2
<

4

Deteccao e Decodificacao
de Coédigos de Barras
em Imagens

L. F. R. Fonseca H. Pedrini

Relatério Técnico - IC-PFG-18-24
Projeto Final de Graduagdo
2018 - Dezembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O conteiido deste relatério é de tnica responsabilidade dos autores.

Deteccao e Decodificagao de Codigos de Barras em Imagens

Luiz Fernando Rodrigues da Fonseca Hélio Pedrini*

Resumo

Este relatério descreve as principais atividades desenvolvidas durante o Projeto Final
de Graduagao do curso de Engenharia de Computacao do Instituto de Computacao da
Universidade Estadual de Campinas (UNICAMP). Neste trabalho, foram feitos estudos
sobre deteccdo e decodificagdo de cédigos de barras unidimensionais (1D) e bidimen-
sionais (2D), com foco principal nos cédigos EAN-13 e QR Code. Partindo do cédigo
em linguagem de programagao Java da biblioteca ZXing, os algoritmos do EAN-13 e
QR Code foram traduzidos para Python e, em seguida, foram realizados experimen-
tos aplicando-se modificagoes nos métodos de binarizacao das imagens e adicionando
pré processamento para realce de bordas. Os resultados dos diferentes métodos uti-
lizados sao comparados e discutidos, utilizando-se a acuracia de acerto na detecgao e
decodificacao das informacoes como métrica.

1 Introducao

Cédigos de barras sao amplamente utilizados para se registrar informacoes e repassa-las com
a leitura das unidades presentes nas imagens. Utilizagoes comuns sao o registro e a leitura
de precos e informagoes de produtos em supermercados, ou obter URLs (Uniform Resource
Locator) de websites por meio da leitura do cédigo. Estes codigos sao divididos em duas
categorias: codigos de barras unidimensionais (1D), como por exemplo o cédigo EAN-13
(European Article Number 13), e c6digos de barras bidimensionais (2D), como por exemplo
o QR Code (Quick Response). Exemplos do cédigo EAN-13 e QR Code sao ilustrados na
Figura 1.

O cddigo EAN-13 é um padrao internacional composto por 13 digitos, usado em
transacoes globais para se identificar o tipo do produto, em uma configuracao de pacote
especifica, de um fabricante especifico. J4 o QR Code foi criado em 1994 no Japao para ser
utilizado na industria automotiva, porém como possui varios tamanhos e pode armazenar
até 4296 caracteres alfanuméricos, ganhou vérias outras aplicagées ao redor do mundo.

Para os codigos 1D, geralmente sao utilizados leitores que emitem um raio laser ver-
melho que percorre todas as barras para se fazer a leitura das informagoes. Estes sensores
geralmente sdo caros, o que torna a utilizacao de imagens uma O6tima alternativa, ja que
praticamente todos os smartphones nos dias atuais possuem uma camera. Em relacao

*Instituto de Computagao, Universidade Estadual de Campinas, 13083-852 Campinas, SP.

Fonseca e Pedrini

ISBN D-7LN5-4Y420-

(a) EAN-13 (b) QR Code

Figura 1: Exemplos do cédigo EAN-13 e QR Code.

aos cédigos 2D, as cameras dos aparelhos celurares ja possuem leitores para eles, e mui-
tas aplicacoes ja utilizam esta tecnologia, o que torna melhoras no processo de deteccao e
decodificagao essenciais para a utilizacao destas aplicagoes.

Entre as dificuldades em se fazer a detecgdo e a leitura dos cdédigos, a binarizacao da
imagem é um processo chave para que os algoritmos sejam capazes de obter corretamente
as informagbes armazenadas. Esta etapa possui muitos desafios associados, pois imagens
com pouca iluminacao, ou com reflexao de raios de luz na regiao do codigo, ou mesmo

borramento, sao fatores que dificultam a leitura correta das informagdes. A Figura 2 ilustra
esses efeitos.

3.
=
S
S
o=

0102

(a) Reflexao (b) Borramento

Figura 2: Imagens com reflexao de raios de luz e borramento.

Outro desafio estd relacionado ao posicionamento e orientacao do cédigo de barras na
imagem. Os algoritmos precisam ser robustos o suficiente para tratar casos em que o cédigo
nao estd alinhado horizontalmente, ou seja, casos em que possui um angulo de rotacao
em relacao ao eixo horizontal. H4 também casos em que existe um efeito de distor¢ao na
imagem, fazendo com que o cédigo ndo seja um retangulo ou um quadrado perfeito. A
Figura 3 ilustra esses efeitos.

Neste relatorio, a Segao 2 faz uma revisao de trabalhos anteriores e explica os métodos
de detecgao e decodificagdo dos cddigos de barras 1D e 2D utilizados. A Segao 3 explica

Deteccao e Decodificacao de Codigos de Barras em Imagens 3

(a) Rotagao (b) Distorgao

Figura 3: Imagens com rotacao e distorgao.

os métodos propostos para melhora do processo de decodificacdo. A Se¢do 4 mostra os
resultados experimentais obtidos e a Secao 5 as conclusoes e propostas de trabalhos futuros.

2 Conceitos e Trabalhos Relacionados

Ha vérios algoritmos para deteccao de cédigos de barras estudados nos tltimos anos. Di-
ferentes trabalhos utilizaram diferentes abordagens para a resolugdo do problema, como
similaridade de histogramas para QR Code [2], Aesthetic QR Code que sdo aqueles que
possuem imagens embutidas na regiao do cédigo [4], deteccao de cdédigos 1D com Mazimal
Stable Extremal Region [8], transformada de Hough [9], caracteristicas locais [10] e Analise
de Componentes Principais [11].

Outros trabalhos utilizaram redes neurais e aprendizado de méquina profundo (deep
learning) para deteccao de cédigos 1D, de forma que os algoritmos sejam invariantes quanto
a angulo de rotacao, como [5] e [12]. Algumas abordagens também foram propostas para
tratar cédigos 1D que estejam borrados ou riscados [3], e QR Codes com efeito de luz e
distor¢ao geométrica, como em [6] e [7].

A maioria dos métodos citados, porém nao todos, utiliza etapas comuns no inicio do
algoritmo para se detectar os codigos nas imagens. Primeiro, a imagem é convertida para
tons de cinza, e depois é aplicado um algoritmo de limiarizagao para binarizar a imagem.
Este trabalho teve como foco estudar os cédigos de barras de maneira geral, mas com um
foco na etapa de pré processamento e binarizagao.

O trabalho se iniciou fazendo a traducao do c6digo em Java da biblioteca ZXing [1]
para Python 2, com o auxilio das bibliotecas OpenCV, NumPy e reedsolo, biblioteca que
implementa o cédigo detector e corretor de erros Reed-Solomon [14]. As imagens utilizadas
para experimentos também sao da biblioteca ZXing, sendo 157 imagens de cédigos EAN-13
e 184 imagens de QR Code.

4 Fonseca e Pedrini

2.1 Algoritmos de Limiarizacao

Para se transformar uma imagem de tons de cinza para bindria, sdo utilizados algoritmos
de limiarizacdo, que sdo divididos em dois grupos: global e local. A limiarizacdo global
utiliza um tnico limiar para a imagem toda, e os pixels da imagem sao comparados com
esse limiar para saber se devem possuir valor 0 ou valor 1. J4 a limiariacao local utiliza um
limiar adaptativo, ou seja, cada pixel da imagem pode possuir um valor diferente de limiar,
e diferentes estratégias podem ser utilizadas para se encontrar esse limiar local.

2.1.1 Limiarizacao Global Simples

Na limiarizacao global simples, é escolhido a priori um tnico valor de limiar 7" para se
binarizar a imagem, sendo que pixels com valores menores do que 71" recebem o valor 1 e
pixels com valores maiores do que 1" recebem o valor 0. Para os experimentos com EAN-13,
o limiar escolhido foi 100, e para os experimentos com QR Code o limiar escolhido foi 110.

2.1.2 Limiarizacao Global de Otsu

O método de Otsu é uma evolucao da limiarizagao global simples. Este algoritmo assume
que o histograma da imagem é composto por duas classes, os pixels do objeto e os pixels do
fundo. A ideia é entdo minimizar a variancia dentro da mesma classe, escolhendo o valor
do limiar T para isso. O método também possui a desvantagem de nao possuir um bom
desempenho caso o histograma das imagens nao seja bimodal. Mais detalhes podem ser
encontrados em [13].

2.1.3 Limiarizacao Local Adaptativa Média

Este método utiliza uma janela quadrada deslizante e calcula a média dentro desta janela
como o valor do limiar para cada pixel da imagem. Também é possivel utilizar uma constante
para se subtrair do valor da média para ser de fato o limiar. Tanto para o cédigo EAN-
13 quanto para o QR Code, o tamanho da janela utilizado foi de 31, sem constante de
subtragao.

2.1.4 Limiarizacao Local Adaptativa Gaussiana

Este método utiliza uma janela quadrada deslizante e calcula uma soma ponderada por
um filtro Gaussiano como valor do limiar para cada pixel da imagem. Também é possivel
utilizar a constante de subtragdo neste caso. O filtro Gaussiano é um vetor de tamanho
ksize x 1, sendo ksize o tamanho do lado da janela quadrada, e suas equagoes sao dadas a
seguir:
G = ax* e*(if(ksizef1)/2)2/(2*sigma2)

em que i = 0...ksize — 1 e o é um fator de escala escolhido para que), G; = 1. Para
os experimentos do cédigo EAN-13, o tamanho da janela utilizado foi 31 sem constante
de subtragao, mas no QR Code, o tamanho da janela utilizado foi 51 com constante de
subtragao 2.

Deteccao e Decodificacao de Codigos de Barras em Imagens 5

2.1.5 Limiarizacao Local da Linha do ZXing

Este método é utilizado na biblioteca ZXing nos casos dos codigos 1D, pois considera apenas
a informagdo de uma linha da imagem para os cdlculos dos limiares. Desta forma, cédigos
que sofreram rotagao em imagens com angulo de 45 graus podem ser de mais dificil leitura
por este método, mas que para rotacoes menores e em casos comuns € suficiente. A grande
vantagem deste método é que ele opera por linha, entao em casos onde o cddigo estd no
centro da imagem nao € necessario percorrer a imagem inteira.

Primeiramente, no método é calculado um histograma da linha da imagem com 32 bins.
A partir deste histograma, é calculado o pico mais alto. Depois, é calculado um segundo
pico que maximiza uma funcao de score para cada x no histograma, sendo primeiro_pico a
posicao do primeiro pico no histograma:

scorey = hist[z] x (x — primeiro_pico)?

Com o pico mais alto e o segundo pico, é encontrado um vale entre estes picos que
maximiza outra funcao de score para cada z no histograma, sendo segundo_pico a posi¢ao
do segundo pico no histograma e max_hist o valor maximo do histograma:

scorey = (x — primeiro_pico)? * (seqgundo_pico — x) x (max_hist — hist|[z])

O melhor valor do segundo score é multiplicado por 8 para se ter o valor de um limiar,
chamado de ponto preto. Com este valor, para cada pixel da linha é utilizado um filtro
[—1,4 — 1] com peso 2, e a soma ponderada é comparada com o ponto preto para se saber
se o pixel tera valor 1 ou 0.

2.1.6 Limiarizacao Local Total do ZXing

Este método € utilizado na biblioteca ZXing para os cédigos 2D, e limiariza toda a imagem.
Neste algoritmo, a imagem ¢é dividida em blocos de tamanho 88 pixels e, para cada bloco,
é calculado um valor de ponto preto.

Para cada bloco, sao calculados a soma dos valores dos pixels do bloco, o valor minimo
e o valor maximo. E entdo calculada a média com a soma. Se a diferenca entre o maximo
e o minimo for maior que uma constante, neste caso 24, é utilizada a média como ponto
preto do bloco. Caso contrario, significa que a varidncia dentro do bloco é baixa.

Para o segundo caso, significa que o bloco é uma &drea somente com pixels pretos ou
somente com pixels brancos, e mais processamento precisa ser feito. E entdo calculada uma
média com pontos pretos proximos previamente calculados, sendo bps os pontos pretos:

media_vizinhanca = (bps[y — 1][z] + (2 % bps[y][z — 1]) + bps[y — 1]|[z — 1])/4

Se o valor minimo for menor do que esta média da vizinhanga, ela é utilizada como
ponto preto, sendo, ¢ utilizado o valor minimo dividido por 2.

Com os pontos pretos calculados para cada bloco, percorre-se todos os blocos calculando
uma média para cada um considerando uma grade de 5x5 nos pontos pretos vizinhos. Por
fim, utiliza-se esta média como limiar para cada pixel dentro do bloco, e binariza-se o bloco.

6 Fonseca e Pedrini

2.2 EAN-13

O cédigo EAN-13 é composto por 13 digitos, sendo que na imagem em si, sdo codificados
apenas 12 digitos. Em relacdo ao significado da informagao, o cédigo pode ser dividido em
4 partes: prefixo GS1 de 3 digitos (identifica um pais), cédigo do fabricante de tamanho
variavel, codigo do produto de tamanho varidvel, e o digito de checagem. Do ponto de vista
da imagem em si, o codigo é dividido em 5 partes: padrao de inicio, 6 digitos do grupo
esquerdo, padrao do meio, 6 digitos do grupo direito, e padrao de término. Ha também o
digito de checagem que pode ser obtido das combinacoes das paridades dos digitos do grupo
esquerdo.

Figura 4: Partes do codigo EAN-13: o digito de checagem é 8; o grupo esquerdo é composto
pelos digitos 413000; o grupo direito é composto pelos digitos 065504; os padroes de inicio,
do meio e do fim podem ser percebidos pelas barras verticais maiores.

Considerando 1 uma barra preta, e 0 uma barra branca, o padrao de inicio e o de término
sao compostos por 101, enquanto que o padrao do meio é composto por 01010. Estes detalhes
podem ser percebidos na Figura 4. O grupo da esquerda é codificado usando um padrao em
que cada digito tem duas possibilidades de codifica¢ao, um com paridade par (G), e outro
com paridade impar (L). Cada digito é composto por 7 barras verticais, entao esta paridade
considera a quantidade de barras pretas entre estas 7. O digito de checagem é codificado
indiretamente, selecionando um padrao de escolha das paridades entre os primeiros 6 digitos.
Por exemplo, na Figura 4, as paridades sao LGLGGL, que representam o digito 8. J4 no
grupo da direita, todos os digitos sdo codificados considerando o mesmo padrao RRRRRR.
Esses padroes de paridade e as codificacoes podem ser visulizados nas Tabelas 1 e 2. Note
que uma entrada em R é o complemento bit a bit da entrada em L, e as entradas em G sao
as entradas em R na ordem reversa dos bits.

2.2.1 Algoritmo de Detecgao e Decodificacao do Cédigo EAN-13

O algoritmo se inicia com a transformagao da imagem para tons de cinza. Em seguida,
ou a imagem é binarizada por completo ou a binarizacao é feita antes de cada linha ser
processada. A segunda estratégia pode ser mais eficiente pois ndao necessariamente binariza
toda a imagem para decodificar o cédigo. Entao, partindo da linha central, processa-se cada
uma em busca das informacoes do cédigo.

Deteccao e Decodificacao de Codigos de Barras em Imagens 7

Primeiro Digito Grupo da Esquerda Grupo da Direita

0 LLLLLL RRRRRR
1 LLGLGG RRRRRR
2 LLGGLG RRRRRR
3 LLGGGL RRRRRR
4 LGLLGG RRRRRR
5 LGGLLG RRRRRR
6 LGGGLL RRRRRR
7 LGLGLG RRRRRR
8 LGLGGL RRRRRR
9 LGGLGL RRRRRR

Tabela 1: Codificagao do digito de checagem dependendo das paridades dos digitos do grupo
da esquerda.

Digito Coddigo L. Coédigo G Cédigo R

0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

Tabela 2: Codigos L, G e R para todos os digitos.

Primeiramente, é procurado o padrao de inicio 101 armazenando um contador de 3
posicoes para se contar a quantidade de pixels pretos e brancos em sequéncia. Para ser
considerado o padrao de inicio, é preciso existir uma zona de seguranca apenas com pixels
brancos antes do inicio do padrao 101 com pelo menos o tamanho do padrao, para nao ser
um falso positivo. Também, é utilizada uma variancia individual maxima de 0.7 entre os
tamanhos das sequéncias de pixels. Isso porque, neste caso, cada barra no padrao 101 tem
apenas uma unidade de largura, mas em padroes mais complexos poderia se ter 1100110,
por exemplo. Sao somadas as variancias de cada valor do contador em relacao a respectiva
quantidade de barras verticais no padrao, neste caso havendo apenas uma barra vertical
para cada valor. Depois esta variancia é dividida pela soma total dos contadores, e este
valor também precisa ser menor do que outro limiar de 0.48. Este processo diminui a
possibilidade de se existirem falsos positivos. Se por acaso algum critério nao é satisfeito,
entao a procura pelo padrao de inicio continua.

8 Fonseca e Pedrini

Com o padrao de inicio encontrado, os 6 digitos do lado esquerdo sao procurados utili-
zando os valores da Tabela 2. Aqui também sao utilizados contadores para se contar pixels
pretos e brancos, e as varidncias citadas acima. Para cada padrao L ou G, é realizada
uma tentativa de contagem dos pixels, e o padrao que tiver menor variancia é considerado
o melhor para o digito. Durante o processo também sao calculadas as paridades para se
descobrir o digito de checagem buscando-se em uma tabela.

Em seguida, é procurado o padrao do meio 01010, também utilizando contadores e as
variancias ja citadas. Entao, utilizando as tabelas sao calculados os digitos do lado direito
seguindo um processo muito similar aos digitos do lado esquerdo. Depois, é procurado o
padrao final 101, também com uma regiao de seguranga apenas com pixels brancos apés o
cédigo. Assim, todos os 13 digitos do cédigo sdo decodificados.

Por fim, ha apenas uma etapa final para se fazer um checksum dos digitos, para saber se
nao houveram erros no processo de decodificacao. Para este algoritmo, ignorando o digito de
checagem, multiplicam-se os digitos por 1 e por 3, em uma sequéncia que se repete, e depois
essa soma inicial é dividida por 10. O resultado é transformado em inteiro com a fungao
piso, soma-se 1, multiplica-se o resultado por 10, se subtrai o valor da soma inicial das
multiplicacoes e tira a fungao modulo 10. Se este resultado for igual ao digito de checagem,
entao a decodificacdo nao teve erros.

2.3 QR Code

O QR Code é uma matriz quadrada e foi desenvolvido para ser de rapida leitura. As
informacGes estdao dispostas em uma grade com fundo branco, e possui a caracteristica
adicional de utilizagdo do cédigo corretor de erros Reed-Solomon [14], utilizado para se
corrigir possiveis erros na decodificagao dos bytes na imagem. Os dados em si sao extraidos
de padroes presentes tanto na horizontal quanto na vertical. O cédigo possui varias versoes,
de 1 a 40, que diferem no tamanho da matriz e da quantidade maxima de informagcoes
armazenadas, como pode ser visto na Figura 5.

(a) Versao 4 (33 x 33) (b) Versao 10 (57 x 57)

Figura 5: Diferentes versoes do QR Code.

Deteccao e Decodificacao de Codigos de Barras em Imagens 9

2.3.1 Cédigo Reed-Solomon

Sobre o cédigo corretor de erros, as palavras no cédigo, denominadas de codewords, utilizam
8 bits com 4 niveis de corre¢ao. Quanto maior o nivel de corre¢ao, menos informagao o cédigo
é capaz de armazenar. Em seguida, estao os 4 niveis de correcao:

e Nivel L (Low): 7% das codewords podem ser restauradas.
e Nivel M (Medium): 15% das codewords podem ser restauradas.
e Nivel Q (Quartile): 25% das codewords podem ser restauradas.

e Nivel H (High): 30% das codewords podem ser restauradas.

Para c6digos maiores, a mensagem é quebrada em blocos de cédigo Reed-Solomon. Os
blocos depois sao intercalados fora da ordem normal para que danos locais nao comprome-
tam a leitura. Com isso, é possivel a adicao de figuras dentro da prépria matriz do cédigo,
sem que haja perda das informacoes, como a Figura 6. Detalhes sobre os algoritmos utili-
zados pelo cédigo de Reed-Solomon, como divisdao de polinomios e campo de Galois podem
ser encontrados em [14].

Figura 6: QR Code com imagem inserida dentro do cédigo.

2.3.2 Estrutura do QR Code

O QR Code e as informacoes visuais estao separadas em 7 partes: informagoes da versao,
informagoes do formato, dados com chaves de correcao de erro, 3 padroes de posi¢ao, niimero
varidavel de padroes de alinhamento, padroes de timing, e quiet zone. Estas partes podem
ser visualizadas na Figura 7. Também, na regiao inferior vertical do formato, sempre ha um
quadrado preto nas coordenadas (8, 4 * versdao + 9) na grade do cédigo, que é o quadrado
mais alto nesta regiao.

e Versao: regiao que guarda a informacao de qual versao é o QR Code da imagem, de
1 a 40.

e Formato: regiao que guarda qual o nivel de correcao de erros e qual o padrao de
mascara a ser utilizada, que sera explicado posteriormente.

10

Fonseca e Pedrini

. 1. Version information

2. Format information

3. Data and error correction keys

5:: 4. Required patterns

E 4.1. Position
E 4.2. Alignment

| |
n 4.3. Timing
| |

5. Quiet zone

Figura 7: QR Code e as diversas informagoes na imagem. Imagem de Zephyris, distribuida
sob a licenca Creative Commons Attribution-Share Alike 3.0 Unported.

e Dados: armazena a informacao do cédigo propriamente dita separada em blocos, junto

com chaves de correcao de erros.

e Padroes de posicao: 3 padroes utilizados para se encontrar o QR Code na imagem.

e Padroes de alinhamento: padroes utilizados para se alinhar o cédigo, que juntamente
com os padroes de posicao, ajudam a corrigir problemas de distorgao.

e Padrdes de timing: uma linha horizontal e uma vertical que ajudam a detectar a
posicao de cada célula de dados, também chamadas de médulos, no QR Code.

Quiet zone: zona branca de seguranca ao redor do cédigo.

As areas destinadas a versao sao compostas por 18 bits, dispostas em um retangulo 6x3.
Cédigos versao 7 ou maiores precisam necessariamente possuir os dois retangulos indicando
as versoes, mas versoes menores nao possuem os retangulos. As Tabelas 3, 4 e 5 mostram as
ordens dos bits no retangulo 6x3, junto com os bits para versoes 7 ou maiores. Estes bits
utilizam o cédigo Golay, que consiste em 6 bits para decodificar a versao e 12 bits de erro.
A versao do codigo também define a quantidade de padrdes de alinhamento, e as disposicoes
dos blocos do cédigo corretor de erro, mas como estas tabelas sdo grandes, elas podem ser
visualizadas no cédigo da biblioteca ZXing [1].

013169 |12]15
1147|1013 16
2158|1114 |17

Tabela 3: Disposigao dos bits de versao no retangulo inferior.

As areas destinadas ao formato possuem 15 bits de informagao, sendo que 2 bits sao
destinados ao nivel de correcao de erros, 3 bits para o padrao de mascara, e 10 bits para
correcao de erros. Na linha vertical inferior, estdo os bits de 0 a 6 junto com o quadrado

Deteccao e Decodificacao de Codigos de Barras em Imagens 11

0] 1] 2
31415
6 | 7] 8
9 11011
12 | 13 | 14
1516 | 17

Tabela 4: Disposicao dos bits de versao no retangulo superior.

preto citado anteriormente, e na drea superior direita estao os bits 7 a 14. Na &rea superior
esquerda estao os mesmos bits, comecando do lado esquerdo e terminando no topo da
imagem. Neste dltimo caso sao ignorados dois bits pretos do padrao de timing. Na Tabela 6
estao os bits do codigo corretor de erro, na Tabela 7 estao as méscaras, e na Tabela 8 estao
as 32 possiveis combinacoes de bits para o formato. KEstas méascaras sao utilizadas para
saber se a cor do bit atual deve ser trocada. Se o resultado da maéascara for 0, entao o bit é
trocado, do contrério ele permanece o mesmo.

2.3.3 Algoritmo de Detecgao e Decodificagao do QR Code

O algoritmo se inicia com a transformacao da imagem para tons de cinza. Em seguida, é
utilizado um algoritmo de limiarizacao para binarizar a imagem, para se comecar a etapa
de deteccao. Esta etapa se inicia com a busca dos padroes de posigao, e para tornar a busca
mais rapida no inicio, sao puladas algumas linhas, caminhando de 3 em 3. Quando um
padrao é encontrado, estes pulos sao alterados para 2 em 2.

Estes padroes de posigao obedecem uma razao 1:1:3:1:1, entao sao utilizados conta-
dores para contar pixels pretos e brancos, igual o caso do cédigo EAN-13. Quando uma
sequéncia de preto/branco/preto/branco/preto é encontrada, ela é testada se calculando
uma varidncia méxima segundo o seguinte algoritmo:

1. Soma os contadores e divide por 7.

2. Considera a variancia maxima a metade do valor anterior, ou seja, permite menos de
50% de variancia.

3. Testa cada contador, obedecendo as proporcgoes 1:1:3:1:1.

Quando um possivel padrao horizontal é encontrado, entao é calculado o possivel centro
e é realizada uma contagem vertical checando se ela também obedece a proporcao 1:1:3:1:1.
Se na checagem vertical o tamanho é mais de 40% diferente do tamanho horizontal, assume
que é um falso positivo. Entao, é calculado o centro tanto na horizontal quanto na vertical.

Em seguida, com o centro encontrado, é feita novamente uma checagem horizontal.
Isso é feito para se localizar o verdadeiro centro horizontal em casos de inclinagoes mais
extremas. Aqui também ¢é utilizado a checagem de tamanho 40% diferente. Entéo, é feita
uma checagem diagonal pelas proporcoes passando pelo centro encontrado, para de fato

12 Fonseca e Pedrini

Versao Bits em Hexadecimal

7 0x07C94

8 0x085BC

9 0x09A99

10 0x0A4D3
11 0x0BBF6
12 0x0C762

13 0x0D847
14 0x0E60D
15 0x0F928

16 0x10B78

17 0x1145D

18 0x12A17

19 0x13532
20 0x149A6
21 0x15683
22 0x168C9
23 0x177EC
24 0x18EC4
25 0x191E1
26 0x1AFAB
27 0x1BOSE
28 0x1CC1A
29 0x1D33F
30 0x1ED75
31 0x1F250
32 0x209D5
33 0x216F0
34 0x228BA
35 0x2379F
36 0x24B0B
37 0x2542E
38 0x26A64
39 0x27541
40 0x28C69

Tabela 5: Lookup dos bits de versao em hexadecimal.

validar o padrao de posigao. Esta checagem diagonal utiliza 75% de variancia méxima, e
nao 50% igual aos outros casos.

Para nao se encontrar o mesmo padrao de posicdo mais de uma vez, as posicoes e
dimensoes sao comparadas. Em caso de serem préximas, os centros e o tamanho sao com-
binados em uma nova estimativa. Também, para cada padrao ser considerado como valido,

Deteccao e Decodificacao de Codigos de Barras em Imagens 13

Nivel de Correcao de Erro Bits Inteiro Equivalente

L 01 1
M 00 0
Q 11 3
H 10 2

Tabela 6: Lookup dos bits do nivel de correcao de erro e o inteiro equivalente.

Ntmero da Méscara Funcao da Méscara

0 (row + column) & 0x01 ==
(row & 0x01) ==
column % 3 ==
(row + column) % 3 ==
((floor(row / 2) 4 floor(column / 3)) & 0x01) == 0
(row * column) % 6 ==
((row * column) % 6) <3
((row + column + ((row * column) % 3)) & 0x01) ==

N O U W N

Tabela 7: Numeros e funcées das méscaras.

ele tem que ser encontrado pelo algoritmo pelo menos duas vezes.

Em seguida, apds encontrar trés padroes, é checado se o tamanho destes padroes é
similar. Quando o desvio total da média excede 5% do tamanho total, um dos padroes
é considerado um falso positivo, e a busca continua. Caso varios padroes tenham sido
encontrados, sao escolhidos aqueles em que seus tamanhos variam menos em relagao a
média.

Com apenas 3 padroes de posigao selecionados, eles sao posicionados corretamente, ou
seja, é definido qual deles é o superior direito (C), o superior esquerdo (B) e o inferior (A).
Os pontos [A, B, C] sdo ordenados tal que AB é menor que AC e BC é menor que AC, e o
angulo entre BC e BA é menor que 180 graus.

Na sequéncia, é calculado o tamanho de cada quadrado na grade do cédigo, também
chamado de médulo. Para este célculo, é feita uma média das estimativas do calculo consi-
derando duas duplas de pontos: superior esquerdo e superior direito, ou superior esquerdo
e inferior. A ideia desta parte é tracar uma linha entre os centros, e calcular o tamanho de
uma sequéncia de médulos preto/branco/preto. Para isso, é utilizada uma adaptacao do
algoritmo de Bresenham, que desenha linhas com angulo de inclinacao em grades. Consi-
derando uma dupla de pontos, sao feitas estimativas entre os pontos 1 e 2, mas também
entre os pontos 2 e 1, também tirando uma média depois. O valor encontrado do tamanho
do mdédulo é um ponto flutuante.

Com a estimativa do tamanho do quadrado, sao calculadas as dimensoes do cédigo,
também utilizando as duas duplas de pontos para se tirar uma média das distancias entre
os pontos, e adicionando 7. Entao, é estimada a versao do cédigo somente através de suas

14 Fonseca e Pedrini

Nivel de Corregao de Erro Maéscara Bits em Hexadecimal

L 0 0x77C4
L 1 0x72F3
L 2 0x7DAA
L 3 0x789D
L 4 0x662F
L 5) 0x6318
L 6 0x6C41
L 7 0x6976
M 0 0x5412
M 1 0x5125
M 2 0x5E7C
M 3 0x5B4B
M 4 0x45F9
M 5 0x40CE
M 6 0x4F97
M 7 0x4AA0Q
Q 0 0x355F
Q 1 0x3068
Q P 0x3F31
Q 3 0x3A06
Q 4 0x24B4
Q 5 0x2183
Q 6 0x2EDA
Q 7 0x2BED
H 0 0x1689
H 1 0x13BE
H 2 0x1CE7
H 3 0x19D0
H 4 0x0762
H 5) 0x0255
H 6 0x0D0C
H 7 0x083B

Tabela 8: Lookup para os bits em hexadecimal do formato, com os valores do nivel de
correcao de erro e da méascara.

dimensoes, isso para saber se aquele c6digo tem um padrao de alinhamento. Caso o cédigo
possua o padrao, é feita uma estimativa do local do padrao de alinhamento mais a direita e
mais abaixo na imagem, para nao se precisar procurar na imagem toda. Algumas tentativas
sao feitas aumentando-se o raio de busca.

A busca pelo padrao de alinhamento é muito similar a do padrao de posicao, com a
diferenca que as proporcoes buscadas sao 1:1:1, diferentemente da 1:1:3:1:1 anterior. Quando

Deteccao e Decodificacao de Codigos de Barras em Imagens 15

¢ encontrado um padrao, também & utilizada varidncia méxima permitida de 50%. Neste
caso, também é necessario encontrar o padrao duas vezes, mas como checagem apenas é
feita uma vertical, sem checar a diagonal e a horizontal novamente.

Em seguida, é feita uma transformacao (perspective transform) na imagem para corri-
gir distorcoes e rotagoes na imagem. Para a transformacao, sao utilizados os padroes de
posicao e alinhamento para mapear os calculos, mas se o cédigo nao possui o padrao de
alinhamento, é utilizado o ponto mais a direita e mais abaixo do cédigo para se ter quatro
pontos. A implementacao desta transformada foi baseada em [15]. Enquanto os pontos
sao transformados, hd uma checagem para ver se eles sao transformados para dentro da
imagem, e alguns casos sao tratados. Com isso, os bits do codigo sao extraidos e a etapa
de deteccao do algoritmo termina.

Para a etapa de decodificagao, primeiramente sao decodificadas as informagoes da versao
do QR Code. Se as dimensoes forem menores do que as da versao 7 (45x45), entao a versao
ja é retornada. Do contréario, procura-se nos locais que mantém a informacao da versao.
Primeiramente procura-se no canto superior direito, e caso falhe a decodificagao, é procurado
no campo inferior esquerdo. Para se definir o nimero da versao, é utilizada a tabela de
lookup 5. Se os bits nao forem exatamente iguais, é utilizada a versao com menor ntmero
de bits diferentes, com um méximo de 3 bits errados permitidos.

Em seguida, sao lidas as informagdes do formato. Os bits das duas regides com in-
formacoes de formato sio colhidos e o procedimento é similar ao caso da versdo. E utilizada
a Tabela 8, e o valor que possuir menos bits diferentes é utilizado, também com um maéaximo
de 3 bits errados permitidos. Assim, sdo extraidas as informagoes do nivel de corregao de
erros e da mascara.

Na sequéncia, sao lidas as codewords. Cada versao de codigo tem formatos diferentes
de codewords, devido a quantidades diferentes de padroes de alinhamento e a dimensao
do cédigo ser diferente. Primeiramente, é aplicada a maéascara para se recuperar os bits
originais. Neste momento sao calculadas as posicoes a serem ignoradas durante a leitura
dos dados, que sao os padroes de posigao, os padroes de alinhamento, os padroes de timing,
as informacgoes de formato, e para codigos versao 7 ou superior as informagoes da versao.
Entéo, é feita a leitura das codewords propriamente ditas. A leitura se inicia no canto
inferior direito do cédigo, e segue padroes como por exemplo a Figura 8. Note que, neste
exemplo, as codewords estao numeradas, e nao seguem a ordem natural da informacao.

Em seguida, a ordem das codewords é corrigida e elas sao separadas em blocos de dados
(datablocks). A partir da informagao de versao, é possivel saber quantos blocos de codewords
existem e quantas codewords de dados e de erro existem no maximo em cada datablock. Al-
guns datablocks podem nao possuir a mesma quantidade de codewords que outros. Depois,
com os blocos separados e a ordem corrigida, para cada datablock é aplicado o cédigo cor-
retor de erros Reed-Solomon. Entao, as codewords que representam os dados sao unidas em
um stream de bytes, ignorando-se as codewords de correcao de erro que ja foram utilizadas.

Por fim, o stream de bytes é decodificado. Dentro do mesmo QR Code, é possivel a
utilizacao de diferentes modos de leitura. Entao, os primeiros quatro bits sao lidos para
se saber qual o modo que o segmento seguinte estd codificado. Os modos disponiveis sao
listados a seguir:

16 Fonseca e Pedrini

-

Fixed Patterns [Jlj Format Info
D13 D: Data, E: Error Correction, X: Unused
L Error Correction Level H is shown

Block 1 Codewords: D1-D13, E1-E22
Block 2 Codewords: D14-D26, E23-E44

Message Data: D1-D13, D14-D26
D26 _ Bit order (7 is the most significant bit):

01

D24l 1D20|516| p3 23

gL D8 | as
L] M

— D7

’_I

-
|

’_I

E23

IDZli 46‘ ; 0167
b D23§D19 o1702| |os
[o]
0
eha 05 D14 E‘E‘
|i'£|
s [06 [0t/ ot 7

Figura 8: Exemplo de direcoes de leitura de codewords no QR Code, junto com os formatos
e a disposicao espacial da informacao.

’_I

I—I

=]
=
1)

0x0 - TERMINATOR: Indica fim de leitura.

e Ox1 - NUMERIC: Numeros apenas.

e 0x2 - ALPHANUMERIC: Caracteres alfanuméricos.
e 0x3 - STRUCTURED_APPEND: Nao suportado.

e Ox4 - BYTE: Neste caso, informacoes sao usadas para se assumir uma codificacao.
Esta codificagao pode ser de varios tipos diferentes: UTF8, ASCII, SJIS, ISO8859_1,
etc. Para mais detalhes sobre o algoritmo que assume a codificacao veja [1].

e 0x5 - FNC1_FIRST_POSITION: Primeiro caractere especial que separa sequéncias de
tamanho variavel.

e 0x7 - ECI: Diz informacgGes sobre qual a codificagao dos proximos bytes. Esta codi-
ficacdo pode ser de varios tipos diferentes: UTFS8, ASCII, SJIS, ISO8859_1, etc.

e 0x8 - FNC1_SECOND_POSITION: Segundo caractere especial que separa sequéncias
de tamanho variavel.

e 0x9 - KANJI: Caracteres de lingua japonesa.

e 0xD - HANZI: Caracteres chineses.

Se os passos anteriores nao apresentarem falhas, entao as informacgoes do cédigo foram
decodificadas corretamente. Porém, se alguma parte da etapa de decodificacao falhou,
existe ainda a possibilidade do cdédigo estar espelhado. Entao, é aplicada uma transposicao

da matriz do cédigo e é tentada a decodificagdo novamente. Assim, termina-se o algoritmo
do QR Code.

Deteccao e Decodificacao de Codigos de Barras em Imagens 17

3 Meétodos Propostos

A partir dos algoritmos de deteccao e decodificacao do codigo EAN-13 e do QR Code, foi
proposta uma mudancga no inicio do algoritmo, antes de aplicar o algoritmo de limiarizacao.
A ideia foi realizar um pré processamento com filtros realgadores de borda apéds a alteracao
de cor da imagem para tons de cinza. A funcao esperada destes filtros é a diminuicao do
efeito de possivel borramento nas imagens, que prejudica os algoritmos de limiarizacao.
Foram utilizados dois filtros nos experimentos, um 3x3 e um 5x5, que sdo mostrados a
seguir:
0 -1 0
kernelsyxs = |—1 5 —1
0 -1 0

-1 -1 -1 -1 -1

1 -1 2 2 2 -1

kernelsys = = |—1 2 8 2 -1
8 -1 2 2 2 -1

-1 -1 -1 -1 -1

4 Resultados Experimentais

Nesta se¢ao, sao mostrados os resultados dos experimentos na leitura do c6digo EAN-13 e
QR Code. Para o caso do QR Code, foram criadas 6 imagens aplicando borramento Gaus-
siano, para saber se os filtros realgadores de borda ajudariam na detecgao e decodificagao
destes casos. Foram utilizadas 157 imagens para o cédigo EAN-13 e 184 imagens para o QR
Code. Como foram utilizadas as imagens disponiveis na biblioteca ZXing [1], foi mantida
a separagao de imagens em 5 grupos para o EAN-13 e 7 grupos (6 da biblioteca e um novo
grupo com borramento Gaussiano) para o QR Code. Os resultados com as acurécias de
acerto na leitura estao nas Tabelas 9 e 10.

A partir dos experimentos, pode-se perceber que para o cédigo EAN-13, as duas melhores
abordagens foram o limiar total do ZXing com kernel 3x3 (0.78) e a implementacao padrao
da biblioteca, o limiar da linha do ZXing (0.75). Outra abordagem que teve um bom
desempenho foi o limiar adaptativo da média com kernel 3x3 (0.73). Analisando grupo a
grupo, pode-se perceber que o método da biblioteca possuia scores mais altos em algumas
categorias, mas cafa muito a acuracia em outras. A abordagem do limiar total com kernel
3x3 foi bem mais constante, e obteve resultados altos em mais grupos.

Com isso, foi possivel concluir que houve um ganho ao utilizar o pré processamento com
filtro de realce de bordas, mas esse aumento depende muito também do método de limia-
rizagao escolhido, pois o limiar da linha do ZXing com os kernels tiveram resultados muito
inferiores quando comparados com a implementacao sem o kernel (0.28 e 0.47). Também é
importante notar o grupo 5 que possuia imagens com muito borramento. Como todos os
métodos tiveram acuracia 0.00, o borramento ainda é um problema para os algoritmos do
EAN-13.

18 Fonseca e Pedrini

Método de Limiarizagao Grupo Grupo Grupo Grupo Grupo Total

1 2 3 4 5
ZXing Linha 0.94 0.61 1.00 0.64 0.00 0.75
ZXing Total 0.85 0.57 0.95 0.59 0.00 0.70
Simples 0.71 0.32 0.85 0.18 0.00 0.54
Otsu 0.79 0.43 0.95 0.18 0.00 0.61
Adaptativa Média 0.91 0.57 0.96 0.23 0.00 0.67
Adaptativa Gaussiana 0.88 0.68 0.93 0.50 0.00 0.71
ZXing Linha + Kernel 3x3 0.24 0.68 0.13 0.45 0.00 0.28
ZXing Total + Kernel 3x3 0.85 0.82 0.98 0.77 0.00 0.78
Simples + Kernel 3x3 0.68 0.39 0.98 0.23 0.00 0.59
Otsu + Kernel 3x3 0.79 0.61 1.00 0.50 0.00 0.70
Adaptativa Média + Kernel 3x3 0.62 0.75 0.98 0.82 0.00 0.73
Adaptativa Gaussiana + Kernel 3x3 0.38 0.61 0.96 0.55 0.00 0.61
ZXing Linha 4 Kernel 5x5 0.68 0.71 0.40 0.41 0.00 0.47
ZXing Total + Kernel 5x5 0.88 0.82 0.38 0.59 0.00 0.55
Simples + Kernel 5x5 0.76 0.36 0.55 0.18 0.00 0.45
Otsu + Kernel 5x5 0.91 0.61 0.65 0.41 0.00 0.59
Adaptativa Média + Kernel 5x5 0.76 0.79 0.35 0.59 0.00 0.51
Adaptativa Gaussiana + Kernel 5x5 0.53 0.75 0.25 0.27 0.00 0.38

Tabela 9: Acurécia para os diferentes experimentos com o cédigo EAN-13.

Método de Limiarizagao Grupo Grupo Grupo Grupo Grupo Grupo Grupo Total
1 2 3 4 5 6 Novo

ZXing Total 0.85 0.88 0.90 0.75 1.00 1.00 0.00 0.84

Simples 0.85 0.76 0.79 0.40 0.37 1.00 0.50 0.65

Otsu 0.85 0.82 0.83 0.50 0.58 1.00 0.33 0.72

Adaptativa Média 0.85 0.74 0.88 0.77 1.00 0.93 0.00 0.81

Adaptativa Gaussiana 0.95 0.82 0.88 0.75 1.00 0.93 0.17 0.84

ZXing Total + Kernel 3x3 1.00 0.71 0.93 0.67 1.00 0.93 0.83 0.83

Simples + Kernel 3x3 0.90 0.68 0.69 0.40 0.26 1.00 0.83 0.62

Otsu + Kernel 3x3 0.65 0.71 0.90 0.56 0.58 1.00 1.00 0.73

Adaptativa Média + Kernel 3x3 0.55 0.65 0.86 0.67 1.00 0.93 0.33 0.74
Adaptativa Gaussiana + Kernel 3x3 1.00 0.68 0.88 0.63 1.00 0.93 0.50 0.79

ZXing Total + Kernel 5x5 1.00 0.88 0.90 0.73 0.79 1.00 0.83 0.86
Simples + Kernel 5x5 0.90 0.76 0.81 0.52 0.37 1.00 0.83 0.71
Otsu + Kernel 5x5 0.90 0.79 0.90 0.73 0.47 1.00 1.00 0.80

Adaptativa Média + Kernel 5x5 0.95 0.79 0.93 0.79 0.79 0.93 0.33 0.84
Adaptativa Gaussiana + Kernel 5x5 1.00 0.82 0.93 0.73 0.79 0.93 0.50 0.84

Tabela 10: Acuricia para os diferentes experimentos com o QR Code.

Em relacao ao QR Code, pode-se perceber que muitos métodos tiveram acuricia entre
0.83 e 0.86. Em valor absoluto, o melhor método foi o limiar total do ZXing com kernel
5x5, seguido pelo limiar total sem kernel. Com isso pode-se perceber que houve um pe-
queno ganho adicionando o realce de bordas nesse caso, porém, desconsiderando as imagens
criadas, a acuracia sem kernel seria melhor.

Entretanto, analisando grupo a grupo, o limiar total com kernel 5x5 obteve resultados

Deteccao e Decodificacao de Codigos de Barras em Imagens 19

melhores que o método da biblioteca no grupo 1, e foi um pouco pior no grupo 5. As imagens
do grupo 5 possuem iluminagdo que varia, e também algumas imagens muito pequenas
(177x177) de cédigos de versao grande, como a Figura 9. Se estes casos nao muito comuns
forem ignorados, o método com kernel 5x5 se sairia melhor do que sem o kernel. Assim,
é possivel concluir que o pré processamento no QR Code também resulta em um pequeno
ganho, mas esse sendo em casos mais especificos.

Figura 9: Imagem com QR Code de versdo grande, mas com poucos pixels (177x177).

5 Conclusoes e Trabalhos Futuros

Apds a traducao do codigo da biblioteca do ZXing e os experimentos realizados, pode-
se concluir que os métodos de pré processamento de realce de bordas aplicados antes dos
algoritmos de limiarizagao nas imagens dos codigos EAN-13 e QR Code ajudaram a melhorar
a acurdcia nos resultados obtidos. As melhorias no cédigo EAN-13 foram um pouco maiores,
sendo que no QR Code foi necessario considerar alguns casos extras de borramento e ignorar
outros casos menos comuns, como imagens muito pequenas.

O estudo deste tema permitiu verificar a complexidade e a quantidade de algoritmos
diferentes integrados para o processamento dos cédigos, especialmente no caso do QR Code.
Como trabalhos futuros, o cédigo EAN-13 ainda é muito sensivel a borramentos e mais
modificagoes poderiam ser feitas para se melhorar esta etapa. A pesquisa realizada também
permitiu encontrar métodos utilizando redes neurais para o processamento dos cédigos
em [5] e [12], que poderiam ser um ponto inicial para futuros refinamentos nos métodos.

Referéncias

[1] ZXing (“Zebra Crossing”) Barcode Scanning Library for Java, Android. https:
//zxing.org/w/decode. jspx.

[2] Ciazynski, Karol & Fabijaniska, Anna. (2015). Detection of QR-Codes in Digital Images
Based on Histogram Similarity. Image Processing & Communications, 20(2), pp. 41-48.

20

3]

[4]

[13]

[14]

[15]

Fonseca e Pedrini

P. Liyanage, J. (2007). Efficient Decoding of Blurred, Pitched, and Scratched Barcode
Images.

Xu, Mingliang & Li, Qingfeng & Niu, Jianwei & Liu, Xiting & Xu, Weiwei & Lv,
Pei & Zhou, Bing. (2018). ART-UP: A Novel Method for Generating Scanning-robust
Aesthetic QR codes. arXiv:1803.02280.

Zamberletti, Alessandro & Gallo, Ignazio & Albertini, Simone. (2013). Robust Angle
Invariant 1D Barcode Detection. IAPR, Asian Conference on Pattern Recognition, pp.
160-164.

Chen, Weibing & Yang, Gaobo & Zhang, Ganglin. (2012). A Simple and Efficient
Image Pre-processing for QR Decoder. 2nd International Conference on Electronic &
Mechanical Engineering and Information Technology, pp. 234-238.

Chen, Qichao & Du, Yaowei & Lin, Risan & Tian, Yumin. (2012). Fast QR Code Image
Process and Detection. 305-312. 10.1007/978-3-642-32427-7_42.

Creusot, Clement & Munawar, Asim. (2015). Real-Time Barcode Detection in the
Wild. IEEE Winter Conference on Applications of Computer Vision. pp. 239-245.

Szentandrasi, Istvan & Herout, Adam & Dubska, Marketa. (2013). Fast Detection
and Recognition of QR Codes in High-Resolution Images. 28th Spring Conference on
Computer Graphics, pp. 129-136.

Tong, Lingling & Gu, Xiaoguang & Dai, Feng. (2014). QR Code Detection Based
on Local Features. International Conference on Internet Multimedia Computing and
Service, p. 319.

Tribak, Hicham & Zaz, Youssef. (2017). QR Code Recognition based on Principal
Components Analysis Method. International Journal of Advanced Computer Science
and Applications, 8(4).

Kold Hansen, Daniel & Nasrollahi, Kamal & B. Rasmusen, Christoffer & Moeslund,
Thomas. (2017). Real-Time Barcode Detection and Classification using Deep Learning.
International Joint Conference on Computational Intelligence. pp. 321-327.

Otsu, Nobuyuki. (1979). A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1), pp. 62—66.

Reed, Irving S. & Solomon, Gustave (1960). Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics (SIAM), 8(2),
pp- 300-304.

Wolberg, George. (1990). Digital Image Warping. IEEE Computer Society Press.

