e receber tarefas e resultados.
Se uma instância falha, seu arquivo contendo seu endereço e porta permanece na pasta e
eventualmente o Job Manager tenta conexão, porém como a instância não responde, temos
que aguardar o timeout do TCP para tentar conexão com outras instâncias (2 minutos).

Figura 5: Uso de CPU no decorrer do tempo em instâncias

Este problema de timeout acarretou em problemas de desempenho como visto na Fi-
gura 5, em que uma instância é encerrada pela AWS e causa perda de desempenho em
outras instâncias. Além disso, percebemos que algumas execuções nunca encerravam e
encontramos que o problema era o timeout na espera de envios e recebimentos de pacotes.

Para corrigir o problema, simplesmente colocamos flags para o runtime PY-PITS reduzir
todos timeouts para 5 segundos. Isto é, ao tentar conectar em um nó desativado o Job
Manager aguarda somente 5 segundos até tentar conectar no próximo nó. Este tempo foi
suficiente para resolver o problema de desempenho e não causou instabilidades na execução.

2 Metodologia

Nesta seção serão discutidas as propostas para otimização de custo na AWS bem como
os experimentos realizados.

10 Okita et al

2.1 Ferramental

Para a realização dos experimentos que serão discutidos nas próximas subseções utili-
zamos o sistema mostrado na Figura 4 com uma instância c5.4xlarge como Job Manager e
Committer e as as instância mostradas na Tabela 1 como Workers.

Foi utilizado um programa de processamento śısmico de alto desempenho que tem como
finalidade a computação dos parâmetros do método Non-hyperbolic Common Reflective
Surface, ou NCRS [13]. Este programa foi implementado utilizando o modelo SPITS e
utilizamos o runtime PY-PITS [11] para sua execução. Além disso, a implementação do
programa utiliza a heuŕıstica Differential Evolution (DE) [18] para realizar a busca dos
parâmetros.

O programa NCRS foi compilado utilizando o compilador gcc versão 5.4.0 com a flag
de compilação -O3, enquanto que o motor PY-PITS foi executado utilizando python versão
3.5.2. A entrada do programa foi um dado śısmico de aproximadamente 1,3 GB e escolheu-se
para o DE uma população de tamanho 31 iterando por 31 gerações.

Em cada instância utilizamos um disco de 20GB do tipo io1 com 1000 IOPS, haja vista
que calibramos nossos testes para serem de curta duração, sendo mais vantajoso a utilização
de um disco mais rápido. Este disco foi inicializado a partir de uma imagem baseada em
Ubuntu 16.04, o qual possui diversos pacotes já instalados (awscli, binutils, cloud-utils, efs-
utils, gcc, make, python3-pip, sshpass, unzip e zip), uma pasta para o EFS montado e uma
cópia do dado śısmico de entrada. O programa e os resultados foram armazenados no EFS.

Os scripts que desenvolvemos (mostrados na Seção 2.3.1) foram implementados em
python 3.6 e são executados utilizando o serviço Lambda. Além disso utilizamos o serviço
CloudWatch para monitorar as instâncias e armazenar informações durante a execução para
serem utilizadas pelo Lambda.

Por fim, por simplicidade, consideramos somente o custo das instâncias ao computar o
custo total de execução, desconsiderando, portanto, o custo dos discos EBS, do EFS, das
transferências de bytes entre zonas de disponibilidade e dos serviços Lambda e CloudWatch.
Vale destacar que estes custos são pequenos quando comparados aos custos das máquinas
virtuais.

2.2 Curva Pareto

Uma das maiores dificuldades para otimização de custo é a escolha adequada de máquinas
para determinada aplicação. Para resolver este problema a curva Pareto é utilizada como
guia para escolher máquinas que apresentem melhor custo ou tempo de execução [16].

A curva Pareto é composta por pontos pi, tal que um ponto pi não seja dominado por
nenhum ponto pj . No nosso caso, consideramos o conjunto de pontos P como pares de
coordenadas (x,y) no plano cartesiano R2. E definimos o conjunto de pontos P ′ que domina
um ponto pi como:

P ′(pi) = {p ∈ P : xp > xpi ∧ yp > ypi , p 6= pi} (2)

Logo, consideramos que um ponto está na curva Pareto Pp se:

Pp = {p ∈ P : P ′(p) = ∅} (3)

Otimização de custo na AWS 11

Para nosso trabalho usamos um plano R2 tal que o eixo das abscissas (x) representa o
tempo de execução do programa e o eixo das ordenadas (y) representa o custo de execução
do programa. Nosso conjunto de pontos PI representa os diferentes tipos de máquina,
mostrando então para aquela uma dada instância qual seu tempo de execução e qual seu
custo. Por fim, definimos que uma instância Ii domina outra Ij quando Ii apresenta ambos
tempo de execução e custo menores que o de Ij , portanto redefinimos a Equação 2 como:

P ′(Ii) = {I ∈ PI : xI > xIi ∧ yI > yIi , I 6= Ii} (4)

Sendo assim, a curva Pareto é composta por um conjunto de pontos PpI tal que nenhum
ponto seja dominado por quaisquer outros pontos, isto é:

PpI = {p ∈ PI : P ′(p) = ∅} (5)

Com conhecimento dessas relações podemos escolher as instâncias que executam o pro-
grama de forma mais eficiente, isto é, podemos traçar a curva Pareto e encontrar instâncias
que executam em menor peŕıodo de tempo ou com menor custo.

Vale ressaltar que como estamos trabalhando com instâncias Spot esse gráfico é variável
com o tempo, já que o custo de um tipo de máquina pode variar. Entretanto, para nossos
experimentos desconsideramos essa possibilidade, visto que o curto peŕıodo de tempo que
estamos executando não se mostrou suficiente para variar os custos de forma a alterar a
curva.

2.3 Otimização de custo

A curva Pareto em nossos resultados experimentais mostrou que de fato existe uma
grande diferença no custo de execução entre diferentes tipos de máquinas. Logo, a escolha
de máquinas é o problema mais significativo para a minimização de custo da execução do
programa. Ademais, vimos que as instâncias Spot oferecem desempenho muito semelhante
às instâncias On-Demand porém com um custo cerca de três vezes menor, portanto de fato
utilizar a arquitetura de SPITS na nuvem com Workers do tipo Spot pode representar uma
redução significativa de custo.

Dessa forma, escolhemos otimizar o custo de execução utilizando instâncias Spot como
Workers, sendo a proposta de solução selecionar as melhores instâncias para o programa
dinamicamente. A proposta dinâmica é interessante pois podemos ter alterações de custo no
decorrer do tempo (tendo em vista o mercado de instâncias Spot) e permite que executemos
a aplicação já encaminhando para o resultado desejado sem a necessidade de conhecer
caracteŕısticas nem das máquinas e nem da aplicação previamente.

2.3.1 Poĺıticas de troca

A proposta de solução foi inicializar o processo com um grupo pré definido de máquinas
(por exemplo, as instâncias mostradas na Tabela 1). Extráımos informações sobre o de-
sempenho da aplicação durante sua execução (medido em interpolações por segundo para
o programa NCRS) e o custo por hora de cada máquina, medindo então sua relação de

12 Okita et al

desempenho por custo (no caso do programa NCRS em interpolações por US$ [15]). Por
fim, com a relação de desempenho por custo podemos selecionar as instâncias que propiciam
o menor custo para a execução da aplicação, encerrando as outras.

Uma primeira versão deste algoritmo de ajuste dinâmico é mostrado no Algoritmo 1 e foi
implementada por Okita no trabalho Otimização automática do custo de processamento de
programas SPITS na AWS [17]. Esta versão considera apenas trocas em intervalos regulares
de tempo e uma instância de cada vez, trocando a instância que apresenta pior medida de
interpolações por US$ pela instância que apresenta a melhor medida. Consideramos que
houve convergência quando a instância que apresenta este pior resultado é a mesma da
instância que apresenta o melhor resultado.

Além disso, em cada troca escolhemos a zona de disponibilidade que possui menor
custo para a instância desejada. Entretanto neste exemplo não consideramos nem casos de
instâncias com medidas de desempenho por custo muito próximo a ponto de não valer a
pena a troca, nem a possibilidade de trocar a zona de disponibilidade de uma instância se
o custo dela aumentar na zona atual e ficar inferior em outra.

Algorithm 1 Algoritmo de Troca

1: L: Lista de tuplas (id, tipo, custo benef́ıcio) . Em ordem cresc. de interpolações por
US$

2: procedure Troca de Instância(L)
3: if L[1].tipo 6= L[len(L)].tipo then
4: z ← zona de disponibilidade de menor custo para instância L[len(L)].tipo
5: crie uma instância nova do tipo L[len(L)].tipo em z
6: encerre a instância L[1].id

Para nossos parâmetros de entrada o programa executava em no máximo cerca de uma
hora, isto é, o tempo não era suficiente para existir problema com alterações de preços
nas zonas de disponibilidade. Porém o problema das medidas semelhantes ainda existia,
por conseguinte criamos uma versão revisada deste algoritmo - a qual está mostrada no
Algoritmo 2 - que considera o desvio padrão para a escolha das melhores instâncias. Isto é,
não consideramos somente o desempenho imediato, mas sim o histórico do desempenho da
instância no decorrer da execução da aplicação, computamos então a média e o desvio padrão
deste histórico de desempenho. Consideramos que uma instância X apresenta melhor custo
por desempenho que uma instância Y se:

(MX − σMX
)

cX
>

(MY + σMY
)

cY
(6)

Sendo que MX representa a média das medidas de desempenho da instância X, σMX

representa o desvio padrão dessas medidas e cX representa o custo por hora da instância
X. O significado das variáveis é análogo para Y . Os valores de MX e σMX

são calculados
na instância e enviados para o CloudWatch, permitindo que o script Lambda apenas tome
decisões de troca de instâncias.

Otimização de custo na AWS 13

Por simplicidade de notação, nos próximos parágrafos assumiremos que:

µX =
MX

cX
(7)

ψX =
σMX

cX
(8)

Sendo que µX é a média das medidas de custo benef́ıcio para a instância X e ψX seu
desvio padrão. No Algoritmo 1 podemos substituir a expressão custo benef́ıcio por µX sem
perda de significado. Além disso, podemos reescrever a Equação 6 usando essa notação:

µX − ψX > µY + ψY (9)

Algorithm 2 Algoritmo de Troca Revisado

1: L: Lista de tuplas (id, tipo, µid, ψid) . Em ordem cresc. de µid
2: procedure Troca de Instância(L)
3: if L[1].tipo 6= L[len(L)].tipo then
4: if L[1].µ+ L[1].ψ < L[len(L)].µ− L[len(L)].ψ then
5: z ← zona de disponibilidade de menor custo para instância L[len(L)].tipo
6: crie uma instância nova do tipo L[len(L)].tipo em z
7: encerre a instância L[1].id

Neste algoritmo ainda trocamos apenas uma instância a cada peŕıodo de tempo, con-
sequentemente para atingir convergência na escolha de instâncias levamos pelo menos o
intervalo de trocas multiplicado pelo número de máquinas. Surge então a questão de troca
de mais de uma instância a cada peŕıodo que o algoritmo é executado, implementamos
então uma nova versão do algoritmo de trocas (mostrado no Algoritmo 3). Nesta versão
escolhemos uma porcentagem P de instâncias para serem trocadas a cada peŕıodo de tempo,
consequentemente, se não fizermos escolhas erradas, a convergência ocorrerá após 100/P
iterações.

Algorithm 3 Algoritmo de Troca em Lotes

1: L: Lista de tuplas (id, tipo, µid, ψid) . Em ordem cresc. de µid
2: P: Porcentagem de instâncias para serem trocadas . Em valores de 0 a 1
3: procedure Troca de Instância(L,P)
4: i = 1 ; lim = max(len(L) ∗ P, 1)
5: for i ≤ len(L) ∗ P do
6: if L[i].tipo 6= L[len(L)].tipo then
7: if L[i].µ+ L[i].ψ < L[len(L)].µ− L[len(L)].ψ then
8: z ← zona de disponibilidade de menor custo para instância L[len(L)].tipo
9: crie uma instância nova do tipo L[len(L)].tipo em z

10: encerre a instância L[i].id

14 Okita et al

Vale ressaltar que trocar apenas uma instância é uma opção mais segura com relação
a escolhas erradas, haja vista que durante momentos iniciais da execução a instância que
apresenta melhor custo benef́ıcio pode não ter ainda reportado seu desempenho. Porém, é
importante balancear o tempo de convergência (consequentemente a redução de custo) com
as perdas causadas por decisões erradas.

Quanto à otimização de desempenho (como tempo de execução) ao invés de custo,
basta substituirmos nos algoritmos mostrados anteriormente µid e ψid por M id e σMX

,
respectivamente.

2.4 Otimização de custo/benef́ıcio

Apesar de considerarmos a nuvem contendo recursos computacionais ilimitados, isso
não acontece na prática. O serviço da AWS possui limitação em quantas máquinas virtuais
podemos ter instanciadas em um momento. Tendo isso em vista, todos algoritmos aqui
mostrados consideram essa restrição no número de instâncias, logo nunca aumentamos esta
quantidade além das máquinas inicialmente criadas.

Tendo essa restrição em vista, implementamos um algoritmo que balanceia custo e tempo
de execução. Isto é, desejamos encontrar a instância que além de apresentar bom custo para
a tarefa também realize a tarefa em um menor peŕıodo de tempo, haja vista que, algumas
decisões de redução de custo não são suficientes para compensar a perda de desempenho
que pode ocorrer consequentemente, especialmente considerando que temos um número fixo
de máquinas.

Essa proposta de balanceamento de custo e tempo de execução foi implementada como
o Algoritmo 4. Neste algoritmo normalizamos as medidas de desempenho (em interpolações
por segundo) e as medidas de custo (em interpolações por US$) e somamos ambas dado
um peso de entrada (wsec para a medida de desempenho, wusd para a medida de custo).
Definimos as medidas com pesos usando η e phi da forma mostrada pelas equações 10 e 11:

ηX = wsec ×
MX

Mmax

+ wusd ×
µX
µmax

(10)

φX = wsec ×
σMX

Mmax

+ wusd ×
ψX
µmax

(11)

Sendo que µmax representa a melhor medida de desempenho por custo encontrado na
lista de instâncias, assim como Mmax representa a melhor medida de desempenho na lista
de instâncias. O significado das outras variáveis é o mesmo das equações anteriores. Vale
ressaltar que não existem regras para a definição dos pesos wusd e wsec. Espera-se que estes
pesos sejam definidos pelo usuário, com base no quanto ele está disposto a pagar por ganho
de desempenho.

Analogamente à equação 9, uma instância X será considerada melhor que uma instância
Y se:

ηX − φX > ηY + φY (12)

Otimização de custo na AWS 15

Vale destacar que se usarmos wsec = 0 e wusd = 1 nas equações 10 e 11 temos a mesma
definição das equações 7 e 8. Ou seja, o algoritmo de trocas 4 é uma generalização do
algoritmo de trocas 3.

Algorithm 4 Algoritmo de Troca Ponderada

1: Lusd: Lista de tuplas (id, tipo, µid, ψid) . Em ordem cresc. de id
2: Lsec: Lista de tuplas (id, tipo, M id, σMid

) . Em ordem cresc. de id
3: P: Porcentagem de instâncias para serem trocadas . Em valores de 0 a 1
4: wusd: Peso da medida de desempenho por custo
5: wsec: Peso da medida de desempenho somente
6: procedure Troca de Instância(Lusd, Lsec, P, wusd, wsec)
7: µmax = 0
8: for inst in Lusd do . Encontra µmax - melhor custo
9: if Lusd.µ > µmax then

10: µmax = Lusd.µ

11: Mmax = 0
12: for inst in Lsec do . Encontra Mmax - melhor desempenho
13: if Lsec.M > Mmax then
14: Mmax = Lsec.M

15: Lfinal = {} . Lista de tuplas (id, tipo, ηid, φid)
16: i = 1 ; lim = Lsec
17: for i ≤ len(L) do . Cria nova lista com as medidas η e φ
18: inst.id = Lusd[i].id ; inst.tipo = Lusd[i].tipo

19: inst.η = wusd ∗ Lusd[i].µ
µmax

+ wsec ∗ Lsec[i].M

Mmax

20: inst.φ = wusd ∗ Lusd[i].ψ
µmax

+ wsec ∗ Lsec[i].σM
Mmax

21: Lfinal.insert(inst)

22: Lfinal.sort(η) . Ordena lista pela medida ponderada eta
23: i = 1
24: lim = len(Lfinal) ∗ P
25: for i ≤ lim do . Cria novas instâncias
26: if Lfinal[i].tipo 6= Lfinal[len(L)].tipo then
27: if Lfinal[i].η + Lfinal[i].φ < Lfinal[len(L)].η − Lfinal[len(L)].φ then
28: z ← zona de disponibilidade de menor custo para Lfinal[len(L)].tipo
29: crie uma instância nova do tipo Lfinal[len(L)].tipo em z
30: encerre a instância Lfinal[i].id

No Algoritmo 4 temos a realização da normalização e do cálculo das novas variáveis
de medida de desempenho. Essas variáveis são utilizadas no final para selecionar as me-
lhores instâncias, convergindo para um tipo ou para instâncias que apresentem resultado
semelhante (isto é, com uma diferença inferior ao seu desvio padrão).

16 Okita et al

2.5 Implementação e Experimentação

Assim como mencionado na Seção 2.1 implementamos os algoritmos em python 3.6 e
utilizamos o serviço CloudWatch para armazenar as medidas de desempenho e o serviço
Lambda para executar os algoritmos.

O programa foi instrumentado para medir o desempenho da aplicação NCRS em inter-
polações por segundo. Scripts em bash e python foram utilizados para extrair informações
dos logs do programa durante sua execução enviando para o CloudWatch as informações
necessárias.

Além disso, na Seção 2.3.1 generalizamos o conceito de intervalos de tempos. Como esses
intervalos afetam o resultado final testamos diferentes peŕıodos de tempo para a chamada
das funções, especificamente testamos um minuto, três minutos e cinco minutos.

Não somente isso, mas os algoritmos 3 e 4 apresentam a variável de porcentagem de
instâncias a serem trocadas a cada chamada. Escolhemos 20%, 50% e 100% para nossos
testes.

Nossa implementação dos algoritmos considera apenas as máquinas virtuais que já re-
portaram resultados de desempenho no CloudWatch, ou seja, instâncias que ainda não en-
cerraram a execução de pelo menos uma tarefa não serão considerados na lista de instâncias.
Isso permite que todas as instâncias executem ao menos uma tarefa e seu desempenho seja
observado antes de decidir se não é uma instância desejável para o programa. Portanto
quando selecionamos 100% como porcentagem de troca, não necessariamente estamos tro-
cando todas as instâncias vivas, mas apenas as que encerraram alguma tarefa.

Por fim, consideramos um limite de dezesseis instâncias ao mesmo tempo. Uma é ocu-
pada pelo Job Manager e Committer, enquanto as quinze restante serão nossos Workers,
que podem ser trocados livremente.

3 Resultados

3.1 Curva Pareto

A curva Pareto da Figura 6 foi extráıda do trabalho que publicamos nos anais do XIX
Simpósio em Sistemas Computacionais de Alto Desempenho [17]. Esta curva foi montada
utilizando as mesmas instâncias das mostradas na Tabela 1 para o mesmo programa NCRS
e seu eixo de custo (eixo das ordenadas) está em escala logaŕıtmica de base dois para melhor
visualização. Como o programa foi executado somente em uma instância de cada vez, o
tamanho do dado foi reduzido para cerca de 200MB para tornar o tempo de execução viável.

É percept́ıvel na Figura 6 que as instâncias do tipo Spot de fato apresentam o mesmo
desempenho para um custo cerca de três vezes menor. Além disso, percebemos que existe
um grupo de três instâncias (c5.9xlarge, c5.18xlarge e m5.24xlarge) que configuram a fron-
teira Pareto, isto é, nenhuma outra instância apresenta custo e desempenho melhores a
essas instâncias (considerando este programa e os preços delas no mercado Spot no dia da
execução).

Além disso, essa figura reforça a importância da escolha de instâncias adequada para
o programa a ser executado. Para este benchmark, a instância c5.18xlarge no mercado

Otimização de custo na AWS 17

c4.4xlarge
c4.8xlarge

c5.18xlarge c5.4xlargec5.9xlarge

d2.4xlarge
d2.8xlarge

m4.10xlargem4.16xlarge m4.4xlarge

m5.12xlarge
m5.24xlarge

m5.4xlarge

r4.16xlarge r4.4xlarger4.8xlarge

c4.4xlargec4.8xlarge
c5.18xlarge c5.4xlargec5.9xlarge

d2.4xlarge
d2.8xlarge

m4.10xlargem4.16xlarge

m4.4xlarge

m5.12xlargem5.24xlarge m5.4xlarge

r4.16xlarge r4.4xlarger4.8xlarge

0.125

0.25

0.5

1

2

4

0 500 1000 1500 2000 2500 3000 3500

Cu
st

o
(U

SD
)

Tempo (s)

On Demand

Spot

Pareto On-Demand

Pareto Spot

Fronteira Pareto On-Demand

Fronteira Pareto Spot

Figura 6: Curva Pareto para instâncias da Tabela 1

Spot apresenta um custo cinco vezes inferior ao da instância d2.4xlarge no mercado Spot
(podendo chegar a dezessete vezes para a d2.4xlarge On-Demand), enquanto possui um
desempenho sete vezes superior.

3.2 Otimização de Custo

Tendo em vista a importância da escolha de instâncias para a redução do custo de
execução do programa, mostramos a motivação para a implementação de poĺıticas de troca.
Nesta subseção mostraremos os resultados experimentais da execução dos algoritmos de
trocas, dadas as configurações da subseção 2.5. Como existe variação de precificação das
instâncias em diferentes dias, os teste foram executados no decorrer de apenas dois dias (18
de novembro de 2018 e 19 de novembro de 2018) para comparar os métodos.

Além dos experimentos com as poĺıticas de trocas, criamos um baseline que envolvia a
utilização de uma instância de cada tipo dentre os mostrados na Tabela 1, sem nenhuma
troca. Este baseline é mostrado em todos gráficos de custo, sendo utilizado para comparação
entre uma execução ingênua do programa contra nossa otimização.

3.2.1 Custo com o Algoritmo 2

Tendo como base o Algoritmo 1 implementamos uma versão revisada que usa de medidas
estat́ısticas (especificamente desvio padrão) para decidir se uma instância é de fato melhor
que outra. Não executamos o Algoritmo 1, pois temos resultados já publicados no nosso
trabalho nos anais do XIX Simpósio em Sistemas Computacionais de Alto Desempenho [17],
nele utilizamos o mesmo conjunto de máquinas iniciais, o mesmo programa e a mesma
entrada que os descritos na Seção 2. Resumidamente, no Algoritmo 1 observamos redução
significativa no custo com relação a execução de apenas o conjunto inicial de máquinas,
entretanto percebemos que algumas vezes as instâncias trocadas apresentavam custo por

18 Okita et al

desempenho muito semelhante às novas instâncias.
Executamos o Algoritmo 2 para três intervalos de tempo, isto é, trocamos uma máquina

a cada um minuto, três minutos e cinco minutos. Na Figura 7 mostramos a evolução do custo
acumulado no decorrer do tempo de execução, isto é, quanto era o total que pagaŕıamos
(considerando somente o custo das instâncias) depois de cada minuto de execução.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min 3min 5min Baseline

Figura 7: Evolução do custo de execução utilizando o Algoritmo 2

Na Figura 7 mostra a evolução do custo de execução no decorrer do tempo. Seleci-
onamos cores diferentes para cada intervalo utilizado e o baseline, além disso marcamos
com um ”X”vermelho o momento em que a execução foi terminada (consequentemente as
instâncias encerradas e não existe mais evolução de custo). Assim como desejado, tivemos
custos inferiores ao do baseline, ou seja, nosso algoritmo não realizou escolhas que afetavam
negativamente o custo total. Além disso obtemos ganhos em tempo também, visto que as
instâncias que selecionamos além de oferecerem melhor custo também ofereceram melhor
desempenho (apesar que este algoritmo não prevê que isso ocorra).

Percebemos também na Figura 7 que nenhuma poĺıtica de troca apresentou o mesmo
conjunto de máquinas ao final da execução. Parte do problema foi o tempo total de
execução, como a execução levou menos de 26 minutos, as poĺıticas de trocas em inter-
valos de três e cinco minutos não conseguiram convergir para uma única instância (como
temos 15 máquinas, seriam necessários pelo menos 45 e 75 minutos de tempo de execução,
respectivamente). Mas não somente isso, observamos que o ângulo da evolução de custo de
com intervalo de três minutos é muito diferente com relação aos outros (sendo inclusive su-
perior ao do Baseline), isso apresenta dois resultados: (i) apesar do custo maior por unidade
de tempo, como o programa encerrou em menor peŕıodo de tempo o custo total ainda foi
inferior ao Baseline; (ii) o algoritmo escolheu instâncias diferentes nessas duas execuções.

Nas Figuras 8a e 8b temos o tempo de vida das instâncias no decorrer da execução

Otimização de custo na AWS 19

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10 0:23:02

c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
r4.8xlarge
c5.9xlarge
c5.4xlarge

c5.18xlarge
m5.4xlarge
c4.4xlarge

m5.12xlarge
m5.24xlarge

c4.8xlarge
r4.4xlarge

r4.16xlarge
d2.4xlarge

m4.10xlarge
d2.8xlarge

m4.4xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

(a) Um minuto

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10

c5.9xlarge

c5.18xlarge

c5.18xlarge

c5.18xlarge

c5.18xlarge

c5.18xlarge

c4.4xlarge

c4.8xlarge

c5.18xlarge

c5.4xlarge

c5.9xlarge

m4.10xlarge

m5.12xlarge

m5.24xlarge

m5.4xlarge

r4.8xlarge

r4.4xlarge

r4.16xlarge

d2.8xlarge

d2.4xlarge

m4.4xlarge

c5.4xlarge

Tempo de execução (H:MM:SS)

(b) Três minutos

Figura 8: Tempo de vida das instâncias para intervalos de tempo

do programa utilizando trocas a cada um minuto e a cada três minutos, respectivamente.
Nestas figuras observamos os tipos de instâncias que estavam ativas durante a execução do
programa, a primeira instância em ambos gráficos (c5.4xlarge) é o Job Manager, permane-
cendo ativo desde o ińıcio da execução até o último instante.

Além disso, percebe-se na Figura 8a que a instância r4.8xlarge demorou para ser inicada,
isso ocorreu devido a indisponibilidade de instâncias Spot na zona de disponibilidade pedida
inicialmente, sendo necessário requisitar em outra. Os algoritmos implementados não são
afetados pela inicialização tardia da instância, entretanto nenhum deles oferece robustez
para realizar outra requisição se existir indisponibilidade no momento da troca.

Assim como sugerido anteriormente, de fato tivemos escolhas diferentes para a melhor
instância, a execução do algoritmo com intervalos de um minuto selecionou a instância
c5.9xlarge como melhor opção de custo enquanto a execução com intervalos de três minutos
escolheu a instância c5.18xlarge na maior parte da execução, sendo que no final a instância
c5.9xlarge foi escolhida. Uma causa para escolhas de diferentes instâncias é a variação de
custo em diferentes dias (ou até mesmo horas do dia). Entretanto, não houve alteração
de precificação nem da instâncias c5.9xlarge nem da c5.18xlarge entre as execuções (mais
especificamente, no dia 19 de novembro de 2018). Portanto, a causa para essa diferença
na escolha foi oscilação no desempenho, especialmente viśıvel na seleção de uma instância

20 Okita et al

c5.9xlarge após cinco escolhas das instâncias c5.18xlarge na Figura 8b.

Ademais, apesar da escolha diferente, o custo total de execução foi conforme o esperado:
superior ao valor pago usando trocas de um em um minuto, enquanto inferior ao valor das
trocas de cinco em cinco minutos. Reforçando que todos intervalos de tempo apresentaram
custo de execução inferior a Baseline. Por fim, para esta poĺıtica de troca não observamos
a necessidade do desvio padrão para analisar se a troca de instância era válida. Isto é, na
escolha da melhor máquina, o número de interpolações por US$ das instâncias diferiam em
mais de um intervalo de desvio padrão. Porém é importante destacar que em outros testes
(como o mostrado na Figura 12c) observamos que o número de interpolações por US$ das
instâncias c5.18xlarge e c5.9xlarge diferiu em menos de um intervalo de desvio padrão, não
sendo então trocadas uma pela outra.

3.2.2 Custo com o Algoritmo 3

Os resultados mostrados na Seção 3.2.1 já apresentaram melhoria no custo de execução.
Entretanto percebemos que não houve convergência em duas das três execuções do algoritmo
por falta de tempo, além disso é percept́ıvel que o menor intervalo de tempo resultou
no melhor custo, ou seja, convergir mais rapidamente para instâncias que apresentam as
melhores relações de desempenho por custo resulta em melhorias de custo significativas.

Para tentar obter maior rapidez na convergência para as melhores instâncias temos a
poĺıtica de trocas mostrada no Algoritmo 3, em que trocamos uma porcentagem do total de
instâncias de cada vez. A troca de uma porcentagem de instâncias tem como consequência
redução no número de iterações para convergirmos. Para testar o algoritmo, foram realiza-
dos nove experimentos, sendo eles a combinação das variáveis de intervalos de tempo (um
minuto, três minutos e cinco minutos) e agora porcentagens das instâncias serão trocadas
(20%, 50%, 100%).

Na Figura 9 colocamos a evolução do custo de execução no decorrer do tempo para cada
experimento. Novamente usamos cores diferentes para diferenciar os intervalos de troca,
enquanto usamos marcadores diferentes para diferenciar a porcentagem trocada. O fim
da execução é quando o custo no decorrer do tempo para de aumentar, isto representa o
momento que todas instâncias foram desligadas. Deixamos a reta constante para facilitar
a comparação de custo entre os diferentes experimentos.

Apesar da densidade de informações na Figura 9 dificultar a análise dos resultados
individualmente, ainda é posśıvel extrair algumas conclusões. A primeira conclusão é que
as trocas em intervalos de um minuto e três minutos apresentaram custos semelhantes para
quaisquer porcentagem trocada (em torno de US$3.5), enquanto as trocas em intervalos de
cinco minutos reduziram o custo de acordo com o aumento da porcentagem de instâncias
trocadas. Além disso, novamente obtemos custos inferiores ao Baseline, com uma redução
no tempo de execução, provando novamente a efetividade do algoritmo de trocas.

Separamos a Figura 9 em três partes, mostradas na Figura 10, para melhor visualização.
Cada uma das Figuras 10a, 10b e 10c apresenta a evolução do custo por tempo de execução
trocando-se 20%, 50% e 100% das instâncias a cada iteração, respectivamente. Além disso
comparamos para cada porcentagem a diferença no intervalo de trocas.

É percept́ıvel que a troca de 20% das instâncias de cinco em cinco minutos apresentou

Otimização de custo na AWS 21

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

Baseline 1min/20% 1min/50% 1min/100% 3min/20% 3min/50% 3min/100% 5min/20% 5min/50% 5min/100%

Figura 9: Evolução do custo de execução utilizando o Algoritmo 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/20% 3min/20% 5min/20%

(a) 20% de instâncias trocadas
por iteração

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/50% 3min/50% 5min/50%

(b) 50% de instâncias trocadas
por iteração

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/100% 3min/100% 5min/100%

(c) 100% de instâncias trocadas
por iteração

Figura 10: Custo no decorrer do tempo para o Algoritmo 3 separado em porcentagens

os piores resultados, enquanto trocar 100% das instâncias apresentou os melhores custos.
Entretanto, é mais notável que no final da execução todas retas apresentaram aproxima-
damente o mesmo ângulo com relação ao eixo das abscissas, isto é, apresentavam a mesma
derivada com relação ao tempo. O significado da derivada com relação ao tempo nestas figu-
ras é o custo por unidade de tempo (no caso minutos). Logo, se os experimentos apresentam
a mesma derivada, significa que convergimos para as mesmas instâncias. Isso implica que a
diferença de custo (no geral) está relacionada com o tempo de inicialização das instâncias e
o tempo para convergência e no decorrer da execução o custo acumulará igualmente.

Vamos agora analisar o tempo de vida das instâncias para alguns experimentos. Primei-
ramente, selecionamos a troca de 100% a cada minuto para observamos o melhor resultado
de custo. Este resultado, mostrado na Figura 11, indica rapidamente que todas as instâncias
foram trocadas para um único tipo (c5.9xlarge).

Nesta figura percebemos que rapidamente todas instâncias foram desligadas (exceto a

22 Okita et al

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10 0:23:02

c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c5.9xlarge
c4.8xlarge
c5.9xlarge
c5.4xlarge
d2.8xlarge
c4.4xlarge

m5.24xlarge
r4.16xlarge

r4.4xlarge
d2.4xlarge

m4.4xlarge
r4.8xlarge

m5.12xlarge
m5.4xlarge
c5.18xlarge

m4.10xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

Figura 11: Tempo de vida das instâncias no decorrer da execução utilizando o Algoritmo 3
em intervalos de um minuto e 100% das instâncias trocadas

instância c5.4xlarge Job Manager e a própria c5.9xlarge) e substitúıdas por instâncias do
tipo c5.9xlarge. Essa rapidez na substituição das instâncias foi o motivo para apresentarem
o melhor resultado de custo.

Além disso, é percept́ıvel que houve um pequeno atraso para serem inicializadas algumas
instâncias. Esse atraso não afeta a execução do programa e pode ter sido causado simples-
mente pelo tempo do próprio Algoritmo percorrer a lista de instâncias e inicializá-las. Por
fim, percebemos que uma das instâncias não chegou ao final da execução, sendo encerrada
prematuramente. Acreditamos que a instância tenha sido encerrada pelo provedor AWS e
percebe-se que, devido a robustez a falhas nos Workers do SPITS, o programa ainda foi
capaz de executar o último minuto normalmente gerando o resultado desejado.

Em seguida na Figura 12 mostramos a diferença do tempo de vida de instâncias para
diferentes porcentagens de troca em intervalos de cinco minutos.

Observamos que em todos os casos nem todas instâncias foram substitúıdas pela c5.9xlarge
(que repetidamente apresentou a melhor medida de desempenho por custo). As instâncias do
tipo c5.4xlarge e c5.18xlarge continuaram no processamento mesmo após o tempo necessário
para convergência, implicando que a medida de desempenho por custo para estas instâncias
diferia em menos de um desvio padrão da instância c5.9xlarge (aplicando a equação 9).

É notável que a ordem das instâncias a serem encerradas foi semelhante nestes experi-
mentos, mostrando que a diferença de custo realmente surgiu do intervalo mais longo entre
as trocas. Além disso, é percept́ıvel que a troca de 100% de instâncias ocorreu em passos,
isto é, algumas instâncias foram encerradas antes de outras e as novas instâncias não foram
colocadas ao mesmo tempo. Não conseguimos detectar o motivo para este problema.

Otimização de custo na AWS 23

0:00:00 0:04:19 0:08:38 0:12:58 0:17:17 0:21:36 0:25:55

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c4.8xlarge
c5.18xlarge

c5.9xlarge
c5.4xlarge

m5.4xlarge
m5.12xlarge

m5.24xlarge
m4.10xlarge

r4.8xlarge
r4.4xlarge

r4.16xlarge
c4.4xlarge

m4.4xlarge
d2.8xlarge

d2.4xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

(a) 20% de instâncias trocadas
por iteração

0:00:00 0:04:19 0:08:38 0:12:58 0:17:17 0:21:36 0:25:55

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c5.9xlarge

c5.9xlarge
c4.8xlarge

m5.12xlarge
m5.4xlarge

m5.24xlarge
d2.4xlarge

d2.8xlarge
r4.16xlarge

c5.4xlarge
c5.9xlarge

c5.4xlarge
c5.18xlarge

c4.4xlarge
m4.4xlarge

r4.4xlarge
r4.8xlarge

m4.10xlarge

Tempo de execução (H:MM:SS)

(b) 50% de instâncias trocadas
por iteração

0:00:00 0:04:19 0:08:38 0:12:58 0:17:17 0:21:36 0:25:55

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.9xlarge

c5.18xlarge

c5.4xlarge

c5.9xlarge

r4.4xlarge

r4.16xlarge

m4.10xlarge

m4.4xlarge

m5.24xlarge

m5.12xlarge

m5.4xlarge

c4.8xlarge

r4.8xlarge

d2.8xlarge

d2.4xlarge

c4.4xlarge

c5.4xlarge

Tempo de execução (H:MM:SS)

(c) 100% de instâncias trocadas
por iteração

Figura 12: Tempo de vida das instâncias no decorrer da execução do programa utilizando
o Algoritmo 3 em intervalos de cinco minutos

Por fim, apesar dos melhores resultados surgirem das trocas de 100% das instâncias,
não acreditamos que seja a melhor forma de realizar escolhas. Como visto na Figura 8b,
podemos fazer escolhas erradas durante a execução do algoritmo. Isto é, uma instância que
apresenta melhor desempenho por custo em determinado momento pode não ser de fato
a melhor escolha (nos nossos experimentos essa escolha foi a c5.9xlarge, entretanto alguns
experimentos optaram pela c5.18xlarge inicialmente). Além disso, como mencionado na
Seção 2.5, somente consideramos que a instância pode ser descartada após a execução da
primeira tarefa, gerando o seguinte problema:

Supondo uma situação que trocamos 100% das instâncias exceto a melhor (pois ela
ainda não terminou a primeira tarefa), teremos que trocar todas instâncias novamente após
o término da execução da melhor instância acarretando maior tempo de execução e custo
aguardando a inicialização das novas instâncias.

Conclúımos que essa poĺıtica de trocas oferece uma proposta de convergência para a
instância de melhor desempenho por custo em menos iterações com riscos como os supra-
citados. Como vimos, no final obtemos a convergência para o mesmo tipo de instância,
portanto é necessário balancear o tempo de execução total com os gastos adicionais para
utilizar uma solução mais segura. Ou seja, se o tempo de execução total for longo suficiente
podemos utilizar uma porcentagem mais baixa de instâncias a serem trocadas (ou mesmo
somente uma de cada vez) para reduzir o risco de escolhas erradas. Por outro lado, em um
experimento de execução mais rápida (como o mostrado neste trabalho) pode ser válido
arriscar porcentagens mais altas para convergir mais rapidamente.

24 Okita et al

3.3 Otimização de Custo/Benef́ıcio

Os algoritmos mostrados nos resultados anteriores somente otimizam o custo da aplicação,
desconsiderando o desempenho. Porém como mostrado na Figura 6 a instância c5.18xlarge
executou com um custo semelhante à c5.9xlarge porém em um tempo inferior. Mostrare-
mos nesta subseção os resultados da execução do Algoritmo 4, em que ponderamos custo e
desempenho, sacrificando um pouco de custo para ganhar desempenho.

3.3.1 Custo com o Algoritmo 4

Assim como nos testes da subseção 3.2.2 executamos nove experimentos, combinando
diferentes intervalos de tempo com diferentes porcentagens trocadas. Similarmente, esco-
lhemos um minuto, três minutos e cinco minutos para os intervalos, e 20%, 50% e 100% para
as porcentagens. Testamos apenas com pesos iguais para custo e desempenho, portanto o
algoritmo de trocas escolhe instâncias com o mesmo viés para as medidas.

Na Figura 13 mostramos a evolução do custo por tempo de execução utilizando essa
poĺıtica de trocas. Assim como na subseção 3.2.2 utilizamos cores diferentes para marcar
os diferentes intervalos de troca e usamos marcadores diferentes para as diferentes por-
centagens, enquanto o baseline não possui marcador. E novamente, o fim da execução é
indicado quando o custo no decorrer do tempo não varia, representando o momento que
todas instâncias foram desligadas. Deixamos a reta constante para facilitar a comparação
de custo entre os diferentes experimentos.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

Baseline 1min/20% 1min/50% 1min/100% 3min/20% 3min/50% 3min/100% 5min/20% 5min/50% 5min/100%

Figura 13: Evolução do custo de execução utilizando o Algoritmo 4

É percept́ıvel na Figura 13 que as execuções acabaram consideravelmente mais rápido
que o Baseline, enquanto ainda apresentam custos inferiores. Além disso, notamos que
a maior parte das execuções custou cerca de US$4, US$0.5 a mais do que a maior parte
das execuções utilizando o algoritmo 3, enquanto três execuções se destacam: as execuções
com 50% de trocas a cada um minuto e 20% de trocas a cada cinco minutos se destacam

Otimização de custo na AWS 25

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/20% 3min/20% 5min/20%

(a) 20% de instâncias trocadas
por iteração

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/50% 3min/50% 5min/50%

(b) 50% de instâncias trocadas
por iteração

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

1min/100% 3min/100% 5min/100%

(c) 100% de instâncias trocadas
por iteração

Figura 14: Custo no decorrer do tempo para o Algoritmo 3 separado em porcentagens

negativamente devido ao elevado custo, enquanto a execução com 100% de trocas a cada
cinco minutos se destaca positivamente devido ao seu baixo custo (US$3.5).

Antes de analisar o tempo de vida das instâncias para alguns experimentos, separamos
a Figura 13 em três painéis, cada qual representando uma porcentagem trocada, a fim de
compararmos os intervalos de troca considerando a porcentagem fixa. Esses painéis estão
representados na Figura 14.

Percebemos que o algoritmo de seleção de instâncias tomou decisões que aumentaram o
custo de execução para uma unidade de tempo, entretanto como essas instâncias encerram a
tarefa mais rapidamente por possúırem um bom desempenho o custo total termina inferior
ao baseline. Além disso, exceto para 20% de trocas a cada cinco minutos, todos os testes
encerraram entre 10 e 15 minutos. Ressaltamos que o tempo de execução do baseline foram
26 minutos, portanto a execução foi executada em aproximadamente duas vezes menos
tempo.

Na Figura 14c notamos que os intervalos de troca de um e três minutos escolheram
o mesmo tipo de instância e manteve essa instância por toda execução enquanto a troca
de cinco minutos optou por outro tipo de instância (como visto pelo coeficiente angular
da reta). Por outro lado, na Figura 14a notamos que somente o intervalo de trocas de
um minuto convergiu, haja vista que não tivemos tempo suficiente para convergência dos
outros intervalos. Percebemos como a convergência beneficia em custo e tempo de execução
o experimento.

Vamos analisar agora as instâncias que foram utilizadas no decorrer da execução de
alguns experimentos. Escolhemos os três experimentos que se destacaram (50% de trocas
a cada um minuto, 20% de trocas a cada cinco minutos e 100% de trocas a cada cinco
minutos) e o experimento de trocas a cada minuto com 20% das instâncias trocadas para
visualizar o comportamento do algoritmo (haja vista que trocamos apenas três instâncias a
cada minuto) e devido ao seu tempo de execução. Colocamos todos os gráficos na Figura 15.

Na Figura 15a observamos o comportamento esperado do nosso algoritmo. A cada cha-
mada do script, isto é, a cada minuto, trocamos cerca de três instâncias por instâncias
que apresentam a melhor medida ponderada de desempenho mais custo por desempenho.
Observamos que uma das instâncias demorou para ser inicializada (c4.8xlarge), sendo que

26 Okita et al

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24

m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge

c4.8xlarge
m5.24xlarge

c5.4xlarge
c5.9xlarge

m5.12xlarge
r4.16xlarge
m5.4xlarge
c4.4xlarge
r4.8xlarge
r4.4xlarge

c5.18xlarge
d2.8xlarge

m4.10xlarge
m4.4xlarge
d2.4xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

(a) 20% de instâncias trocadas a cada minuto

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24

c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge
c5.18xlarge

c4.8xlarge
c5.18xlarge

m5.24xlarge
r4.16xlarge
m5.4xlarge

m5.12xlarge
c4.4xlarge
d2.8xlarge
c5.4xlarge

m4.4xlarge
m4.10xlarge

r4.4xlarge
c5.9xlarge
d2.4xlarge
r4.8xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

(b) 100% de instâncias trocadas a cada 5 min.

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17

m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge

c4.8xlarge
r4.16xlarge

m5.12xlarge
d2.8xlarge
c5.4xlarge

m5.24xlarge
c5.9xlarge

c5.18xlarge
m5.4xlarge

m4.10xlarge
r4.8xlarge
c4.4xlarge

m4.4xlarge
d2.4xlarge
c5.4xlarge
r4.4xlarge

Tempo de execução (H:MM:SS)

(c) 20% de instâncias trocadas a cada 5 min.

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24

m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge
m5.24xlarge

c4.8xlarge
m5.24xlarge

c4.4xlarge
m5.12xlarge

c5.4xlarge
c5.9xlarge

r4.16xlarge
r4.8xlarge

m4.10xlarge
r4.4xlarge

m5.4xlarge
d2.8xlarge

c5.18xlarge
d2.4xlarge

m4.4xlarge
c5.4xlarge

Tempo de execução (H:MM:SS)

(d) 50% de instâncias trocadas a cada minuto

Figura 15: Tempo de vida das instâncias utilizando o Algoritmo 4

o motivo para essa demora foi a indisponibilidade desse tipo de instância na zona de dispo-
nibilidade requisitada, sendo necessário pedir a instância em outra zona. O rápido tempo
de execução ocorreu devido a poucas instâncias serem terminadas durante uma troca, haja
vista que quando terminamos uma instância que já estava executando não necessariamente
a nova instância já começou seu processamento (é necessário aguardar tempo de boot e
leitura de dado, por exemplo). E apesar da pouca quantidade de instâncias sendo troca-
das, as novas instâncias apresentam desempenho superior às demais (assim como visto na
Figura 6).

Em seguida vamos analisar a Figura 15b, haja vista que foi o experimento que apresentou
o melhor custo. O motivo para esta diferença de custo está na instância selecionada pelo
algoritmo. Enquanto nos outros experimentos foi escolhida a instância do tipo m5.24xlarge,
neste experimento escolheu-se a instância c5.18xlarge. Como visto na curva Pareto da

Otimização de custo na AWS 27

Figura 6, a instância c5.18xlarge apresenta custo muito semelhante à instância c5.9xlarge
porém mais desempenho. Experimentalmente observamos esse fato, haja vista que nas
poĺıticas de troca anteriores observamos a convergência para a instância c5.9xlarge com
custo em torno de US$3,5, enquanto neste experimento observamos a convergência para a
instância c5.18xlarge com custo em torno de US$3,5 novamente, porém com um tempo de
execução menor.

Todavia, a escolha das instâncias m5.24xlarge foi mais comum nos experimentos desta
subseção. Isso mostra que mesmo tendo um viés para desempenho além do custo, o algo-
ritmo escolheu uma instância que estava na curva Pareto da Figura 6. Essa escolha mostra
um custo superior à escolha de outras instâncias, porém seu tempo de execução é inferior.

Na Figura 15c observamos o motivo para o custo próximo do baseline no experimento
trocando 20% das instâncias a cada minuto. Como nossa execução levou somente entre
dezessete e dezoito minutos, efetivamente somente tivemos a oportunidade de trocar 40%
das instâncias (os últimos 20% foram encerrados pouco depois de iniciados), sendo que essas
trocas foram para instâncias do tipo m5.24xlarge, as quais são mais custosas que 13 das 14
outras instâncias que utilizamos.

Por fim, na Figura 15d tentamos entender o motivo para a execução destas configurações
ter produzido custo mais elevado que as demais. Observando quais instâncias foram utili-
zadas não é suficiente para obter conclusões, haja vista que a seleção ocorreu normalmente,
sendo que as instâncias foram trocadas para a m5.24xlarge assim como nas outras seleções.

Percebemos pela Figura 14b que quaisquer intervalos de tempo produziu convergência
para a m5.24xlarge (dado o coeficiente angular da reta), porém a execução com um minuto
de intervalo levou mais tempo que o esperado para gerar o resultado, quando comparamos
a média de custo. A causa para esse tempo mais longo provavelmente foi maior tempo
de inicialização ou leitura do dado, fazendo com que nosso programa trabalhe com menos
instâncias por alguns minutos, já que encerramos elas antes do ińıcio de execução das novas
instâncias, gerando um ou dois minutos a mais de execução que causaram essa discrepância
de custo.

Por fim, mostramos que o algoritmo de troca ponderada pode trazer bons resultados
de custo em conjunto com bons tempos de execução, assim como visto na Figura 15b.
Porém os pesos escolhidos causaram um viés maior para tempo de execução, fazendo com
que todas outras execuções optassem pela instância m5.24xlarge (que apresenta o melhor
desempenho). Experimentações com outros pesos poderiam ser úteis para convergência à
instância que apresenta bom balanço de custo e tempo de execução (como é o caso da
c5.18xlarge na Figura 6).

3.4 Comparações de resultados

Por fim, selecionamos um resultado de cada subseção anterior para comparar as poĺıticas
de troca. Montamos o gráfico da Figura 16 comparando os custos e tempos de execução
do baseline com o Algoritmo 2 com trocas em intervalos de um minuto, o Algoritmo 3 com
trocas de 50% das instâncias a cada três minutos e o Algoritmo 4 com trocas de 100% das
instâncias a cada cinco minutos. Nesta figura utilizamos cores diferentes para diferenciar
cada algoritmo e o baseline. Mantivemos retas constantes para indicar o custo no final

28 Okita et al

da execução de cada experimento, isto é, quando o custo não varia mais indicia que o
experimento foi encerrado e todas suas instâncias foram terminadas.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Cu
st

o
(U

SD
)

Tempo de execução (minutos)

Baseline Algoritmo 2 Algoritmo 3 Algoritmo 4

Figura 16: Comparação da evolução de custo por tempo de execução entre algoritmos

Percebemos na Figura 16 que nossas escolhas possuem custo semelhante. Não optamos
pela substituição de 100% das instâncias utilizando o Algoritmo 3 devido aos problemas que
podem advir dessa substituição. Porém escolhemos a substituição de 100% das instâncias a
cada cinco minutos para o Algoritmo 4 para mostrar como seu custo de fato se é semelhante
aos demais porém encerrando a execução em 30% menos tempo.

Além disso mostramos que mesmo a escolha mais conservadora de apenas uma instância
a cada minuto oferece pequena diferença de custo total, sendo essa diferença somente cau-
sada pelo tempo a mais para convergência.

Por fim, conclúımos que todos algoritmos mostrados são viáveis. A escolha de qual deles
utilizar depende do risco que o usuário está disposto a correr para corrigir escolhas erradas,
ou se é interessante colocar um viés de desempenho.

4 Conclusões

Neste trabalho estudamos a infraestrutura da AWS e como utilizar seus serviços para a
execução de programas de alto desempenho. Dada a facilidade para adaptar nosso programa
para a infraestrutura em nuvem, acreditamos que a nuvem computacional é de fato uma
boa alternativa à compra de clusters convencionais.

Utilizamos um programa com o modelo de programação SPITS, e seu funcionamento foi
também facilmente adaptável à nuvem. Além disso, o uso do SPITS permite que utilizemos
instâncias do mercado Spot da AWS como Workers, permitindo que a redução de custos
para a execução de nosso código, sendo que essa redução de custo pode ser de até três vezes
para a mesma instância (logo provendo o mesmo desempenho).

Mostramos ainda neste trabalho a importância da seleção do tipo de instância para
a aplicação a ser executada, sendo que podemos ter um desempenho mais lento e custos

Otimização de custo na AWS 29

maiores para seleções ruins. Para solucionar esse problema, desenvolvemos algoritmos que
se utilizam de informações do desempenho do programa para tomar decisões sobre quais
instâncias devemos utilizar e quais instâncias atualmente utilizadas devem ser descartadas.

Nossos resultados para os algoritmos de trocas de instâncias mostrou-se bastante pro-
missor, em especial o resultado utilizando o Algoritmo 4 com 100% de trocas a cada cinco
minutos, haja vista que ele selecionou a instância que apresentava custo quase tão bom
quanto a instância de melhor custo porém um tempo de execução consideravelmente me-
nor. Em todas situações nossos algoritmos foram capazes de apresentar custos inferiores
ao de uma execução ingênua com várias instâncias de um mix inicial e em todas execuções
observamos convergência para instâncias que estavam na nossa curva Pareto (c5.9xlarge e
c5.18xlarge).

Verificamos também que a convergência mais veloz no Algoritmo 3 de trocas em lotes
proveu menores custos, assim como visto na Figura 9 quando trocamos 100% das instâncias
contra 20% das instâncias ou os resultados da Figura 7. Entretanto, é importante destacar
que essa convergência em menor peŕıodo de tempo traz riscos, pois em programas com
desempenho variável podemos estar substituindo erroneamente instâncias por uma nova
que não é a ótima (apenas mostrou melhor desempenho naquele momento). Tendo isso em
vista, então é necessário balancear os riscos e ganhos ao selecionar o algoritmo, o intervalo
de trocas e o tamanho do lote a ser trocado.

Conclúımos que a utilização de SPITS e das poĺıticas de troca na nuvem AWS facilitam
a minimização do custo (ou da medida ponderada do Algoritmo 4) para a execução de
programas de alto desempenho na nuvem computacional.

5 Generalização do Problema

Utilizamos o algoritmo para um programa que possui desempenho bem comportado
desde o começo de sua execução. Este comportamento está mostrado na Figura 17, em que
observamos que a variação no desempenho (representado em interpolações por segundo) é
muito pequena.

Percebemos que a instância c5.9xlarge necessitou de cerca de quinze tarefas para atingir
essa estabilidade, enquanto instâncias com maior poder computacional (como a c5.18xlarge
e m5.24xlarge) oscilaram em torno do estável, porém essas oscilações foram pequenas. As
tarefas que a instância c5.9xlarge executou antes da estabilidade representaram somente
cerca de doze segundos de tempo execução, portanto não afetariam as tomadas de decisão
(que levam no mı́nimo um minuto). Ademais, o desempenho foi inferior ao esperado para
essas tarefas, pois não faziam uso de toda CPU da instância por serem muito pequenas. Vale
destacar que não observamos isso nas outras instâncias pois executamos uma única tarefa
com esses Workers, portanto, das máquinas selecionadas, somente a c5.9xlarge recebeu essas
tarefas pequenas referentes ao ińıcio do dado.

Esse tipo de comportamento permite que nossos algoritmos tomem decisões logo no
ińıcio da execução e que no decorrer da aplicação nossas escolhas não serão diferentes. Não
somente isso, mas tomando uma decisão de trocar lotes no ińıcio da execução permite a
convergência em menor tempo e, consequentemente, menor custo, assim como discutido

30 Okita et al

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

1.40E+10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

D
es

em
pe

nh
o

(I
nt

er
po

la
çõ

es
/S

eg
un

do
)

Tarefas processadas

c5.18xlarge m5.12xlarge m5.24xlarge r4.16xlarge r4.8xlarge c5.9xlarge

Figura 17: Comportamento do desempenho da aplicação em algumas máquinas no decorrer
da execução

anteriormente. Entretanto, outras aplicações podem ter cargas de trabalho que possuem
variação de desempenho com o tempo, exemplificada na Figura 18. Esses tipos de carga de
trabalho possuiriam dinâmicas para seleção de instâncias diferentes das que observamos na
Figura 17.

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

De
se

m
pe

nh
o

Tarefas processadas

Ex. 1 Ex. 2 Ex. 3

Figura 18: Exemplo de variações no desempenho no decorrer de execução de outras
aplicações

Ainda não testamos nem validamos nossos algoritmos para programas com esse tipo de
comportamento. É posśıvel que nossos métodos de escolha apresentem dificuldades, tendo
em vista que teŕıamos muitas corretivas, isto é, trocaŕıamos instâncias que estavam com
bom desempenho e em seguida, devido à variação, essas novas instâncias seriam trocadas

Otimização de custo na AWS 31

novamente.
Em suma, mostramos que nosso algoritmo apresenta bons resultados para cargas bem

comportadas, como as mostradas na Figura 17. O problema de otimização de custo e
desempenho para aplicações com comportamento como o mostrado na Figura 18 ainda não
foi testado nem resolvido neste trabalho. Porém supomos que uma troca em lotes que cresce
exponencialmente o número de máquinas trocadas poderia ser utilizado para lidar com esse
tipo de comportamento de desempenho.

6 Agradecimentos

Agradecemos ao laboratório High Performance Geophysics (HPG) e LMCAD pela infra-
estrutura e suporte computacional. Também agradecemos à Petrobras, à Fapesp, ao CNPq
e à CAPES pelo apoio financeiro.

Referências

[1] Amazon. Amazon cloudwatch. https://aws.amazon.com/cloudwatch/features/,
2018. Acessado em 20/11/2018.

[2] Amazon. Amazon ebs features. https://aws.amazon.com/ebs/features/, 2018.
Acessado em 15/11/2018.

[3] Amazon. Amazon efs features. https://aws.amazon.com/efs/features/, 2018.
Acessado em 15/11/2018.

[4] Amazon. Amazon efs pricing. https://aws.amazon.com/efs/pricing/, 2018. Aces-
sado em 15/11/2018.

[5] Amazon. Amazon lambda. https://aws.amazon.com/lambda/features/, 2018.
Acessado em 20/11/2018.

[6] Amazon. Amazon s3 features. https://aws.amazon.com/s3/features/, 2018. Aces-
sado em 15/11/2018.

[7] Amazon. Amazon s3 pricing. https://aws.amazon.com/s3/pricing/, 2018. Acessado
em 15/11/2018.

[8] Amazon. Amazon web services (aws). https://aws.amazon.com, 2018. Acessado em
20/07/2018.

[9] Azure. Microsoft azure. https://azure.microsoft.com/, 2018. Acessado em
20/07/2018.

[10] C. Benedicto, I. L. Rodrigues, M. Tygel, M. Breternitz, and E. Borin. Harvesting
the computational power of heterogeneous clusters to accelerate seismic processing. In
15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio
de Janeiro, Brazil, 31 July-3 August 2017. Brazilian Geophysical Society, Agosto 2017.

32 Okita et al

[11] E. Borin, C. Benedicto, I. L. Rodrigues, F. Pisani, M. Tygel, and M. Breternitz. Py-pits:
A scalable python runtime system for the computation of partially idempotent tasks.
In 2016 International Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW), pages 7–12, Outubro 2016.

[12] E. Borin, I. L. Rodrigues, A. Novo, J. Sacramento, M. Breternitz, and M. Tygel. Effici-
ent and fault tolerant computation of partially idempotent tasks. In 14th International
Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil,
3-6 August 2015. Brazilian Geophysical Society, Agosto 2015.

[13] Sergey Fomel and Roman Kazinnik. Non-hyperbolic common reflection surface. Ge-
ophysical Prospecting, 61(1):21–27, Abril 2012.

[14] Google. Google cloud. https://cloud.google.com, 2018. Acessado em 20/07/2018.

[15] N. Okita, T. Coimbra, and E. Borin. Análise de custo da nuvem computacional para
a execução de algoritmos no processamento śısmico. In ERAD-SP 2018, São José dos
Campos, 13-15 April 2018. SBC, Abril 2018.

[16] N. Okita, T. Coimbra, C. Rodamilans, M. Tygel, and E. Borin. Using spits to opti-
mize the cost of high-performance geophysics processing on the cloud. In First EAGE
Workshop on High Performance Computing for Upstream in Latin America, Santan-
der, Colombia, 21-22 September 2018. EAGE, Setembro 2018.

[17] N. Okita, C. Rodamilans, T. Coimbra, M. Tygel, and E. Borin. Otimização automática
do custo de processamento de programas spits na aws. In Anais da Trilha Principal
do XIX Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2018),
pages 196–207. SBC, Outubro 2018.

[18] Rainer Storn and Kenneth Price. Journal of Global Optimization, 11(4):341–359, 1997.

