2

4

4

Event Repurposing Detection
based on Image analysis

Gabriel Capiteli Bertocco Anderson Rocha

Relatério Técnico - IC-PFG-18-27
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de nica responsabilidade dos autores.

Event Repurposing Detection based on Image Analysis

Gabriel Bertocco* Anderson Rocha*

Abstract

Nowadays one of the greatest problems faced in social and electronics media is the attempt
to change the purpose of images in order to increase or change the impact of some event. For
example, a malicious person can use a picture depicting a specific event to illustrate another
completely event, leading to misunderstanding and changing the public opinion about the event
or related topics. This repurpose of the meaning of the original picture is called Event Repur-
posing. In this work, we propose two methods to detect if a image is being repurposed or not
(binary classification problem) based on the full scene analysis (using the whole image) and
on the analysis of the objects (cars, people, trucks, and so on) present in the scene. In order
to model the binary classification, we extract features from the images using a Deep Convolu-
tional Neural Network (DCNN) and train an One-Class SVM. To check the robustness of the
proposed methods, we consider eight different events with different objects and landscapes to
get variability in terms of scenario, context and purpose of the events.

1 Introduction

Nowadays almost everyone around the world has access to information available on the Internet.
People now have the power to generate content about any subject, such as politics and sports, and
spread it on social medias. Recently, we are experiencing an era where people use this power in
order to create fake news and to impact public opinion on a particular subject. One way to try to
induce some idea to the public is to change the purpose of an image, i.e., reuse an image to achieve
a new interpretation of the event in which the image is inserted on, as shown in Figure 1. In this
example, which occurred during the 2018 Brazilian elections, images of the Carnival 2017 were
used to illustrate the manifestation NotHim (EleNao, in Potuguese) against the president candidate
Jair Bolsonaro. Both events happened in the same place in, in Sdo Paulo. The name of this process
is Event Repurposing based on Images. In this context, the goal of the present work is to detect if
an image or set of images were repurposed to another event based on the analysis of images truly
taken on the original event using Machine Learning and Pattern Analysis techniques. Our method
is divided in two steps: detection of objects of interest and training of classifiers based on features
extracted from those objects (Object of Interest Analysis) and features extracted from whole images
of the event (Full Image Analysis). The inference is done by a weighted combination of the outputs
of the classifiers trained for each object of interest or, in the case of the analysis of the full image, by
a unique answer given by a classifier trained with features from the whole image. The rationale is to
compare the performance of the classifiers when considering only components (objects of interest)

*Instituto de Computag@o, Universidade Estadual de Campinas, 13081-970 Campinas, SP

2 G. Bertocco and A. Rocha

of the event with the performance of the classifiers trained with the whole scene understanding. We
conduct experiments on images from eight different events released by by DARPA [1].

This report is divided in the following sections: in Section 2, we explain the methodology for
each step and the full pipeline of the two methods (one based on objects of interest and another based
on full images). In Section 3, we describe the dataset and the events considered in the experiments,
and in Section 4, we present the experiment protocol and the results for each method and for each
of the eight events. Finally, Section 5 states the conclusions and future work.

(a) Manifestation NotHim (EleNao, in Portuguese) in (b) Carnival in Sao Paulo, Brazil, 2017.
Sao Paulo, Brazil, 2018, against the president candidate
Jair Bolsonaro.

Figure 1: Image (b) was repurposed to the event depicted in (a).

2 Methodology

We explore the problem of Event Repurposing Detection in two fronts: one considering the analysis
of the full images in the training and inference stages, and one considering the analysis of objects
of interest in the images (cars, people, trucks, airplanes, backpacks, bicycles, and another possible
objects present in the scenes). We will first explain the feature extraction step used in the both
methods and then the full pipeline of each one.

2.1 Feature Extraction

In the last years, Deep Learning has grown a lot due to its capability to model and solve several
problems in computer vision, medical images [2], economics [3], audio [4], text analysis [5] and
another great fields involving a lot of data. This capability comes from the high complexity of the
features produced by Deep Learning techniques, allowing the computation of high non-linear mod-
els to divide the hyper-space in which the data is represented, providing high accuracies in many of
those cited problems. Since a deep model and, more specifically in this work, a Deep Convolutional
Neural Network (DCNN), produces representative features, we use it to extract features from the
whole images and from the objects of interest which we expect to have a good representation about
what is being seen by the DCNN in the input image. To do so, we choose Mask R-CNN [6] pro-
posed by Facebook Al Research, which was trained to classify, detect (find a bounding box), and
segment up to 91 objects of interest - cars, people, bicycles, trucks, backpacks, chairs, laptops and
another important objects to an event analysis. Mask R-CNN (Figure 2) has three outputs and three

Event Repurposing 3

respective loss functions: one for object classification, one for object detection, and one for segmen-
tation. The ground truth fed to train each objective is: a probability distribution (softmax over all
the possible 91 possibilities of objects) for the classification loss (L4ss); set of four real numbers,
one for each corner of the bounding box for the detection (L;.4); and a binary mask representing
the region occupied by the object in the image for the segmentation loss (Lc,). The final loss is the
sum of those loss functions equally weighted: L finai = Lejass + Lreg + Lseg. The illustration of the
outputs from each branch of Mask R-CNN is shown in the Figure 3. Therefore, Mask R-CNN puts
together two main advantages for this work: it is able to detect as many objects as possible in only
one forwarding of the image in the network and, because of the high confidences reported for each
output, the network generates very representative features for each object detected, as well as for
the whole image. The layer from which we extract features is the last one before the ramification of
the net to each one of three branches.

y 4 A Faster R-CNN
/5.’/' // w/ ResNet [19]
%7 ve —» class
—
Rol %1024 TESS (2048 , L _» box
//
e ’

(a) Mask R-CNN pipeline. (b) Last layers of Mask R-CNN before the division in
three branches.

Figure 2: Mask R-CNN.

(a) Original image. (b) Image with the three outputs
of the Mask R-CNN: the bound-
ing box, the mask and the predicted
class.

Figure 3: Example of the three outputs of Mask R-CNN.

4 G. Bertocco and A. Rocha

2.2 Full Image Analysis

FVs after
FVs before PCA PCA

Feature PCA

One-Class

Batch of

Extractor (Mask
R-CNN)

SVM

Images

Figure 4: Pipeline for the Full Image analysis.

Regarding the full Image Analysis, we forward an image through the Mask R-CNN and get the
output of the last layer before the ramification. When the network receives an entire image of an
event, we hypothesize that the extracted feature vector contains a full representation of all elements
depicted in the image and holds correlations and associations between them. By extracting feature
vectors for several images of an event, we can train a external classifier with such feature vectors to
detect patterns of that event. The pipeline for this method is shown in Figure 4. After extracting the
feature vectors we can apply PCA to perform dimensionality reduction or keep the dimension of the
feature vectors. The two cases were tested to check the robustness of the methods.

2.3 Object of Interest Analysis

The second method, in contrast to previous one that analyzes full images, is based on the analysis
of each component of the image separately. The first step is to detect the components by forwarding
an input image through the network and considering three outputs: the mask, the bounding box,
and the accuracy for each predicted component. The components can be cars, people, trucks, back-
packs, bicycles and another objects that might be useful to represent the event. The second step
is to crop each component using its predicted bounding box and, using the predicted mask, paint
all background pixels in black. This will give us images of each component separately, with black
background (Figures 5 and 6). Then, we forward these new component images through the Mask
R-CNN and take the feature vectors from the same layer as in the previous method. By consid-
ering the feature vectors extracted from the new component images, where the only representative
contents are the components themselves, we expect to have good representations for each compo-
nent separately, also considering that the DCNN has high accuracy in classification, detection and
segmentation of the considered classes of objects.

Event Repurposing 5

250
500
750
1000
1250
1500
1750

2000

0 500 1000 1500
(a) Original Image. (b) Detected component (per- (¢) New image, with the de-
son with the predicted mask and tected person only and black
bounding box). background.

Figure 5: Example of creating a new component image (person).

" SOLIDARITY FOREVER | € c,our»xrum-OREVER r
& : o ;

2 | % 3 ,’ =
SOUIDARIDAD " STEMPK A / SUDARIDAD ™ S[EHPR]:

i
0 100 200 300 400 500 600 700

(a) Original Image. (b) Detected components (Peo- (c) New image, with one de-
ple, car, bicycle and backpacks), tected component (car) only and
with the predicted masks and black background.
bounding boxes.

Figure 6: Example of creating a new component image (car).

Once we do this for all training images, we will have feature vectors for all components in
all images among the 91 possibilities given by Mask R-CNN. Then, for each set of feature vector
belonging to a specific component, we will train a classifier in order to be able to analyze the event
based only on a specific component. Doing this for all components, we will have a set of classifiers
for each one in order to be able to analyze the event based on the objects of interest detected during
the training phase.

During the inference phase, we consider all trained classifiers for the considered event. So we
performed a weighted combination of the answers given by the classifiers, based on the frequency
of the components (objects of interest in the training data), in the following way: Let M be the total
number of feature vectors in the training phase and n; the number of feature vectors detected for
component i, with i € {1,2...,91}. Let C be the number of classifiers which is equal to the number
of non-zero elements of M. Weight w; for the output of classifier C; is given by w; = 1 — n;/M.
As each classifier outputs a number p € {—1,+1} in which —1 means that the classifier predicts
that the query image does not belong to event and +1 that query image does belong to the event, the

6 G. Bertocco and A. Rocha

final answer combining all the classifier outputs is giver by:
c

Final = Z w;pj
j=1

If Final < 0 the query image is assigned as not belonging to the event, otherwise the query
image is assigned as belonging to the event. Note that the weight of a given component j is 1 —
n;/M, so the greater is n; the lower will be the weight, that is, the more frequent is the component
7, the lower will be its importance in the decision. Since a component is very frequent in the event
it might be very frequent in order events (people, for example, which appear as object of interest in
all events), so it might not be helpful to classify if a image is or is not belonging to the event, since
it might not be a particularity of the event. This pipeline is showed in the Figure 7

Person Car Truck Backpack
- e R e
I — M e
| —— [

Final Result

Figure 7: Classification by weight combining the outputs from each classifier. In this figure we show
to illustrate only the feature vectors and classification for 4 components detected in the training:
Person, Car, Truck and Backpack.

2.4 One-Class SVM

The goal of this project is to detect if an image is being repurposed or not based on deep feature
analysis. For an event, we have to extract features of images depicting this event using a DCNN and
then train a classifier using them in order to create a hyper-plane in the hyper-space to distinguish
features of the event from other features. To do this, we apply a novelty detection technique whose
main goal is to detect if a new feature vector is an outlier based on the pattern analysis of the training
feature vectors. If the new feature vector is an inlier then it is assigned as belonging to the event,
otherwise the new feature vector is an outlier and it is assigned as not belonging to the event. The
novelty detection algorithm used here is the One-Class SVM [7] which create a hyper-sphere around
the feature vectors belonging to the event and any new feature vector inside the hyper-sphere is an
inlier and outside the hyper-sphere is an outlier, as shown in the Figure 8.

Event Repurposing 7

Novelty Detection

learned frontier

training observations

new regular observations
new abnormal observations

0.0|

-4 -2 0 2 4
error train: 22/200 ; errors novel regular: 0/40 ; errors novel abnormal: 2/40

Figure 8: Example of the One-Class SVM hyper-plane division (projected in the 2D space).

To train the One-Class SVM, we need to tune the parameter v which controls the probability
of finding a regular feature vector that corresponds to the event outside the hyper-sphere, i.e., a
parameter which controls the radius of the hyper-sphere. In this work, we train the two models with
v =20.05,vr=0.1, v = 0.15.

3 Dataset

In this section, we explain the dataset used in the experiments of the proposed methods. The dataset
was originally released by DARPA [1] to an Event Repurposing competition. There are eight events
with 200 images each one. The events are: Austin Marathon (Figure 9), Boston Marathon (Figure
12), Berlin Air Show (Figure 10), Hurricane Matthew (Figure 13), Hurricane Sandy (Figure 14),
Occupation of Portland (Figure 15), Occupation of Baltimore (Figure 11), and the event of Oshkosh
Air Show happened in 2011 (Figure 16). The images have high resolution and dimension (from
700 x 1500 up to 2000 x 3700), so we can explore all the details with the Mask R-CNN. There
are indoor and outdoor images, selfies of the people, photos in landscape and portrait orientations,
pictures of food, cars, streets and buildings; images with different illumination conditions, and from
different points of view. Some images are in gray scale. Another images have more hints about the
depicted event than others that do not seem to belong to the event. We call this last set of images as
hard images (Figure 17). We train over 160 images with high resolution and high dimensions and
validate over 40 images belongs to the same event and all of the 200 images present in each of other

8 G. Bertocco and A. Rocha

events. We used all of the images that do not correspond to the event as negative images in in the
validation, since to train One-Class SVM is necessary only feature vector of the event of interest.

(© (d)

Figure 9: Example of images from the Austin Marathon.

© (d)

Figure 10: Example of images from the Berlin Air Show.

Event Repurposing

© (d

Figure 11: Example of images from the Occupy Baltimore.

(a) (b)

© (d

Figure 12: Example of images from the Boston Marathon.

10

G. Bertocco and A. Rocha

©) (d

Figure 13: Example of images from the Hurricane Matthew.

© (d

Figure 14: Example of images from the Hurricane Sandy.

Event Repurposing

© (d)

Figure 15: Example of images from Occupy Portland event.

(@) (b)

© (d
Figure 16: Example of images from the Oshkosh Air Show, 2011.

11

12 G. Bertocco and A. Rocha

(d)

Figure 17: Example of hard images that do not have explicity hints about the depicted event.

4 Experiments and Results

As we consider eight events, we applied the Full Image Analysis and the Objects of Interest Analysis
pipelines to each one of the events. For each event, we split all of the 200 images in training
(80%) and validation (20%) sets, extracted all the features for the two pipelines, using the Keras [8]
implementation of Mask R-CNN, and then we trained the classifiers using scikit-learn library [9].
In the case of the Full Image Analysis, we have only one classifier, as we have only one feature
vector by image. In the Objects of Interest Analysis, we have a variable number of classifiers as it
depends on the number of components detected in the training set. The feature vectors have 81000
dimensions, so it is represented by v € 1" with n = 81000, which is a number much higher than the
number of available images and higher than the number of feature vector for each component. So,
to see the impact of the dimensionality, we applied the Principal Component Analysis [10] (PCA)
in order to project the vector from 81000 dimensions to 200 dimensions. This number was chosen
based on the number of images for each event. The decomposition inside PCA is directed by the
lower dimension, and it was not possible to reduce to dimensions higher than 200, unless we had
more images to train.

As we are using a SVM, we tested two kernels: linear and RBF kernels. We also changed the v
parameter as explained in Section 2. Therefore we have a total of 12 combinations for each pipeline
for all events. The results are shown below in Tables 1 to 6. For all tables, the first column refers to
the location of each event, meaning that the related classifiers were trained over the images of the
specific event. The main diagonal contains the rate of acceptance — images classified correctly as
belonging to the event (True Positive Rate). In other positions, we have the rejection rates — images
classified incorrectly as the event in the column (True Negative Rate). For instance, considering the
first line in Table 1, the classifiers were trained for the Austin Marathon (with images from this
event) using SVM with linear kernel, allowing 5% of the features of the event to be misclassified
(v = 0.05), without PCA, and using the Full Image Analysis pipeline. We got 87.5% of images
from this event correctly classified, 12.5% of the Berlin Air Show correctly rejected, 42.2% of the
Boston Marathon correctly rejected, 47.8% of the Hurricane Matthew correctly rejected and so on.
Below we presented only the best results for each value of v for each pipeline. We present a plot
(Figure 18) with the mean True Positive Rate (sum the main diagonal up and divide by the number
of events) for each value of v.

Event Repurposing
Results for Linear kernel and without PCA using Full Image Analysis pipeline
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.875 | 0.125 | 0.422 | 0.478 0.665 | 0.643 0.490 0.275
Berlin 0.795 | 0.700 | 0.765 | 0.743 0.805 | 0.755 0.869 0.265
Boston 0.320 | 0.185 | 0.818 | 0.570 0.795 | 0.617 0.475 0.325
Matthew | 0.195 | 0.055 | 0.256 | 0.565 0.430 | 0.342 0.328 0.030
Sandy 0.245 | 0.080 | 0.325 | 0.443 1.000 | 0.235 0.232 0.055
Baltimore| 0.495 | 0.145 | 0.394 | 0.543 0.555 | 0.846 0.369 0.130
Portland | 0.315 | 0.090 | 0.336 | 0.317 0.510 | 0.383 0.769 0.085
Oshkosh | 0.685 | 0.180 | 0.715 | 0.704 0.735 | 0.755 0.747 0.825
Table 1: v = 0.05
Results for Linear kernel and without PCA using Full Image Analysis pipeline
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.875 | 0.125 | 0422 | 0478 0.665 | 0.643 0.490 0.275
Berlin 0.850 | 0.700 | 0.765 | 0.787 0.895 | 0.908 0.894 0.365
Boston 0.320 | 0.205 | 0.782 | 0.657 0.855 | 0.633 0.480 0.365
Matthew | 0.205 | 0.055 | 0.390 | 0.565 0.465 | 0.378 0.333 0.035
Sandy 0.245 | 0.085 | 0.329 | 0.443 0.950 | 0.235 0.253 0.055
Baltimore| 0.510 | 0.145 | 0.444 | 0.548 0.585 | 0.718 0.389 0.165
Portland | 0.310 | 0.090 | 0.336 | 0.317 0.510 | 0.383 0.769 0.085
Oshkosh | 0.680 | 0.180 | 0.733 | 0.722 0.735 | 0.699 0.773 0.825
Table 2: v = 0.10
Results for Linear kernel and without PCA using Full Image Analysis pipeline
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.850 | 0.125 | 0.462 | 0.478 0.665 | 0.668 0.520 0.280
Berlin 0.850 | 0.675 | 0.773 | 0.787 0.910 | 0.923 0914 0.365
Boston 0.365 | 0.215 | 0.782 | 0.787 0.860 | 0.633 0.500 0.365
Matthew | 0.210 | 0.080 | 0.397 | 0.761 0.470 | 0.408 0.379 0.070
Sandy 0.245 | 0.085 | 0.329 | 0.457 0.925 | 0.240 0.263 0.055
Baltimore| 0.585 | 0.165 | 0.448 | 0.557 0.610 | 0.692 0.384 0.185
Portland | 0.310 | 0.090 | 0.404 | 0.504 0.505 | 0.383 0.744 0.120
Oshkosh | 0.750 | 0.190 | 0.758 | 0.739 0.740 | 0.811 0.843 0.700

Table 3: v = 0.15

13

14

G. Bertocco and A. Rocha

Results for Linear kernel and with PCA using Object of Interest Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.725 | 0.785 | 0.315 | 0.735 0.605 | 0.455 0.515 0.900

Berlin 0.245 | 0.850 | 0.265 | 0.655 0.545 | 0.385 0.405 0.270

Boston 0.255 | 0.690 | 0.650 | 0.680 0.560 | 0.385 0.385 0.860

Matthew | 0.145 | 0.490 | 0.115 | 0.550 0.365 | 0.310 0.280 0.705

Sandy 0.170 | 0.385 | 0.160 | 0.435 0.375 | 0.370 0.320 0.550

Baltimore| 0.230 | 0.680 | 0.220 | 0.655 0.565 | 0.325 0.410 0.855

Portland | 0.200 | 0.660 | 0.215 | 0.655 0.525 | 0.390 0.700 0.860

Oshkosh | 0.110 | 0.070 | 0.135 | 0.500 0.385 | 0.350 0.260 0.875

Table 4: v = 0.05

Results for Linear kernel and without PCA using Object of Interest Analysis

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.700 | 0.800 | 0.365 | 0.740 0.625 | 0.460 0.540 0.915

Berlin 0.255 | 0.825 | 0.285 | 0.675 0.580 | 0.405 0.420 0.305

Boston 0.265 | 0.715 | 0.625 | 0.710 0.575 | 0.395 0.405 0.870

Matthew | 0.165 | 0.535 | 0.125 | 0.500 0.375 | 0.335 0.305 0.730

Sandy 0.185 | 0.440 | 0.205 | 0.455 0.300 | 0.375 0.355 0.570

Baltimore| 0.245 | 0.690 | 0.250 | 0.665 0.575 | 0.275 0.410 0.860

Portland | 0.225 | 0.760 | 0.290 | 0.665 0.540 | 0.405 0.650 0.875

Oshkosh | 0.110 | 0.095 | 0.150 | 0.520 0.395 | 0.350 0.270 0.875

Table 5: v = 0.10

Results for Linear kernel and with PCA using Object of Interest Analysis

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.625 | 0.870 | 0.420 | 0.775 0.640 | 0.480 0.555 0.925

Berlin 0.290 | 0.700 | 0.310 | 0.705 0.605 | 0.425 0.465 0.375

Boston 0.270 | 0.730 | 0.600 | 0.710 0.580 | 0.395 0.410 0.875

Matthew | 0.175 | 0.570 | 0.145 | 0.500 0.380 | 0.340 0.325 0.735

Sandy 0.200 | 0.495 | 0.250 | 0.475 0.300 | 0.380 0.385 0.595

Baltimore| 0.280 | 0.735 | 0.335 | 0.680 0.615 | 0.275 0.445 0.875

Portland | 0.265 | 0.790 | 0.375 | 0.680 0.570 | 0.410 0.600 0.880

Oshkosh | 0.130 | 0.115 | 0.160 | 0.535 0.405 | 0.360 0.285 0.775

Table 6: v = 0.15

Event Repurposing 15

Best mean TPR for each v Best mean TPR for each v

o

©
o
o

=}
~
L

o
o
L
=4
[

o
w
o
»

mean TPR
14
S
=)
w

o o
N w
mean TPR
o
N

o

=
o
-

o
=]

o
=]

T T T T T T
0.05 0.10 0.15 0.05 0.10 0.15
v values v values

(a) Full Image Analysis pipeline (b) Object of Interest pipeline

Figure 18: Best mean TPR for each value of v for each pipeline.

Analyzing the results, we can see that using the liner kernel without PCA outperforms other
combinations. This happens mainly because of the sparsity of the feature vectors in the vector
space.

In the Full Image Analysis, we have only 200 feature vectors with 81000 dimensions which
resulted a very sparse distribution of data in the vector space. When we applied the RBF kernel, all
the feature vectors are projected to a greater dimension, and then the training is performed. Since we
have a sparser data in the greater dimension, the feature vectors are more distant among themselves,
and then the rejection rate with RBF kernel is higher than with linear kernel. In the appendix we see
all the results with RBF kernel that shows this behaviour, in which we have all features vectors from
other events being fully rejected and some feature vectors of the depicted event being accepted, in
order words, high TNR and low TPR. The same explanation is applied to the Object of Interest
pipeline.

The effect of PCA is interesting: when the liner kernel is applied with and without PCA the
results tend to be very similar which show us the difference of dimensions did not influence nei-
ther the training neither the test using One-Class SVM with linear kernel. In the RBF kernel, the
dimension has impact over the results. Since we are reducing the dimension (with PCA) and then
expanding (with RBF kernel), the feature vectors are affected in a way that the rejections increases
a lot even to depicted event (TPR decreases) as to the other event (TNR increases).

In terms of v value, we have the expected conclusion: as v increases (the radius of the hyper-
sphere decreases) the number of rejected examples also increases, since we allow that more exam-
ples belonging to the depicted event be misclassified. We can check this result looking to the main
diagonal in which the values decrease (TPR decreases) and in the values of the other events (TNR
increases). This conclusion can be observed in the two pipelines.

In the plot, we see the values of mean TPR to each of the six tables above. Full Image Analysis
pipeline reported a better result to all three values of v than the Object of Interest Analysis pipeline,
so we conclude that features from a whole understanding of the scene give us better performance
than features extracted from objects.

There are some cases that Object of Interest Analysis pipeline outperforms a lot the Full Image

16 G. Bertocco and A. Rocha

Analysis pipeline. For instance, when we see the line of Austin and column of Oshkosh for v = 0.15
for the two pipelines, they reported 28% for Full Image Analysis pipeline and 92.5% for Object of
Interest Analysis pipeline, this great gap between them is explained because the objects of interest
in the both events have significant different frequencies. For example, Oshkosh has a lot of airplanes
while Austin does not have airplanes since one refers to a marathon and another one to the Air Show.
That is, different events have different objects and those objects depend on the context, scenario and
purpose of the event which helps a lot the Object of Interest analysis pipeline. The same great
difference between results we see in the same line of Austin and column of Berlin which is also a
Air Show.

Even in the Full Image Analysis we have events that reports high TPR and high TNR (Berlin
line in table 1) and events with low TPR and low TNR (Portland line in Table 2), which show us
that research is still needs to improve the results to the two pipelines and, as next step, combine the
results from two pipelines in a single one to take advantage of the full scene understanding and of
the objects of interest understanding to improve the results.

5 Conclusion and Future Work

In this work, we presented two pipelines to detect repurpose of images, that is, attempt to use the
original meaning of the event to another purpose. One pipeline is based on the Full Image Analysis
and the other one in the Object of Interest analysis and the results show us that, in general, the Full
Image Analysis helps more than the Object of Interest Analysis since the first one is considering
the whole scene instead of see the objects individually. However, events with different frequencies
of components may be better distinguishable using Object of Interest Analysis since we can have
different objects between events. Even with some good results to some events, research is still need
to improve them for the two pipelines and take advantage from the combination of both of them in
order to have a complementary result analyzing the whole scene and objects of it. So the next steps
are explore the combination of the pipelines, explore another classifiers besides one-Class SVM,
use another DCNNs to describe the scene and detect stuffs that Mask-R CNN does not detect and
them combine the features to have richer descriptions about the scenes of the event. We also aim
to methods that involve graphs to take advantage of the relations established by this data structure
between its nodes. Finally, we aim to get more data to have a better representation and variability
of the events and then better robustness of the descriptors and classifiers.

References

[1] “Defense advanced research projects agency,” https://www.darpa.mil, Accessed: 2018-06-26.

[2] Dinggang Shen, Guorong Wu, and Heung-Il Suk, “Deep learning in medical image analysis,”
Annual review of biomedical engineering, vol. 19, pp. 221-248, 2017.

[3] John H Holland and John H Miller, “Artificial adaptive agents in economic theory,” The
American economic review, vol. 81, no. 2, pp. 365-370, 1991.

Event Repurposing 17

[4]

[5]

[6]

[7]

[8]
[9]

[10]

A

Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng, “Unsupervised feature learning
for audio classification using convolutional deep belief networks,” in Advances in neural
information processing systems, 2009, pp. 1096—1104.

Xiang Zhang, Junbo Zhao, and Yann LeCun, “Character-level convolutional networks for text
classification,” in Advances in neural information processing systems, 2015, pp. 649-657.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Girshick, “Mask r-cnn,” in Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017, pp. 2980-2988.

Bernhard Schélkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson, “Estimating the support of a high-dimensional distribution,” Neural computa-
tion, vol. 13, no. 7, pp. 1443-1471, 2001.

Francois Chollet et al., “Keras,” https://keras.io, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions,” arXiv preprint
arXiv:0909.4061, 2009.

Tables of Results to other configurations of kernel and PCA

Below we have the other results that we had during the test of many combinations of kernel, use
of PCA, pipeline method and v. There are lines in some tables that are full filled with 0, and
-1 in the main diagonal. This happened only when we tried to apply PCA and failed since the
number of vectors available were lower than 200 (the target number to be reduced to). So we
simply unconsidered those results. All of the explanation behind the values were done in section 4.

Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.875 | 0.125 | 0422 | 0478 0.665 | 0.643 0.490 0.275

Berlin 0.795 | 0950 | 0.765 | 0.743 0.805 | 0.755 0.869 0.265

Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000

Matthew | 0.195 | 0.055 | 0.256 | 0.783 0.430 | 0.342 0.328 0.030

Sandy 0.245 | 0.080 | 0.325 | 0.443 0.850 | 0.235 0.232 0.055

Baltimore| 0.495 | 0.145 | 0.394 | 0.543 0.555 | 0.641 0.369 0.130

Portland | 0.315 | 0.090 | 0.336 | 0.317 0.510 | 0.383 0.821 0.085

Oshkosh | 0.685 | 0.180 | 0.715 | 0.704 0.735 | 0.755 0.747 0.725

Table 7: v = 0.05

G. Bertocco and A. Rocha

Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.275 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Berlin 1.000 | 0.225 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Boston 1.000 | 1.000 | 0.600 | 1.000 1.000 | 1.000 1.000 1.000

Matthew | 1.000 | 1.000 | 1.000 | 0.000 1.000 | 1.000 1.000 1.000

Sandy 1.000 | 1.000 | 1.000 | 1.000 0.150 | 1.000 1.000 1.000

Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.205 1.000 1.000

Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.513 1.000

Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.500

Table 8: v = 0.05

Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.325 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Berlin 1.000 | 0.350 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000

Matthew | 1.000 | 1.000 | 1.000 | 0.457 1.000 | 1.000 1.000 1.000

Sandy 1.000 | 1.000 | 1.000 | 1.000 0.900 | 1.000 1.000 1.000

Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.333 1.000 1.000

Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.590 1.000

Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.800

Table 9: v = 0.05

Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.875 | 0.125 | 0422 | 0478 0.665 | 0.643 0.490 0.275

Berlin 0.850 | 0.725 | 0.765 | 0.787 0.895 | 0.908 0.894 0.365

Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000

Matthew | 0.205 | 0.055 | 0.390 | 0.783 0.465 | 0.378 0.333 0.035

Sandy 0.245 | 0.085 | 0.329 | 0.443 0.850 | 0.235 0.253 0.055

Baltimore| 0.510 | 0.145 | 0.444 | 0.548 0.585 | 0.641 0.389 0.165

Portland | 0.310 | 0.090 | 0.336 | 0.317 0.510 | 0.383 0.744 0.085

Oshkosh | 0.680 | 0.180 | 0.733 | 0.722 0.735 | 0.699 0.773 0.725

Table 10: v = 0.10

Event Repurposing
Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.125 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000
Berlin 1.000 | 0.250 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000
Boston 1.000 | 1.000 | 0.418 | 1.000 1.000 | 1.000 1.000 1.000
Matthew | 1.000 | 1.000 | 1.000 | 0.000 1.000 | 1.000 1.000 1.000
Sandy 1.000 | 1.000 | 1.000 | 1.000 0.475 | 1.000 1.000 1.000
Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.513 1.000 1.000
Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.641 1.000
Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.725

Table 11: v = 0.10
Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.350 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000
Berlin 1.000 | 0.425 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000
Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000
Matthew | 1.000 | 1.000 | 1.000 | 0.457 1.000 | 1.000 1.000 1.000
Sandy 1.000 | 1.000 | 1.000 | 1.000 0.725 | 1.000 1.000 1.000
Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.385 1.000 1.000
Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.615 1.000
Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.150

Table 12: v = 0.10
Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.875 | 0.125 | 0462 | 0478 0.665 | 0.668 0.520 0.280
Berlin 0.850 | 0.625 | 0.773 | 0.787 0.910 | 0.923 0914 0.365
Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000
Matthew | 0.210 | 0.080 | 0.397 | 0.783 0.470 | 0.408 0.379 0.070
Sandy 0.245 | 0.085 | 0.329 | 0.457 0.875 | 0.240 0.263 0.055
Baltimore| 0.585 | 0.165 | 0.448 | 0.557 0.610 | 0.744 0.384 0.185
Portland | 0.310 | 0.090 | 0.404 | 0.504 0.505 | 0.383 0.692 0.120
Oshkosh | 0.750 | 0.190 | 0.758 | 0.739 0.740 | 0.811 0.843 0.575

Table 13: v = 0.15

19

G. Bertocco and A. Rocha

Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.325 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Berlin 1.000 | 0.225 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Boston 1.000 | 1.000 | 0.545 | 1.000 1.000 | 1.000 1.000 1.000

Matthew | 1.000 | 1.000 | 1.000 | 0.304 1.000 | 1.000 1.000 1.000

Sandy 1.000 | 1.000 | 1.000 | 1.000 0.400 | 1.000 1.000 1.000

Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.385 1.000 1.000

Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.410 1.000

Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.500

Table 14: v = 0.15

Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.575 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Berlin 1.000 | 0.650 | 1.000 | 1.000 1.000 | 1.000 1.000 1.000

Boston 0.000 | 0.000 | -1.000 | 0.000 0.000 | 0.000 0.000 0.000

Matthew | 1.000 | 1.000 | 1.000 | 0.674 1.000 | 1.000 1.000 1.000

Sandy 1.000 | 1.000 | 1.000 | 1.000 0.875 | 1.000 1.000 1.000

Baltimore| 1.000 | 1.000 | 1.000 | 1.000 1.000 | 0.538 1.000 1.000

Portland | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 0.436 1.000

Oshkosh | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 1.000 0.825

Table 15: v = 0.15

Results for Linear kernel and without PCA using Object of Interest Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.725 | 0.785 | 0.315 | 0.735 0.605 | 0.455 0.515 0.900

Berlin 0.255 | 0.850 | 0.275 | 0.660 0.550 | 0.390 0.405 0.275

Boston 0.255 | 0.690 | 0.650 | 0.685 0.560 | 0.385 0.390 0.860

Matthew | 0.160 | 0.500 | 0.115 | 0.550 0.370 | 0.320 0.285 0.710

Sandy 0.175] 0.395 | 0.165 | 0.435 0.375 | 0.375 0.325 0.550

Baltimore| 0.240 | 0.685 | 0.235 | 0.660 0.565 | 0.325 0.410 0.855

Portland | 0.205 | 0.660 | 0.220 | 0.655 0.525 | 0.395 0.700 0.860

Oshkosh | 0.110 | 0.070 | 0.135 | 0.500 0.385 | 0.350 0.260 0.875

Table 16: v = 0.05

Event Repurposing

Results for RBF kernel and without PCA using FObject of Interest Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.550 | 0.835 | 0.345 | 0.860 0.695 | 0.465 0.605 0.920

Berlin 0.390 | 0.675 | 0.320 | 0.825 0.670 | 0.465 0.545 0.545

Boston 0.515 | 0.865 | 0.450 | 0.865 0.675 | 0.470 0.615 0.920

Matthew | 0.365 | 0.710 | 0.245 | 0.150 0.615 | 0.425 0.475 0.860

Sandy 0.465 | 0.740 | 0.335 | 0.790 0.075 | 0.455 0.515 0.885

Baltimore| 0.500 | 0.760 | 0.380 | 0.870 0.710 | 0.225 0.560 0.900

Portland | 0.470 | 0.775 | 0.330 | 0.850 0.665 | 0.460 0.450 0.915

Oshkosh | 0.425 | 0.380 | 0.335 | 0.800 0.650 | 0.460 0.480 0.475

Table 17: v = 0.05

Results for RBF kernel and with PCA using Object of Interest Analysis pipeline

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.000 | 0.990 | 0.925 | 0.950 0.845 | 0.635 0.900 0.970

Berlin 0.985 | 0.000 | 0.930 | 0.950 0.845 | 0.635 0.900 0.970

Boston 0.985 | 0.990 | 0.000 | 0.950 0.840 | 0.630 0.895 0.965

Matthew | 0.985 | 0.990 | 0.930 | 0.000 0.850 | 0.640 0.900 0.970

Sandy 0.985 | 0.990 | 0.930 | 0.950 0.000 | 0.640 0.900 0.970

Baltimore| 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.000 0.900 0.970

Portland | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.000 0.970

Oshkosh | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.900 0.000

Table 18: v = 0.05

Results for Linear kernel and with PCA using Object of Interest Analysis

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh

Austin 0.700 | 0.800 | 0.365 | 0.740 0.625 | 0.460 0.540 0.915

Berlin 0.255 | 0.825 | 0.280 | 0.670 0.580 | 0.405 0.420 0.305

Boston 0.270 | 0.715 | 0.625 | 0.710 0.575 | 0.395 0.405 0.870

Matthew | 0.165 | 0.530 | 0.120 | 0.500 0.375 | 0.335 0.305 0.725

Sandy 0.185 | 0.435 | 0.200 | 0.455 0.300 | 0.375 0.355 0.565

Baltimore| 0.245 | 0.685 | 0.240 | 0.665 0.575 | 0.275 0.410 0.860

Portland | 0.225 | 0.760 | 0.290 | 0.665 0.540 | 0.405 0.650 0.875

Oshkosh | 0.110 | 0.095 | 0.150 | 0.520 0.395 | 0.350 0.270 0.850

Table 19: v = 0.10

22

G. Bertocco and A. Rocha

Results for RBF kernel and without PCA using Object of Interest Analysis

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.475 | 0.840 | 0.375 | 0.865 0.700 | 0.480 0.610 0.915
Berlin 0.455 | 0.675 | 0.350 | 0.835 0.685 | 0.485 0.560 0.555
Boston 0.540 | 0.875 | 0.450 | 0.865 0.690 | 0.475 0.625 0.925
Matthew | 0.370 | 0.710 | 0.260 | 0.150 0.615 | 0.425 0.475 0.860
Sandy 0.465 | 0.740 | 0.345 | 0.795 0.075 | 0.455 0.520 0.885
Baltimore| 0.500 | 0.760 | 0.380 | 0.870 0.710 | 0.225 0.560 0.900
Portland | 0.500 | 0.780 | 0.350 | 0.855 0.695 | 0.465 0.450 0.915
Oshkosh | 0.425 | 0.385 | 0.335 | 0.805 0.650 | 0.460 0.480 0.475
Table 20: v = 0.10
Results for RBF kernel and with PCA using Object of Interest Analysis
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.000 | 0.990 | 0.925 | 0.950 0.845 | 0.635 0.900 0.970
Berlin 0.985 | 0.000 | 0.930 | 0.950 0.845 | 0.635 0.900 0.970
Boston 0.985 | 0.990 | 0.000 | 0.950 0.840 | 0.630 0.895 0.965
Matthew | 0.985 | 0.990 | 0.930 | 0.000 0.850 | 0.640 0.900 0.970
Sandy 0.985 | 0.990 | 0.930 | 0.950 0.000 | 0.640 0.900 0.970
Baltimore| 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.000 0.900 0.970
Portland | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.000 0.970
Oshkosh | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.900 0.000

Table 21: v = 0.10

Results for Linear kernel and without PCA using Object of Interest Analysis

Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.625 | 0.870 | 0.420 | 0.775 0.640 | 0.480 0.555 0.925
Berlin 0.290 | 0.700 | 0.310 | 0.710 0.605 | 0.425 0.465 0.375
Boston 0.270 | 0.730 | 0.600 | 0.710 0.580 | 0.395 0.410 0.875
Matthew | 0.175 | 0.575 | 0.145 | 0.500 0.380 | 0.340 0.325 0.740
Sandy 0.200 | 0.490 | 0.250 | 0.475 0.300 | 0.380 0.385 0.595
Baltimore| 0.280 | 0.735 | 0.340 | 0.680 0.615 | 0.275 0.445 0.875
Portland | 0.265 | 0.795 | 0.380 | 0.680 0.565 | 0.415 0.600 0.885
Oshkosh | 0.135 | 0.115 | 0.160 | 0.535 0.405 | 0.360 0.285 0.775

Table 22: v = 0.15

Event Repurposing
Results for RBF kernel and without PCA using Object of Interest Analysis
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.425 | 0.845 | 0.410 | 0.865 0.710 | 0.485 0.615 0.915
Berlin 0.515 | 0.625 | 0.390 | 0.860 0.710 | 0.500 0.610 0.555
Boston 0.585 | 0.895 | 0.400 | 0.870 0.725 | 0.480 0.640 0.925
Matthew | 0.380 | 0.715 | 0.270 | 0.150 0.620 | 0.450 0.485 0.865
Sandy 0.485 | 0.745 | 0.355 | 0.810 0.075 | 0.460 0.540 0.885
Baltimore| 0.505 | 0.760 | 0.385 | 0.870 0.710 | 0.225 0.565 0.900
Portland | 0.555 | 0.800 | 0.380 | 0.865 0.705 | 0.470 0.400 0.925
Oshkosh | 0.445 | 0.390 | 0.340 | 0.810 0.650 | 0.465 0.485 0.475
Table 23: v = 0.15
Results for RBF kernel and with PCA using Object of Interest Analysis
Austin | Berlin | Boston | Matthew | Sandy | Baltimore| Portland | Oshkosh
Austin 0.025 | 0.990 | 0.925 | 0.950 0.845 | 0.635 0.900 0.970
Berlin 0.985 | 0.000 | 0.930 | 0.950 0.845 | 0.635 0.900 0.970
Boston 0.985 | 0.990 | 0.000 | 0.950 0.840 | 0.630 0.895 0.965
Matthew | 0.985 | 0.990 | 0.930 | 0.000 0.850 | 0.640 0.900 0.970
Sandy 0.985 | 0.990 | 0.930 | 0.950 0.000 | 0.640 0.900 0.970
Baltimore| 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.000 0.900 0.970
Portland | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.000 0.970
Oshkosh | 0.985 | 0.990 | 0.930 | 0.950 0.850 | 0.640 0.900 0.000

Table 24: v = 0.15

23

