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Sorting Permutations by Reversals

with Reinforcement Learning

Guilherme Bueno Andrade∗ Andre Rodrigues Oliveira† Zanoni Dias†

Abstract

Finding the minimum number of mutations necessary for one genome to transform
into another is a major problem in molecular biology. If genomes are represented as
numeric permutations, this problem can be reduced to sorting such permutations using
certain genome rearrangements operations, where, in this work, reversals operations
are the main focus. We present two different techniques using reinforcement learning
to address that. Our results show that this approach is competitive for permutations
of size n < 11. However, as the permutations grow, converging gets trickier.

1 Introduction

Finding the minimum number of mutations necessary for one genome to transform into
another using genome rearrangements, a concept usually referred to as the distance between
genomes, is a major problem in molecular biology. A common operation is a reversal. It
happens when a fragment of the DNA filament gets reversed in the final replica.

Formally, in this work we treat a genome of size n as being equal to a permutation p
of integers from 0 to n−1. Also, we define the composition of permutations p and q as
being p · q = (pq0 pq1 . . . pqn−1). In addition, we assume that a reversal operation fr(i, j)
applied to permutation p = (p0 . . . pi−1 pi . . . pj . . . pn−1) generates the permutation

p · fr(i, j) = (p0 . . . pi−1 pj . . . pi . . . pn−1).

Finally, as Phylogenetics (the study of evolutionary history and relationships between
species) relies strongly on the Principle of Parsimony, the idea that, given a set of possible
explanations for a fact, the simplest explanation is most likely to be correct [5], the distance
d(p, q) between permutations p and q is the minimum number of operations needed to
transform p into q.

Note that finding d(p, q) is equivalent to the problem of finding the distance between
some permutation α and the identity permutation ι, where α = q−1 · p. That is the case
because d(p, q) = d(q−1 · p, q−1 · q) = d(α, ι). Furthermore, Caprara proved that finding
d(p, ι) is NP-hard [4]. That being so, this work proposes using Reinforcement Learning to
come up with a heuristic for finding d(p, ι) for any arbitrary permutation p.
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In the next section, we start by introducing several Reinforcement Learning ideas that
were used during the project conception. Later, in Section 3, we conclude by talking about
implementation details and discussing our findings.

2 Reinforcement Learning

This section introduces the main ideas and concepts from Reinforcement Learning that have
been explored during the implementation of the project. It starts by introducing basic ideas
from the field and ends talking about the algorithms which supported our agents.

2.1 Overview

Reinforcement Learning (RL), like other branches of Machine Learning, has been drawing a
lot of attention from the community in recent years. Google DeepMind’s AlphaGo victory
over Lee Sedol [2], world champion of the game Go, is one out of many examples of recent
astonishing applications of the technique. It is based on an agent learning how to accomplish
a certain goal based on interactions with the environment.

RL can be thought of as a sequence of episodes. Each of which consists of the agent at
an initial state S0. Then, based on a policy π, where a policy is a function that maps states
to actions, it takes an action a, ending up at state S1 and receiving some reward R1. This
process keeps going until the agent reaches a terminal state. Its goal is to find a function
π∗, known as optimal policy, that maximizes the cumulative discounted reward at a given
time step t:

G(t) =
∞∑
τ=0

γτRt+τ+1, (1)

Where:

γ ∈ [0, 1) : is a discount rate to highlight most likely short-term rewards

2.2 Exploitation vs. Exploration

A major concern in RL is the exploitation/exploration trade-off. Exploration is about
exploring new possibilities within the environment and finding out more information about
it. Exploitation, on the other hand, is related to exploiting already known information to
maximize the total reward.

Initially, the agent has no other option but to randomly explore the environment; how-
ever, as it learns about its surroundings, it can fall into the trap of sticking to known safe
actions and miss larger rewards that depend on exploring unknown states.

This work uses the Epsilon-greedy strategy to address that problem. It specifies an
exploration rate ε, which is set to 1 initially. This rate defines the ratio of the steps that
will be done randomly. Before selecting an action, the agent generates a random number
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x. If x > ε, then it will select the best-known action (exploit); otherwise, it will select an
action at random (explore). As the agent acquires more knowledge about the environment,
ε is progressively reduced.

2.3 Q-table and the Bellman Equation

In value-based RL, the branch being considered in this work, the efforts are concentrated
on maximizing the value function Vπ. It tells the agent the expected cumulative discounted
reward it will get if it is at state s during time step t:

Vπ(s) = Eπ[G(t) | St = s], (2)

Where:

Eπ : expected value given that policy π is being followed

Vπ can be generalized so as to also consider the action a taken at time step t, which is
known as Q-table:

Qπ(s, a) = Eπ[G(t) | St = s, At = a] (3)

The previous definition is convenient because it allows the agent to pick the best action
that can be performed from state s by simply finding arg maxaQ

π(s, a).
Furthermore, Q can be expressed in terms of itself. An expression known as the Bellman

Equation [14]:

Qπ(s, a) = Eπ[Rt+1 + γ
∑
a′

Qπ(s′, a′)], (4)

Where:

s′ : is the state reached after action a is taken from state s
a′ : is an action that can be taken from s′

The above equation can be used alongside dynamic programming to develop iterative
approaches to solve the problem [14].

If one can calculate the Q-table from Equation 3, they could trivially come up with a
great policy. At each state s, the agent should simply be greedy and select the action a
that maximizes Qπ(s, a). As mentioned above, finding the Q-table can be easily done with
dynamic programming.

However, as the number of states grows, dynamic programming and other iterative
approaches become infeasible due to space and time limitations. Fortunately, it turns out
that the Q-table can be approximated instead of having its exact values determined, and
it will still produce great results [3]. This work tries to achieve that using both linear
regression and deep neural networks.
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2.4 Monte Carlo and Temporal Difference Learning

In Monte Carlo Approaches, the agent plays an entire episode, keeping track of the rewards
received at each time step so it can calculate the cumulative discounted reward. After that,
it updates the value function for each visited stated based on the expression [14]:

V (St)← V (St) + α(G(t)− V (St)), (5)

Where:

α : is the learning rate

Therefore, the agent only learns after an entire episode has been played. In Temporal
Difference Learning, on the other hand, the value of V is updated after each time step. At
time t+1, the observations made during time t are already being considered. In its simplest
form, the method is called TD(0) or 1-step TD, and its update equation is as follows:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (6)

The right-hand side of the previous equation is referred to as the TD(0) error.
TD(0) is biased as it relies on information from a single time step to perform its updates.

It does not take into account the fact that the action that caused a reward might have
happened several time steps earlier, which can lead to slow convergence [12]. Monte Carlo
methods, although not biased, have a lot of variance since they use the rewards of an entire
episode in order to perform updates [12].

To overcome that, from Equation 6, we can define the 1-step return, G
(1)
t = Rt+1 +

γV (St+1). We can extend the concept further to 2-step return, G
(2)
t = Rt+1 + γRt+2 +

γ2V (St+2), and, generically, to, G
(n)
t = Rt+1 + γRt+2 + . . .+ γnV (St+n).

TD-Lambda methods use a mathematical trick to average all the possible n-step returns
into a single one. This is done by introducing a factor λ ∈ [0, 1] and weighting the nth-return
with γn−1. It can be shown that when λ = 0, the method is equivalent to TD(0), and when
λ = 1, equivalent to Monte Carlo [3]. So, intuitively, by setting 0 < λ < 1, we can get a
mixture of both methods.

2.5 Q-learning

Q-learning is another technique based on Temporal Difference Learning to learn the Q-table.
The main difference between it and the previously shown techniques is that Q-learning is
off-policy, while TD(0) and TD-Lambda are on-policy [14]. This is reflected in its update
equation, derived from the Bellman Equation [17]:

Q(s, a)← Q(s, a) + α(Rt+1 + γmax
a′

Q(s′, a′)−Q(s, a)) (7)

The fact that there is no constraint acting upon action a′, only that it must optimizes
Q, makes it an off-policy method [17].
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2.5.1 Deep Q-learning

In order to approximate the Q-table to make using it feasible even when the number of
states is very large, since Google AlphaGo’s paper [13], it has become common the use of
deep neural networks. Even though standard Q-learning is proven to converge when there
are finite states and each pair state-action is repeatedly presented [18], the same proof does
not hold when neural networks are being used to calculate Q. To face with this issue, this
work makes use of several ideas found in the literature [16] to stabilize the training. They
are presented in the following subsections.

2.5.2 Experience Replay

During each step of an episode, our estimation can be shifted according to Equation 7. It is
reasonable to think that as more truth is being introduced into the system, it will eventually
converge; however, this is often not true. One of the reasons is that samples arrive in the
order they are experienced and as such are highly correlated. Also, by throwing away our
samples immediately after we use it, we are not extracting all the knowledge they carry.

Experience replay address that by storing samples in a queue, and, during each learning
step, it samples a random batch and performs gradient descend on it. As samples get old,
they are gradually discarded.

2.5.3 Target Network

The pointsQ(s, a) andQ(s′, a′) in Equation 7 are very close together as s′ is a state reachable
from s. That being so, updates to one of them influence the other, which in turn can lead
to instabilities.

To overcome that, a second network, called target network, can be used to provide more
stable Q̃ values. This second network is a mere copy of the first one; however, it does not
get updated every simulation step. Instead, it stays frozen in time, and only after several
steps it is updated by copying the weights from the first network. The introduction of the
target network changes our update equation to the following:

Q(s, a)← Q(s, a) + α(Rt+1 + γmax
a′

Q̃(s′, a′)−Q(s, a)) (8)

2.5.4 Double Learning

Due to the max term presented in both equations 7 and 8, the approximation tends to
overestimate the Q function value, which can severely impact on the stability of the algo-
rithm [1]. A solution proposed by Hado van Hasselt [8], called Double Learning, consists
of using two Q functions, Q1 and Q2, that are independently learned. One function is
then used to determine the maximizing action and second to estimate its value. As we are
already making use of two different networks, Hado van Hasselt’s approach can be easily
introduced to the update Equation 8. Its augmented version is as follows:

Q(s, a)← Q(s, a) + α(Rt+1 + γQ̃(s′, argmax
a′

Q(s′, a′))−Q(s, a)) (9)
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3 Experiment

Initially, in Section 3.1.1, we discuss different ways to represent the permutations so we can
use function approximation techniques. Later, in Section 3.1.2, we talk about the agents’
architecture and about a technique that was used to speed up the convergence in Section
3.1.3. Lastly, we present and discuss our results (Section 3.2) and conclusions (Section 3.3).

3.1 Modeling

The agents were implemented so as to perform not only reversals, but also another impor-
tant genome rearrangement: transposition. However, due to limited computer resources
available, we decided later to limit our agents to only perform reversals to make training
faster. Their goal was to reach the identity permutation ι while maximizing total reward.

3.1.1 State Representation

Three different state representations were considered. They are as follows.

• One-Hot Encoding : Each number is treated as a category. By doing so, each p is
mapped to a matrix m, where mij = 1 if pi = j, and 0 otherwise.

• Min-Max Normalization: p is mapped to an array v, where vi = pi/(|p| − 1).

• Permutation Characterization: p is mapped to an array v of 30 features, where the
features are the ones described in the work by Silva, Oliveira, and Dias [6].

3.1.2 Proposed Architecture

The experiment was based on two different architectures. The first one consisted of a
Double Deep Q-Network (DDQN), with a main network and a secondary target network.
Also, it included experience replay (see Section 2.5.2) and double learning (see Section 2.5.4)
optimizations.

Both main and secondary networks used the following architecture:

Layer Number of Units Activation Type

Input layer |Input| Linear -

Hidden layer 1 256 ReLU Fully-connected

Hidden layer 2 256 ReLU Fully-connected

Output layer |Actions| Linear Fully-connected

Table 1: Main and secondary networks architecture

Furthermore, after tuning, the hyperparameters selected were as follows:
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Hyperparameter Value

γ 0.99
α 0.001

|Batch| 32
εmin 0.1
εdecay 0.993

|Replay queue| 2000
Loss logcosh

Optimizer Adam
Step reward −1

Table 2: Hyperparameters used in the DDQN

Nevertheless, we tried a second approach. An agent based on the TD-Lambda algorithm
was also built. In order to approximate the Q-table, it relied on a much simpler linear
regressor. Also, since Q is highly nonlinear, the radial basis function kernel was used as a
pre-processing step. The agent’s hyperparameters were the following:

Hyperparameter Value

γ 0.999
α 0.01
λ 0.25
εmin 0.05
εdecay 0.99

RBF Components 4
RBF γ array [5.0, 2.0, 1.0, 0.5]
Step reward −1

Table 3: Hyperparameters used to implement TD-Lambda

3.1.3 Speeding up the Convergence

During our initial tests, the Q-table took a long time to converge to optimal values. Being
that the case, several techniques were tried so as to decrease training time. The one that
seemed more promising is described below:

• Greedy Pre-Training : Kececioglu and Sankoff [10] presented a 2-approximation for
sorting a permutation using reversals, its output is represented below:

d̃(p) = (p, a(p), a′(a(p)), . . . , ι), (10)
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Where:

a : is the resultant permutation after applying action a on p
ι : is the identity permutation

From Equation 10, let V̂ :

V̂ (s) = (γ|d̃(s)| − 1)/(γ − 1) (11)

Furthermore, we can define function Q̂, which can be shown to be lower bound on Q:

Q̂(s, a) = −1 + γV̂ (s′), (12)

Where:

s′ : is the state reached by taking action a at state s

Having defined those, we can talk about our pre-training strategy. It consisted of
partially fitting our neural network and linear regressor to function Q̂ before start
learning from proper episodes.

3.2 Results and Discussion

The models were trained experiencing 10000 episodes, each of which had S0 set to a random
permutation of size n = 10 using NumPy’s random permutation generator [15] (see Figure
1). After that, in order for the models to effectively sort a permutation p, the exploration
rate ε was kept constant and equal to 0.2, and then the models were run for another 100
episodes, where S0 was always equal to p. The best score among those simulations was
considered the model’s answer d̂(p, ι). Finally, we used Kececioglu and Sankoff’s greedy
algorithm output |d̃(p)| and ours for 1000 random permutations as a way to measure the
model’s performance.

As we can see in Table 4, one-hot encoding state representation is slightly better than our
Min-Max approach. The former beat Kececioglu and Sankoff’s in 28.0% of the simulations,
while the latter only in 21.7%. Nonetheless, investigating more effective representations
so as to lead to better generalizations is a pending task. Also, we did not manage to
reach convergence using either DDQN and Permutation Characterization or the TD-Lambda
agent for permutations of size n > 8. Regarding our best RL architecture, DDQN and One-
Hot Encoding, it consistently outperformed Kececioglu and Sankoff’s. However, converging
starts getting tricky and time-consuming as n gets bigger, convergence was not achieved
using any of our methods for permutations of size n > 10. So, it is still early to define our
approach as being practical.
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Configuration d̂ < |d̃| d̂ = |d̃| d̂ > |d̃| Avg d̂/d

DDQN and One-Hot Encoding 28.0% 64.7% 7.3% 1.0255
DDQN and Min-Max Normalization 21.7% 61.2% 17.1% 1.0574

DDQN and Permutation Characterization 0.0% 0.0% 100.0% ∞
TD-Lambda 0.0% 0.0% 100.0% ∞

Table 4: Summary of the performance of different model configurations
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Figure 1: Distance estimation evolution for DDQN and One-Hot Encoding

3.3 Conclusions

This work involved building different RL agents to sort permutations by reversals. Interest-
ing results were obtained for small permutations, but performance was a bottleneck when
they got bigger. Future work could try to address that by using distributed deep Q-learning
methods [9, 11] and considering recent findings related to large discrete action spaces [7].
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