
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Desenvolvimento de jogo
de primeiros socorros
baseado em linguagem

narrativa
C. Fernandes A. Santanché

Relatório Técnico - IC-PFG-18-26

Projeto Final de Graduação

2018 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Desenvolvimento de Jogo de

Primeiros Socorros baseado em Linguagem Narrativa

Caio Fernandes André Santanché∗

Resumo

Este é um relatório descritivo sobre o processo do desenvolvimento de um jogo
digital para ensinar procedimentos de primeiros socorros a leigos. Com base na pesquisa
do professor coordenador do projeto e em estudos dedicados ao desenvolvimento de
jogos, foi desenvolvido um jogo com enfoque na facilidade de manutenção, com sistemas
modularizados de forma a serem facilmente reutilizados em outros projetos. Por ser um
jogo que envolve a resolução de casos cĺınicos, foi usada uma linguagem para desenvolver
a estrutura narrativa do mesmo.

1 Introdução

Este trabalho visou o desenvolvimento de um jogo digital como parte de uma pesquisa
cujo objetivo é mensurar o impacto do aprendizado através dos jogos digitais na área de
saúde. Neste projeto, demos enfoque nos procedimentos de primeiros socorros para jovens
na faixa de 10 a 15 anos.

2 Justificativa

O conhecimento na área de saúde é muitas vezes limitado aos praticantes desta área.
Porém, expandir o conhecimento sobre procedimentos de primeiros socorros para leigos
pode se mostrar extremamente benéfico para a sociedade, de forma a aumentar as chances
de que o acidentado sobreviva quando presta algum tipo de socorro.

Ademais, o conhecimento sobre desenvolvimento na área de jogos digitais se mostra
muito esparso, principalmente no Brasil, podendo este projeto oferecer uma visão sobre o
desenvolvimento de jogos digitais de uma forma geral, em função da organização e problemas
comuns encontrados.

3 Objetivos

Neste projeto, tivemos como objetivo principal: O desenvolvimento de um jogo digital
para treinamento em saúde fazendo uma de uma linguagem para a escrita de narrativas.

Além disso, os objetivos espećıficos foram:

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1



2 Caio e André

• Criação de um sistema com partes reutilizáveis e modularizadas.

• Validação do jogo desenvolvido à partir de testes em usuários reais.

• Transmitir a educação de procedimentos de primeiros socorros a partir do jogo.

4 Desenvolvimento do Trabalho

O desenvolvimento do jogo se deu em quatro etapas: concepção, prototipação, teste e
desenvolvimento ou retorno à concepção, dependendo dos resultados do teste. No entanto,
devido à problemas de calendário e eventos para realização de testes, este trabalho contou
apenas com a concepção e desenvolvimento.

Um projeto de jogo digital normalmente conta com a atuação de diversas frentes inter-
disciplinares, tendo times compostos por artistas, animadores, programadores, escritores,
etc. Projetos com grandes orçamentos, conhecidos informalmente na indústria como AAA,
tendem a ter diversos times com frentes de trabalho que se comunicam. Porém, jogos de
baixo orçamento, compostos por times pequenos, normalmente tendem a lutar com as difi-
culdades nos aspectos que requerem interdisciplinaridade, sendo jogos de sucesso conhecidos
pela forma como transformaram uma fraqueza em uma qualidade.

Ademais, um jogo digital é constitúıdo principalmente por um estilo de arte e uma
mecânica principal. Define-se como mecânica, no caso do jogo digital, o fator central que
rege as interações do jogador com o mundo do jogo e à partir de uma mecânica principal se
tiram as demais interações. Por exemplo, no famoso jogo ”Super Mario Bros”temos como
principal mecânica o fato de que um jogador pode se mover para os lados e pular. À partir
disso derivamos outras mecânicas como aquela de pular em cima da cabeça de inimigos para
matá-los; se mover para a direita para avançar o jogo, etc.

4.1 Concepção

Para iniciar este projeto foram levado em consideração os seguintes fatores:

• Limitações do projeto

• Público alvo

• Objetivos a alcançar

Consideramos as seguintes limitações:

• tempo dispońıvel para o desenvolvimento do projeto;

• número de desenvolvedores;

• recursos dispońıveis;



Desenvolvimento de Jogo 3

Figura 1: Roteiro do primeiro caso

Considerando as limitações acima pudemos concluir que não devemos iniciar um projeto
muito ambicioso, pois o tempo de desenvolvimento é curto para um jogo digital realizado
apenas por uma pessoa. Além disso, foi necessário o desenvolvimento de novos recursos
para o projeto – e.g., imagens – para se ter uma base de execução.

Ademais, foi feita uma análise do roteiro do primeiro caso, produzido por uma pesqui-
sadora de projeto associado. Esse roteiro é apresentado Figura 1 na forma de um grafo de
estados, em que cada nó é um estado da ação e as arestas são decisões. Essa análise nos
levou a concluir que o projeto deveria seguir os moldes de casos médicos de cenas comuns,
cujo uso rápido de primeiros socorros pode se mostrar crucial.

Seguimos para uma análise do público alvo. Cada tipo de público alvo pode afetar
a forma como o jogo será percebido, ou seja, uma mesma experiência pode ser melhor
compreendida por um usuário de maior idade do que outro.

Existem algumas diferentes maneiras que podemos utilizar o público alvo para o design
de uma aplicação. Para este projeto foi utilizada a criação de personas, ou seja, geramos um
ou mais usuários fict́ıcios que representam o nosso público alvo com base em pesquisas com
usuários reais. Estas personas são então utilizadas como um ponto de suporte à iterações
do desenvolvimento do projeto. Sempre que uma dúvida surge sobre como uma decisão de
design pode afetar a forma como o público alvo interpreta a aplicação, seja ela uma nova
caracteŕıstica ou apenas uma mudança, as personas criadas são utilizadas para facilitar o
entendimento de como essa mudança será recebida.

Para criarmos nossas personas, realizamos então uma pesquisa durante um evento no
Museu Exploratório de Ciências na Universidade Estadual de Campinas. Tendo dentre os



4 Caio e André

Figura 2: Usuários que costumam jogar videogames

Figura 3: Gêneros favoritos



Desenvolvimento de Jogo 5

Figura 4: Interesses em um jogo

resultados, as Figuras de 2 a 5, das quais podemos absorver informações como os gêneros
favoritos, que o público costuma jogar mais jogos em seus celulares e que gostam de ser
desafiados.

Tendo os pontos acima em mente, foi concebida a ideia inicial para o jogo: Um jogo de
batalha no estilo de turnos em que o jogador precisa manter a v́ıtima de um acidente viva
até a ambulância chegar, escolhendo as ações certas em cada turno.

4.2 Engine

Um dos principais recursos na criação de um jogo digital hoje em dia é a ferramenta
de desenvolvimento utilizada. Um jogo digital é composto por uma imensa variedade de
sistemas como: renderização de imagem, cálculo de poĺıgonos, simulação de f́ısica, I/O ,
etc. A engine é a ferramenta que possui esses sistemas pré desenvolvidos, de forma que um
desenvolvedor não precise se preocupar em programar a f́ısica ou renderização em seu jogo
pois a engine faz isso por ele.

Para o jogo desenvolvido neste projeto decidimos utilizar a engine Unity3D [3] devido
à familiaridade do desenvolvedor e a facilidade de gerar executáveis do jogo para diferentes
sistemas operacionais.

Em uma explicação superficial do funcionamento da engine, um jogo é pode ser composto
por cenas que representam uma fase ou level, nas quais objetos são criados e renderizados.
A Figura 6 apresenta o editor Unity, em que na Scene View manipula-se os objetos contidos
na Hierarchy Window, que apresenta todos os objetos na cena do jogo. Essa view permite
posicioná-los ou modificar seu tamanho e outras propriedades de forma visual. Além disso,
há também a Inspector Window, na qual pode-se ver todas as propriedades de qualquer
objeto e adicionar mais propriedades ou scripts a ele.

Um script de objeto herda, normalmente, métodos de operação da classe Monobehavior.



6 Caio e André

Figura 5: Plataformas jogadas

Dentre eles estão os métodos Awake e Start utilizados para inicialização, e Update, o qual
é chamado uma vez a cada atualização de frame do jogo.

Utilizando estes recursos e outros encontrados na documentação da ferramenta [3], foi
posśıvel desenvolver um jogo funcional em um peŕıodo curto para o número de desenvolve-
dores envolvidos, no caso apenas um.

4.3 Sistemas

Um dos objetivos do projeto foi o desenvolvimento de um jogo arquitetado de forma a
ser duradouro e facilmente manipulável, com a possibilidade de ser expandido ou integrado
em outros projetos. Para isso foi preciso desenvolver sistemas modulares capazes de se
comunicar entre si de forma a minimizar a dependência entre eles, além de evitar concentrar
toda a lógica em um único componente.

4.3.1 Controladores

A arquitetura do projeto foi dividida com base nos controladores, ou seja, scripts res-
ponsáveis por controlar certas partes do jogo. Cada controlador se torna responsável por
uma área do jogo. Áreas recorrentes em diversos jogos são: Áudio, Input, Cenas e Interfa-
ces de Usuário (UI). Esses controladores são modularizados e realizam suas operações sem
depender dos demais.

Por exemplo, o controlador de Input é responsável por ler o input do jogador e transmitir
qual tipo de ação foi realizada por ele. O Unity3D possui uma classe de Input própria, que
repassa eventos, por exemplo: se uma tecla ou botão foi apertado. Essa atividade se torna
mais complexa no contexto de games, em que se leva em consideração o uso de diversos
periféricos como controles de diferentes marcas, teclados, etc.



Desenvolvimento de Jogo 7

Figura 6: Editor Unity



8 Caio e André

Assim, o controlador desenvolvido utiliza do sistema de Input da engine para mapear
botões virtuais, ou seja, gera uma camada intermediária entre o input do jogador, recebido
diretamente pela classe Input, e o programa desenvolvido, que precisa utilizar da entrada
do jogador para realizar alguma ação. Essa camada intermediária interpreta a entrada de
acordo com o tipo de periférico e então retorna ações pré interpretadas. Por exemplo, o
botão ’A’ em um controle pode significar ”selecionar”no jogo, da mesma forma que o botão
”Enter”no teclado, então a camada intermediária retornaria a ação ”selecionar”caso uma
dessas teclas fosse apertada.

Da mesma forma, os demais controladores gerem suas respectivas áreas de modo a encap-
sulá-las e melhor interpretá-las para facilmente se adaptar em uma mudança. Por exemplo,
o controlador de input desenvolvido precisa apenas adicionar um novo interpretador para
um novo periférico existente, em vez de buscar e modificar todos os arquivos que utilizam
inputs do jogador.

Com isso, o controlador de Áudio gerencia volume, música de background e efeitos
sonoros. Já o controlador de UI gerencia eventos na interface de usuário, como texto,
transições e escala de tamanho, dependendo da tela do jogador.

Por fim, o controlador de cenas gere qual cena deve ser carregada em qual momento.
Uma boa prática no desenvolvimento de jogos em Unity3D é construir uma cena persistente,
a qual irá se manter durante todo o jogo, tendo objetos que não devem ser destrúıdos ou
resetados em uma mudança de cena como, por exemplo, os controladores acima e objetos
como a música de fundo, que sofreria cortes se destrúıda e recriada em uma mudança de
cena.

4.3.2 Localização

Algumas decisões de projeto precisam ser tomadas desde o seu ińıcio e preparadas desde
então, senão será cada vez mais dif́ıcil inclúı-las. Para jogos digitais, já consideramos al-
gumas plataformas que o jogo iria comportar e da mesma forma os controles para os quais
ele daria suporte. Outra decisão muito importante foi a que o jogo possuiria seus textos
localizados em outras ĺınguas.

Existem diferentes formas de lidar com a localização. Neste projeto, foi usada a forma
chave/valor, em que cada texto no jogo será representado por uma chave e sempre que o
texto precisar ser revelado, um controlador de localização criado, é chamado para buscar
o seu valor em um arquivo comportando todas as chaves e valores da ĺıngua em questão.
Assim, cada ĺıngua possui seu próprio arquivo de chaves e valores, em que as chaves serão
iguais para todos os arquivos, mas o valor será o texto propriamente traduzido na linguagem
selecionada.

4.3.3 Linguagem Narrativa Ink

Um dos pontos centrais do jogo girou em torno de encontrar um meio de converter os
casos médicos em um jogo digital. Parte da pesquisa procurava por um meio de converter
os dados de casos inseridos por médicos facilmente em algo que possa ser utilizado como
um banco de dados pelo jogo.



Desenvolvimento de Jogo 9

Figura 7: Exemplo Ink

Dessa forma, para este projeto foi decidido utilizar a ferramenta Ink [4]. Esta ferramenta
é uma linguagem com foco em gerar textos narrativos com possibilidades de escolhas e
caminhos resultantes dessas escolhas. Ela também dispõe de recursos avançados equivalentes
a uma linguagem de programação.

Um elemento importante para a interpretação de um arquivo .ink pela engine Unity foi
o uso de um plugin que acompanha a instalação do pacote Ink no Unity3D. Esse plugin
que age como interpretador dos arquivos .ink e se comunica com uma API interna do Unity
através de diferentes métodos e variáveis.

Essa API, no entanto, possui falhas de funcionamento e falta de alguns métodos que
teriam sido úteis durante a interpretação do arquivo. Por exemplo, os métodos de get para
o texto da fala atual e o método de get para o nome do Nó atual não eram consistentes para
a primeira fala de um nó, enquanto a fala retornava seu valor correto (a fala em si), o Nó
tinha como retorno o nome do último Nó pelo qual o fluxo passou, ao invés do nó em que
está, sendo apenas atualizado a partir da próxima fala.

A linguagem utilizada em Ink possui grande similaridade com a linguagem markdown.
Uma documentação completa de suas funcionalidades pode ser encontrada em seu site [4],
no entanto iremos ressaltar algumas das principais funcionalidades utilizadas:

1. Falas

Cada fala pode ser representada em um arquivo .ink por uma linha de texto sem nada
a sua frente ou com um h́ıfen.

2. Opções

O ink possibilita o uso de escolhas narrativas pelo jogador. Cada escolha pode ser
representada por uma fala, antecedida por um ou mais asteriscos. Falas consequentes



10 Caio e André

da escolha podem ser escritas logo abaixo dela, assim como novas escolhas subordina-
das, que devem possuir um asterisco a mais do que a escolha em ńıvel superior, como
pode ser visto na Figura 7.

Existem também alguns elementos adicionais para enriquecer o texto. Por exemplo,
cada vez que uma opção é escolhida durante a execução, seu texto é incorporado na
narrativa apresentada ao usuário, exceto quando são usados colchetes ”[]”com texto
dentro. Nesse caso, o texto será apenas apresentado quando a opção da escolha for
revelada, quando ela é escolhida só é apresentada a parte que está fora dos colchetes.

3. Nós e desvios

Os Nós funcionam como funções em linguagens de programação. Indicados por um
texto representando o nome do Nó precedido por ”==”, eles encapsulam sequências
de falas e escolhas dentro de si. Assim, a partir de qualquer ponto do arquivo é
posśıvel desviar o fluxo de falas para um Nó, indicando o nome do mesmo precedido
por -¿”. Mas, diferentemente de uma função em linguagens de programação, o fluxo
não retorna para o local onde o Nó foi chamado quando este termina seu fluxo de
falas.

Caso um Nó termine, ele deve sempre desviar para um novo Nó ou desviar para o Nó
END, indicando que o arquivo chegou ao seu fim.

Além do Nó podemos também ter sub Nós, demarcando estes como textos precedidos
de ”= ”, os quais agem da mesma forma que os Nós, mas sendo referenciados como
uma propriedade do Nó pai. Por exemplo, se temos o Nó pai ”Pai”e dentro dele um Nó
filho ”Filho”, podeŕıamos divergir para o Nó filho através da chamada -¿Pai.Filho”.

4. Tags

Um outro recurso utilizado foi o uso das Tags. Elas funcionam como comentários
atrelados a uma linha de fala ou escolha, são textos antecedidos por um ”#”.

As tags, apesar de não parecer muito importantes, podem ser utilizadas para a comu-
nicação de mudanças de estado (como animações), uma vez que o mecanismo Ink as
transmite para a engine Unity junto com a fala e é posśıvel interpretá-las no contexto
da Unity. Por exemplo, considere um jogo que está reproduzindo um texto com um
personagem fazendo diferentes expressões faciais, dependendo da fala em que está.
Para se interpretar uma fala em que ele está zangado podemos utilizar uma tag de
”# angry”.

5. Lógica

No exemplo em que o jogo que está lendo o arquivo de falas precise interpretar suas
emoções, as Tags funcionam como uma boa ponte para interpretações simples. Porém,
dependendo do tamanho do projeto, e número de animações, por exemplo, esse método
pode se demonstrar uma má prática na programação do jogo, já que transfere para
o Unity uma tarefa de interpretação de narrativa que poderia ser mais facilmente
trabalhada pelo mecanismo Ink. Para isso, o Ink possui também lógica própria.



Desenvolvimento de Jogo 11

Dentro de um arquivo Ink podemos também incluir estruturas de programação e
controle básicas. Podemos criar variáveis, designar valores, realizar operações condi-
cionais e lógicas. O intuito de haver esse ńıvel de interpretação na linguagem Ink é o
de minimizar a troca de informações entre a engine Unity e o mecanismo Ink, além
de dar mais autonomia ao mecanismo Ink.

No entanto, dado que o foco deste projeto busca facilitar a criação de um caso textual
por um médico, o uso de lógica pode dificultar muito esta relação. Dessa forma
procurou-se minimizar o uso de lógica no código.

4.3.4 Construindo uma Narrativa em Saúde

Tendo essas funcionalidades em mente, foi escrito um protótipo do primeiro caso, mos-
trando as principais funcionalidades exploradas, como pode ser visto na Figura 8.

A construção do caso se deu a partir de um roteiro elaborado por uma pesquisadora de
um projeto associado com este em conjunto com um médico especialista em traumatologia.
Trata-se de um caso de primeiros socorros de uma v́ıtima de acidente de bicicleta.

Nele podemos observar nas seguintes decisões:

1. Divisão de passos em Nós

Uma qualidade importante do roteiro recebido era a sequência de ações e reações.
Observando a Figura 1, vemos que o caso foi dividido em uma sequência de passos
até termos a v́ıtima salva com a chegada da ambulância. Assim foram divididos estes
passos em diferentes Nós com diferentes opções e cada opção com a sua resposta
subsequente.

2. Nós genéricos

Uma mecânica do jogo gira em torno da v́ıtima perder pontos relacionados à sua vida
quando o jogador não toma a decisão correta. Deste modo foi criado um Nó genérico
chamado Damage Time que cuida dessa perda de pontos.

3. Nós espećıficos

Uma outra mecânica presente foi o menu de escolhas do jogador. Antes de tomar
qualquer ação para ajudar a v́ıtima no jogo, o jogador pode utilizar o seu celular,
ou tentar correr, por exemplo. Essas sequências são sub-estórias que possuem falas e
escolhas próprias mas, apesar de parecerem ser uma história separada, interagem com
a história principal diretamente.

Por exemplo, normalmente durante os casos o jogador precisaria prestar socorros
imediatos à v́ıtima, para então ligar para a ambulância e por fim manter a v́ıtima viva
até a ambulância chegar. Mas dado o caráter mais livre do jogo, em que o jogador
seria capaz de tentar ligar para a ambulância a qualquer momento, essa sub-estória
do celular precisaria saber em que ponto da história principal o jogador está, para
permitir a avaliação do resultado da ação de ligar para a ambulância – i.e., ação
correta ou a decisão errada do jogador a depender do ponto do processo.



12 Caio e André

Figura 8: Caso 1



Desenvolvimento de Jogo 13

Para solucionar esse problema foi pensado em duas posśıveis soluções. Uma delas
seria criar uma Tag que permitisse checar se o jogador já pode chamar a ambulância
de forma segura. Mas esse caminho levaria para a má prática discutida anteriormente
sobre muitas checagens diferentes por tags. Então, a solução utilizada foi a de criar
um Nó espećıfico para essas sub-estórias contendo sequências de falas e sub Nós em
partes do código representando que um passo tomado foi um sucesso ou não. Isso foi
feito pois o Ink permite lógica condicional em seu código, assim pudemos criar um Nó
representando as falas de sucesso e de erro precedidas por uma checagem lógica em
que serão apenas retornadas se certo passo foi um sucesso, como podemos ver no Nó
Items na Figura 8.

4. Variáveis

A solução acima causou um problema de continuidade. Sendo posśıvel o jogador
desviar do passo que está para o Nó de Items, nós teŕıamos que poder retornar para o
exato Nó em que ele estava anteriormente. Como apresentado anteriormente, a engine
que lê o arquivo .ink possui algumas falhas em sua API que impossibilitaram o uso
preciso de métodos para armazenar o Nó atual e para desviar o fluxo para ele, uma
vez que o Nó espećıfico teve o seu fluxo conclúıdo.

Para contornar esse problema, foi criada uma variável responsável por armazenar o
passo atual, dentro do arquivo .ink. Ela é sempre modificada ao entrar em um novo
Nó e ao fim do fluxo de um Nó espećıfico, este desvia para o último passo armazenado.

Por fim, uma boa prática para o uso de recursos de terceiros como plugins e APIs é criar
um encapsulador próprio para os métodos existentes nele. Fazendo isso, o desenvolvedor é
capaz de facilmente se ajustar à mudanças no recurso. Por exemplo, se o recurso utilizado
em uma atualização remove um método ou unifica duas propriedades em uma, o desenvol-
vedor pode simplesmente atualizar o seu arquivo encapsulador para seu código continuar
funcionando como esperado. Isso mantém inalterados os métodos que utilizam o encapsula-
dor. De outra forma, o desenvolvedor seria obrigado a procurar todas as chamadas da API
em seu código e modificá-las sempre que precisar atualizar a versão do recurso utilizado.

5 Resultados

Foi produzido o protótipo de um jogo com sistemas modularizados, facilmente escaláveis
e reutilizáveis. Ele faz uso da ferramenta Ink para suporte a construção de um banco de
casos baseado em narrativas

Podemos ver algumas telas do jogo nas Figuras de 9 à 11.

6 Conclusão

Podemos ver que para construir um simples jogo digital é preciso antecipar muitas
decisões assim como posśıveis movimentos do jogador. Além disso, para se construir um



14 Caio e André

Figura 9: Jogo fala

Figura 10: Jogo ações



Desenvolvimento de Jogo 15

Figura 11: Jogo escolhas

projeto pasśıvel de expansão ou transformação é preciso se atentar às boas práticas e prever
como posśıveis mudanças poderiam afetar o código regendo o jogo.

Um dos principais focos da pesquisa foi a integração com uma linguagem narrativa
(implementada pelo Ink) como uma forma de permitir aos médicos para facilmente criar
casos e transformá-los em um jogo digital. No entanto, a proposta de dar autonomia ao
médico na construção do jogo sem depender do desenvolvedor, usando o Ink, se mostrou
dif́ıcil. Parte do texto do arquivo .ink precisou seguir alguns padrões de programação que
não seriam facilmente ensinados para um leigo, como variáveis, organização de código e
boas práticas no uso de Nós para serem reutilizados.

Porém, a maior causa disso foi a necessidade de o jogo obter diferentes informações do
texto, além de navegar nele para definir diferentes estados. Uma solução para facilitar o
uso do Ink seria limitar que tipo de informações que o jogo irá tirar do arquivo .ink, ou seja,
quanto menos conteúdo do texto recebido ou da escolha feita para a máquina de estados
do jogo tiver que expressar ações complexas de programação, mais facilmente será posśıvel
separar o texto escrito pelo médico do código feito pelo desenvolvedor.

Outra posśıvel solução gira em torno de não centralizar o conteúdo do jogo ao redor dos
casos. Uma vez que é posśıvel ter diferentes arquivos .ink gerenciando diferentes árvores de
decisão, podemos ter um arquivo responsável pela narrativa e outro responsável por cada
caso. Essa pré estruturação pode ser feita pelo desenvolvedor e o médico pode preencher o
caso seguindo as heuŕısticas definidas pelo desenvolvedor. Assim, os casos não deveriam ser
um elemento do jogo que cause mudanças de estado durante o decorrer do mesmo, focando
talvez apenas nos textos apresentados e no sucesso ou não de etapas do caso para próximas
etapas na narrativa do jogo.



16 Caio e André

Por fim, uma opção é também desenvolver uma nova ferramenta com comportamento
similar ao Ink porém focada no uso por médicos. Nessa ferramenta, podeŕıamos ter o
comportamento similar ao do Ink porém, utilizando termos médicos para informar mudanças
de estado ou condições do paciente onde o interpretador da linguagem pode reconhecer esses
termos, talvez utilizados em tags ou até interpretando o conteúdo do texto, para informar
ao jogo uma mudança de estado. Algumas informações que podem ser recorrentes em casos,
como por exemplo condições do paciente, podem ser interpretadas e enviadas para o jogo.
Algumas formas posśıveis de passar uma informação espećıfica como o estado do paciente
de uma forma neutra pode ser usando diferentes tipos de escalas. Por exemplo, uma escala
de 0 a 100 de saúde do jogador ou, para casos mais complexos, como um ponto cartesiano
em um plano multidimensional que usa, por exemplo, a distância do ponto à origem, seu
quadrante, ângulo, dentre outras informações, para passar o estado para o jogo.

Enquanto que as primeiras soluções focam em modificar o jogo para comportar o texto
de casos médicos, a última foca em modificar o Ink para se especializar em casos médicos.
Porém o maior trabalho estaria na ponte entre o arquivo de texto médico e o jogo, o
interpretador receberia o trabalho de traduzir informações e termos médicos recebidos além
do texto, possivelmente até pré-acordados, em um formato que o desenvolvedor consiga
entender e utilizar da forma que quiser em seu jogo.

Referências

[1] COSTER, Raph (2013).A Theory of fun in game design. Second Edition. O’Reilly
Media.

[2] SCHELL, Jesse (2008). The Art of Game Design. 1 Edition. CRC Press.

[3] MANUAL UNITY, 2018 Dispońıvel em: https://docs.unity3d.com/Manual/index.html

[4] INK, 2011 Dispońıvel em: https://www.inklestudios.com/ink/


