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Event Repurposing Detection based on Image Analysis

Gabriel Bertocco∗ Anderson Rocha∗

Abstract

Nowadays one of the greatest problems faced in social and electronics media is the attempt

to change the purpose of images in order to increase or change the impact of some event. For

example, a malicious person can use a picture depicting a specific event to illustrate another

completely event, leading to misunderstanding and changing the public opinion about the event

or related topics. This repurpose of the meaning of the original picture is called Event Repur-

posing. In this work, we propose two methods to detect if a image is being repurposed or not

(binary classification problem) based on the full scene analysis (using the whole image) and

on the analysis of the objects (cars, people, trucks, and so on) present in the scene. In order

to model the binary classification, we extract features from the images using a Deep Convolu-

tional Neural Network (DCNN) and train an One-Class SVM. To check the robustness of the

proposed methods, we consider eight different events with different objects and landscapes to

get variability in terms of scenario, context and purpose of the events.

1 Introduction

Nowadays almost everyone around the world has access to information available on the Internet.

People now have the power to generate content about any subject, such as politics and sports, and

spread it on social medias. Recently, we are experiencing an era where people use this power in

order to create fake news and to impact public opinion on a particular subject. One way to try to

induce some idea to the public is to change the purpose of an image, i.e., reuse an image to achieve

a new interpretation of the event in which the image is inserted on, as shown in Figure 1. In this

example, which occurred during the 2018 Brazilian elections, images of the Carnival 2017 were

used to illustrate the manifestation NotHim (EleNão, in Potuguese) against the president candidate

Jair Bolsonaro. Both events happened in the same place in, in São Paulo. The name of this process

is Event Repurposing based on Images. In this context, the goal of the present work is to detect if

an image or set of images were repurposed to another event based on the analysis of images truly

taken on the original event using Machine Learning and Pattern Analysis techniques. Our method

is divided in two steps: detection of objects of interest and training of classifiers based on features

extracted from those objects (Object of Interest Analysis) and features extracted from whole images

of the event (Full Image Analysis). The inference is done by a weighted combination of the outputs

of the classifiers trained for each object of interest or, in the case of the analysis of the full image, by

a unique answer given by a classifier trained with features from the whole image. The rationale is to

compare the performance of the classifiers when considering only components (objects of interest)
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of the event with the performance of the classifiers trained with the whole scene understanding. We

conduct experiments on images from eight different events released by by DARPA [1].

This report is divided in the following sections: in Section 2, we explain the methodology for

each step and the full pipeline of the two methods (one based on objects of interest and another based

on full images). In Section 3, we describe the dataset and the events considered in the experiments,

and in Section 4, we present the experiment protocol and the results for each method and for each

of the eight events. Finally, Section 5 states the conclusions and future work.

(a) Manifestation NotHim (EleNao, in Portuguese) in

São Paulo, Brazil, 2018, against the president candidate

Jair Bolsonaro.

(b) Carnival in São Paulo, Brazil, 2017.

Figure 1: Image (b) was repurposed to the event depicted in (a).

2 Methodology

We explore the problem of Event Repurposing Detection in two fronts: one considering the analysis

of the full images in the training and inference stages, and one considering the analysis of objects

of interest in the images (cars, people, trucks, airplanes, backpacks, bicycles, and another possible

objects present in the scenes). We will first explain the feature extraction step used in the both

methods and then the full pipeline of each one.

2.1 Feature Extraction

In the last years, Deep Learning has grown a lot due to its capability to model and solve several

problems in computer vision, medical images [2], economics [3], audio [4], text analysis [5] and

another great fields involving a lot of data. This capability comes from the high complexity of the

features produced by Deep Learning techniques, allowing the computation of high non-linear mod-

els to divide the hyper-space in which the data is represented, providing high accuracies in many of

those cited problems. Since a deep model and, more specifically in this work, a Deep Convolutional

Neural Network (DCNN), produces representative features, we use it to extract features from the

whole images and from the objects of interest which we expect to have a good representation about

what is being seen by the DCNN in the input image. To do so, we choose Mask R-CNN [6] pro-

posed by Facebook AI Research, which was trained to classify, detect (find a bounding box), and

segment up to 91 objects of interest - cars, people, bicycles, trucks, backpacks, chairs, laptops and

another important objects to an event analysis. Mask R-CNN (Figure 2) has three outputs and three
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2.2 Full Image Analysis

Figure 4: Pipeline for the Full Image analysis.

Regarding the full Image Analysis, we forward an image through the Mask R-CNN and get the

output of the last layer before the ramification. When the network receives an entire image of an

event, we hypothesize that the extracted feature vector contains a full representation of all elements

depicted in the image and holds correlations and associations between them. By extracting feature

vectors for several images of an event, we can train a external classifier with such feature vectors to

detect patterns of that event. The pipeline for this method is shown in Figure 4. After extracting the

feature vectors we can apply PCA to perform dimensionality reduction or keep the dimension of the

feature vectors. The two cases were tested to check the robustness of the methods.

2.3 Object of Interest Analysis

The second method, in contrast to previous one that analyzes full images, is based on the analysis

of each component of the image separately. The first step is to detect the components by forwarding

an input image through the network and considering three outputs: the mask, the bounding box,

and the accuracy for each predicted component. The components can be cars, people, trucks, back-

packs, bicycles and another objects that might be useful to represent the event. The second step

is to crop each component using its predicted bounding box and, using the predicted mask, paint

all background pixels in black. This will give us images of each component separately, with black

background (Figures 5 and 6). Then, we forward these new component images through the Mask

R-CNN and take the feature vectors from the same layer as in the previous method. By consid-

ering the feature vectors extracted from the new component images, where the only representative

contents are the components themselves, we expect to have good representations for each compo-

nent separately, also considering that the DCNN has high accuracy in classification, detection and

segmentation of the considered classes of objects.
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final answer combining all the classifier outputs is giver by:

Final =
C∑

j=1

wjpj

If Final < 0 the query image is assigned as not belonging to the event, otherwise the query

image is assigned as belonging to the event. Note that the weight of a given component j is 1 −

nj/M , so the greater is nj the lower will be the weight, that is, the more frequent is the component

j, the lower will be its importance in the decision. Since a component is very frequent in the event

it might be very frequent in order events (people, for example, which appear as object of interest in

all events), so it might not be helpful to classify if a image is or is not belonging to the event, since

it might not be a particularity of the event. This pipeline is showed in the Figure 7

Figure 7: Classification by weight combining the outputs from each classifier. In this figure we show

to illustrate only the feature vectors and classification for 4 components detected in the training:

Person, Car, Truck and Backpack.

2.4 One-Class SVM

The goal of this project is to detect if an image is being repurposed or not based on deep feature

analysis. For an event, we have to extract features of images depicting this event using a DCNN and

then train a classifier using them in order to create a hyper-plane in the hyper-space to distinguish

features of the event from other features. To do this, we apply a novelty detection technique whose

main goal is to detect if a new feature vector is an outlier based on the pattern analysis of the training

feature vectors. If the new feature vector is an inlier then it is assigned as belonging to the event,

otherwise the new feature vector is an outlier and it is assigned as not belonging to the event. The

novelty detection algorithm used here is the One-Class SVM [7] which create a hyper-sphere around

the feature vectors belonging to the event and any new feature vector inside the hyper-sphere is an

inlier and outside the hyper-sphere is an outlier, as shown in the Figure 8.
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(a) (b) (c) (d)

Figure 17: Example of hard images that do not have explicity hints about the depicted event.

4 Experiments and Results

As we consider eight events, we applied the Full Image Analysis and the Objects of Interest Analysis

pipelines to each one of the events. For each event, we split all of the 200 images in training

(80%) and validation (20%) sets, extracted all the features for the two pipelines, using the Keras [8]

implementation of Mask R-CNN, and then we trained the classifiers using scikit-learn library [9].

In the case of the Full Image Analysis, we have only one classifier, as we have only one feature

vector by image. In the Objects of Interest Analysis, we have a variable number of classifiers as it

depends on the number of components detected in the training set. The feature vectors have 81000

dimensions, so it is represented by v ∈ ℜn with n = 81000, which is a number much higher than the

number of available images and higher than the number of feature vector for each component. So,

to see the impact of the dimensionality, we applied the Principal Component Analysis [10] (PCA)

in order to project the vector from 81000 dimensions to 200 dimensions. This number was chosen

based on the number of images for each event. The decomposition inside PCA is directed by the

lower dimension, and it was not possible to reduce to dimensions higher than 200, unless we had

more images to train.

As we are using a SVM, we tested two kernels: linear and RBF kernels. We also changed the ν
parameter as explained in Section 2. Therefore we have a total of 12 combinations for each pipeline

for all events. The results are shown below in Tables 1 to 6. For all tables, the first column refers to

the location of each event, meaning that the related classifiers were trained over the images of the

specific event. The main diagonal contains the rate of acceptance — images classified correctly as

belonging to the event (True Positive Rate). In other positions, we have the rejection rates — images

classified incorrectly as the event in the column (True Negative Rate). For instance, considering the

first line in Table 1, the classifiers were trained for the Austin Marathon (with images from this

event) using SVM with linear kernel, allowing 5% of the features of the event to be misclassified

(ν = 0.05), without PCA, and using the Full Image Analysis pipeline. We got 87.5% of images

from this event correctly classified, 12.5% of the Berlin Air Show correctly rejected, 42.2% of the

Boston Marathon correctly rejected, 47.8% of the Hurricane Matthew correctly rejected and so on.

Below we presented only the best results for each value of ν for each pipeline. We present a plot

(Figure 18) with the mean True Positive Rate (sum the main diagonal up and divide by the number

of events) for each value of ν.
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Results for Linear kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.875 0.125 0.422 0.478 0.665 0.643 0.490 0.275

Berlin 0.795 0.700 0.765 0.743 0.805 0.755 0.869 0.265

Boston 0.320 0.185 0.818 0.570 0.795 0.617 0.475 0.325

Matthew 0.195 0.055 0.256 0.565 0.430 0.342 0.328 0.030

Sandy 0.245 0.080 0.325 0.443 1.000 0.235 0.232 0.055

Baltimore 0.495 0.145 0.394 0.543 0.555 0.846 0.369 0.130

Portland 0.315 0.090 0.336 0.317 0.510 0.383 0.769 0.085

Oshkosh 0.685 0.180 0.715 0.704 0.735 0.755 0.747 0.825

Table 1: ν = 0.05

Results for Linear kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.875 0.125 0.422 0.478 0.665 0.643 0.490 0.275

Berlin 0.850 0.700 0.765 0.787 0.895 0.908 0.894 0.365

Boston 0.320 0.205 0.782 0.657 0.855 0.633 0.480 0.365

Matthew 0.205 0.055 0.390 0.565 0.465 0.378 0.333 0.035

Sandy 0.245 0.085 0.329 0.443 0.950 0.235 0.253 0.055

Baltimore 0.510 0.145 0.444 0.548 0.585 0.718 0.389 0.165

Portland 0.310 0.090 0.336 0.317 0.510 0.383 0.769 0.085

Oshkosh 0.680 0.180 0.733 0.722 0.735 0.699 0.773 0.825

Table 2: ν = 0.10

Results for Linear kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.850 0.125 0.462 0.478 0.665 0.668 0.520 0.280

Berlin 0.850 0.675 0.773 0.787 0.910 0.923 0.914 0.365

Boston 0.365 0.215 0.782 0.787 0.860 0.633 0.500 0.365

Matthew 0.210 0.080 0.397 0.761 0.470 0.408 0.379 0.070

Sandy 0.245 0.085 0.329 0.457 0.925 0.240 0.263 0.055

Baltimore 0.585 0.165 0.448 0.557 0.610 0.692 0.384 0.185

Portland 0.310 0.090 0.404 0.504 0.505 0.383 0.744 0.120

Oshkosh 0.750 0.190 0.758 0.739 0.740 0.811 0.843 0.700

Table 3: ν = 0.15
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Results for Linear kernel and with PCA using Object of Interest Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.725 0.785 0.315 0.735 0.605 0.455 0.515 0.900

Berlin 0.245 0.850 0.265 0.655 0.545 0.385 0.405 0.270

Boston 0.255 0.690 0.650 0.680 0.560 0.385 0.385 0.860

Matthew 0.145 0.490 0.115 0.550 0.365 0.310 0.280 0.705

Sandy 0.170 0.385 0.160 0.435 0.375 0.370 0.320 0.550

Baltimore 0.230 0.680 0.220 0.655 0.565 0.325 0.410 0.855

Portland 0.200 0.660 0.215 0.655 0.525 0.390 0.700 0.860

Oshkosh 0.110 0.070 0.135 0.500 0.385 0.350 0.260 0.875

Table 4: ν = 0.05

Results for Linear kernel and without PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.700 0.800 0.365 0.740 0.625 0.460 0.540 0.915

Berlin 0.255 0.825 0.285 0.675 0.580 0.405 0.420 0.305

Boston 0.265 0.715 0.625 0.710 0.575 0.395 0.405 0.870

Matthew 0.165 0.535 0.125 0.500 0.375 0.335 0.305 0.730

Sandy 0.185 0.440 0.205 0.455 0.300 0.375 0.355 0.570

Baltimore 0.245 0.690 0.250 0.665 0.575 0.275 0.410 0.860

Portland 0.225 0.760 0.290 0.665 0.540 0.405 0.650 0.875

Oshkosh 0.110 0.095 0.150 0.520 0.395 0.350 0.270 0.875

Table 5: ν = 0.10

Results for Linear kernel and with PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.625 0.870 0.420 0.775 0.640 0.480 0.555 0.925

Berlin 0.290 0.700 0.310 0.705 0.605 0.425 0.465 0.375

Boston 0.270 0.730 0.600 0.710 0.580 0.395 0.410 0.875

Matthew 0.175 0.570 0.145 0.500 0.380 0.340 0.325 0.735

Sandy 0.200 0.495 0.250 0.475 0.300 0.380 0.385 0.595

Baltimore 0.280 0.735 0.335 0.680 0.615 0.275 0.445 0.875

Portland 0.265 0.790 0.375 0.680 0.570 0.410 0.600 0.880

Oshkosh 0.130 0.115 0.160 0.535 0.405 0.360 0.285 0.775

Table 6: ν = 0.15
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Analysis pipeline. For instance, when we see the line of Austin and column of Oshkosh for ν = 0.15
for the two pipelines, they reported 28% for Full Image Analysis pipeline and 92.5% for Object of

Interest Analysis pipeline, this great gap between them is explained because the objects of interest

in the both events have significant different frequencies. For example, Oshkosh has a lot of airplanes

while Austin does not have airplanes since one refers to a marathon and another one to the Air Show.

That is, different events have different objects and those objects depend on the context, scenario and

purpose of the event which helps a lot the Object of Interest analysis pipeline. The same great

difference between results we see in the same line of Austin and column of Berlin which is also a

Air Show.

Even in the Full Image Analysis we have events that reports high TPR and high TNR (Berlin

line in table 1) and events with low TPR and low TNR (Portland line in Table 2), which show us

that research is still needs to improve the results to the two pipelines and, as next step, combine the

results from two pipelines in a single one to take advantage of the full scene understanding and of

the objects of interest understanding to improve the results.

5 Conclusion and Future Work

In this work, we presented two pipelines to detect repurpose of images, that is, attempt to use the

original meaning of the event to another purpose. One pipeline is based on the Full Image Analysis

and the other one in the Object of Interest analysis and the results show us that, in general, the Full

Image Analysis helps more than the Object of Interest Analysis since the first one is considering

the whole scene instead of see the objects individually. However, events with different frequencies

of components may be better distinguishable using Object of Interest Analysis since we can have

different objects between events. Even with some good results to some events, research is still need

to improve them for the two pipelines and take advantage from the combination of both of them in

order to have a complementary result analyzing the whole scene and objects of it. So the next steps

are explore the combination of the pipelines, explore another classifiers besides one-Class SVM,

use another DCNNs to describe the scene and detect stuffs that Mask-R CNN does not detect and

them combine the features to have richer descriptions about the scenes of the event. We also aim

to methods that involve graphs to take advantage of the relations established by this data structure

between its nodes. Finally, we aim to get more data to have a better representation and variability

of the events and then better robustness of the descriptors and classifiers.
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A Tables of Results to other configurations of kernel and PCA

Below we have the other results that we had during the test of many combinations of kernel, use

of PCA, pipeline method and ν. There are lines in some tables that are full filled with 0, and

-1 in the main diagonal. This happened only when we tried to apply PCA and failed since the

number of vectors available were lower than 200 (the target number to be reduced to). So we

simply unconsidered those results. All of the explanation behind the values were done in section 4.

Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.875 0.125 0.422 0.478 0.665 0.643 0.490 0.275

Berlin 0.795 0.950 0.765 0.743 0.805 0.755 0.869 0.265

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 0.195 0.055 0.256 0.783 0.430 0.342 0.328 0.030

Sandy 0.245 0.080 0.325 0.443 0.850 0.235 0.232 0.055

Baltimore 0.495 0.145 0.394 0.543 0.555 0.641 0.369 0.130

Portland 0.315 0.090 0.336 0.317 0.510 0.383 0.821 0.085

Oshkosh 0.685 0.180 0.715 0.704 0.735 0.755 0.747 0.725

Table 7: ν = 0.05
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Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.225 1.000 1.000 1.000 1.000 1.000 1.000

Boston 1.000 1.000 0.600 1.000 1.000 1.000 1.000 1.000

Matthew 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.150 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.205 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.513 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Table 8: ν = 0.05

Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.325 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.350 1.000 1.000 1.000 1.000 1.000 1.000

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 1.000 1.000 1.000 0.457 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.900 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.333 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.590 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800

Table 9: ν = 0.05

Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.875 0.125 0.422 0.478 0.665 0.643 0.490 0.275

Berlin 0.850 0.725 0.765 0.787 0.895 0.908 0.894 0.365

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 0.205 0.055 0.390 0.783 0.465 0.378 0.333 0.035

Sandy 0.245 0.085 0.329 0.443 0.850 0.235 0.253 0.055

Baltimore 0.510 0.145 0.444 0.548 0.585 0.641 0.389 0.165

Portland 0.310 0.090 0.336 0.317 0.510 0.383 0.744 0.085

Oshkosh 0.680 0.180 0.733 0.722 0.735 0.699 0.773 0.725

Table 10: ν = 0.10
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Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.125 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.250 1.000 1.000 1.000 1.000 1.000 1.000

Boston 1.000 1.000 0.418 1.000 1.000 1.000 1.000 1.000

Matthew 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.475 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.513 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.641 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.725

Table 11: ν = 0.10

Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.350 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.425 1.000 1.000 1.000 1.000 1.000 1.000

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 1.000 1.000 1.000 0.457 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.725 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.385 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.615 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.150

Table 12: ν = 0.10

Results for Linear kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.875 0.125 0.462 0.478 0.665 0.668 0.520 0.280

Berlin 0.850 0.625 0.773 0.787 0.910 0.923 0.914 0.365

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 0.210 0.080 0.397 0.783 0.470 0.408 0.379 0.070

Sandy 0.245 0.085 0.329 0.457 0.875 0.240 0.263 0.055

Baltimore 0.585 0.165 0.448 0.557 0.610 0.744 0.384 0.185

Portland 0.310 0.090 0.404 0.504 0.505 0.383 0.692 0.120

Oshkosh 0.750 0.190 0.758 0.739 0.740 0.811 0.843 0.575

Table 13: ν = 0.15
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Results for RBF kernel and without PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.325 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.225 1.000 1.000 1.000 1.000 1.000 1.000

Boston 1.000 1.000 0.545 1.000 1.000 1.000 1.000 1.000

Matthew 1.000 1.000 1.000 0.304 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.400 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.385 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.410 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Table 14: ν = 0.15

Results for RBF kernel and with PCA using Full Image Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.575 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Berlin 1.000 0.650 1.000 1.000 1.000 1.000 1.000 1.000

Boston 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000

Matthew 1.000 1.000 1.000 0.674 1.000 1.000 1.000 1.000

Sandy 1.000 1.000 1.000 1.000 0.875 1.000 1.000 1.000

Baltimore 1.000 1.000 1.000 1.000 1.000 0.538 1.000 1.000

Portland 1.000 1.000 1.000 1.000 1.000 1.000 0.436 1.000

Oshkosh 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825

Table 15: ν = 0.15

Results for Linear kernel and without PCA using Object of Interest Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.725 0.785 0.315 0.735 0.605 0.455 0.515 0.900

Berlin 0.255 0.850 0.275 0.660 0.550 0.390 0.405 0.275

Boston 0.255 0.690 0.650 0.685 0.560 0.385 0.390 0.860

Matthew 0.160 0.500 0.115 0.550 0.370 0.320 0.285 0.710

Sandy 0.175 0.395 0.165 0.435 0.375 0.375 0.325 0.550

Baltimore 0.240 0.685 0.235 0.660 0.565 0.325 0.410 0.855

Portland 0.205 0.660 0.220 0.655 0.525 0.395 0.700 0.860

Oshkosh 0.110 0.070 0.135 0.500 0.385 0.350 0.260 0.875

Table 16: ν = 0.05
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Results for RBF kernel and without PCA using FObject of Interest Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.550 0.835 0.345 0.860 0.695 0.465 0.605 0.920

Berlin 0.390 0.675 0.320 0.825 0.670 0.465 0.545 0.545

Boston 0.515 0.865 0.450 0.865 0.675 0.470 0.615 0.920

Matthew 0.365 0.710 0.245 0.150 0.615 0.425 0.475 0.860

Sandy 0.465 0.740 0.335 0.790 0.075 0.455 0.515 0.885

Baltimore 0.500 0.760 0.380 0.870 0.710 0.225 0.560 0.900

Portland 0.470 0.775 0.330 0.850 0.665 0.460 0.450 0.915

Oshkosh 0.425 0.380 0.335 0.800 0.650 0.460 0.480 0.475

Table 17: ν = 0.05

Results for RBF kernel and with PCA using Object of Interest Analysis pipeline

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.000 0.990 0.925 0.950 0.845 0.635 0.900 0.970

Berlin 0.985 0.000 0.930 0.950 0.845 0.635 0.900 0.970

Boston 0.985 0.990 0.000 0.950 0.840 0.630 0.895 0.965

Matthew 0.985 0.990 0.930 0.000 0.850 0.640 0.900 0.970

Sandy 0.985 0.990 0.930 0.950 0.000 0.640 0.900 0.970

Baltimore 0.985 0.990 0.930 0.950 0.850 0.000 0.900 0.970

Portland 0.985 0.990 0.930 0.950 0.850 0.640 0.000 0.970

Oshkosh 0.985 0.990 0.930 0.950 0.850 0.640 0.900 0.000

Table 18: ν = 0.05

Results for Linear kernel and with PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.700 0.800 0.365 0.740 0.625 0.460 0.540 0.915

Berlin 0.255 0.825 0.280 0.670 0.580 0.405 0.420 0.305

Boston 0.270 0.715 0.625 0.710 0.575 0.395 0.405 0.870

Matthew 0.165 0.530 0.120 0.500 0.375 0.335 0.305 0.725

Sandy 0.185 0.435 0.200 0.455 0.300 0.375 0.355 0.565

Baltimore 0.245 0.685 0.240 0.665 0.575 0.275 0.410 0.860

Portland 0.225 0.760 0.290 0.665 0.540 0.405 0.650 0.875

Oshkosh 0.110 0.095 0.150 0.520 0.395 0.350 0.270 0.850

Table 19: ν = 0.10
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Results for RBF kernel and without PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.475 0.840 0.375 0.865 0.700 0.480 0.610 0.915

Berlin 0.455 0.675 0.350 0.835 0.685 0.485 0.560 0.555

Boston 0.540 0.875 0.450 0.865 0.690 0.475 0.625 0.925

Matthew 0.370 0.710 0.260 0.150 0.615 0.425 0.475 0.860

Sandy 0.465 0.740 0.345 0.795 0.075 0.455 0.520 0.885

Baltimore 0.500 0.760 0.380 0.870 0.710 0.225 0.560 0.900

Portland 0.500 0.780 0.350 0.855 0.695 0.465 0.450 0.915

Oshkosh 0.425 0.385 0.335 0.805 0.650 0.460 0.480 0.475

Table 20: ν = 0.10

Results for RBF kernel and with PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.000 0.990 0.925 0.950 0.845 0.635 0.900 0.970

Berlin 0.985 0.000 0.930 0.950 0.845 0.635 0.900 0.970

Boston 0.985 0.990 0.000 0.950 0.840 0.630 0.895 0.965

Matthew 0.985 0.990 0.930 0.000 0.850 0.640 0.900 0.970

Sandy 0.985 0.990 0.930 0.950 0.000 0.640 0.900 0.970

Baltimore 0.985 0.990 0.930 0.950 0.850 0.000 0.900 0.970

Portland 0.985 0.990 0.930 0.950 0.850 0.640 0.000 0.970

Oshkosh 0.985 0.990 0.930 0.950 0.850 0.640 0.900 0.000

Table 21: ν = 0.10

Results for Linear kernel and without PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.625 0.870 0.420 0.775 0.640 0.480 0.555 0.925

Berlin 0.290 0.700 0.310 0.710 0.605 0.425 0.465 0.375

Boston 0.270 0.730 0.600 0.710 0.580 0.395 0.410 0.875

Matthew 0.175 0.575 0.145 0.500 0.380 0.340 0.325 0.740

Sandy 0.200 0.490 0.250 0.475 0.300 0.380 0.385 0.595

Baltimore 0.280 0.735 0.340 0.680 0.615 0.275 0.445 0.875

Portland 0.265 0.795 0.380 0.680 0.565 0.415 0.600 0.885

Oshkosh 0.135 0.115 0.160 0.535 0.405 0.360 0.285 0.775

Table 22: ν = 0.15
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Results for RBF kernel and without PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.425 0.845 0.410 0.865 0.710 0.485 0.615 0.915

Berlin 0.515 0.625 0.390 0.860 0.710 0.500 0.610 0.555

Boston 0.585 0.895 0.400 0.870 0.725 0.480 0.640 0.925

Matthew 0.380 0.715 0.270 0.150 0.620 0.450 0.485 0.865

Sandy 0.485 0.745 0.355 0.810 0.075 0.460 0.540 0.885

Baltimore 0.505 0.760 0.385 0.870 0.710 0.225 0.565 0.900

Portland 0.555 0.800 0.380 0.865 0.705 0.470 0.400 0.925

Oshkosh 0.445 0.390 0.340 0.810 0.650 0.465 0.485 0.475

Table 23: ν = 0.15

Results for RBF kernel and with PCA using Object of Interest Analysis

Austin Berlin Boston Matthew Sandy Baltimore Portland Oshkosh

Austin 0.025 0.990 0.925 0.950 0.845 0.635 0.900 0.970

Berlin 0.985 0.000 0.930 0.950 0.845 0.635 0.900 0.970

Boston 0.985 0.990 0.000 0.950 0.840 0.630 0.895 0.965

Matthew 0.985 0.990 0.930 0.000 0.850 0.640 0.900 0.970

Sandy 0.985 0.990 0.930 0.950 0.000 0.640 0.900 0.970

Baltimore 0.985 0.990 0.930 0.950 0.850 0.000 0.900 0.970

Portland 0.985 0.990 0.930 0.950 0.850 0.640 0.000 0.970

Oshkosh 0.985 0.990 0.930 0.950 0.850 0.640 0.900 0.000

Table 24: ν = 0.15


