2
W

Desenvolvimento de jogo
de primeiros socorros
baseado em linguagem

narrativa

C. Fernandes A. Santanché

Relatério Técnico - IC-PFG-18-26
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

O contetido deste relatério é de tnica responsabilidade dos autores.

The contents of this report are the sole responsibility of the authors.

Desenvolvimento de Jogo de
Primeiros Socorros baseado em Linguagem Narrativa

Caio Fernandes André Santanché*

Resumo

Este é um relatorio descritivo sobre o processo do desenvolvimento de um jogo
digital para ensinar procedimentos de primeiros socorros a leigos. Com base na pesquisa
do professor coordenador do projeto e em estudos dedicados ao desenvolvimento de
jogos, foi desenvolvido um jogo com enfoque na facilidade de manutengao, com sistemas
modularizados de forma a serem facilmente reutilizados em outros projetos. Por ser um
jogo que envolve a resolucao de casos clinicos, foi usada uma linguagem para desenvolver
a estrutura narrativa do mesmo.

1 Introducao

Este trabalho visou o desenvolvimento de um jogo digital como parte de uma pesquisa
cujo objetivo é mensurar o impacto do aprendizado através dos jogos digitais na area de
saude. Neste projeto, demos enfoque nos procedimentos de primeiros socorros para jovens
na faixa de 10 a 15 anos.

2 Justificativa

O conhecimento na area de satide é muitas vezes limitado aos praticantes desta area.
Porém, expandir o conhecimento sobre procedimentos de primeiros socorros para leigos
pode se mostrar extremamente benéfico para a sociedade, de forma a aumentar as chances
de que o acidentado sobreviva quando presta algum tipo de socorro.

Ademais, o conhecimento sobre desenvolvimento na area de jogos digitais se mostra
muito esparso, principalmente no Brasil, podendo este projeto oferecer uma visao sobre o
desenvolvimento de jogos digitais de uma forma geral, em funcao da organizacao e problemas
comuns encontrados.

3 Objetivos

Neste projeto, tivemos como objetivo principal: O desenvolvimento de um jogo digital
para treinamento em saude fazendo uma de uma linguagem para a escrita de narrativas.
Além disso, os objetivos especificos foram:

*Instituto de Computagao, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

2 Caio e André

e Criacao de um sistema com partes reutilizaveis e modularizadas.
e Validagao do jogo desenvolvido a partir de testes em usudrios reais.

e Transmitir a educacao de procedimentos de primeiros socorros a partir do jogo.

4 Desenvolvimento do Trabalho

O desenvolvimento do jogo se deu em quatro etapas: concepgao, prototipacao, teste e
desenvolvimento ou retorno a concepc¢ao, dependendo dos resultados do teste. No entanto,
devido a problemas de calenddrio e eventos para realizacao de testes, este trabalho contou
apenas com a concepcao e desenvolvimento.

Um projeto de jogo digital normalmente conta com a atuagao de diversas frentes inter-
disciplinares, tendo times compostos por artistas, animadores, programadores, escritores,
etc. Projetos com grandes orgamentos, conhecidos informalmente na induistria como AAA,
tendem a ter diversos times com frentes de trabalho que se comunicam. Porém, jogos de
baixo orgamento, compostos por times pequenos, normalmente tendem a lutar com as difi-
culdades nos aspectos que requerem interdisciplinaridade, sendo jogos de sucesso conhecidos
pela forma como transformaram uma fraqueza em uma qualidade.

Ademais, um jogo digital é constituido principalmente por um estilo de arte e uma
mecanica principal. Define-se como mecéanica, no caso do jogo digital, o fator central que
rege as interacoes do jogador com o mundo do jogo e a partir de uma mecanica principal se
tiram as demais interagoes. Por exemplo, no famoso jogo ”Super Mario Bros”temos como
principal mecanica o fato de que um jogador pode se mover para os lados e pular. A partir
disso derivamos outras mecanicas como aquela de pular em cima da cabega de inimigos para
mata-los; se mover para a direita para avancar o jogo, etc.

4.1 Concepcgao
Para iniciar este projeto foram levado em consideracao os seguintes fatores:
e Limitagoes do projeto
e Pblico alvo

e Objetivos a alcancar
Consideramos as seguintes limitagoes:

e tempo disponivel para o desenvolvimento do projeto;
e numero de desenvolvedores;

e recursos disponiveis;

Desenvolvimento de Jogo 3

Cnnace

el . com uma crionca
Elevea por cma de TESo)

((Rconsers ot v v v s)

.

Figura 1: Roteiro do primeiro caso

Considerando as limitagoes acima pudemos concluir que nao devemos iniciar um projeto
muito ambicioso, pois o tempo de desenvolvimento é curto para um jogo digital realizado
apenas por uma pessoa. Além disso, foi necessario o desenvolvimento de novos recursos
para o projeto — e.g., imagens — para se ter uma base de execucgao.

Ademais, foi feita uma anélise do roteiro do primeiro caso, produzido por uma pesqui-
sadora de projeto associado. Esse roteiro é apresentado Figura 1 na forma de um grafo de
estados, em que cada né é um estado da acao e as arestas sao decisoes. Essa andlise nos
levou a concluir que o projeto deveria seguir os moldes de casos médicos de cenas comuns,
cujo uso rapido de primeiros socorros pode se mostrar crucial.

Seguimos para uma andlise do publico alvo. Cada tipo de publico alvo pode afetar
a forma como o jogo serd percebido, ou seja, uma mesma experiéncia pode ser melhor
compreendida por um usuario de maior idade do que outro.

Existem algumas diferentes maneiras que podemos utilizar o ptiblico alvo para o design
de uma aplicacao. Para este projeto foi utilizada a criagdo de personas, ou seja, geramos um
ou mais usudrios ficticios que representam o nosso publico alvo com base em pesquisas com
usudrios reais. Estas personas sao entao utilizadas como um ponto de suporte a iteragoes
do desenvolvimento do projeto. Sempre que uma divida surge sobre como uma decisao de
design pode afetar a forma como o ptublico alvo interpreta a aplicagao, seja ela uma nova
caracteristica ou apenas uma mudancga, as personas criadas sdo utilizadas para facilitar o
entendimento de como essa mudanca serd recebida.

Para criarmos nossas personas, realizamos entao uma pesquisa durante um evento no
Museu Exploratério de Ciéncias na Universidade Estadual de Campinas. Tendo dentre os

4 Caio e André

Voceé costuma jogar videogames?

i -
47 responses

@ Sim
@ Nio

Figura 2: Usudrios que costumam jogar videogames

Se sim, quais dos seguintes géneros vocé mais gosta?

»/ Tesponses

Aventura

24 (64.9%)
Acdo 24 (64.9%)
RPG 13 (35.1%)
Estratégia 21 (56.8%)
Simuladores 11 (29.7%)
Esporie

Quebra-Cabeca

Figura 3: Géneros favoritos

Desenvolvimento de Jogo 5

O que te atrai em um jogo? (Escolha apenas duas opgoes)

Os confroles (jogabilidade) 12 (27.9%)
Visual
Histaria 19 (44.2%)
Humar
Personagens 16 (37.2%)

Desafios 25 (58.1%)

Figura 4: Interesses em um jogo

resultados, as Figuras de 2 a 5, das quais podemos absorver informacoes como os géneros
favoritos, que o publico costuma jogar mais jogos em seus celulares e que gostam de ser
desafiados.

Tendo os pontos acima em mente, foi concebida a ideia inicial para o jogo: Um jogo de
batalha no estilo de turnos em que o jogador precisa manter a vitima de um acidente viva
até a ambulancia chegar, escolhendo as agoes certas em cada turno.

4.2 Engine

Um dos principais recursos na criacado de um jogo digital hoje em dia é a ferramenta
de desenvolvimento utilizada. Um jogo digital é composto por uma imensa variedade de
sistemas como: renderizagdo de imagem, célculo de poligonos, simulacao de fisica, I/0O |,
etc. A engine é a ferramenta que possui esses sistemas pré desenvolvidos, de forma que um
desenvolvedor nao precise se preocupar em programar a fisica ou renderizacao em seu jogo
pois a engine faz isso por ele.

Para o jogo desenvolvido neste projeto decidimos utilizar a engine Unity3D [3] devido
a familiaridade do desenvolvedor e a facilidade de gerar executaveis do jogo para diferentes
sistemas operacionais.

FEm uma explicacao superficial do funcionamento da engine, um jogo é pode ser composto
por cenas que representam uma fase ou level, nas quais objetos sdo criados e renderizados.
A Figura 6 apresenta o editor Unity, em que na Scene View manipula-se os objetos contidos
na Hierarchy Window, que apresenta todos os objetos na cena do jogo. Essa view permite
posiciona-los ou modificar seu tamanho e outras propriedades de forma visual. Além disso,
ha também a Inspector Window, na qual pode-se ver todas as propriedades de qualquer
objeto e adicionar mais propriedades ou scripts a ele.

Um script de objeto herda, normalmente, métodos de operacao da classe Monobehavior.

6 Caio e André

Onde vocé costuma jogar seus jogos?

Conszoles 17 (39.5%)
PC 10 (44.2%)
Smartphone 21 (48.8%)
Tablet 11 (25.6%)

0 5 10 15 20 25

Figura 5: Plataformas jogadas

Dentre eles estao os métodos Awake e Start utilizados para inicializagao, e Update, o qual
é chamado uma vez a cada atualizacao de frame do jogo.

Utilizando estes recursos e outros encontrados na documentacgao da ferramenta [3], foi
possivel desenvolver um jogo funcional em um periodo curto para o nimero de desenvolve-
dores envolvidos, no caso apenas um.

4.3 Sistemas

Um dos objetivos do projeto foi o desenvolvimento de um jogo arquitetado de forma a
ser duradouro e facilmente manipuldvel, com a possibilidade de ser expandido ou integrado
em outros projetos. Para isso foi preciso desenvolver sistemas modulares capazes de se
comunicar entre si de forma a minimizar a dependéncia entre eles, além de evitar concentrar
toda a légica em um tnico componente.

4.3.1 Controladores

A arquitetura do projeto foi dividida com base nos controladores, ou seja, scripts res-
ponsaveis por controlar certas partes do jogo. Cada controlador se torna responsavel por
uma area do jogo. Areas recorrentes em diversos jogos sao: Audio, Input, Cenas e Interfa-
ces de Usudrio (UI). Esses controladores sdo modularizados e realizam suas operagoes sem
depender dos demais.

Por exemplo, o controlador de Input é responsavel por ler o input do jogador e transmitir
qual tipo de acgao foi realizada por ele. O Unity3D possui uma classe de Input prépria, que
repassa eventos, por exemplo: se uma tecla ou botao foi apertado. Essa atividade se torna
mais complexa no contexto de games, em que se leva em consideragao o uso de diversos
periféricos como controles de diferentes marcas, teclados, etc.

Desenvolvimento de Jogo 7

O Inspactar
) o [arap_f
Tag | Untagged

= Higrarchy

| Eraats = | (BFR

¥ Animation 3 Reat
= Cam rig pivet
= Axirella Sdting
= SHIP 1

R Transform (VL%
Pasition 7 -13.277)
Rotat 1

- Inspector
Window

Hierarchy
Window

Cast
Racaive
W Matsriali
Size 1
Elemens 0 nlun_‘.anJlm::l'l =]
Use Light Probes [

Large Cube

support_D14 Reflection Frobee | l-"m
¥letFan 1 Anchar Querride Mone [Tranaferm]} | @

prop_faniangs_spenty ol
prop,_fanLange_mutor_0f | - prop_fan_large_aperturs_m i@ &

bt o W hacer (picy shadrsivanged spee

B Project

=T — HEJEAL
»Faverites 4 Assets - Art e Texfures - Heavy Machinery Textres - Materals

T Assets " T-—
|8 Animations
B Animatars
v Art

.., Project Window
.
* &l Environment

imhlrﬂ-ﬂimﬂmu
&l sky
et —

8 Astrella Scene = 5

Figura 6: Editor Unity

| Add Componant |

8 Caio e André

Assim, o controlador desenvolvido utiliza do sistema de Input da engine para mapear
botoes virtuais, ou seja, gera uma camada intermediaria entre o input do jogador, recebido
diretamente pela classe Input, e o programa desenvolvido, que precisa utilizar da entrada
do jogador para realizar alguma acao. Essa camada intermedidria interpreta a entrada de
acordo com o tipo de periférico e entao retorna acoes pré interpretadas. Por exemplo, o
botao A’ em um controle pode significar ”selecionar’no jogo, da mesma forma que o botao
”Enter’no teclado, entao a camada intermedidria retornaria a agdo ”selecionar”caso uma
dessas teclas fosse apertada.

Da mesma forma, os demais controladores gerem suas respectivas areas de modo a encap-
suld-las e melhor interpreté-las para facilmente se adaptar em uma mudanca. Por exemplo,
o controlador de input desenvolvido precisa apenas adicionar um novo interpretador para
um novo periférico existente, em vez de buscar e modificar todos os arquivos que utilizam
inputs do jogador.

Com isso, o controlador de Audio gerencia volume, musica de background e efeitos
sonoros. Ja o controlador de Ul gerencia eventos na interface de usudrio, como texto,
transicoes e escala de tamanho, dependendo da tela do jogador.

Por fim, o controlador de cenas gere qual cena deve ser carregada em qual momento.
Uma boa prética no desenvolvimento de jogos em Unity3D é construir uma cena persistente,
a qual ird se manter durante todo o jogo, tendo objetos que nao devem ser destruidos ou
resetados em uma mudanca de cena como, por exemplo, os controladores acima e objetos
como a musica de fundo, que sofreria cortes se destruida e recriada em uma mudanca de
cena.

4.3.2 Localizagao

Algumas decistes de projeto precisam ser tomadas desde o seu inicio e preparadas desde
entao, senao serda cada vez mais dificil inclui-las. Para jogos digitais, j4 consideramos al-
gumas plataformas que o jogo iria comportar e da mesma forma os controles para os quais
ele daria suporte. Outra decisao muito importante foi a que o jogo possuiria seus textos
localizados em outras linguas.

Existem diferentes formas de lidar com a localizacdo. Neste projeto, foi usada a forma
chave/valor, em que cada texto no jogo serd representado por uma chave e sempre que o
texto precisar ser revelado, um controlador de localizagao criado, é chamado para buscar
o seu valor em um arquivo comportando todas as chaves e valores da lingua em questao.
Assim, cada lingua possui seu préprio arquivo de chaves e valores, em que as chaves serdo
iguais para todos os arquivos, mas o valor serd o texto propriamente traduzido na linguagem
selecionada.

4.3.3 Linguagem Narrativa Ink

Um dos pontos centrais do jogo girou em torno de encontrar um meio de converter os
casos médicos em um jogo digital. Parte da pesquisa procurava por um meio de converter
os dados de casos inseridos por médicos facilmente em algo que possa ser utilizado como
um banco de dados pelo jogo.

Desenvolvimento de Jogo 9

B0-days.ink
4 = e

- I leoked at Monsieur Fogg

* ... ond I could contoin myself no lenger.
"What is the purpese of our journey, Monsieur?”
"A wager,' he replied.
o= 'A wager!'[] T returned.

I looked at Monsieur Fogg

... and [could contain mysealf ne longer.

He nodded.

* * = 'But surely thot is foolishness!®
* & w V) et sepious matker then!® What is the purpose of our journey, Mansieur?
- - - He nodded again. . . ’

* & % 'But can we win?' A wager," he replied.

'That is what we will endeavour to find
out,' he answered.

¥ # = A modest wager, I trust?’

'Twenty thousand pounds,' he replied,
quite flatly,

* * = T asked nothing further of him then[.],
and after a final, polite cough, he offered
nathing more to me. <

- '&h[.']," T replied, uncertoin what T thought.
- - After that, <

" ... but T said nothing[] and <=

- we possed the day in silence.

- -» END

"A wager!" I returned.

He nodded.

Figura 7: Exemplo Ink

Dessa forma, para este projeto foi decidido utilizar a ferramenta Ink [4]. Esta ferramenta
é uma linguagem com foco em gerar textos narrativos com possibilidades de escolhas e
caminhos resultantes dessas escolhas. Ela também dispoe de recursos avangados equivalentes
a uma linguagem de programacao.

Um elemento importante para a interpretacao de um arquivo .ink pela engine Unity foi
o uso de um plugin que acompanha a instalacao do pacote Ink no Unity3D. Esse plugin
que age como interpretador dos arquivos .ink e se comunica com uma API interna do Unity
através de diferentes métodos e varidveis.

Essa API, no entanto, possui falhas de funcionamento e falta de alguns métodos que
teriam sido tteis durante a interpretagao do arquivo. Por exemplo, os métodos de get para
o texto da fala atual e o método de get para o nome do N6 atual nao eram consistentes para
a primeira fala de um né, enquanto a fala retornava seu valor correto (a fala em si), o N6
tinha como retorno o nome do ultimo Né pelo qual o fluxo passou, ao invés do né em que
estd, sendo apenas atualizado a partir da préxima fala.

A linguagem utilizada em Ink possui grande similaridade com a linguagem markdown.
Uma documentacao completa de suas funcionalidades pode ser encontrada em seu site [4],
no entanto iremos ressaltar algumas das principais funcionalidades utilizadas:

1. Falas
Cada fala pode ser representada em um arquivo .ink por uma linha de texto sem nada
a sua frente ou com um hifen.

2. Opcoes

O ink possibilita o uso de escolhas narrativas pelo jogador. Cada escolha pode ser
representada por uma fala, antecedida por um ou mais asteriscos. Falas consequentes

10

Caio e André

da escolha podem ser escritas logo abaixo dela, assim como novas escolhas subordina-
das, que devem possuir um asterisco a mais do que a escolha em nivel superior, como
pode ser visto na Figura 7.

Existem também alguns elementos adicionais para enriquecer o texto. Por exemplo,
cada vez que uma opcao é escolhida durante a execucao, seu texto é incorporado na
narrativa apresentada ao usuério, exceto quando sao usados colchetes ”[]” com texto
dentro. Nesse caso, o texto serd apenas apresentado quando a opgao da escolha for
revelada, quando ela é escolhida s6 é apresentada a parte que esté fora dos colchetes.

Nos e desvios

Os Noés funcionam como fungoes em linguagens de programagao. Indicados por um
texto representando o nome do N6 precedido por ”==", eles encapsulam sequéncias
de falas e escolhas dentro de si. Assim, a partir de qualquer ponto do arquivo é
possivel desviar o fluxo de falas para um N0, indicando o nome do mesmo precedido
por -;”. Mas, diferentemente de uma funcao em linguagens de programacao, o fluxo
nao retorna para o local onde o N6 foi chamado quando este termina seu fluxo de
falas.

Caso um N¢6 termine, ele deve sempre desviar para um novo N6 ou desviar para o N6
END, indicando que o arquivo chegou ao seu fim.

Além do N6 podemos também ter sub Nés, demarcando estes como textos precedidos
de =", os quais agem da mesma forma que os Nés, mas sendo referenciados como
uma propriedade do N6 pai. Por exemplo, se temos o N6 pai ”"Pai”e dentro dele um N6
filho "Filho”, poderiamos divergir para o N6 filho através da chamada -;Pai.Filho”.

Tags

Um outro recurso utilizado foi o uso das Tags. Elas funcionam como comentérios
atrelados a uma linha de fala ou escolha, sao textos antecedidos por um ”#”.

As tags, apesar de nao parecer muito importantes, podem ser utilizadas para a comu-
nicagdo de mudangas de estado (como animagoes), uma vez que o mecanismo Ink as
transmite para a engine Unity junto com a fala e é possivel interpreta-las no contexto
da Unity. Por exemplo, considere um jogo que estd reproduzindo um texto com um
personagem fazendo diferentes expressoes faciais, dependendo da fala em que estd.
Para se interpretar uma fala em que ele estd zangado podemos utilizar uma tag de

77# angry”‘

Légica

No exemplo em que o jogo que esta lendo o arquivo de falas precise interpretar suas
emocoes, as Tags funcionam como uma boa ponte para interpretagoes simples. Porém,
dependendo do tamanho do projeto, e nimero de animagdes, por exemplo, esse método
pode se demonstrar uma mé pratica na programacao do jogo, j4 que transfere para

o Unity uma tarefa de interpretacao de narrativa que poderia ser mais facilmente
trabalhada pelo mecanismo Ink. Para isso, o Ink possui também légica proépria.

Desenvolvimento de Jogo 11

Dentro de um arquivo Ink podemos também incluir estruturas de programacao e
controle basicas. Podemos criar varidveis, designar valores, realizar operacoes condi-
cionais e logicas. O intuito de haver esse nivel de interpretagao na linguagem Ink é o
de minimizar a troca de informacgoes entre a engine Unity e o mecanismo Ink, além
de dar mais autonomia ao mecanismo Ink.

No entanto, dado que o foco deste projeto busca facilitar a criacao de um caso textual
por um médico, o uso de logica pode dificultar muito esta relagdo. Dessa forma
procurou-se minimizar o uso de légica no codigo.

4.3.4 Construindo uma Narrativa em Saude

Tendo essas funcionalidades em mente, foi escrito um protétipo do primeiro caso, mos-
trando as principais funcionalidades exploradas, como pode ser visto na Figura 8.

A construcao do caso se deu a partir de um roteiro elaborado por uma pesquisadora de
um projeto associado com este em conjunto com um médico especialista em traumatologia.
Trata-se de um caso de primeiros socorros de uma vitima de acidente de bicicleta.

Nele podemos observar nas seguintes decisoes:

1. Divisao de passos em Nés

Uma qualidade importante do roteiro recebido era a sequéncia de acoes e reagoes.
Observando a Figura 1, vemos que o caso foi dividido em uma sequéncia de passos
até termos a vitima salva com a chegada da ambulancia. Assim foram divididos estes
passos em diferentes Nés com diferentes opcoes e cada opcao com a sua resposta
subsequente.

2. Noés genéricos

Uma mecanica do jogo gira em torno da vitima perder pontos relacionados a sua vida
quando o jogador nao toma a decisao correta. Deste modo foi criado um N6 genérico
chamado Damage Time que cuida dessa perda de pontos.

3. Noés especificos

Uma outra mecanica presente foi o menu de escolhas do jogador. Antes de tomar
qualquer acao para ajudar a vitima no jogo, o jogador pode utilizar o seu celular,
ou tentar correr, por exemplo. Essas sequéncias sao sub-estorias que possuem falas e
escolhas préprias mas, apesar de parecerem ser uma histéria separada, interagem com
a historia principal diretamente.

Por exemplo, normalmente durante os casos o jogador precisaria prestar socorros
imediatos a vitima, para entao ligar para a ambulancia e por fim manter a vitima viva
até a ambulancia chegar. Mas dado o cardter mais livre do jogo, em que o jogador
seria capaz de tentar ligar para a ambulancia a qualquer momento, essa sub-estoéria
do celular precisaria saber em que ponto da histdria principal o jogador estd, para
permitir a avaliagao do resultado da agdo de ligar para a ambulancia — i.e., agao
correta ou a decisao errada do jogador a depender do ponto do processo.

Caio e André

VAR current_step = "START"
VAR current_step_ink = ->START

-» START
===5TART===
intro
- It's a sunny day, you are biking with a couple of friends around Taquaral Lagoon.
when you arrive at the first gate, you meet with the other guys.
Eduardo, one of your friends, proposes to race to the end of the bicycle path.
And so it begins! Eduarde accelerates without looking at any signs!
When suddenly you get to a corner and see a woman holding a child crossing Eduarde’s way.
Eduarde loses control and hits a trash bin.
He flies over it and hits the ground rolling. OUCH!
He looks barely alive!
People arcund freak out and don't know what to do.
It's time to get to action!
Atention take the right paths in order to keep him alive. Good luck!
->5Stepl

===Stepl===

~ current_step = "Stepl™

~ current_step_ink = -3Stepl

& [Verify the locale's safety] # canCallAmbulance
->5tepl.Success
[Verify if Eduado is conscious]
You get closer to Eduado in order to verify his consciouness.
->Damagel

Success
Well done! You noticed that you were in the middle of the street where a car could hit you anytime!
You secured your life and Eduardo’s by removing him from the street.

-»5tep2

===Step2===

~ current_step = "Step2"

~ current_step_ink = ->Step2

+ [Verify if Eduade is conscious by calling his name]
Are you kidding me?! Call for help! -:DamageTime
[Ask Eduardo to tell if he's feeling anything]
ER
But what can you do about it?
->DamageTime

->END

===DamageTime===
The victim needs help! # damage 1@
-r»current_step ink

===Damagel===
But before you could realize, another bycicle goes through you and injures Eduardo. # damage 7@
->5Step2

===Items===
+ [Call the ambulance]

{ Stepl.Success:fou call asking for help|You've already called}
{ Stepl.Success:->ITtems.Success}
{ not Stepl.Success:->Damagel}
[Call mom]
The phone rings but no one takes it
{ Stepl.Success:->DamageTime}
{ not Stepl.Success:->Damagel}

= Success
- 3 turns until the ambulance arrives
- -»current_step_ink

Figura 8: Caso 1

Desenvolvimento de Jogo 13

Para solucionar esse problema foi pensado em duas possiveis solucoes. Uma delas
seria criar uma Tag que permitisse checar se o jogador ja pode chamar a ambulancia
de forma segura. Mas esse caminho levaria para a mé pratica discutida anteriormente
sobre muitas checagens diferentes por tags. Entao, a solugao utilizada foi a de criar
um N6 especifico para essas sub-estorias contendo sequéncias de falas e sub Nés em
partes do c6digo representando que um passo tomado foi um sucesso ou nao. Isso foi
feito pois o Ink permite logica condicional em seu cédigo, assim pudemos criar um N6
representando as falas de sucesso e de erro precedidas por uma checagem légica em
que serao apenas retornadas se certo passo foi um sucesso, como podemos ver no N6
Items na Figura 8.

4. Variaveis

A solucao acima causou um problema de continuidade. Sendo possivel o jogador
desviar do passo que estd para o N6 de Items, nés teriamos que poder retornar para o
exato N6 em que ele estava anteriormente. Como apresentado anteriormente, a engine
que 1é o arquivo .ink possui algumas falhas em sua API que impossibilitaram o uso
preciso de métodos para armazenar o N6 atual e para desviar o fluxo para ele, uma
vez que o N6 especifico teve o seu fluxo concluido.

Para contornar esse problema, foi criada uma varidvel responsavel por armazenar o
passo atual, dentro do arquivo .ink. Ela é sempre modificada ao entrar em um novo
N6 e ao fim do fluxo de um N6 especifico, este desvia para o 1ltimo passo armazenado.

Por fim, uma boa pratica para o uso de recursos de terceiros como plugins e APIs é criar
um encapsulador préprio para os métodos existentes nele. Fazendo isso, o desenvolvedor é
capaz de facilmente se ajustar a mudangas no recurso. Por exemplo, se o recurso utilizado
em uma atualizacdo remove um método ou unifica duas propriedades em uma, o desenvol-
vedor pode simplesmente atualizar o seu arquivo encapsulador para seu cédigo continuar
funcionando como esperado. Isso mantém inalterados os métodos que utilizam o encapsula-
dor. De outra forma, o desenvolvedor seria obrigado a procurar todas as chamadas da API
em seu codigo e modificd-las sempre que precisar atualizar a versao do recurso utilizado.

5 Resultados

Foi produzido o protétipo de um jogo com sistemas modularizados, facilmente escalaveis
e reutilizdveis. Ele faz uso da ferramenta Ink para suporte a construcao de um banco de
casos baseado em narrativas

Podemos ver algumas telas do jogo nas Figuras de 9 a 11.

6 Conclusao

Podemos ver que para construir um simples jogo digital é preciso antecipar muitas
decisOes assim como possiveis movimentos do jogador. Além disso, para se construir um

14 Caio e André

Eduardo um de seus amigos |he prop&e para tirar um racha ate o ponto
final da ciclovia.

Figura 9: Jogo fala

Celular

Figura 10: Jogo agoes

Desenvolvimento de Jogo 15

Chamar a ambulancia Ligar para minha mae

Figura 11: Jogo escolhas

projeto passivel de expansao ou transformagao é preciso se atentar as boas praticas e prever
como possiveis mudancas poderiam afetar o codigo regendo o jogo.

Um dos principais focos da pesquisa foi a integracado com uma linguagem narrativa
(implementada pelo Ink) como uma forma de permitir aos médicos para facilmente criar
casos e transforma-los em um jogo digital. No entanto, a proposta de dar autonomia ao
médico na construcao do jogo sem depender do desenvolvedor, usando o Ink, se mostrou
dificil. Parte do texto do arquivo .ink precisou seguir alguns padroes de programagao que
nao seriam facilmente ensinados para um leigo, como varidveis, organizagao de codigo e
boas praticas no uso de Nés para serem reutilizados.

Porém, a maior causa disso foi a necessidade de o jogo obter diferentes informagoes do
texto, além de navegar nele para definir diferentes estados. Uma solucdo para facilitar o
uso do Ink seria limitar que tipo de informacées que o jogo ird tirar do arquivo .ink, ou seja,
quanto menos conteddo do texto recebido ou da escolha feita para a médquina de estados
do jogo tiver que expressar agoes complexas de programacao, mais facilmente serd possivel
separar o texto escrito pelo médico do cédigo feito pelo desenvolvedor.

Outra possivel solugao gira em torno de nao centralizar o contetddo do jogo ao redor dos
casos. Uma vez que é possivel ter diferentes arquivos .ink gerenciando diferentes arvores de
decisao, podemos ter um arquivo responsavel pela narrativa e outro responsavel por cada
caso. Essa pré estruturagao pode ser feita pelo desenvolvedor e o médico pode preencher o
caso seguindo as heuristicas definidas pelo desenvolvedor. Assim, os casos nao deveriam ser
um elemento do jogo que cause mudancas de estado durante o decorrer do mesmo, focando
talvez apenas nos textos apresentados e no sucesso ou nao de etapas do caso para proximas
etapas na narrativa do jogo.

16 Caio e André

Por fim, uma opg¢ao é também desenvolver uma nova ferramenta com comportamento
similar ao Ink porém focada no uso por médicos. Nessa ferramenta, poderiamos ter o
comportamento similar ao do Ink porém, utilizando termos médicos para informar mudancas
de estado ou condicoes do paciente onde o interpretador da linguagem pode reconhecer esses
termos, talvez utilizados em tags ou até interpretando o conteido do texto, para informar
ao jogo uma mudanca de estado. Algumas informagoes que podem ser recorrentes em casos,
como por exemplo condicées do paciente, podem ser interpretadas e enviadas para o jogo.
Algumas formas possiveis de passar uma informacao especifica como o estado do paciente
de uma forma neutra pode ser usando diferentes tipos de escalas. Por exemplo, uma escala
de 0 a 100 de satide do jogador ou, para casos mais complexos, como um ponto cartesiano
em um plano multidimensional que usa, por exemplo, a distancia do ponto a origem, seu
quadrante, angulo, dentre outras informacoes, para passar o estado para o jogo.

Enquanto que as primeiras solugoes focam em modificar o jogo para comportar o texto
de casos médicos, a ultima foca em modificar o Ink para se especializar em casos médicos.
Porém o maior trabalho estaria na ponte entre o arquivo de texto médico e o jogo, o
interpretador receberia o trabalho de traduzir informagoes e termos médicos recebidos além
do texto, possivelmente até pré-acordados, em um formato que o desenvolvedor consiga
entender e utilizar da forma que quiser em seu jogo.

Referéncias

[1] COSTER, Raph (2013).A Theory of fun in game design. Second Edition. O’Reilly
Media.

[2] SCHELL, Jesse (2008). The Art of Game Design. 1 Edition. CRC Press.
[3] MANUAL UNITY, 2018 Disponivel em: https://docs.unity3d.com/Manual/index.html

[4] INK, 2011 Disponivel em: https://www.inklestudios.com/ink/

