2
W

Plataforma de processamento
de dados sismicos como
servico em Nuvem

G. L. da Silva E. Borin

Relatério Técnico - 1C-PFG-18-29
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteiido deste relatério é de tnica responsabilidade dos autores.

Plataforma de processamento de dados sismicos como servico
em Nuvem

Guilherme Lucas da Silva Edson Borin

Resumo

Este trabalho busca criar uma plataforma que facilite o processamento de dados
sismicos na nuvem, sem exigir do usuario conhecimento técnico dos conceitos que a
nuvem traz consigo. Esta plataforma tenta trazer mais agilidade, custos mais baixos e
maior flexibilidade para os engenheiros e desenvolvedores que trabalham em aplicagoes
que necessitam de alto poder computacional.

O projeto tem o objetivo de criar uma plataforma open source, simples e replicavel
para qualquer usuario. Os resultados foram alcancados, permitindo uma avaliacao ini-
cial da plataforma com ferramentas reais de processamento sismico.

1 Introducao

Computagao em Nuvem é um conceito que estd cada vez mais presente no cotidiano de
muitas pessoas. Mesmo sem perceber, uma grande quantidade de aplicacdes que usamos
hoje em dia lancam mao desse conceito tao central para o desenvolvimento econémico e
tecnolégico de nossa sociedade contemporanea. Ele se baseia na capacidade de usarmos o
poder computacional de servigos como maquinas virtuais, bancos de dados e redes virtuais
sem que o usuario tenha maquinas fisicas com tais servigos instalados e configurados. Se-
gundo o artigo intitulado Cloud Computing Security: A Systematic Literature Review [1],
computagao em nuvem é um modelo de rede que torna possivel o acesso sob demanda
de recursos computacionais configuraveis. Entre as modalidades principais de servigos de
computagao em nuvem, temos trés categorias:

e TaaS(Infrastructure as a Service): é a categoria que d4 mais flexibilidade e res-
ponsabilidade ao usudrio. Ela exige que o desenvolvedor gerencie de maneira in-
tegral maquinas virtualizadas, instale programas necessarios, defina configuracoes e
etc. Como um exemplo de IaaS temos as maquinas virtuais que executam sistemas
operacionais GNU /Linux e s@o acessadas remotamente.

e PaaS(Plataform as a Service): nessa categoria o usudrio ndo precisa se preo-
cupar com pacotes e configuragoes de sistema operacional. Esse modelo de negdcios
visa facilitar a publicacao de aplicagoes. Por exemplo, se um usudrio quiser expor
uma aplicacao, nao serd necessario instalar compiladores ou pacotes para executar o
programa naquela determinada linguagem.

2 da Silva e Borin

e SaaS(Software as a Service): é o modelo de negécios que traz menos autonomia
ao desenvolvedor, uma vez que todo o recurso é gerenciado pelo provedor de nuvem.
Como exemplo desse modelo podemos citar os bancos de dados como servico, onde o
usuario nao se encarrega de nenhum tipo de infraestrutura, somente usa o endereco
que o provedor cede para poder usufruir das possibilidades de armazenamento que a
plataforma oferece.

Entre as vantagens de se adotar um modelo de computacdo em nuvem ao invés de
investir em méquinas fisicas, podemos citar:

e Custo: devido a possibilidade de pagar somente pelo que estd sendo usado, usuarios
desse tipo de plataforma nao gastarao para manter sistemas parados.

e Escalabilidade: a computacao em nuvem permite que o aumento do ndmero de
instancias ou do tamanho das maquinas seja simples, caso a aplicacao precise de mais
poder computacional.

e Foco na aplicagao: desenvolvedores podem focar em escrever suas aplicagoes, sem
a preocupacao de gerenciar infraestrutura e plataforma, o que pode ser trabalhoso.

Entre os principais provedores de nuvem piblica, temos a Microsoft Azure!, Amazon
Web Services? e Google Cloud Platform?®, que oferecem diversas opcoes para computacio
em nuvem, desde maquinas virtuais até bancos de dados gerenciados.

Aplicagoes que exigem alto poder computacional sao aplicagdes que necessitam de muito
mais poder de processamento que um computador comum pode oferecer. Um exemplo de
uma aplicagdo que exige alto poder computacional é o processamento de dados sismicos.
Varias dessas aplicacoes sao desenvolvidas e executadas em institutos de pesquisas, podendo
levar a um custo excessivo, muito trabalho para gerenciamento de infraestrutura, além de
pouca agilidade e flexibilidade quanto & arquitetura. Assim, tais aplicagdoes podem tirar
muito proveito dos servicos de nuvem citados acima.

2 Objetivos

Este trabalho tem como objetivo desenvolver uma plataforma open source de acesso simples,
ou seja, o usuario nao precisa entender sobre computagdo em nuvem para executar suas
aplicacgoes nesse ambiente. Ao final, é esperada a criacao de uma plataforma web, que tenha
como principais funcionalidades:

e Submissao e gerenciamento de dados: essa funcionalidade é responsavel pelo
upload de dados sismicos utilizados nos processamentos, por consultar quais ja foram
submetidos, baixa-los e também exclui-los, caso necessario.

'Plataforma de computacio em nuvem da Microsoft https://azure.microsoft.com/
?Plataforma de computacio em nuvem da Amazon https://aws.amazon.com/
3Plataforma de computacio em nuvem do Google https://cloud.google.com/

Processamento sismico como servigo na nuvem 3

e Submissao e gerenciamento de ferramentas: essa funcionalidade é semelhante
ao que esta detalhado acima, porém, ao invés dos dados sismicos, os artefatos que sao
gerenciados sao as ferramentas utilizadas no processamento dos dados.

e Definicao de tarefas de processamento: utilizando os dados e as ferramentas
submetidas a partir das duas funcionalidades citadas anteriormente, o objetivo é con-
seguir lancar um processamento que combine os dados e as ferramentas, além dos
argumentos necessarios.

e Obtencao dos resultados: ao final dos processos, é desejado que se consiga obter
todos os seus resultados de maneira simples e rapida.

3 Relevancia

Notamos a relevancia da plataforma que esse trabalho objetiva desenvolver, visto que é
dificil encontrar outros programas open source que executem tal tarefa. Além da unicidade
que o trabalho possui no cendrio atual, este permite abstrair os novos conceitos e a curva de
aprendizado que vem junto com a computagao em nuvem. Assim, é possivel tirar proveito
de todos os beneficios que foram citados acima, levando a possibilidade de um uso mais
inteligente dos recursos, baixando custos e aumentando a produtividade.

4 Arquitetura do Sistema
As seguintes defini¢bes serdo utilizadas ao longo do texto:

e Dado: dado sismico de interesse do usuério. Pode ser um dado carregado no sistema
pelo usuéario ou produzido a partir do processamento de outro dado.

e Ferramentas de processamento: ferramenta que é capaz de processar um dado
do usudrio. Por exemplo: uma ferramenta de common mid-point (CMP) que é capaz
de realizar o empilhamento de dados sismicos com o método CMP.

e Fluxo de processamento: ¢é a descricdo de como ferramentas devem ser combi-
nadas para realizar operacoes compostas da aplicacao de multiplas operagoes em
dados sismicos. Um fluxo pode envolver uma ou mais ferramentas. Um fluxo que
envolve multiplas ferramentas deve descrever o fluxo de dados entre as ferramentas.
O fluxo pode ser visto como um grafo dirigido aciclico onde os vértices represen-
tam as operacOes das ferramentas e as arestas o fluxo de dados entre as ferramentas.
O usuario pode definir e usar um fluxo para aplicar uma sequéncia de ferramentas
no dado sismico sem que haja a necessidade de intervencao manual ao término da
execucao de cada ferramenta. A Figura 1 ilustra um fluxo de processamento.

e Tarefa: é um conjunto de informacgoes que descreve como um fluxo de processamento
de interesse deve ser executado sobre um dado. Por exemplo, a tarefa define qual é
o fluxo a ser executado, os parametros para execucao do fluxo, os dados de entrada

4 da Silva e Borin

e outros detalhes. A tarefa também contém informagoes sobre sua execucao. Por
exemplo: se a tarefa ja foi finalizada, se houve erro, o tempo de processamento, etc.

e Resultados: sao arquivos produzidos pela execucao de tarefas. Os resultados podem
ser recuperados pelo usudrio através de um processo de download ou transformados
em dados para processamento posterior pelo usuério.

%

Ferramenta 1

-

Dado Sismic Ferramenta 3

Resultado Final

)

Ferramenta 2

Figura 1: Exemplo de fluxo de processamento

Para o sucesso do projeto, ao comeco dele, foi decidido que farfamos uma plataforma
web. Essa decisao foi tomada devido a facilidade de desenvolver para esse tipo de plata-
forma, além do alcance que plataformas web possuem, ja que é praticamente obrigatorio nos
dispositivos com acesso a Internet (celulares e computadores) a existéncia de um navegador
instalado. Além disso, vale ressaltar que desde o inicio do projeto todo o cédigo esteve
aberto no Github?, j4 que foi uma premissa do projeto que este fosse open source. Esse
codigo permanecera disponivel.

Dado que os trabalhos sao intensivos, demoram um tempo significativo para serem exe-
cutados e sao independentes um do outro, notamos que a arquitetura de nuvem que melhor
se encaixa é a de Work Queues (Filas de Trabalho), que segundo Brendan Burns em seu
livro Designing Distributed Systems, em um sistema de filas de trabalho existe um trabalho
em lote para ser executado. Cada parte do trabalho é independente do outro e pode ser
executado sem nenhuma interacao [2]. A Figura 2 ilustra o desenho inicial do projeto e da
arquitetura.

A plataforma foi separada em duas grandes partes:

e Front End: a parte que o usuario realmente vé, composta pelo cédigo que serd
executado no navegador do seu dispositivo.

*Servigo para compartilhamento de cédigo https://github.com/Guilhermeslucas/SPaaS

Processamento sismico como servico na nuvem)

Nginx Web Server
Flask and Celery (Python)
Back End

rarier o

Job definiton as Json

REST Get job rand user data

Status and Results fron the

Anguiar Front End to Hoes REST
define the patterns of
Jobs

law job ticket for
Get status of submitted RESE prlocessmg

jobs

Submit users data

Queue for submiting and
accepting new jobs

Data storages

Gets jobs status from
Kubemnetes

Job status

New job processing REST I

submission

Docker workers inside a
Kubernetes Cluster

REST

Gets jobs status from
Kubemnetes

Figura 2: Arquitetura inicial do projeto e exemplo de filas de trabalho distribuidas

e Back End: a porcao da plataforma responsavel por caracteristicas que sao invisiveis
ao usudrio. Entre elas, podemos citar acesso a camada de armazenamento, auten-
ticacao, dentre outras.

Os seguintes componentes foram usados em comum entre essas duas partes:

e Docker®: um sistema para simplificar o empacotamento de aplicacdes, isolando de-
pendéncias, garantindo que o deploy seja feito da maneira correta. Assim, é possivel
entregar as aplicacoes completas, com todos os requisitos necessarios instalados, o que
dé maior agilidade durante o ciclo de desenvolvimento.

e Nginx%: servidor web open source escaldvel e de facil configuracdo. Foi usado tanto

para servir o back end quanto o front end. A outra opcao para esse trabalho seria o
Apache Web Server, porém o Nginx se mostrou mais simples e rapido de ser integrado
a solucao.

4.1 Projeto Inicial

Para o desenvolvimento do front end, foram definidos de antemao a composicao geral das
telas e o fluxo da aplicagao. Uma visao geral das telas e seu contetido sao descritos a seguir.

5Programa que realiza virtualizacio em nivel de Sistema Operacional, também conhecido como contei-
nerizagao https://www.docker.com/
6Servidor Web open source https://www.nginx.com/

6 da Silva e Borin

A Figura 3a mostra quais informagoes eram requeridas para se criar uma conta no
sistema: e-mail, senha e confirmacao de senha. J4 a Figura 3b mostra como definimos quais
informagoes deveriam estar na tela para que o usuario pudesse se conectar a plataforma.
Como mostrado, as informacoes necessarias para entrar no sistema eram e-mail e senha
previamente cadastrados.

SPaaS User SEEI” SPaaS User SEEI”
Create Account Login
Email Email
Password Password
Confirm Password
(a) Tela de criagao de conta (b) Tela de login

Figura 3: Telas para gerenciamento de usudrio

A Figura 4a exemplifica como idealizamos a tela de definigao de um trabalho a ser
executado. Nesse primeiro protétipo, foi pensado que somente as informagoes ilustradas na
tela (nome do processamento, ferramenta a ser executada, comando necessario para executar
a ferramenta e dado sismico) eram suficientes. O protétipo inicial da tela de estado dos
trabalhos esté ilustrada na Figura 4b. Simples a principio, a tela é composta por uma tabela
mostrando o estado de cada trabalho. A Figura 5 mostra como foi pensada a obtenc¢ao dos
resultados.

Vale ressaltar que essa ideia inicial visava permitir uma avaliagao inicial do conceito.
Apés essa avaliacdo, o fluxo de todo o trabalho definitivo foi organizado em médulos como
ilustrado na Figura 6. Nessa figura, as caixas pretas representam as telas, as azuis repre-
sentam os mddulos, com suas respectivas interacoes com as camadas de armazenamento.
Os modulos sao detalhados como segue:

e Data Management: moédulo responsavel pelo gerenciamento dos dados sismicos da
plataforma. A intengdo desse médulo é permitir que o usudrio possa gerir os dados na
plataforma, sendo capaz de adicionar, remover e mover de um tipo de armazenamento
mais caro (porém mais réapido) para um mais barato, e mais lento.

e Tools Management: composto por somente uma tela, esse moédulo procura realizar
o gerenciamento das ferramentas de processamento que serao executadas. Assim como

Processamento sismico como servigo na nuvem 7

SPaaS Borin Sign out | | SPaaS Borin Sign out

Definitions Status

Jobs name
Menu Menu

Status

Definition Definition
Status

Results Results

1 10 minutes Completed

Code

‘ ‘ 2 2 minutes Enqueved

3 4 minutes Frocessing

Running Command

Job Data

4 10 minutes Completed

(a) Tela de definigao dos trabalhos (b) Tela de observagao do estado

Figura 4: Telas para definicao e estado dos trabalhos

SPaaS Borin Sign out
Results
Menu
Definition
Status
Results
result_1json 12
2 results_2 json 14
3 results_3 json 14
4 results_4 json 28

Figura 5: Tela de obtencao dos resultados

o médulo responsavel pelo gerenciamento dos dados sismicos, esse médulo busca dar
a possibilidade de adicionar, mover e excluir as ferramentas de processamento da
plataforma.

8 da Silva e Borin

Users
management
Login Create User
Flow DB

Results
managemen
,,,,,,,,, g LT Flow management
H Control Panel 77t .
Results
Management Management

Results
DB

Tools DB

Data .r.rl?‘.'f'?.‘ﬁl‘?m?.'ﬂ.: : : Tools management
Data E | NewTasks || frretmsrr sy
management | i : : : Tools
: : : ¢ | Management
et : :
: : —:

Processing
Tasks

Data DB

Tasks Running Tasks

management :

Figura 6: Fluxo de controle (arestas pretas) e de dados (arestas vermelhas) entre os com-
ponentes da plataforma

A

e Tasks Management: médulo responsavel pelo gerenciamento das ferramentas. K
composto pelas telas abaixo:

Processamento sismico como servigo na nuvem 9

— Running Tasks: nessa tela, é desejado que o usuério consiga ver qual é o estado
dos processamentos que iniciou. Os possiveis estados sao: Executando, Pronto e
Falhou.

— New Tasks: o usudrio usa essa tela para criar as tarefas que deseja execu-
tar. Os atributos necessarios para essa definicao sao ferramenta, dado sismico e
argumentos.

Results Management: moédulo que mostra os resultados obtidos apds os proces-
samentos. Possui o identificador tinico do processamento e o link para realizar o
download dos resultados. Esse médulo também é composto somente por uma tela.

Flow Management: esse mbédulo é o responsavel pelo gerenciamento dos fluxos, ou
seja, pela descricdo de como uma ou mais ferramentas sdo encadeadas para realizar o
processamento de dados sismicos.

Users Management: médulo usado para o gerenciamento dos usuarios. E composto
por duas telas:

— Login: tela onde o usudrio entra na plataforma, com as informacoes previamente
cadastradas.

— Create User: tela para cadastro de novos usudrios.

Assim, as atividades que um usuédrio deve realizar para que um processamento completo
seja executado sdo as seguintes:

1.

Criacao de conta: ao entrar na plataforma, o usudrio deverd criar sua conta no
modulo de criagao de conta, usando um e-mail que ainda nao estd em uso na plata-
forma e uma senha. Essa atividade é necessaria apenas uma vez por usudrio.

Login: Apés a criacao da conta, o usudrio usard seu e-mail e senhas cadastrados para
entrar na plataforma.

Submissao do dado sismico: uma vez que o usudrio foi autenticado na plataforma,
ele podera submeter um dado sismico que deseja processar.

Submissao da ferramenta: além do dado, também é necessaria a submissao de
uma ferramenta para o processamento.

Criacao da tarefa: com o dado sismico e a ferramenta submetida, o usuario deve
escolher qual dado sismico e ferramenta vao compor o processamento. Além disso, o
usudrio também definird quais os argumentos necessarios.

Acompanhamento da tarefa: ao criar a tarefa, o usudrio podera consultar se ela
ainda estda em execugao e esperar até ficar pronta, para coletar os resultados.

Obtencao dos resultados: ao final, o usudrio poderd consultar e recuperar os re-
sultados que foram gerados. Todos os arquivos gerados estao reunidos em um arquivo
disponivel para download.

10 da Silva e Borin

4.2 Tecnologias utilizadas para o desenvolvimento do Front End

Para o desenvolvimento da nossa plataforma, especificamente para o front end, foram esco-
lhidas as seguintes tecnologias:

e Angular”: framework para desenvolvimento de aplicacdes web open source, desenvol-
vido inicialmente pelo Google e agora também mantido pela comunidade. Usa como
linguagem de desenvolvimento o Typescript®. Escolhemos este framework pois ele é
bastante produtivo e completo, ja encapsulando todo o conceito de servicos, estilo de
péagina, linguagem de marcagao, roteamento, etc. Ainda é necessario conhecer lingua-
gens de marcagao como HTML e CSS, mas a jungao de todos esses conceitos fica mais
simples.

e Bootstrap?: framework que possui o estilo de varios componentes web, como tabelas,
menus laterais, barras superiores, etc. E utilizado por muitos sites, como por exemplo
o Github. Como estilizar paginas web pode se tornar um trabalho complicado e
demorado, optamos por usar este framework.

Para o deploy foi utilizado o servidor web Nginx. Além disso, foi disponibilizado um
Dockerfile, que possibilita o deploy da solucao de maneira simples e direta sobre containers
Docker.

4.3 Ferramentas para o desenvolvimento do Back End

No inicio do desenvolvimento do back end, buscamos escolher as melhores tecnologias para
esse componente e definir as rotas e contratos que essa API iria expor. Assim, os compo-
nentes que escolhemos para o back end foram:

e Python!?: linguagem criada por Guido Van Rossum, muito presente nos dias de hoje
devido a sua extensa gama de aplicacoes, que vao desde embarcados até sistemas de
analise de dados de alto desempenho. Esta linguagem prové bibliotecas maduras para
desenvolvimento de API’s back end, filas de trabalho distribuidas e conectores com
bancos de dados.

e Flask!!': framework para desenvolvimento de API’s para Python. Permite a criacio
de API’s de modo facil e rapido. Com ele, é simples entender como a aplicagao estd
funcionando, fator muito critico para sua selecao, uma vez que o projeto tem como
premissa ser open source. Foram cogitados também ASP.NET com C# e NodeJS. A
primeira foi descartada devido a complexidade para criagao de uma API. NodeJS nao
foi selecionado devido a dificuldade que novos programadores podem enfrentar para
compreender suas funcionalidades, quando precisassem expandir o projeto.

" Framework open source para desenvolvimento web https://angular.io/

8Linguagem criada pela Microsoft. https://www.typescriptlang.org/

?Conjunto de ferramentas open source que ajuda na estilizacio de paginas https://getbootstrap.com/
Ohttps://www.python.org/

1 Framework web open source para Python http://flask.pocoo.org/

Processamento sismico como servi¢o na nuvem 11

e Celery!'?: é um componente do Python responsivel por gerenciar, submeter e obter
resultados de uma fila de trabalho, de uma maneira acessivel. Além disso, d4 suporte
a vérios componentes de entrega de mensagens, por exemplo, RabbitMQ'3, Redis,
Amazon SQS'*. Uma vez escolhidas Python e Flask como ferramentas para o desen-
volvimento da solugao, foi natural a escolha do Celery como ferramenta para filas de
trabalho. Existem casos de sucesso documentados por engenheiros e desenvolvedores
que usaram essa combinacao com eficacia.

e Redis!®: apés a escolha da biblioteca para facilitar a execucao das filas de trabalho,
a Celery, foi preciso escolher o componente para a entrega de mensagens do projeto,
ou seja, o componente que realmente é responsavel por armazenar e distribuir as men-
sagens relacionadas aos trabalhos submetidos na solucao. Entre as opgoes estavam
RabbitMQ, Redis e Amazon SQS. Essas sdo as que melhor se integravam com o Ce-
lery, sendo possivel obter todas as suas funcionalidades. A Amazon SQS é uma opgao
dependente de um provedor de nuvem, o que dificulta o desenvolvimento do projeto,
caso seja preciso utilizar outra cloud diferente da AWS. RabbitMQ e Redis oferecem
funcionalidades semelhantes. O Redis foi escolhido, devido & sua documentacgao e suas
outras funcionalidades que podem ser aproveitadas, por exemplo, cache e armazena-
mento de dados em memoria.

e MongoDB!6: para o armazenamento dos dados de cadastro de usudrios, informacoes
sobre argumentos de cada ferramenta e etc., escolhemos um banco de dados NoSQL,
o MongoDB. Tratou-se de uma opcao natural, uma vez que os dados que estavam
trafegando entre um servigo e outro tinham uma estrutura muito semelhante com os
documentos que sao armazenados nesse tipo de banco.

e Blob Storage'”: precisdvamos de um armazenamento de propésito geral. Além do
Blob Storage da Microsoft existem outras opcoes: Amazon S3'® e miquinas virtuais. O
Amazon S3 oferece servigos muito semelhantes ao Blob. Por outro lado, usar maquinas
virtuais aumentaria a complexidade do projeto, j& que seria necessario gerencia-las.
O Blob Storage da Microsoft Azure possui integracao com Python estd sendo usado
para armazenamento dos dados sismicos, ferramentas e resultados.

4.4 Ferramentas para Deploy

Como dito anteriormente, ao iniciar o projeto, nao era desejado que utilizassemos somente
um modelo de deployment. Assim, para facilitar o deploy da aplicacdo, criamos uma série
de scripts em ferramentas especificas:

12 Framework open source para tarefas distribuidas em Python http://www.celeryproject.org/

13Plataforma open source de mensagens https://www.rabbitmq.com/

!Sistema de mensagens da plataforma AWS https://aws.amazon.com/sqs/

15 Armazenamento de dados em meméria open source https://redis.io/

%Banco de Dados NoSQL open source https://www.mongodb.com/

1" Armazenamento de cardter genérico no Microsoft Azure https://azure.microsoft.com/en-
us/services/storage/blobs/

8 Armazenamento genérico na AWS https://aws.amazon.com/pt/s3/

12 da Silva e Borin

e Kubernetes'?: renomado orquestrador de containers que tem como principal funci-
onalidade simplificar o deploy de aplicacoes baseadas em containers. Nascido dentro
do Google, a partir do Borg, que segundo o artigo publicado pelo Google [3], é um
gerenciador de cluster que roda centenas de milhares de processamentos, de diferen-
tes aplicagoes entre uma série de clusters. Atualmente estd sob a jurisdi¢ao da Cloud
Native Computing Foundation?® e é open source. Foi uma das plataformas visadas
por ter apresentado relevancia nos ultimos tempos, com todos os grandes provedores
de nuvem oferecendo opgoes gerenciadas da ferramenta.

e Ansible?’: um modelo comum de deploy de aplicacoes é o baseado em méquinas
virtuais. Nesse caso, é bom garantir que todas as dependéncias necessarias para que a
aplicagao seja executada com sucesso estejam instaladas. Nesse aspecto, o Ansible se
mostra eficaz. Essa ferramenta surgiu na Red Hat e também é mantida open source.
E um 6timo gerenciador de configuragoes, o que torna possivel escrever configuragoes
como codigo, garantindo que a aplicagao sempre tenha sucesso ao ser executada.

Apés combinar todas as tecnologias descritas nas segoes anteriores, foi alcancado um
resultado muito préximo ao esperado. A arquitetura final do projeto, estd ilustrada na
Figura 7.

5 Resultados

5.1 Arquitetura

Dada a arquitetura final do projeto, os componentes ilustrados tém, cada um, a seguinte
funcao:

o Web Client: componente que é executado no lado do cliente. Seguimos com o que
foi proposto no inicio do projeto e explicado nas segoes anteriores. Todo o codigo do
lado do cliente foi escrito em Typescript, com o auxilio do framework Angular. A
estilizagdo das paginas foi feita com Bootstrap e exposto via Nginx.

e Flask Back End: responsavel por receber todas as requisicoes que saem do front
end. Funciona como um gateway. Também foi seguido o plano inicial de escrever
todo o back end com Python, Flask e Celery. Esse é o componente que possui mais
responsabilidades: autenticagdo, comunicagao com a fila com o auxilio do Celery,
acesso aos Blobs e acesso ao banco.

e Linux Workers: componente responsavel pela execucao dos pedidos de trabalho.
Com o auxilio do Celery, esperam os pedidos entrarem na fila, e assim que isso acon-
tece, os executam. E possivel ter um cluster de maquinas com esse papel, aumentando
o paralelismo das execugoes.

90rquestrador de containers open source https://kubernetes.io/
20Cloud Native Computing Foundation https://www.cncf.io/
2l Gerenciador de configuracéo open source https://www.ansible.com/

Processamento sismico como servico na nuvem 13

seismic-data

/s.eismic-tools

Flask Back

MM™)

Message|Queue

=
Web Client

o

seismic-results

ltsCoIIection

usersCollection

&

Linux Workers

D

toolsCollection

Figura 7: Arquitetura final do projeto

e Message queue: também parte do plano inicial, a fila de mensagens com o Redis foi
a maneira mais eficaz e resiliente que encontramos de desacoplar o back end dos Linux
workers. O back end submete uma mensagem com as definigdes para a execugao de
um trabalho na fila e algum worker obtém essa requisicao, realizando o processamento
necessario. Vale ressaltar que a escolha do Celery e do modelo de filas de trabalhos
distribuidas, que ja foi explicada anteriormente, torna possivel desacoplar o back end
dos workers e a execucao de processamentos em paralelo e distribuidos.

e toolsCollection: cole¢do dentro do banco que guarda informacgoes sobre as ferra-
mentas que estao armazenadas. Essas informagoes sao o nome da ferramenta e seus
argumentos. Para cada argumento, é armazenado seu nome e descrigao. Novos dados
sao inseridos nela quando: uma nova ferramenta é armazenada, um novo pedido de
processamento ¢ incluido e uma ferramenta é excluida. Um exemplo de descricao de
uma ferramenta que segue o modelo esperado estd expresso na Figura 8.

14

"args"
{
“name"
|
{
“name"
tr
{
“name"
tr
{
“name"
tr
{
“name"
tr
{
“name"
tr
{
“name"
tr
{
“name"
H
1,
"name"™ : "cmp"

"description”

"

"description”

£

"description”

k]

"description”

g

"description”

g

"description”

g

"description”

"y

"description”

g

"_id" : Objectld("Sbe74b71lcB+2E@B7798bc37d"),
[

"Srimute (em graus) do dado

"Velocidade imicial”,

"Velocidade final",

"Step da velocidade”,

“fsbertura limite em meio afa

da Silva e Borin

sol",

stamento (Semblance)”,

“sbertura limite em meio afastamente (Empilhamentol}”,

"Dado prestack",

"Pasta de armazenamento dos

dados postack™,

Figura 8: Exemplo de um documento presente na cole¢ao de ferramentas

e resultsColleciton: colecao de documentos no banco que armazena os dados dos re-
sultados. Armazena o id do processamento, nome do dado e da ferramenta usada, além
dos argumentos. Essa colecao é acessada apds o término de cada processamento para
listar e salvar resultados. Um exemplo de documento que segue o modelo esperado

esta ilustrado na Figura 9.

e usersCollection: colecao usada para armazenamento de dados dos usudrios, como
senha e e-mail para autenticagdo. Um novo registro é criado nessa colecdo quando
um usudrio cria uma nova conta. A colecdo também é acessada para autenticacao de

Processamento sismico como servigo na nuvem 15

_ 1 ObjectId("5he7726ecBf2rd@Bdaalded@Za™),
"tool"

"cmp”,

"data" "zol.su",
"id" "4p1785ef-485e-4556-5Fd2-8Ffa5ec929f5h",
"args" : {

"1t o "@.an,

"2 "158@.a",

"3 "458@.3",

vd "58.8",

"5 "2888.",

"B "2888.",

e "s=pl.su",

"g" "spl"

|

Figura 9: Exemplo de um documento presente na colegao de resultados

um novo usudrio. Um exemplo de documento armazenado com as informagoes dos
usudrios esta ilustrado na Figura 10.

" id" : ObjectId("Sbbhldndec@f2e@ldancdFcTam),
"123",
"gJiLﬂe’meEi:.:um"

Figura 10: Exemplo de um documento presente da colecao de usuarios

e seismic-tools: Blob usado para armazenar as ferramentas submetidas pelos usuarios.
Acessado pelo componente de gerenciamento de ferramentas quando uma nova ferra-
menta é inserida na plataforma ou quando um novo processamento acontece.

seismic-data: Blob que armazena os dados sismicos submetidos. Também sao aces-
sados pelo componente de gerenciamento de dados quando um novo dado é incluido,
excluido e na execucao dos trabalhos.

seismic-results: esse Blob é responsavel por armazenar os resultados dos processa-
mentos. Todos os resultados sdo empacotados em um arquivo tar.gz?? e disponibili-
zados para download no componente de resultados.

Vale notar que, usamos somente uma instancia de bancos de dados, com colegoes di-
ferentes para cada aplicacao, as Collections. Também usamos a mesma estratégia para o
Blob. Foi usada somente uma conta de armazenamento no Microsoft Azure, com pastas
separadas para cada uso: seismic-data, seismic-tools e seismic-results.

22y tilitdrio de compressao de dados https://www.gzip.org/

16 da Silva e Borin

5.2 Executando a plataforma

Esta secao é dedicada a explicagao de como executar cada componente da plataforma. Desse
modo, descreveremos o front end, back end e Linux workers.

5.2.1 Front End

Para executar o front end, as variaveis de ambiente estao em front-end/src/environments.
Nesse caminho existem dois arquivos, environment.ts e environment.prod.ts. O pri-
meiro contém os valores das varidveis de ambiente que serdao consideradas durante o desen-
volvimento, ou seja, quando o comando for executado:

$ ng serve

Assim, a tnica varidvel que deve ser alterada é a apiUrl, que deve apontar para o back
end. Para compilar o projeto e servi-lo usando um servidor web, os comandos que devem
ser executados no servidor sao os seguintes:

$ npm install
$ npm run build -- --output-path=./dist/out --configuration production

Isso gerara uma pasta . /dist/out que, quando colocada no caminho /usr/share/nginx/html
de um computador com Nginx instalado, ird servir a aplicacao do front end. Nesses iltimos
comandos, o arquivo de variaveis que serd usado € o environment.prod.ts. Outra maneira
de executar o front end é via Docker. Existe um Dockerfile dentro da pasta front end que
facilita o deploy. Neste caso,existem dois comandos que devem ser executados, o primeiro
para construir a imagem do Docker e segundo para executa-la:

$ docker build -t my-angular-project:prod .
$ docker run -p 80:80 my-angular-project:prod

Ao acessar o localhost, a tela inicial do projeto serd apresentada.

5.2.2 Tecnologias utilizadas para o Back End

Aqui, assim como no front end, também existe a possibilidade de executar o cédigo na-
tivamente ou dentro de um container Docker. Para executar o back end nativamente,
dentro da pasta back end existe o arquivo main.py e o requirements.txt. O arquivo
requirements.txt mostra quais sao 0s pacotes necessarios para executar a aplicagao.
Também é preciso definir trés variaveis de ambiente, que sao:

e SPASS_CONNECTION_STRING: string de conexao do MongoDB.

e SPASS DATA BLOB_KEY: chave referente ao Blob que guardard todos os componentes
citados anteriormente: resultados, dados e ferramenta.

Processamento sismico como servigo na nuvem 17

e SPASS_CELERY_BROKER: string de conexao do broker do Celery, que, no caso do nosso
experimento é o Redis.

Assim, apds adicionar essas varidveis de ambiente, dentro da pasta back end execute os
seguintes comandos:

$ pip3 install -r requirements.txt
$ python3 main.py

Caso a opgao seja por executar o back end com Docker, os comandos sao:

$ docker build -t flask-back .

$ docker run -p 5000:5000 -e SPASS_CONNECTION_STRING="<value>"
-e SPASS_DATA_BLOB_KEY="<value>"

-e SPASS_CELERY_BROKER="<value>" flask-back

Nesse caso, o back end estard executando na porta 5000.

5.2.3 Worker

Para os workers, dentro da pasta back end, basta executar:

$ pip3 install -r requirements.txt
$ celery worker -A main.celery -1 info

Nos workers também é necessario declarar as mesmas varidveis de ambiente do back
end, citadas anteriormente. Como a proposta ¢é ter varios workers para executar as tarefas
em paralelo, foi criado um playbook Ansible, para configurar varias maquinas para executar
essas tarefas. Para isso, com o Ansible instalado basta executar dentro da pasta devops:

$ ansible-playbook worker_config.yaml

5.3 Telas finais

Apés apresentar a arquitetura final, ilustramos os componentes, com suas respectivas telas.
Na tela final de login, Figura 11, existem dois campos: e-mail e senha. Além disso, caso o
usudrio nao possua uma conta, é possivel criar uma no canto superior direito. Ao escolher a
opcao de criar uma conta, o usuario serd direcionado a tela da Figura 12, onde sera possivel
criar uma nova conta com e-mail e senha que deve ser confirmada.

Na Figura 13 é possivel observar como todas as funcionalidades que foram planejadas
no inicio estao sendo contempladas. Na secao de upload, é possivel definir um nome para
o dado, e escolher o arquivo que sera submetido. Além disso, a tabela presente nessa tela
mostra todos os dados que foram submetidos, com o link para download e também a opgao
de remover os existentes.

Semelhante a tela referente aos dados, a Figura 14 mostra o componente de geren-
ciamento das ferramentas. Também devem ser selecionados um arquivo, um nome, o0s

18 da Silva e Borin

SPaaS Contribute

Login

Email

The email used to create the account

Password

Your password

Figura 11: Tela final do login

SPaaS Contribute

Account Creation

Email
Email you want to create your account
Password

The password you want to use

Confirm your Password

Please confirm your password

Create an Account

Figura 12: Tela final de criacao de contas

parametros necessarios para a execucao e suas explicacoes. Os parametros sao subme-
tidos da seguinte maneira: l:explicagdo do primeiro parametro, 2:explicacdo do segundo
parametro, etc.

A Figura 15 mostra como é a definicdo de um pedido de processamento. Nesse pri-
meiro momento, s6 é possivel escolher uma ferramenta e o dado que serao usados. Porém
como mostra a Figura 16, apds selecionar a ferramenta, serdao automaticamente exibidos os
parametros necessarios para a execucao dessa tarefa. Esses argumentos foram submetidos
juntamente com a ferramenta na tela representada pela Figura 14.

A tela de resultados, ilustrada pela Figura 17, mostra como podemos obter os resultados
depois de terminados os processamentos. Além disso, caso o usuério queira verificar quais
foram os dados, ferramenta e argumentos utilizados, o botao de details, pode ser usado para
gerar um Json com as caracteristicas daquele processamento, como ilustrado na Figura 18.

Processamento sismico como servico na nuvem 19

SPaaS Contribute

Data Manager
Move

Tasks Management Name of data

Search for the data name
Status Management

Upload

Data name

Results Management

Data Management B R
The name you want for the data (with the extension)

Tools Management

| Escolher arquivo | Nenhum arquivo selecionado

Download Files Link to Download Delete Button

solsu https://seismicdata.blob.core.windows.net/seismic-data/sol.su Delete Data
sol2.su https://seismicdata.blob.core.windows.net/seismic-data/sol2.su Delete Data

Figura 13: Tela final de gerenciamento de dados sismicos

SPaaS Contribute

Tools Manager
Move

Tasks Management Name of the tool

Search for the tool name
Status Management

Upload

Tool name

Results Management
Data Management

The name you want for the tool

Tools Management
= Parameters to run
Put the parameters and the explanation o which parameter separeted by comma. Ex; 1:kind of job,2:number of repetitions

| Escolher arquivo | Nenhum arquivo selecionado
=

Download Files Link to Download Delete Button

cmp https://seismicdata.blob.core windows.net/seismic-tools/cmp DeleteTool

cmp2 https://seismicdata.blob.core.windows.net/seismic-tools/cmp2 Delete Tool

Figura 14: Tela final de gerenciamento de ferramentas

6 Conclusao

Ao final do processo de implementacao da plataforma, é possivel notar que os principais
objetivos foram alcancados. Foi criada uma aplicacao web somente com componentes open
source, com todo o c6digo fonte aberto desde o inicio no Github. Todo o front end foi desen-
volvido com o framework Angular, o back end construido com Python, Celery e Flask. Além
disso, usamos o Redis como fila de trabalho para alcancar o objetivo de desacoplar o front
end do back end. Para a camada de armazenamento, usamos o Blob do Microsoft Azure
e o banco de dados nao relacional MongoDB. Para executar um processamento sismico, o
usudrio final nao necessita de conhecimento de computacao em nuvem, o que também era

20 da Silva e Borin

Tasks Manager

Tool
Tasks Management Tool name
Status Management

Data

Results Management
Data Management

Submit Task

Tools Management

Figura 15: Tela final de gerenciamento de processamentos

SPaas gui@ic.com B

Tasks Manager

Tool
Tasks Management Tool name
am,
Flow Management v
1
Results Management Azimute (em graus) do dado sol
Data Management 2
Velocidade inicial

Tools Management
3
Velocidade final
4
Step da velocidade

5

Abertura limite em meio afastamento (Semblance)

6

Abertura limite em meio afastamente (Empilhamento)

7
Dado prestack

8

Pasta de armazenamento dos dados postack

Data
[—— -

Figura 16: Tela final de processamento detalhada

uma das premissas iniciais do projeto. Executamos a prova de conceito completa no Micro-
soft Azure. Vale ressaltar que uma pessoa nao participante do projeto conseguiu executar
o sistema seguindo as instrugoes desse relatério. Como sugestao para projetos futuros, é
desejado utilizar os resultados dos processamentos como entrada em outros processamen-
tos. Além disso, existe o plano de implementar uma maneira do usudrio conseguir analisar
as imagens sismicas geradas na propria interface web e a implementagao de um modulo
responsavel pelo fluxo de processamento.

Processamento sismico como servico na nuvem 21

d Link to Results Job Details
Lk R Details
€a897c0c-c61b-4cb9-9649-9cde0019a746 blob. t/seismi -6 1b-4cb9-9649-9cde0019a746.4ar.gz
6b71930¢-5fe3-438c-9dbS-2dfafb17c5ic blob. net/seismic-results/6b71930c-5fe3-438¢-9db5-2df8fb17cStc tar.gz
bafeec74-4429-4852-bfb6-304 1bf blob. net/seismic-results/b2feec74-4429-4852-bib6-394 1bftargz Details
23dac65f-4e0a-dcbc-9aac-foead1a5866c blob. net/seismic-results/23dac65f-4e0a-4cbc-9aac-foead1as866c.tar.g:
€38930ce-fod7-4aa7-a281-34319519eb1 blob. net/seismic 19d7-4aa7-a281-34319519e9b1 tar.gz m
€98956¢2-210d-4eb3-b: blob. net/seismi -210d-deb3-bS3c-f24066073a61 tar.gz T

Figura 17: Tela final de gerenciamento de resultados

Job Details X

{"args™ {"1":"0.0", "2": "1500.0", "3": "4500.0", "4": "50.0", "5":
“2000.", "6 "2000.", "7 "sol.su”, "8" "sol" }, "id": "4b1785ef-
485e-4a96-8fd2-0fa5ec929f8b", "data™ "sol.su”, "tool”: "cmp”,

"id" { "$oid": "5be7726ec0f2600daa14e026" } }

Figura 18: Tela final com detalhes do processamento nos resultados

Referéncias

[1] A. Back and H. Lindén. (2015). Cloud Computing Security: A Systematic Literature
Review, Uppsala University, Uppsala, Sweden.

[2] B. Burns. (2017). Designing Distributed Systems, Sebastopol, CA: O'Reilly Media, Inc.

[3] A. Verma, L. Pedrosa et al. (2015). Large-scale cluster management at Google with
Borg, The European Conference on Computer Systems.

