
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Detecção e Decodificação
de Códigos de Barras

em Imagens
L. F. R. Fonseca H. Pedrini

Relatório Técnico - IC-PFG-18-24

Projeto Final de Graduação

2018 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Detecção e Decodificação de Códigos de Barras em Imagens

Luiz Fernando Rodrigues da Fonseca Hélio Pedrini∗

Resumo

Este relatório descreve as principais atividades desenvolvidas durante o Projeto Final
de Graduação do curso de Engenharia de Computação do Instituto de Computação da
Universidade Estadual de Campinas (UNICAMP). Neste trabalho, foram feitos estudos
sobre detecção e decodificação de códigos de barras unidimensionais (1D) e bidimen-
sionais (2D), com foco principal nos códigos EAN-13 e QR Code. Partindo do código
em linguagem de programação Java da biblioteca ZXing, os algoritmos do EAN-13 e
QR Code foram traduzidos para Python e, em seguida, foram realizados experimen-
tos aplicando-se modificações nos métodos de binarização das imagens e adicionando
pré processamento para realce de bordas. Os resultados dos diferentes métodos uti-
lizados são comparados e discutidos, utilizando-se a acurácia de acerto na detecção e
decodificação das informações como métrica.

1 Introdução

Códigos de barras são amplamente utilizados para se registrar informações e repassá-las com
a leitura das unidades presentes nas imagens. Utilizações comuns são o registro e a leitura
de preços e informações de produtos em supermercados, ou obter URLs (Uniform Resource
Locator) de websites por meio da leitura do código. Estes códigos são divididos em duas
categorias: códigos de barras unidimensionais (1D), como por exemplo o código EAN-13
(European Article Number 13), e códigos de barras bidimensionais (2D), como por exemplo
o QR Code (Quick Response). Exemplos do código EAN-13 e QR Code são ilustrados na
Figura 1.

O código EAN-13 é um padrão internacional composto por 13 d́ıgitos, usado em
transações globais para se identificar o tipo do produto, em uma configuração de pacote
espećıfica, de um fabricante espećıfico. Já o QR Code foi criado em 1994 no Japão para ser
utilizado na indústria automotiva, porém como possui vários tamanhos e pode armazenar
até 4296 caracteres alfanuméricos, ganhou várias outras aplicações ao redor do mundo.

Para os códigos 1D, geralmente são utilizados leitores que emitem um raio laser ver-
melho que percorre todas as barras para se fazer a leitura das informações. Estes sensores
geralmente são caros, o que torna a utilização de imagens uma ótima alternativa, já que
praticamente todos os smartphones nos dias atuais possuem uma câmera. Em relação

∗Instituto de Computação, Universidade Estadual de Campinas, 13083-852 Campinas, SP.

1



2 Fonseca e Pedrini

(a) EAN-13 (b) QR Code

Figura 1: Exemplos do código EAN-13 e QR Code.

aos códigos 2D, as câmeras dos aparelhos celurares já possuem leitores para eles, e mui-
tas aplicações já utilizam esta tecnologia, o que torna melhoras no processo de detecção e
decodificação essenciais para a utilização destas aplicações.

Entre as dificuldades em se fazer a detecção e a leitura dos códigos, a binarização da
imagem é um processo chave para que os algoritmos sejam capazes de obter corretamente
as informações armazenadas. Esta etapa possui muitos desafios associados, pois imagens
com pouca iluminação, ou com reflexão de raios de luz na região do código, ou mesmo
borramento, são fatores que dificultam a leitura correta das informações. A Figura 2 ilustra
esses efeitos.

(a) Reflexão (b) Borramento

Figura 2: Imagens com reflexão de raios de luz e borramento.

Outro desafio está relacionado ao posicionamento e orientação do código de barras na
imagem. Os algoritmos precisam ser robustos o suficiente para tratar casos em que o código
não está alinhado horizontalmente, ou seja, casos em que possui um ângulo de rotação
em relação ao eixo horizontal. Há também casos em que existe um efeito de distorção na
imagem, fazendo com que o código não seja um retângulo ou um quadrado perfeito. A
Figura 3 ilustra esses efeitos.

Neste relatório, a Seção 2 faz uma revisão de trabalhos anteriores e explica os métodos
de detecção e decodificação dos códigos de barras 1D e 2D utilizados. A Seção 3 explica



Detecção e Decodificação de Códigos de Barras em Imagens 3

(a) Rotação (b) Distorção

Figura 3: Imagens com rotação e distorção.

os métodos propostos para melhora do processo de decodificação. A Seção 4 mostra os
resultados experimentais obtidos e a Seção 5 as conclusões e propostas de trabalhos futuros.

2 Conceitos e Trabalhos Relacionados

Há vários algoritmos para detecção de códigos de barras estudados nos últimos anos. Di-
ferentes trabalhos utilizaram diferentes abordagens para a resolução do problema, como
similaridade de histogramas para QR Code [2], Aesthetic QR Code que são aqueles que
possuem imagens embutidas na região do código [4], detecção de códigos 1D com Maximal
Stable Extremal Region [8], transformada de Hough [9], caracteŕısticas locais [10] e Análise
de Componentes Principais [11].

Outros trabalhos utilizaram redes neurais e aprendizado de máquina profundo (deep
learning) para detecção de códigos 1D, de forma que os algoritmos sejam invariantes quanto
a ângulo de rotação, como [5] e [12]. Algumas abordagens também foram propostas para
tratar códigos 1D que estejam borrados ou riscados [3], e QR Codes com efeito de luz e
distorção geométrica, como em [6] e [7].

A maioria dos métodos citados, porém não todos, utiliza etapas comuns no ińıcio do
algoritmo para se detectar os códigos nas imagens. Primeiro, a imagem é convertida para
tons de cinza, e depois é aplicado um algoritmo de limiarização para binarizar a imagem.
Este trabalho teve como foco estudar os códigos de barras de maneira geral, mas com um
foco na etapa de pré processamento e binarização.

O trabalho se iniciou fazendo a tradução do código em Java da biblioteca ZXing [1]
para Python 2, com o aux́ılio das bibliotecas OpenCV, NumPy e reedsolo, biblioteca que
implementa o código detector e corretor de erros Reed-Solomon [14]. As imagens utilizadas
para experimentos também são da biblioteca ZXing, sendo 157 imagens de códigos EAN-13
e 184 imagens de QR Code.



4 Fonseca e Pedrini

2.1 Algoritmos de Limiarização

Para se transformar uma imagem de tons de cinza para binária, são utilizados algoritmos
de limiarização, que são divididos em dois grupos: global e local. A limiarização global
utiliza um único limiar para a imagem toda, e os pixels da imagem são comparados com
esse limiar para saber se devem possuir valor 0 ou valor 1. Já a limiariação local utiliza um
limiar adaptativo, ou seja, cada pixel da imagem pode possuir um valor diferente de limiar,
e diferentes estratégias podem ser utilizadas para se encontrar esse limiar local.

2.1.1 Limiarização Global Simples

Na limiarização global simples, é escolhido a priori um único valor de limiar T para se
binarizar a imagem, sendo que pixels com valores menores do que T recebem o valor 1 e
pixels com valores maiores do que T recebem o valor 0. Para os experimentos com EAN-13,
o limiar escolhido foi 100, e para os experimentos com QR Code o limiar escolhido foi 110.

2.1.2 Limiarização Global de Otsu

O método de Otsu é uma evolução da limiarização global simples. Este algoritmo assume
que o histograma da imagem é composto por duas classes, os pixels do objeto e os pixels do
fundo. A ideia é então minimizar a variância dentro da mesma classe, escolhendo o valor
do limiar T para isso. O método também possui a desvantagem de não possuir um bom
desempenho caso o histograma das imagens não seja bimodal. Mais detalhes podem ser
encontrados em [13].

2.1.3 Limiarização Local Adaptativa Média

Este método utiliza uma janela quadrada deslizante e calcula a média dentro desta janela
como o valor do limiar para cada pixel da imagem. Também é posśıvel utilizar uma constante
para se subtrair do valor da média para ser de fato o limiar. Tanto para o código EAN-
13 quanto para o QR Code, o tamanho da janela utilizado foi de 31, sem constante de
subtração.

2.1.4 Limiarização Local Adaptativa Gaussiana

Este método utiliza uma janela quadrada deslizante e calcula uma soma ponderada por
um filtro Gaussiano como valor do limiar para cada pixel da imagem. Também é posśıvel
utilizar a constante de subtração neste caso. O filtro Gaussiano é um vetor de tamanho
ksize× 1, sendo ksize o tamanho do lado da janela quadrada, e suas equações são dadas a
seguir:

Gi = α ∗ e−(i−(ksize−1)/2)2/(2∗sigma2)

em que i = 0 . . . ksize − 1 e α é um fator de escala escolhido para que
∑

iGi = 1. Para
os experimentos do código EAN-13, o tamanho da janela utilizado foi 31 sem constante
de subtração, mas no QR Code, o tamanho da janela utilizado foi 51 com constante de
subtração 2.



Detecção e Decodificação de Códigos de Barras em Imagens 5

2.1.5 Limiarização Local da Linha do ZXing

Este método é utilizado na biblioteca ZXing nos casos dos códigos 1D, pois considera apenas
a informação de uma linha da imagem para os cálculos dos limiares. Desta forma, códigos
que sofreram rotação em imagens com ângulo de 45 graus podem ser de mais dif́ıcil leitura
por este método, mas que para rotações menores e em casos comuns é suficiente. A grande
vantagem deste método é que ele opera por linha, então em casos onde o código está no
centro da imagem não é necessário percorrer a imagem inteira.

Primeiramente, no método é calculado um histograma da linha da imagem com 32 bins.
A partir deste histograma, é calculado o pico mais alto. Depois, é calculado um segundo
pico que maximiza uma função de score para cada x no histograma, sendo primeiro pico a
posição do primeiro pico no histograma:

score1 = hist[x] ∗ (x− primeiro pico)2

Com o pico mais alto e o segundo pico, é encontrado um vale entre estes picos que
maximiza outra função de score para cada x no histograma, sendo segundo pico a posição
do segundo pico no histograma e max hist o valor máximo do histograma:

score2 = (x− primeiro pico)2 ∗ (segundo pico− x) ∗ (max hist− hist[x])

O melhor valor do segundo score é multiplicado por 8 para se ter o valor de um limiar,
chamado de ponto preto. Com este valor, para cada pixel da linha é utilizado um filtro
[−1, 4 − 1] com peso 2, e a soma ponderada é comparada com o ponto preto para se saber
se o pixel terá valor 1 ou 0.

2.1.6 Limiarização Local Total do ZXing

Este método é utilizado na biblioteca ZXing para os códigos 2D, e limiariza toda a imagem.
Neste algoritmo, a imagem é dividida em blocos de tamanho 8×8 pixels e, para cada bloco,
é calculado um valor de ponto preto.

Para cada bloco, são calculados a soma dos valores dos pixels do bloco, o valor mı́nimo
e o valor máximo. É então calculada a média com a soma. Se a diferença entre o máximo
e o mı́nimo for maior que uma constante, neste caso 24, é utilizada a média como ponto
preto do bloco. Caso contrário, significa que a variância dentro do bloco é baixa.

Para o segundo caso, significa que o bloco é uma área somente com pixels pretos ou
somente com pixels brancos, e mais processamento precisa ser feito. É então calculada uma
média com pontos pretos próximos previamente calculados, sendo bps os pontos pretos:

media vizinhanca = (bps[y − 1][x] + (2 ∗ bps[y][x− 1]) + bps[y − 1][x− 1])/4

Se o valor mı́nimo for menor do que esta média da vizinhança, ela é utilizada como
ponto preto, senão, é utilizado o valor mı́nimo dividido por 2.

Com os pontos pretos calculados para cada bloco, percorre-se todos os blocos calculando
uma média para cada um considerando uma grade de 5×5 nos pontos pretos vizinhos. Por
fim, utiliza-se esta média como limiar para cada pixel dentro do bloco, e binariza-se o bloco.



6 Fonseca e Pedrini

2.2 EAN-13

O código EAN-13 é composto por 13 d́ıgitos, sendo que na imagem em si, são codificados
apenas 12 d́ıgitos. Em relação ao significado da informação, o código pode ser dividido em
4 partes: prefixo GS1 de 3 d́ıgitos (identifica um páıs), código do fabricante de tamanho
variável, código do produto de tamanho variável, e o d́ıgito de checagem. Do ponto de vista
da imagem em si, o código é dividido em 5 partes: padrão de ińıcio, 6 d́ıgitos do grupo
esquerdo, padrão do meio, 6 d́ıgitos do grupo direito, e padrão de término. Há também o
d́ıgito de checagem que pode ser obtido das combinações das paridades dos d́ıgitos do grupo
esquerdo.

Figura 4: Partes do código EAN-13: o d́ıgito de checagem é 8; o grupo esquerdo é composto
pelos d́ıgitos 413000; o grupo direito é composto pelos d́ıgitos 065504; os padrões de ińıcio,
do meio e do fim podem ser percebidos pelas barras verticais maiores.

Considerando 1 uma barra preta, e 0 uma barra branca, o padrão de ińıcio e o de término
são compostos por 101, enquanto que o padrão do meio é composto por 01010. Estes detalhes
podem ser percebidos na Figura 4. O grupo da esquerda é codificado usando um padrão em
que cada d́ıgito tem duas possibilidades de codificação, um com paridade par (G), e outro
com paridade ı́mpar (L). Cada d́ıgito é composto por 7 barras verticais, então esta paridade
considera a quantidade de barras pretas entre estas 7. O d́ıgito de checagem é codificado
indiretamente, selecionando um padrão de escolha das paridades entre os primeiros 6 d́ıgitos.
Por exemplo, na Figura 4, as paridades são LGLGGL, que representam o d́ıgito 8. Já no
grupo da direita, todos os d́ıgitos são codificados considerando o mesmo padrão RRRRRR.
Esses padrões de paridade e as codificações podem ser visulizados nas Tabelas 1 e 2. Note
que uma entrada em R é o complemento bit a bit da entrada em L, e as entradas em G são
as entradas em R na ordem reversa dos bits.

2.2.1 Algoritmo de Detecção e Decodificação do Código EAN-13

O algoritmo se inicia com a transformação da imagem para tons de cinza. Em seguida,
ou a imagem é binarizada por completo ou a binarização é feita antes de cada linha ser
processada. A segunda estratégia pode ser mais eficiente pois não necessariamente binariza
toda a imagem para decodificar o código. Então, partindo da linha central, processa-se cada
uma em busca das informações do código.



Detecção e Decodificação de Códigos de Barras em Imagens 7

Primeiro Dı́gito Grupo da Esquerda Grupo da Direita

0 LLLLLL RRRRRR
1 LLGLGG RRRRRR
2 LLGGLG RRRRRR
3 LLGGGL RRRRRR
4 LGLLGG RRRRRR
5 LGGLLG RRRRRR
6 LGGGLL RRRRRR
7 LGLGLG RRRRRR
8 LGLGGL RRRRRR
9 LGGLGL RRRRRR

Tabela 1: Codificação do d́ıgito de checagem dependendo das paridades dos d́ıgitos do grupo
da esquerda.

Dı́gito Código L Código G Código R

0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

Tabela 2: Códigos L, G e R para todos os d́ıgitos.

Primeiramente, é procurado o padrão de ı́nicio 101 armazenando um contador de 3
posições para se contar a quantidade de pixels pretos e brancos em sequência. Para ser
considerado o padrão de ińıcio, é preciso existir uma zona de segurança apenas com pixels
brancos antes do ińıcio do padrão 101 com pelo menos o tamanho do padrão, para não ser
um falso positivo. Também, é utilizada uma variância individual máxima de 0.7 entre os
tamanhos das sequências de pixels. Isso porque, neste caso, cada barra no padrão 101 tem
apenas uma unidade de largura, mas em padrões mais complexos poderia se ter 1100110,
por exemplo. São somadas as variâncias de cada valor do contador em relação à respectiva
quantidade de barras verticais no padrão, neste caso havendo apenas uma barra vertical
para cada valor. Depois esta variância é dividida pela soma total dos contadores, e este
valor também precisa ser menor do que outro limiar de 0.48. Este processo diminui a
possibilidade de se existirem falsos positivos. Se por acaso algum critério não é satisfeito,
então a procura pelo padrão de ińıcio continua.



8 Fonseca e Pedrini

Com o padrão de ińıcio encontrado, os 6 d́ıgitos do lado esquerdo são procurados utili-
zando os valores da Tabela 2. Aqui também são utilizados contadores para se contar pixels
pretos e brancos, e as variâncias citadas acima. Para cada padrão L ou G, é realizada
uma tentativa de contagem dos pixels, e o padrão que tiver menor variância é considerado
o melhor para o d́ıgito. Durante o processo também são calculadas as paridades para se
descobrir o d́ıgito de checagem buscando-se em uma tabela.

Em seguida, é procurado o padrão do meio 01010, também utilizando contadores e as
variâncias já citadas. Então, utilizando as tabelas são calculados os d́ıgitos do lado direito
seguindo um processo muito similar aos d́ıgitos do lado esquerdo. Depois, é procurado o
padrão final 101, também com uma região de segurança apenas com pixels brancos após o
código. Assim, todos os 13 d́ıgitos do código são decodificados.

Por fim, há apenas uma etapa final para se fazer um checksum dos d́ıgitos, para saber se
não houveram erros no processo de decodificação. Para este algoritmo, ignorando o d́ıgito de
checagem, multiplicam-se os d́ıgitos por 1 e por 3, em uma sequência que se repete, e depois
essa soma inicial é dividida por 10. O resultado é transformado em inteiro com a função
piso, soma-se 1, multiplica-se o resultado por 10, se subtrai o valor da soma inicial das
multiplicações e tira a função módulo 10. Se este resultado for igual ao d́ıgito de checagem,
então a decodificação não teve erros.

2.3 QR Code

O QR Code é uma matriz quadrada e foi desenvolvido para ser de rápida leitura. As
informações estão dispostas em uma grade com fundo branco, e possui a caracteŕıstica
adicional de utilização do código corretor de erros Reed-Solomon [14], utilizado para se
corrigir posśıveis erros na decodificação dos bytes na imagem. Os dados em si são extráıdos
de padrões presentes tanto na horizontal quanto na vertical. O código possui várias versões,
de 1 a 40, que diferem no tamanho da matriz e da quantidade máxima de informações
armazenadas, como pode ser visto na Figura 5.

(a) Versão 4 (33 x 33) (b) Versão 10 (57 x 57)

Figura 5: Diferentes versões do QR Code.



Detecção e Decodificação de Códigos de Barras em Imagens 9

2.3.1 Código Reed-Solomon

Sobre o código corretor de erros, as palavras no código, denominadas de codewords, utilizam
8 bits com 4 ńıveis de correção. Quanto maior o ńıvel de correção, menos informação o código
é capaz de armazenar. Em seguida, estão os 4 ńıveis de correção:

• Nı́vel L (Low): 7% das codewords podem ser restauradas.

• Nı́vel M (Medium): 15% das codewords podem ser restauradas.

• Nı́vel Q (Quartile): 25% das codewords podem ser restauradas.

• Nı́vel H (High): 30% das codewords podem ser restauradas.

Para códigos maiores, a mensagem é quebrada em blocos de código Reed-Solomon. Os
blocos depois são intercalados fora da ordem normal para que danos locais não comprome-
tam a leitura. Com isso, é posśıvel a adição de figuras dentro da própria matriz do código,
sem que haja perda das informações, como a Figura 6. Detalhes sobre os algoritmos utili-
zados pelo código de Reed-Solomon, como divisão de polinômios e campo de Galois podem
ser encontrados em [14].

Figura 6: QR Code com imagem inserida dentro do código.

2.3.2 Estrutura do QR Code

O QR Code e as informações visuais estão separadas em 7 partes: informações da versão,
informações do formato, dados com chaves de correção de erro, 3 padrões de posição, número
variável de padrões de alinhamento, padrões de timing, e quiet zone. Estas partes podem
ser visualizadas na Figura 7. Também, na região inferior vertical do formato, sempre há um
quadrado preto nas coordenadas (8, 4 * versão + 9) na grade do código, que é o quadrado
mais alto nesta região.

• Versão: região que guarda a informação de qual versão é o QR Code da imagem, de
1 a 40.

• Formato: região que guarda qual o ńıvel de correção de erros e qual o padrão de
máscara a ser utilizada, que será explicado posteriormente.



10 Fonseca e Pedrini

Figura 7: QR Code e as diversas informações na imagem. Imagem de Zephyris, distribúıda
sob a licença Creative Commons Attribution-Share Alike 3.0 Unported.

• Dados: armazena a informação do código propriamente dita separada em blocos, junto
com chaves de correção de erros.

• Padrões de posição: 3 padrões utilizados para se encontrar o QR Code na imagem.

• Padrões de alinhamento: padrões utilizados para se alinhar o código, que juntamente
com os padrões de posição, ajudam a corrigir problemas de distorção.

• Padrões de timing: uma linha horizontal e uma vertical que ajudam a detectar a
posição de cada célula de dados, também chamadas de módulos, no QR Code.

• Quiet zone: zona branca de segurança ao redor do código.

As áreas destinadas a versão são compostas por 18 bits, dispostas em um retângulo 6×3.
Códigos versão 7 ou maiores precisam necessariamente possuir os dois retângulos indicando
as versões, mas versões menores não possuem os retângulos. As Tabelas 3, 4 e 5 mostram as
ordens dos bits no retângulo 6×3, junto com os bits para versões 7 ou maiores. Estes bits
utilizam o código Golay, que consiste em 6 bits para decodificar a versão e 12 bits de erro.
A versão do código também define a quantidade de padrões de alinhamento, e as disposições
dos blocos do código corretor de erro, mas como estas tabelas são grandes, elas podem ser
visualizadas no código da biblioteca ZXing [1].

0 3 6 9 12 15

1 4 7 10 13 16

2 5 8 11 14 17

Tabela 3: Disposição dos bits de versão no retângulo inferior.

As áreas destinadas ao formato possuem 15 bits de informação, sendo que 2 bits são
destinados ao ńıvel de correção de erros, 3 bits para o padrão de máscara, e 10 bits para
correção de erros. Na linha vertical inferior, estão os bits de 0 a 6 junto com o quadrado



Detecção e Decodificação de Códigos de Barras em Imagens 11

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

Tabela 4: Disposição dos bits de versão no retângulo superior.

preto citado anteriormente, e na área superior direita estão os bits 7 a 14. Na área superior
esquerda estão os mesmos bits, começando do lado esquerdo e terminando no topo da
imagem. Neste último caso são ignorados dois bits pretos do padrão de timing. Na Tabela 6
estão os bits do código corretor de erro, na Tabela 7 estão as máscaras, e na Tabela 8 estão
as 32 posśıveis combinações de bits para o formato. Estas máscaras são utilizadas para
saber se a cor do bit atual deve ser trocada. Se o resultado da máscara for 0, então o bit é
trocado, do contrário ele permanece o mesmo.

2.3.3 Algoritmo de Detecção e Decodificação do QR Code

O algoritmo se inicia com a transformação da imagem para tons de cinza. Em seguida, é
utilizado um algoritmo de limiarização para binarizar a imagem, para se começar a etapa
de detecção. Esta etapa se inicia com a busca dos padrões de posição, e para tornar a busca
mais rápida no ińıcio, são puladas algumas linhas, caminhando de 3 em 3. Quando um
padrão é encontrado, estes pulos são alterados para 2 em 2.

Estes padrões de posição obedecem uma razão 1:1:3:1:1, então são utilizados conta-
dores para contar pixels pretos e brancos, igual o caso do código EAN-13. Quando uma
sequência de preto/branco/preto/branco/preto é encontrada, ela é testada se calculando
uma variância máxima segundo o seguinte algoritmo:

1. Soma os contadores e divide por 7.

2. Considera a variância máxima a metade do valor anterior, ou seja, permite menos de
50% de variância.

3. Testa cada contador, obedecendo as proporções 1:1:3:1:1.

Quando um posśıvel padrão horizontal é encontrado, então é calculado o posśıvel centro
e é realizada uma contagem vertical checando se ela também obedece a proporção 1:1:3:1:1.
Se na checagem vertical o tamanho é mais de 40% diferente do tamanho horizontal, assume
que é um falso positivo. Então, é calculado o centro tanto na horizontal quanto na vertical.

Em seguida, com o centro encontrado, é feita novamente uma checagem horizontal.
Isso é feito para se localizar o verdadeiro centro horizontal em casos de inclinações mais
extremas. Aqui também é utilizado a checagem de tamanho 40% diferente. Então, é feita
uma checagem diagonal pelas proporções passando pelo centro encontrado, para de fato



12 Fonseca e Pedrini

Versão Bits em Hexadecimal

7 0x07C94
8 0x085BC
9 0x09A99
10 0x0A4D3
11 0x0BBF6
12 0x0C762
13 0x0D847
14 0x0E60D
15 0x0F928
16 0x10B78
17 0x1145D
18 0x12A17
19 0x13532
20 0x149A6
21 0x15683
22 0x168C9
23 0x177EC
24 0x18EC4
25 0x191E1
26 0x1AFAB
27 0x1B08E
28 0x1CC1A
29 0x1D33F
30 0x1ED75
31 0x1F250
32 0x209D5
33 0x216F0
34 0x228BA
35 0x2379F
36 0x24B0B
37 0x2542E
38 0x26A64
39 0x27541
40 0x28C69

Tabela 5: Lookup dos bits de versão em hexadecimal.

validar o padrão de posição. Esta checagem diagonal utiliza 75% de variância máxima, e
não 50% igual aos outros casos.

Para não se encontrar o mesmo padrão de posição mais de uma vez, as posições e
dimensões são comparadas. Em caso de serem próximas, os centros e o tamanho são com-
binados em uma nova estimativa. Também, para cada padrão ser considerado como válido,



Detecção e Decodificação de Códigos de Barras em Imagens 13

Nı́vel de Correção de Erro Bits Inteiro Equivalente

L 01 1
M 00 0
Q 11 3
H 10 2

Tabela 6: Lookup dos bits do ńıvel de correção de erro e o inteiro equivalente.

Número da Máscara Função da Máscara

0 (row + column) & 0x01 == 0
1 (row & 0x01) == 0
2 column % 3 == 0
3 (row + column) % 3 == 0
4 ((floor(row / 2) + floor(column / 3)) & 0x01) == 0
5 (row * column) % 6 == 0
6 ((row * column) % 6) <3
7 ((row + column + ((row * column) % 3)) & 0x01) == 0

Tabela 7: Números e funções das máscaras.

ele tem que ser encontrado pelo algoritmo pelo menos duas vezes.

Em seguida, após encontrar três padrões, é checado se o tamanho destes padrões é
similar. Quando o desvio total da média excede 5% do tamanho total, um dos padrões
é considerado um falso positivo, e a busca continua. Caso vários padrões tenham sido
encontrados, são escolhidos aqueles em que seus tamanhos variam menos em relação à
média.

Com apenas 3 padrões de posição selecionados, eles são posicionados corretamente, ou
seja, é definido qual deles é o superior direito (C), o superior esquerdo (B) e o inferior (A).
Os pontos [A, B, C] são ordenados tal que AB é menor que AC e BC é menor que AC, e o
ângulo entre BC e BA é menor que 180 graus.

Na sequência, é calculado o tamanho de cada quadrado na grade do código, também
chamado de módulo. Para este cálculo, é feita uma média das estimativas do cálculo consi-
derando duas duplas de pontos: superior esquerdo e superior direito, ou superior esquerdo
e inferior. A ideia desta parte é traçar uma linha entre os centros, e calcular o tamanho de
uma sequência de módulos preto/branco/preto. Para isso, é utilizada uma adaptação do
algoritmo de Bresenham, que desenha linhas com ângulo de inclinação em grades. Consi-
derando uma dupla de pontos, são feitas estimativas entre os pontos 1 e 2, mas também
entre os pontos 2 e 1, também tirando uma média depois. O valor encontrado do tamanho
do módulo é um ponto flutuante.

Com a estimativa do tamanho do quadrado, são calculadas as dimensões do código,
também utilizando as duas duplas de pontos para se tirar uma média das distâncias entre
os pontos, e adicionando 7. Então, é estimada a versão do código somente através de suas



14 Fonseca e Pedrini

Nı́vel de Correção de Erro Máscara Bits em Hexadecimal

L 0 0x77C4
L 1 0x72F3
L 2 0x7DAA
L 3 0x789D
L 4 0x662F
L 5 0x6318
L 6 0x6C41
L 7 0x6976
M 0 0x5412
M 1 0x5125
M 2 0x5E7C
M 3 0x5B4B
M 4 0x45F9
M 5 0x40CE
M 6 0x4F97
M 7 0x4AA0
Q 0 0x355F
Q 1 0x3068
Q 2 0x3F31
Q 3 0x3A06
Q 4 0x24B4
Q 5 0x2183
Q 6 0x2EDA
Q 7 0x2BED
H 0 0x1689
H 1 0x13BE
H 2 0x1CE7
H 3 0x19D0
H 4 0x0762
H 5 0x0255
H 6 0x0D0C
H 7 0x083B

Tabela 8: Lookup para os bits em hexadecimal do formato, com os valores do ńıvel de
correção de erro e da máscara.

dimensões, isso para saber se aquele código tem um padrão de alinhamento. Caso o código
possua o padrão, é feita uma estimativa do local do padrão de alinhamento mais a direita e
mais abaixo na imagem, para não se precisar procurar na imagem toda. Algumas tentativas
são feitas aumentando-se o raio de busca.

A busca pelo padrão de alinhamento é muito similar a do padrão de posição, com a
diferença que as proporções buscadas são 1:1:1, diferentemente da 1:1:3:1:1 anterior. Quando



Detecção e Decodificação de Códigos de Barras em Imagens 15

é encontrado um padrão, também é utilizada variância máxima permitida de 50%. Neste
caso, também é necessário encontrar o padrão duas vezes, mas como checagem apenas é
feita uma vertical, sem checar a diagonal e a horizontal novamente.

Em seguida, é feita uma transformação (perspective transform) na imagem para corri-
gir distorções e rotações na imagem. Para a transformação, são utilizados os padrões de
posição e alinhamento para mapear os cálculos, mas se o código não possui o padrão de
alinhamento, é utilizado o ponto mais a direita e mais abaixo do código para se ter quatro
pontos. A implementação desta transformada foi baseada em [15]. Enquanto os pontos
são transformados, há uma checagem para ver se eles são transformados para dentro da
imagem, e alguns casos são tratados. Com isso, os bits do código são extráıdos e a etapa
de detecção do algoritmo termina.

Para a etapa de decodificação, primeiramente são decodificadas as informações da versão
do QR Code. Se as dimensões forem menores do que as da versão 7 (45×45), então a versão
já é retornada. Do contrário, procura-se nos locais que mantém a informação da versão.
Primeiramente procura-se no canto superior direito, e caso falhe a decodificação, é procurado
no campo inferior esquerdo. Para se definir o número da versão, é utilizada a tabela de
lookup 5. Se os bits não forem exatamente iguais, é utilizada a versão com menor número
de bits diferentes, com um máximo de 3 bits errados permitidos.

Em seguida, são lidas as informações do formato. Os bits das duas regiões com in-
formações de formato são colhidos e o procedimento é similar ao caso da versão. É utilizada
a Tabela 8, e o valor que possuir menos bits diferentes é utilizado, também com um máximo
de 3 bits errados permitidos. Assim, são extráıdas as informações do ńıvel de correção de
erros e da máscara.

Na sequência, são lidas as codewords. Cada versão de código tem formatos diferentes
de codewords, devido a quantidades diferentes de padrões de alinhamento e a dimensão
do código ser diferente. Primeiramente, é aplicada a máscara para se recuperar os bits
originais. Neste momento são calculadas as posições a serem ignoradas durante a leitura
dos dados, que são os padrões de posição, os padrões de alinhamento, os padrões de timing,
as informações de formato, e para códigos versão 7 ou superior as informações da versão.
Então, é feita a leitura das codewords propriamente ditas. A leitura se inicia no canto
inferior direito do código, e segue padrões como por exemplo a Figura 8. Note que, neste
exemplo, as codewords estão numeradas, e não seguem a ordem natural da informação.

Em seguida, a ordem das codewords é corrigida e elas são separadas em blocos de dados
(datablocks). A partir da informação de versão, é posśıvel saber quantos blocos de codewords
existem e quantas codewords de dados e de erro existem no máximo em cada datablock. Al-
guns datablocks podem não possuir a mesma quantidade de codewords que outros. Depois,
com os blocos separados e a ordem corrigida, para cada datablock é aplicado o código cor-
retor de erros Reed-Solomon. Então, as codewords que representam os dados são unidas em
um stream de bytes, ignorando-se as codewords de correção de erro que já foram utilizadas.

Por fim, o stream de bytes é decodificado. Dentro do mesmo QR Code, é posśıvel a
utilização de diferentes modos de leitura. Então, os primeiros quatro bits são lidos para
se saber qual o modo que o segmento seguinte está codificado. Os modos dispońıveis são
listados a seguir:



16 Fonseca e Pedrini

Figura 8: Exemplo de direções de leitura de codewords no QR Code, junto com os formatos
e a disposição espacial da informação.

• 0x0 - TERMINATOR: Indica fim de leitura.

• 0x1 - NUMERIC: Números apenas.

• 0x2 - ALPHANUMERIC: Caracteres alfanuméricos.

• 0x3 - STRUCTURED APPEND: Não suportado.

• 0x4 - BYTE: Neste caso, informações são usadas para se assumir uma codificação.
Esta codificação pode ser de vários tipos diferentes: UTF8, ASCII, SJIS, ISO8859 1,
etc. Para mais detalhes sobre o algoritmo que assume a codificação veja [1].

• 0x5 - FNC1 FIRST POSITION: Primeiro caractere especial que separa sequências de
tamanho variável.

• 0x7 - ECI: Diz informações sobre qual a codificação dos próximos bytes. Esta codi-
ficação pode ser de vários tipos diferentes: UTF8, ASCII, SJIS, ISO8859 1, etc.

• 0x8 - FNC1 SECOND POSITION: Segundo caractere especial que separa sequências
de tamanho variável.

• 0x9 - KANJI: Caracteres de ĺıngua japonesa.

• 0xD - HANZI: Caracteres chineses.

Se os passos anteriores não apresentarem falhas, então as informações do código foram
decodificadas corretamente. Porém, se alguma parte da etapa de decodificação falhou,
existe ainda a possibilidade do código estar espelhado. Então, é aplicada uma transposição
da matriz do código e é tentada a decodificação novamente. Assim, termina-se o algoritmo
do QR Code.



Detecção e Decodificação de Códigos de Barras em Imagens 17

3 Métodos Propostos

A partir dos algoritmos de detecção e decodificação do código EAN-13 e do QR Code, foi
proposta uma mudança no ińıcio do algoritmo, antes de aplicar o algoritmo de limiarização.
A ideia foi realizar um pré processamento com filtros realçadores de borda após a alteração
de cor da imagem para tons de cinza. A função esperada destes filtros é a diminuição do
efeito de posśıvel borramento nas imagens, que prejudica os algoritmos de limiarização.
Foram utilizados dois filtros nos experimentos, um 3×3 e um 5×5, que são mostrados a
seguir:

kernel3×3 =

 0 −1 0
−1 5 −1
0 −1 0



kernel5×5 =
1

8


−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 8 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1



4 Resultados Experimentais

Nesta seção, são mostrados os resultados dos experimentos na leitura do código EAN-13 e
QR Code. Para o caso do QR Code, foram criadas 6 imagens aplicando borramento Gaus-
siano, para saber se os filtros realçadores de borda ajudariam na detecção e decodificação
destes casos. Foram utilizadas 157 imagens para o código EAN-13 e 184 imagens para o QR
Code. Como foram utilizadas as imagens dispońıveis na biblioteca ZXing [1], foi mantida
a separação de imagens em 5 grupos para o EAN-13 e 7 grupos (6 da biblioteca e um novo
grupo com borramento Gaussiano) para o QR Code. Os resultados com as acurácias de
acerto na leitura estão nas Tabelas 9 e 10.

A partir dos experimentos, pode-se perceber que para o código EAN-13, as duas melhores
abordagens foram o limiar total do ZXing com kernel 3×3 (0.78) e a implementação padrão
da biblioteca, o limiar da linha do ZXing (0.75). Outra abordagem que teve um bom
desempenho foi o limiar adaptativo da média com kernel 3×3 (0.73). Analisando grupo a
grupo, pode-se perceber que o método da biblioteca possúıa scores mais altos em algumas
categorias, mas cáıa muito a acurácia em outras. A abordagem do limiar total com kernel
3×3 foi bem mais constante, e obteve resultados altos em mais grupos.

Com isso, foi posśıvel concluir que houve um ganho ao utilizar o pré processamento com
filtro de realce de bordas, mas esse aumento depende muito também do método de limia-
rização escolhido, pois o limiar da linha do ZXing com os kernels tiveram resultados muito
inferiores quando comparados com a implementação sem o kernel (0.28 e 0.47). Também é
importante notar o grupo 5 que possúıa imagens com muito borramento. Como todos os
métodos tiveram acurácia 0.00, o borramento ainda é um problema para os algoritmos do
EAN-13.



18 Fonseca e Pedrini

Método de Limiarização Grupo Grupo Grupo Grupo Grupo Total
1 2 3 4 5

ZXing Linha 0.94 0.61 1.00 0.64 0.00 0.75
ZXing Total 0.85 0.57 0.95 0.59 0.00 0.70

Simples 0.71 0.32 0.85 0.18 0.00 0.54
Otsu 0.79 0.43 0.95 0.18 0.00 0.61

Adaptativa Média 0.91 0.57 0.96 0.23 0.00 0.67
Adaptativa Gaussiana 0.88 0.68 0.93 0.50 0.00 0.71

ZXing Linha + Kernel 3×3 0.24 0.68 0.13 0.45 0.00 0.28
ZXing Total + Kernel 3×3 0.85 0.82 0.98 0.77 0.00 0.78

Simples + Kernel 3×3 0.68 0.39 0.98 0.23 0.00 0.59
Otsu + Kernel 3×3 0.79 0.61 1.00 0.50 0.00 0.70

Adaptativa Média + Kernel 3×3 0.62 0.75 0.98 0.82 0.00 0.73
Adaptativa Gaussiana + Kernel 3×3 0.38 0.61 0.96 0.55 0.00 0.61

ZXing Linha + Kernel 5×5 0.68 0.71 0.40 0.41 0.00 0.47
ZXing Total + Kernel 5×5 0.88 0.82 0.38 0.59 0.00 0.55

Simples + Kernel 5×5 0.76 0.36 0.55 0.18 0.00 0.45
Otsu + Kernel 5×5 0.91 0.61 0.65 0.41 0.00 0.59

Adaptativa Média + Kernel 5×5 0.76 0.79 0.35 0.59 0.00 0.51
Adaptativa Gaussiana + Kernel 5×5 0.53 0.75 0.25 0.27 0.00 0.38

Tabela 9: Acurácia para os diferentes experimentos com o código EAN-13.

Método de Limiarização Grupo Grupo Grupo Grupo Grupo Grupo Grupo Total
1 2 3 4 5 6 Novo

ZXing Total 0.85 0.88 0.90 0.75 1.00 1.00 0.00 0.84
Simples 0.85 0.76 0.79 0.40 0.37 1.00 0.50 0.65

Otsu 0.85 0.82 0.83 0.50 0.58 1.00 0.33 0.72
Adaptativa Média 0.85 0.74 0.88 0.77 1.00 0.93 0.00 0.81

Adaptativa Gaussiana 0.95 0.82 0.88 0.75 1.00 0.93 0.17 0.84
ZXing Total + Kernel 3×3 1.00 0.71 0.93 0.67 1.00 0.93 0.83 0.83

Simples + Kernel 3×3 0.90 0.68 0.69 0.40 0.26 1.00 0.83 0.62
Otsu + Kernel 3×3 0.65 0.71 0.90 0.56 0.58 1.00 1.00 0.73

Adaptativa Média + Kernel 3×3 0.55 0.65 0.86 0.67 1.00 0.93 0.33 0.74
Adaptativa Gaussiana + Kernel 3×3 1.00 0.68 0.88 0.63 1.00 0.93 0.50 0.79

ZXing Total + Kernel 5×5 1.00 0.88 0.90 0.73 0.79 1.00 0.83 0.86
Simples + Kernel 5×5 0.90 0.76 0.81 0.52 0.37 1.00 0.83 0.71

Otsu + Kernel 5×5 0.90 0.79 0.90 0.73 0.47 1.00 1.00 0.80
Adaptativa Média + Kernel 5×5 0.95 0.79 0.93 0.79 0.79 0.93 0.33 0.84

Adaptativa Gaussiana + Kernel 5×5 1.00 0.82 0.93 0.73 0.79 0.93 0.50 0.84

Tabela 10: Acurácia para os diferentes experimentos com o QR Code.

Em relação ao QR Code, pode-se perceber que muitos métodos tiveram acurácia entre
0.83 e 0.86. Em valor absoluto, o melhor método foi o limiar total do ZXing com kernel
5×5, seguido pelo limiar total sem kernel. Com isso pode-se perceber que houve um pe-
queno ganho adicionando o realce de bordas nesse caso, porém, desconsiderando as imagens
criadas, a acurácia sem kernel seria melhor.

Entretanto, analisando grupo a grupo, o limiar total com kernel 5×5 obteve resultados



Detecção e Decodificação de Códigos de Barras em Imagens 19

melhores que o método da biblioteca no grupo 1, e foi um pouco pior no grupo 5. As imagens
do grupo 5 possuem iluminação que varia, e também algumas imagens muito pequenas
(177×177) de códigos de versão grande, como a Figura 9. Se estes casos não muito comuns
forem ignorados, o método com kernel 5×5 se sairia melhor do que sem o kernel. Assim,
é posśıvel concluir que o pré processamento no QR Code também resulta em um pequeno
ganho, mas esse sendo em casos mais espećıficos.

Figura 9: Imagem com QR Code de versão grande, mas com poucos pixels (177×177).

5 Conclusões e Trabalhos Futuros

Após a tradução do código da biblioteca do ZXing e os experimentos realizados, pode-
se concluir que os métodos de pré processamento de realce de bordas aplicados antes dos
algoritmos de limiarização nas imagens dos códigos EAN-13 e QR Code ajudaram a melhorar
a acurácia nos resultados obtidos. As melhorias no código EAN-13 foram um pouco maiores,
sendo que no QR Code foi necessário considerar alguns casos extras de borramento e ignorar
outros casos menos comuns, como imagens muito pequenas.

O estudo deste tema permitiu verificar a complexidade e a quantidade de algoritmos
diferentes integrados para o processamento dos códigos, especialmente no caso do QR Code.
Como trabalhos futuros, o código EAN-13 ainda é muito senśıvel a borramentos e mais
modificações poderiam ser feitas para se melhorar esta etapa. A pesquisa realizada também
permitiu encontrar métodos utilizando redes neurais para o processamento dos códigos
em [5] e [12], que poderiam ser um ponto inicial para futuros refinamentos nos métodos.

Referências

[1] ZXing (“Zebra Crossing”) Barcode Scanning Library for Java, Android. https:

//zxing.org/w/decode.jspx.

[2] Ciażyński, Karol & Fabijańska, Anna. (2015). Detection of QR-Codes in Digital Images
Based on Histogram Similarity. Image Processing & Communications, 20(2), pp. 41–48.



20 Fonseca e Pedrini

[3] P. Liyanage, J. (2007). Efficient Decoding of Blurred, Pitched, and Scratched Barcode
Images.

[4] Xu, Mingliang & Li, Qingfeng & Niu, Jianwei & Liu, Xiting & Xu, Weiwei & Lv,
Pei & Zhou, Bing. (2018). ART-UP: A Novel Method for Generating Scanning-robust
Aesthetic QR codes. arXiv:1803.02280.

[5] Zamberletti, Alessandro & Gallo, Ignazio & Albertini, Simone. (2013). Robust Angle
Invariant 1D Barcode Detection. IAPR Asian Conference on Pattern Recognition, pp.
160–164.

[6] Chen, Weibing & Yang, Gaobo & Zhang, Ganglin. (2012). A Simple and Efficient
Image Pre-processing for QR Decoder. 2nd International Conference on Electronic &
Mechanical Engineering and Information Technology, pp. 234–238.

[7] Chen, Qichao & Du, Yaowei & Lin, Risan & Tian, Yumin. (2012). Fast QR Code Image
Process and Detection. 305-312. 10.1007/978-3-642-32427-7 42.

[8] Creusot, Clement & Munawar, Asim. (2015). Real-Time Barcode Detection in the
Wild. IEEE Winter Conference on Applications of Computer Vision. pp. 239–245.

[9] Szentandrási, István & Herout, Adam & Dubska, Marketa. (2013). Fast Detection
and Recognition of QR Codes in High-Resolution Images. 28th Spring Conference on
Computer Graphics, pp. 129–136.

[10] Tong, Lingling & Gu, Xiaoguang & Dai, Feng. (2014). QR Code Detection Based
on Local Features. International Conference on Internet Multimedia Computing and
Service, p. 319.

[11] Tribak, Hicham & Zaz, Youssef. (2017). QR Code Recognition based on Principal
Components Analysis Method. International Journal of Advanced Computer Science
and Applications, 8(4).

[12] Kold Hansen, Daniel & Nasrollahi, Kamal & B. Rasmusen, Christoffer & Moeslund,
Thomas. (2017). Real-Time Barcode Detection and Classification using Deep Learning.
International Joint Conference on Computational Intelligence. pp. 321–327.

[13] Otsu, Nobuyuki. (1979). A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1), pp. 62–66.

[14] Reed, Irving S. & Solomon, Gustave (1960). Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics (SIAM), 8(2),
pp. 300–304.

[15] Wolberg, George. (1990). Digital Image Warping. IEEE Computer Society Press.


