
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Plataforma de processamento
de dados sísmicos como

serviço em Nuvem
G. L. da Silva E. Borin

Relatório Técnico - IC-PFG-18-29

Projeto Final de Graduação

2018 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Plataforma de processamento de dados śısmicos como serviço

em Nuvem

Guilherme Lucas da Silva Edson Borin

Resumo

Este trabalho busca criar uma plataforma que facilite o processamento de dados
śısmicos na nuvem, sem exigir do usuário conhecimento técnico dos conceitos que a
nuvem traz consigo. Esta plataforma tenta trazer mais agilidade, custos mais baixos e
maior flexibilidade para os engenheiros e desenvolvedores que trabalham em aplicações
que necessitam de alto poder computacional.

O projeto tem o objetivo de criar uma plataforma open source, simples e replicável
para qualquer usuário. Os resultados foram alcançados, permitindo uma avaliação ini-
cial da plataforma com ferramentas reais de processamento śısmico.

1 Introdução

Computação em Nuvem é um conceito que está cada vez mais presente no cotidiano de
muitas pessoas. Mesmo sem perceber, uma grande quantidade de aplicações que usamos
hoje em dia lançam mão desse conceito tão central para o desenvolvimento econômico e
tecnológico de nossa sociedade contemporânea. Ele se baseia na capacidade de usarmos o
poder computacional de serviços como máquinas virtuais, bancos de dados e redes virtuais
sem que o usuário tenha máquinas f́ısicas com tais serviços instalados e configurados. Se-
gundo o artigo intitulado Cloud Computing Security: A Systematic Literature Review [1],
computação em nuvem é um modelo de rede que torna posśıvel o acesso sob demanda
de recursos computacionais configuráveis. Entre as modalidades principais de serviços de
computação em nuvem, temos três categorias:

• IaaS(Infrastructure as a Service): é a categoria que dá mais flexibilidade e res-
ponsabilidade ao usuário. Ela exige que o desenvolvedor gerencie de maneira in-
tegral máquinas virtualizadas, instale programas necessários, defina configurações e
etc. Como um exemplo de IaaS temos as máquinas virtuais que executam sistemas
operacionais GNU/Linux e são acessadas remotamente.

• PaaS(Plataform as a Service): nessa categoria o usuário não precisa se preo-
cupar com pacotes e configurações de sistema operacional. Esse modelo de negócios
visa facilitar a publicação de aplicações. Por exemplo, se um usuário quiser expor
uma aplicação, não será necessário instalar compiladores ou pacotes para executar o
programa naquela determinada linguagem.

1



2 da Silva e Borin

• SaaS(Software as a Service): é o modelo de negócios que traz menos autonomia
ao desenvolvedor, uma vez que todo o recurso é gerenciado pelo provedor de nuvem.
Como exemplo desse modelo podemos citar os bancos de dados como serviço, onde o
usuário não se encarrega de nenhum tipo de infraestrutura, somente usa o endereço
que o provedor cede para poder usufruir das possibilidades de armazenamento que a
plataforma oferece.

Entre as vantagens de se adotar um modelo de computação em nuvem ao invés de
investir em máquinas f́ısicas, podemos citar:

• Custo: devido à possibilidade de pagar somente pelo que está sendo usado, usuários
desse tipo de plataforma não gastarão para manter sistemas parados.

• Escalabilidade: a computação em nuvem permite que o aumento do número de
instâncias ou do tamanho das máquinas seja simples, caso a aplicação precise de mais
poder computacional.

• Foco na aplicação: desenvolvedores podem focar em escrever suas aplicações, sem
a preocupação de gerenciar infraestrutura e plataforma, o que pode ser trabalhoso.

Entre os principais provedores de nuvem pública, temos a Microsoft Azure1, Amazon
Web Services2 e Google Cloud Platform3, que oferecem diversas opções para computação
em nuvem, desde máquinas virtuais até bancos de dados gerenciados.

Aplicações que exigem alto poder computacional são aplicações que necessitam de muito
mais poder de processamento que um computador comum pode oferecer. Um exemplo de
uma aplicação que exige alto poder computacional é o processamento de dados śısmicos.
Várias dessas aplicações são desenvolvidas e executadas em institutos de pesquisas, podendo
levar a um custo excessivo, muito trabalho para gerenciamento de infraestrutura, além de
pouca agilidade e flexibilidade quanto à arquitetura. Assim, tais aplicações podem tirar
muito proveito dos serviços de nuvem citados acima.

2 Objetivos

Este trabalho tem como objetivo desenvolver uma plataforma open source de acesso simples,
ou seja, o usuário não precisa entender sobre computação em nuvem para executar suas
aplicações nesse ambiente. Ao final, é esperada a criação de uma plataforma web, que tenha
como principais funcionalidades:

• Submissão e gerenciamento de dados: essa funcionalidade é responsável pelo
upload de dados śısmicos utilizados nos processamentos, por consultar quais já foram
submetidos, baixá-los e também exclúı-los, caso necessário.

1Plataforma de computação em nuvem da Microsoft https://azure.microsoft.com/
2Plataforma de computação em nuvem da Amazon https://aws.amazon.com/
3Plataforma de computação em nuvem do Google https://cloud.google.com/



Processamento śısmico como serviço na nuvem 3

• Submissão e gerenciamento de ferramentas: essa funcionalidade é semelhante
ao que está detalhado acima, porém, ao invés dos dados śısmicos, os artefatos que são
gerenciados são as ferramentas utilizadas no processamento dos dados.

• Definição de tarefas de processamento: utilizando os dados e as ferramentas
submetidas a partir das duas funcionalidades citadas anteriormente, o objetivo é con-
seguir lançar um processamento que combine os dados e as ferramentas, além dos
argumentos necessários.

• Obtenção dos resultados: ao final dos processos, é desejado que se consiga obter
todos os seus resultados de maneira simples e rápida.

3 Relevância

Notamos a relevância da plataforma que esse trabalho objetiva desenvolver, visto que é
dif́ıcil encontrar outros programas open source que executem tal tarefa. Além da unicidade
que o trabalho possui no cenário atual, este permite abstrair os novos conceitos e a curva de
aprendizado que vem junto com a computação em nuvem. Assim, é posśıvel tirar proveito
de todos os benef́ıcios que foram citados acima, levando a possibilidade de um uso mais
inteligente dos recursos, baixando custos e aumentando a produtividade.

4 Arquitetura do Sistema

As seguintes definições serão utilizadas ao longo do texto:

• Dado: dado śısmico de interesse do usuário. Pode ser um dado carregado no sistema
pelo usuário ou produzido a partir do processamento de outro dado.

• Ferramentas de processamento: ferramenta que é capaz de processar um dado
do usuário. Por exemplo: uma ferramenta de common mid-point (CMP) que é capaz
de realizar o empilhamento de dados śısmicos com o método CMP.

• Fluxo de processamento: é a descrição de como ferramentas devem ser combi-
nadas para realizar operações compostas da aplicação de múltiplas operações em
dados śısmicos. Um fluxo pode envolver uma ou mais ferramentas. Um fluxo que
envolve múltiplas ferramentas deve descrever o fluxo de dados entre as ferramentas.
O fluxo pode ser visto como um grafo dirigido aćıclico onde os vértices represen-
tam as operações das ferramentas e as arestas o fluxo de dados entre as ferramentas.
O usuário pode definir e usar um fluxo para aplicar uma sequência de ferramentas
no dado śısmico sem que haja a necessidade de intervenção manual ao término da
execução de cada ferramenta. A Figura 1 ilustra um fluxo de processamento.

• Tarefa: é um conjunto de informações que descreve como um fluxo de processamento
de interesse deve ser executado sobre um dado. Por exemplo, a tarefa define qual é
o fluxo a ser executado, os parâmetros para execução do fluxo, os dados de entrada



4 da Silva e Borin

e outros detalhes. A tarefa também contém informações sobre sua execução. Por
exemplo: se a tarefa já foi finalizada, se houve erro, o tempo de processamento, etc.

• Resultados: são arquivos produzidos pela execução de tarefas. Os resultados podem
ser recuperados pelo usuário através de um processo de download ou transformados
em dados para processamento posterior pelo usuário.

Figura 1: Exemplo de fluxo de processamento

Para o sucesso do projeto, ao começo dele, foi decidido que faŕıamos uma plataforma
web. Essa decisão foi tomada devido à facilidade de desenvolver para esse tipo de plata-
forma, além do alcance que plataformas web possuem, já que é praticamente obrigatório nos
dispositivos com acesso à Internet (celulares e computadores) a existência de um navegador
instalado. Além disso, vale ressaltar que desde o ińıcio do projeto todo o código esteve
aberto no Github4, já que foi uma premissa do projeto que este fosse open source. Esse
código permanecerá dispońıvel.

Dado que os trabalhos são intensivos, demoram um tempo significativo para serem exe-
cutados e são independentes um do outro, notamos que a arquitetura de nuvem que melhor
se encaixa é a de Work Queues (Filas de Trabalho), que segundo Brendan Burns em seu
livro Designing Distributed Systems, em um sistema de filas de trabalho existe um trabalho
em lote para ser executado. Cada parte do trabalho é independente do outro e pode ser
executado sem nenhuma interação [2]. A Figura 2 ilustra o desenho inicial do projeto e da
arquitetura.

A plataforma foi separada em duas grandes partes:

• Front End : a parte que o usuário realmente vê, composta pelo código que será
executado no navegador do seu dispositivo.

4Serviço para compartilhamento de código https://github.com/Guilhermeslucas/SPaaS



Processamento śısmico como serviço na nuvem 5

Figura 2: Arquitetura inicial do projeto e exemplo de filas de trabalho distribúıdas

• Back End : a porção da plataforma responsável por caracteŕısticas que são inviśıveis
ao usuário. Entre elas, podemos citar acesso à camada de armazenamento, auten-
ticação, dentre outras.

Os seguintes componentes foram usados em comum entre essas duas partes:

• Docker5: um sistema para simplificar o empacotamento de aplicações, isolando de-
pendências, garantindo que o deploy seja feito da maneira correta. Assim, é posśıvel
entregar as aplicações completas, com todos os requisitos necessários instalados, o que
dá maior agilidade durante o ciclo de desenvolvimento.

• Nginx6: servidor web open source escalável e de fácil configuração. Foi usado tanto
para servir o back end quanto o front end. A outra opção para esse trabalho seria o
Apache Web Server, porém o Nginx se mostrou mais simples e rápido de ser integrado
a solução.

4.1 Projeto Inicial

Para o desenvolvimento do front end, foram definidos de antemão a composição geral das
telas e o fluxo da aplicação. Uma visão geral das telas e seu conteúdo são descritos a seguir.

5Programa que realiza virtualização em ńıvel de Sistema Operacional, também conhecido como contei-
nerização https://www.docker.com/

6Servidor Web open source https://www.nginx.com/



6 da Silva e Borin

A Figura 3a mostra quais informações eram requeridas para se criar uma conta no
sistema: e-mail, senha e confirmação de senha. Já a Figura 3b mostra como definimos quais
informações deveriam estar na tela para que o usuário pudesse se conectar à plataforma.
Como mostrado, as informações necessárias para entrar no sistema eram e-mail e senha
previamente cadastrados.

(a) Tela de criação de conta (b) Tela de login

Figura 3: Telas para gerenciamento de usuário

A Figura 4a exemplifica como idealizamos a tela de definição de um trabalho a ser
executado. Nesse primeiro protótipo, foi pensado que somente as informações ilustradas na
tela (nome do processamento, ferramenta a ser executada, comando necessário para executar
a ferramenta e dado śısmico) eram suficientes. O protótipo inicial da tela de estado dos
trabalhos está ilustrada na Figura 4b. Simples a prinćıpio, a tela é composta por uma tabela
mostrando o estado de cada trabalho. A Figura 5 mostra como foi pensada a obtenção dos
resultados.

Vale ressaltar que essa ideia inicial visava permitir uma avaliação inicial do conceito.
Após essa avaliação, o fluxo de todo o trabalho definitivo foi organizado em módulos como
ilustrado na Figura 6. Nessa figura, as caixas pretas representam as telas, as azuis repre-
sentam os módulos, com suas respectivas interações com as camadas de armazenamento.
Os módulos são detalhados como segue:

• Data Management : módulo responsável pelo gerenciamento dos dados śısmicos da
plataforma. A intenção desse módulo é permitir que o usuário possa gerir os dados na
plataforma, sendo capaz de adicionar, remover e mover de um tipo de armazenamento
mais caro (porém mais rápido) para um mais barato, e mais lento.

• Tools Management : composto por somente uma tela, esse módulo procura realizar
o gerenciamento das ferramentas de processamento que serão executadas. Assim como



Processamento śısmico como serviço na nuvem 7

(a) Tela de definição dos trabalhos (b) Tela de observação do estado

Figura 4: Telas para definição e estado dos trabalhos

Figura 5: Tela de obtenção dos resultados

o módulo responsável pelo gerenciamento dos dados śısmicos, esse módulo busca dar
a possibilidade de adicionar, mover e excluir as ferramentas de processamento da
plataforma.



8 da Silva e Borin

Login Create User

Control Panel

Tasks DB

Data
management Tools

Management

Processing
Tasks

Running Tasks

New Tasks

Results
Management

Results
DB Tools DB

Users DB

Data DB

Users
management

Data management Tools management

Tasks
management

Results
management

Flow
Management

Flow DB

Flow management

Figura 6: Fluxo de controle (arestas pretas) e de dados (arestas vermelhas) entre os com-
ponentes da plataforma

• Tasks Management : módulo responsável pelo gerenciamento das ferramentas. É
composto pelas telas abaixo:



Processamento śısmico como serviço na nuvem 9

– Running Tasks: nessa tela, é desejado que o usuário consiga ver qual é o estado
dos processamentos que iniciou. Os posśıveis estados são: Executando, Pronto e
Falhou.

– New Tasks: o usuário usa essa tela para criar as tarefas que deseja execu-
tar. Os atributos necessários para essa definição são ferramenta, dado śısmico e
argumentos.

• Results Management : módulo que mostra os resultados obtidos após os proces-
samentos. Possui o identificador único do processamento e o link para realizar o
download dos resultados. Esse módulo também é composto somente por uma tela.

• Flow Management : esse módulo é o responsável pelo gerenciamento dos fluxos, ou
seja, pela descrição de como uma ou mais ferramentas são encadeadas para realizar o
processamento de dados śısmicos.

• Users Management : módulo usado para o gerenciamento dos usuários. É composto
por duas telas:

– Login: tela onde o usuário entra na plataforma, com as informações previamente
cadastradas.

– Create User : tela para cadastro de novos usuários.

Assim, as atividades que um usuário deve realizar para que um processamento completo
seja executado são as seguintes:

1. Criação de conta: ao entrar na plataforma, o usuário deverá criar sua conta no
módulo de criação de conta, usando um e-mail que ainda não está em uso na plata-
forma e uma senha. Essa atividade é necessária apenas uma vez por usuário.

2. Login: Após a criação da conta, o usuário usará seu e-mail e senhas cadastrados para
entrar na plataforma.

3. Submissão do dado śısmico: uma vez que o usuário foi autenticado na plataforma,
ele poderá submeter um dado śısmico que deseja processar.

4. Submissão da ferramenta: além do dado, também é necessária a submissão de
uma ferramenta para o processamento.

5. Criação da tarefa: com o dado śısmico e a ferramenta submetida, o usuário deve
escolher qual dado śısmico e ferramenta vão compor o processamento. Além disso, o
usuário também definirá quais os argumentos necessários.

6. Acompanhamento da tarefa: ao criar a tarefa, o usuário poderá consultar se ela
ainda está em execução e esperar até ficar pronta, para coletar os resultados.

7. Obtenção dos resultados: ao final, o usuário poderá consultar e recuperar os re-
sultados que foram gerados. Todos os arquivos gerados estão reunidos em um arquivo
dispońıvel para download.



10 da Silva e Borin

4.2 Tecnologias utilizadas para o desenvolvimento do Front End

Para o desenvolvimento da nossa plataforma, especificamente para o front end, foram esco-
lhidas as seguintes tecnologias:

• Angular7: framework para desenvolvimento de aplicações web open source, desenvol-
vido inicialmente pelo Google e agora também mantido pela comunidade. Usa como
linguagem de desenvolvimento o Typescript8. Escolhemos este framework pois ele é
bastante produtivo e completo, já encapsulando todo o conceito de serviços, estilo de
página, linguagem de marcação, roteamento, etc. Ainda é necessário conhecer lingua-
gens de marcação como HTML e CSS, mas a junção de todos esses conceitos fica mais
simples.

• Bootstrap9: framework que possui o estilo de vários componentes web, como tabelas,
menus laterais, barras superiores, etc. É utilizado por muitos sites, como por exemplo
o Github. Como estilizar páginas web pode se tornar um trabalho complicado e
demorado, optamos por usar este framework.

Para o deploy foi utilizado o servidor web Nginx. Além disso, foi disponibilizado um
Dockerfile, que possibilita o deploy da solução de maneira simples e direta sobre containers
Docker.

4.3 Ferramentas para o desenvolvimento do Back End

No ińıcio do desenvolvimento do back end, buscamos escolher as melhores tecnologias para
esse componente e definir as rotas e contratos que essa API iria expor. Assim, os compo-
nentes que escolhemos para o back end foram:

• Python10: linguagem criada por Guido Van Rossum, muito presente nos dias de hoje
devido à sua extensa gama de aplicações, que vão desde embarcados até sistemas de
análise de dados de alto desempenho. Esta linguagem provê bibliotecas maduras para
desenvolvimento de API’s back end, filas de trabalho distribúıdas e conectores com
bancos de dados.

• Flask11: framework para desenvolvimento de API’s para Python. Permite a criação
de API’s de modo fácil e rápido. Com ele, é simples entender como a aplicação está
funcionando, fator muito cŕıtico para sua seleção, uma vez que o projeto tem como
premissa ser open source. Foram cogitados também ASP.NET com C# e NodeJS. A
primeira foi descartada devido à complexidade para criação de uma API. NodeJS não
foi selecionado devido à dificuldade que novos programadores podem enfrentar para
compreender suas funcionalidades, quando precisassem expandir o projeto.

7Framework open source para desenvolvimento web https://angular.io/
8Linguagem criada pela Microsoft. https://www.typescriptlang.org/
9Conjunto de ferramentas open source que ajuda na estilização de páginas https://getbootstrap.com/

10https://www.python.org/
11Framework web open source para Python http://flask.pocoo.org/



Processamento śısmico como serviço na nuvem 11

• Celery12: é um componente do Python responsável por gerenciar, submeter e obter
resultados de uma fila de trabalho, de uma maneira acesśıvel. Além disso, dá suporte
a vários componentes de entrega de mensagens, por exemplo, RabbitMQ13, Redis,
Amazon SQS14. Uma vez escolhidas Python e Flask como ferramentas para o desen-
volvimento da solução, foi natural a escolha do Celery como ferramenta para filas de
trabalho. Existem casos de sucesso documentados por engenheiros e desenvolvedores
que usaram essa combinação com eficácia.

• Redis15: após a escolha da biblioteca para facilitar a execução das filas de trabalho,
a Celery, foi preciso escolher o componente para a entrega de mensagens do projeto,
ou seja, o componente que realmente é responsável por armazenar e distribuir as men-
sagens relacionadas aos trabalhos submetidos na solução. Entre as opções estavam
RabbitMQ, Redis e Amazon SQS. Essas são as que melhor se integravam com o Ce-
lery, sendo posśıvel obter todas as suas funcionalidades. A Amazon SQS é uma opção
dependente de um provedor de nuvem, o que dificulta o desenvolvimento do projeto,
caso seja preciso utilizar outra cloud diferente da AWS. RabbitMQ e Redis oferecem
funcionalidades semelhantes. O Redis foi escolhido, devido à sua documentação e suas
outras funcionalidades que podem ser aproveitadas, por exemplo, cache e armazena-
mento de dados em memória.

• MongoDB16: para o armazenamento dos dados de cadastro de usuários, informações
sobre argumentos de cada ferramenta e etc., escolhemos um banco de dados NoSQL,
o MongoDB. Tratou-se de uma opção natural, uma vez que os dados que estavam
trafegando entre um serviço e outro tinham uma estrutura muito semelhante com os
documentos que são armazenados nesse tipo de banco.

• Blob Storage17: precisávamos de um armazenamento de propósito geral. Além do
Blob Storage da Microsoft existem outras opções: Amazon S318 e máquinas virtuais. O
Amazon S3 oferece serviços muito semelhantes ao Blob. Por outro lado, usar máquinas
virtuais aumentaria a complexidade do projeto, já que seria necessário gerenciá-las.
O Blob Storage da Microsoft Azure possui integração com Python está sendo usado
para armazenamento dos dados śısmicos, ferramentas e resultados.

4.4 Ferramentas para Deploy

Como dito anteriormente, ao iniciar o projeto, não era desejado que utilizássemos somente
um modelo de deployment. Assim, para facilitar o deploy da aplicação, criamos uma série
de scripts em ferramentas espećıficas:

12Framework open source para tarefas distribúıdas em Python http://www.celeryproject.org/
13Plataforma open source de mensagens https://www.rabbitmq.com/
14Sistema de mensagens da plataforma AWS https://aws.amazon.com/sqs/
15Armazenamento de dados em memória open source https://redis.io/
16Banco de Dados NoSQL open source https://www.mongodb.com/
17Armazenamento de caráter genérico no Microsoft Azure https://azure.microsoft.com/en-

us/services/storage/blobs/
18Armazenamento genérico na AWS https://aws.amazon.com/pt/s3/



12 da Silva e Borin

• Kubernetes19: renomado orquestrador de containers que tem como principal funci-
onalidade simplificar o deploy de aplicações baseadas em containers. Nascido dentro
do Google, a partir do Borg, que segundo o artigo publicado pelo Google [3], é um
gerenciador de cluster que roda centenas de milhares de processamentos, de diferen-
tes aplicações entre uma série de clusters. Atualmente está sob a jurisdição da Cloud
Native Computing Foundation20 e é open source. Foi uma das plataformas visadas
por ter apresentado relevância nos últimos tempos, com todos os grandes provedores
de nuvem oferecendo opções gerenciadas da ferramenta.

• Ansible21: um modelo comum de deploy de aplicações é o baseado em máquinas
virtuais. Nesse caso, é bom garantir que todas as dependências necessárias para que a
aplicação seja executada com sucesso estejam instaladas. Nesse aspecto, o Ansible se
mostra eficaz. Essa ferramenta surgiu na Red Hat e também é mantida open source.
É um ótimo gerenciador de configurações, o que torna posśıvel escrever configurações
como código, garantindo que a aplicação sempre tenha sucesso ao ser executada.

Após combinar todas as tecnologias descritas nas seções anteriores, foi alcançado um
resultado muito próximo ao esperado. A arquitetura final do projeto, está ilustrada na
Figura 7.

5 Resultados

5.1 Arquitetura

Dada a arquitetura final do projeto, os componentes ilustrados têm, cada um, a seguinte
função:

• Web Client : componente que é executado no lado do cliente. Seguimos com o que
foi proposto no ińıcio do projeto e explicado nas seções anteriores. Todo o código do
lado do cliente foi escrito em Typescript, com o aux́ılio do framework Angular. A
estilização das páginas foi feita com Bootstrap e exposto via Nginx.

• Flask Back End : responsável por receber todas as requisições que saem do front
end. Funciona como um gateway. Também foi seguido o plano inicial de escrever
todo o back end com Python, Flask e Celery. Esse é o componente que possui mais
responsabilidades: autenticação, comunicação com a fila com o aux́ılio do Celery,
acesso aos Blobs e acesso ao banco.

• Linux Workers: componente responsável pela execução dos pedidos de trabalho.
Com o aux́ılio do Celery, esperam os pedidos entrarem na fila, e assim que isso acon-
tece, os executam. É posśıvel ter um cluster de máquinas com esse papel, aumentando
o paralelismo das execuções.

19Orquestrador de containers open source https://kubernetes.io/
20Cloud Native Computing Foundation https://www.cncf.io/
21Gerenciador de configuração open source https://www.ansible.com/



Processamento śısmico como serviço na nuvem 13

Figura 7: Arquitetura final do projeto

• Message queue: também parte do plano inicial, a fila de mensagens com o Redis foi
a maneira mais eficaz e resiliente que encontramos de desacoplar o back end dos Linux
workers. O back end submete uma mensagem com as definições para a execução de
um trabalho na fila e algum worker obtém essa requisição, realizando o processamento
necessário. Vale ressaltar que a escolha do Celery e do modelo de filas de trabalhos
distribúıdas, que já foi explicada anteriormente, torna posśıvel desacoplar o back end
dos workers e a execução de processamentos em paralelo e distribúıdos.

• toolsCollection: coleção dentro do banco que guarda informações sobre as ferra-
mentas que estão armazenadas. Essas informações são o nome da ferramenta e seus
argumentos. Para cada argumento, é armazenado seu nome e descrição. Novos dados
são inseridos nela quando: uma nova ferramenta é armazenada, um novo pedido de
processamento é inclúıdo e uma ferramenta é exclúıda. Um exemplo de descrição de
uma ferramenta que segue o modelo esperado está expresso na Figura 8.



14 da Silva e Borin

Figura 8: Exemplo de um documento presente na coleção de ferramentas

• resultsColleciton: coleção de documentos no banco que armazena os dados dos re-
sultados. Armazena o id do processamento, nome do dado e da ferramenta usada, além
dos argumentos. Essa coleção é acessada após o término de cada processamento para
listar e salvar resultados. Um exemplo de documento que segue o modelo esperado
está ilustrado na Figura 9.

• usersCollection: coleção usada para armazenamento de dados dos usuários, como
senha e e-mail para autenticação. Um novo registro é criado nessa coleção quando
um usuário cria uma nova conta. A coleção também é acessada para autenticação de



Processamento śısmico como serviço na nuvem 15

Figura 9: Exemplo de um documento presente na coleção de resultados

um novo usuário. Um exemplo de documento armazenado com as informações dos
usuários está ilustrado na Figura 10.

Figura 10: Exemplo de um documento presente da coleção de usuários

• seismic-tools: Blob usado para armazenar as ferramentas submetidas pelos usuários.
Acessado pelo componente de gerenciamento de ferramentas quando uma nova ferra-
menta é inserida na plataforma ou quando um novo processamento acontece.

• seismic-data: Blob que armazena os dados śısmicos submetidos. Também são aces-
sados pelo componente de gerenciamento de dados quando um novo dado é inclúıdo,
exclúıdo e na execução dos trabalhos.

• seismic-results: esse Blob é responsável por armazenar os resultados dos processa-
mentos. Todos os resultados são empacotados em um arquivo tar.gz22 e disponibili-
zados para download no componente de resultados.

Vale notar que, usamos somente uma instância de bancos de dados, com coleções di-
ferentes para cada aplicação, as Collections. Também usamos a mesma estratégia para o
Blob. Foi usada somente uma conta de armazenamento no Microsoft Azure, com pastas
separadas para cada uso: seismic-data, seismic-tools e seismic-results.

22utilitário de compressão de dados https://www.gzip.org/



16 da Silva e Borin

5.2 Executando a plataforma

Esta seção é dedicada à explicação de como executar cada componente da plataforma. Desse
modo, descreveremos o front end, back end e Linux workers.

5.2.1 Front End

Para executar o front end, as variáveis de ambiente estão em front-end/src/environments.
Nesse caminho existem dois arquivos, environment.ts e environment.prod.ts. O pri-
meiro contém os valores das variáveis de ambiente que serão consideradas durante o desen-
volvimento, ou seja, quando o comando for executado:

$ ng serve

Assim, a única variável que deve ser alterada é a apiUrl, que deve apontar para o back
end. Para compilar o projeto e serv́ı-lo usando um servidor web, os comandos que devem
ser executados no servidor são os seguintes:

$ npm install

$ npm run build -- --output-path=./dist/out --configuration production

Isso gerará uma pasta ./dist/out que, quando colocada no caminho /usr/share/nginx/html
de um computador com Nginx instalado, irá servir a aplicação do front end. Nesses últimos
comandos, o arquivo de variáveis que será usado é o environment.prod.ts. Outra maneira
de executar o front end é via Docker. Existe um Dockerfile dentro da pasta front end que
facilita o deploy. Neste caso,existem dois comandos que devem ser executados, o primeiro
para construir a imagem do Docker e segundo para executá-la:

$ docker build -t my-angular-project:prod .

$ docker run -p 80:80 my-angular-project:prod

Ao acessar o localhost, a tela inicial do projeto será apresentada.

5.2.2 Tecnologias utilizadas para o Back End

Aqui, assim como no front end, também existe a possibilidade de executar o código na-
tivamente ou dentro de um container Docker. Para executar o back end nativamente,
dentro da pasta back end existe o arquivo main.py e o requirements.txt. O arquivo
requirements.txt mostra quais são os pacotes necessários para executar a aplicação.
Também é preciso definir três variáveis de ambiente, que são:

• SPASS CONNECTION STRING: string de conexão do MongoDB.

• SPASS DATA BLOB KEY: chave referente ao Blob que guardará todos os componentes
citados anteriormente: resultados, dados e ferramenta.



Processamento śısmico como serviço na nuvem 17

• SPASS CELERY BROKER: string de conexão do broker do Celery, que, no caso do nosso
experimento é o Redis.

Assim, após adicionar essas variáveis de ambiente, dentro da pasta back end execute os
seguintes comandos:

$ pip3 install -r requirements.txt

$ python3 main.py

Caso a opção seja por executar o back end com Docker, os comandos são:

$ docker build -t flask-back .

$ docker run -p 5000:5000 -e SPASS\_CONNECTION\_STRING="<value>"

-e SPASS\_DATA\_BLOB\_KEY="<value>"

-e SPASS\_CELERY\_BROKER="<value>" flask-back

Nesse caso, o back end estará executando na porta 5000.

5.2.3 Worker

Para os workers, dentro da pasta back end, basta executar:

$ pip3 install -r requirements.txt

$ celery worker -A main.celery -l info

Nos workers também é necessário declarar as mesmas variáveis de ambiente do back
end, citadas anteriormente. Como a proposta é ter vários workers para executar as tarefas
em paralelo, foi criado um playbook Ansible, para configurar várias máquinas para executar
essas tarefas. Para isso, com o Ansible instalado basta executar dentro da pasta devops:

$ ansible-playbook worker_config.yaml

5.3 Telas finais

Após apresentar a arquitetura final, ilustramos os componentes, com suas respectivas telas.
Na tela final de login, Figura 11, existem dois campos: e-mail e senha. Além disso, caso o
usuário não possua uma conta, é posśıvel criar uma no canto superior direito. Ao escolher a
opção de criar uma conta, o usuário será direcionado à tela da Figura 12, onde será posśıvel
criar uma nova conta com e-mail e senha que deve ser confirmada.

Na Figura 13 é posśıvel observar como todas as funcionalidades que foram planejadas
no ińıcio estão sendo contempladas. Na seção de upload, é posśıvel definir um nome para
o dado, e escolher o arquivo que será submetido. Além disso, a tabela presente nessa tela
mostra todos os dados que foram submetidos, com o link para download e também a opção
de remover os existentes.

Semelhante à tela referente aos dados, a Figura 14 mostra o componente de geren-
ciamento das ferramentas. Também devem ser selecionados um arquivo, um nome, os



18 da Silva e Borin

Figura 11: Tela final do login

Figura 12: Tela final de criação de contas

parâmetros necessários para a execução e suas explicações. Os parâmetros são subme-
tidos da seguinte maneira: 1:explicação do primeiro parâmetro, 2:explicação do segundo
parâmetro, etc.

A Figura 15 mostra como é a definição de um pedido de processamento. Nesse pri-
meiro momento, só é posśıvel escolher uma ferramenta e o dado que serão usados. Porém
como mostra a Figura 16, após selecionar a ferramenta, serão automaticamente exibidos os
parâmetros necessários para a execução dessa tarefa. Esses argumentos foram submetidos
juntamente com a ferramenta na tela representada pela Figura 14.

A tela de resultados, ilustrada pela Figura 17, mostra como podemos obter os resultados
depois de terminados os processamentos. Além disso, caso o usuário queira verificar quais
foram os dados, ferramenta e argumentos utilizados, o botão de details, pode ser usado para
gerar um Json com as caracteŕısticas daquele processamento, como ilustrado na Figura 18.



Processamento śısmico como serviço na nuvem 19

Figura 13: Tela final de gerenciamento de dados śısmicos

Figura 14: Tela final de gerenciamento de ferramentas

6 Conclusão

Ao final do processo de implementação da plataforma, é posśıvel notar que os principais
objetivos foram alcançados. Foi criada uma aplicação web somente com componentes open
source, com todo o código fonte aberto desde o ińıcio no Github. Todo o front end foi desen-
volvido com o framework Angular, o back end constrúıdo com Python, Celery e Flask. Além
disso, usamos o Redis como fila de trabalho para alcançar o objetivo de desacoplar o front
end do back end. Para a camada de armazenamento, usamos o Blob do Microsoft Azure
e o banco de dados não relacional MongoDB. Para executar um processamento śısmico, o
usuário final não necessita de conhecimento de computação em nuvem, o que também era



20 da Silva e Borin

Figura 15: Tela final de gerenciamento de processamentos

Figura 16: Tela final de processamento detalhada

uma das premissas iniciais do projeto. Executamos a prova de conceito completa no Micro-
soft Azure. Vale ressaltar que uma pessoa não participante do projeto conseguiu executar
o sistema seguindo as instruções desse relatório. Como sugestão para projetos futuros, é
desejado utilizar os resultados dos processamentos como entrada em outros processamen-
tos. Além disso, existe o plano de implementar uma maneira do usuário conseguir analisar
as imagens śısmicas geradas na própria interface web e a implementação de um módulo
responsável pelo fluxo de processamento.



Processamento śısmico como serviço na nuvem 21

Figura 17: Tela final de gerenciamento de resultados

Figura 18: Tela final com detalhes do processamento nos resultados

Referências

[1] A. Back and H. Lindén. (2015). Cloud Computing Security: A Systematic Literature
Review, Uppsala University, Uppsala, Sweden.

[2] B. Burns. (2017). Designing Distributed Systems, Sebastopol, CA: O’Reilly Media, Inc.

[3] A. Verma, L. Pedrosa et al. (2015). Large-scale cluster management at Google with
Borg, The European Conference on Computer Systems.


