
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Data Mining Approach to
Prediction of

Nominee Soccer Players
for Ballon d’Or Award

R. T. Shibata H. Pedrini

Technical Report - IC-18-08 - Relatório Técnico

July - 2018 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.

Data Mining Approach to Prediction of Nominee Soccer
Players for Ballon d’Or Award

Renato Toshiaki Shibata1, Helio Pedrini2

1 Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)
Undergraduate Course, Computer Engineering, ra082674@ dac.unicamp.br

2 Instituto de Computação Universidade Estadual de Campinas (UNICAMP)
Campinas-SP, Brazil, 13083-852, h elio@ic.unicamp.br

Abstract. This report describes the main activities developed during the Final
Undergraduate Project in the Computer Engineering Bachelor of the Institute of Computing
at the University of Campinas (UNICAMP). In this work, a data set of professional soccer
players’ historical in-game statistics from recent years was built through feature
engineering methodology and then machine learning algorithms were applied in order to
characterize players who were nominated to the annually award called Ballon d’Or. The
task was addressed as a classification problem, where the predictor should classify correctly
whether or not the current player, according to his annual performance, will be nominated
to the Ballon d’Or award at the end of the year. Some data mining and machine learning
techniques were evaluated, such as ZeroR, OneR, Iterative Dichotomiser 3 (ID3), Logistic
Regression (LR), and Support Vector Machine (SVM). The obtained results with each
method are discussed and compared among them to evaluate how accurate they are
according to a soccer expert’s opinion.

Keywords: data mining; machine learning; classification; feature engineering; ballon d’or;
soccer game

1

mailto:abeer@beernautics.inc
mailto:chopps@st.anford.cal

1. Introduction

Soccer is a very popular game worldwide, which was invented in England in the
XIX century and it is now played regularly by more than 240 million people according to
Fédération Internationale de Football Association (FIFA) [1].

Ballon d’Or is an award given by France Football to the player who is considered
the best in the previous year. France Football is a French magazine that belongs to the
Amaury Group. On 5th July 2010, the president of the Group, Marie-Odile Amaury, signed
an agreement with former president of FIFA, Joseph Blatter, to unify Ballon d’Or award
and FIFA Best Player of the Year award into FIFA Ballon d’Or award. However, in
September 2016, France Football announced that their partnership with FIFA Ballon d’Or
award had come to an end and they would revive the Ballon d’Or Award [2].

The Ballon d’Or award consists basically of two processes, however, for this
research only the first process is important to us. First, we arbitrarily selected several
candidates for the award. The shortlist used to be made by the FIFA’s Football Committee
and a group of experts from France Football magazine until 2015, where they chose 23
candidates. As of 2016, only France Football decided this shortlist, which increased its size
to 30 candidates [2].

The purpose of this study is to verify possible objective criteria for the 30 nominees
in the annual shortlist, where only one of these candidates will receive the Ballon d’Or
award and then will be recognized as “Best Player of the World” of the most popular sport
in the planet.

We assume that the nominee’s selection is made by reasonable and unbiased criteria.
To clarify all these underlying possibilities, we have decided to investigate objective
criteria to identify patterns of the nominee player. In addition, we assume that the choice of
Ballon d’Or nominee players made by FIFA (from 2010 to 2015) and by France Football
magazine has sufficient positive relationships with the player’s in-game statistics and we
investigate those using compelling objective criteria. For this objective, we chose to use an
approach based on machine learning algorithms.

There are some previous studies on the application of machine learning and data
mining techniques in soccer. For example, Wang and Wang [3] used the Apriori data mining
algorithm [4] to determine association rules between different types of technical
movements in soccer. These technical movements were related to shots converted into
goals. Their objective was to provide a scientific decision for coaches to train and guide the
soccer players. Another example using similar approach was used by Chai [5] to mine
soccer data patterns using serial data to determine which chains of possession between
players occurred frequently. The provided model aimed to guide coach to establish an
effective mechanism in the soccer match.

Finally, the research whose intentions are closer to ours is by Nunes and Sousa [6].
One of the reasons is because they applied data mining techniques for searching interesting
and unexpected association rules. Their data set was based on historical data from European
tournaments. In addition, they used classification methods using Weka Software [7] to test

2

their hypothesis that they would be able to classify matches according to their results based
on available historical data.

However, our objective is not focused on predicting the outcome of European
soccer matches, as Nunes and Sousa intended. Furthermore, we found that it is not very
effective to predict future outcome of matches based on this because we assume that a
club’s historical data does not have an influential impact on the outcome of the game
compared to the current player staff of the club, coach staff and club administrator, among
other factors.

2. Methods

I. Reasons for the use of Machine Learning and Data Mining Algorithms

Data Mining is the process of extracting valid, previously unknown,
comprehensible, and actionable information from large databases and using it to make
crucial business decisions (Connolly, 2004). In other words, we can say that data mining
aims to extract knowledge from the data. In Data Mining and Machine Learning there are
other types of methods, such as Clustering and Neural Networks. However, for the purpose
of this research, we are interested in finding associations between features of the data set
and creating a classifier model.

Classification maps data into predefined groups or classes (Dunham, 2002). Thus,
classification is the process of finding a model that describes the data classes or concepts.
Its purpose is to be able to use this model to predict the class of objects whose class label is
unknown.

This mathematical approach fits well in the case of dealing with soccer statistics
around the world. As we know, there is a huge amount of data about players that need to be
transformed into useful information, so data mining would be adequate for dealing with big
data in order to extract from it only what we want to know, that is, typical feature patterns
for a Ballon d’Or nominee. In addition, player statistics are sometimes unknown, so we
need a mathematical approach appropriate to deal with player’s imperfect knowledge.

Moreover, we have previously unknown information about the characteristics of
Ballon d’Or nominees and we are assuming that the choice of France Football nominees is
reasonable.

Tools for Data Mining are very powerful, however, they require a very skilled
specialist who can prepare the data and understand the output. Data Mining brings out the
patterns and relationships, but the significance and validity of these patterns must be made
by the user. In addition, some Data Mining and Machine Learning methods may yield better
results than others, depending on the nature of the data set. That is why comparing the
various results obtained through the experience and knowledge of the user about soccer is
fundamental.

Among all types of data mining methods, we have chosen only classification
algorithms. As seen in the previous definition, the reason for using this kind of method is
obvious. In this research, we distinguish two groups of players: those assigned to the Ballon

3

d’Or and non-Ballon d’Or nominees. These groups are already predefined since we already
know who they are in the previous indications of the Ballon d’Or.

II. Feature Engineering

There are few websites that provide detailed player statistics, and even rarer ones
throughout the season. We have attempted to collect as many individual recorded statistics
as we could get on the Internet scattered accross multiple websites1. Many of them did not
provide all 29 attributes, so we gathered them together, taking data piece by piece,
especially for players like Neymar, who played a key role in the South American
tournaments during 2012, which are not well considered by European journalists.

We made a training data set with 181 instances and 30 attributes, one of which is the
target attribute, which specifies whether a player is a Ballon d’Or nominee or not. The
instances are represented by soccer players and their respective season. We could not have
time to get a larger number of players given the work rate to gather all the statistical
information about them within a few months. Otherwise, we would not have enough time to
apply data mining methods and analyze their results.

These 181 instances were composed of player statistics during the following period:
August 13, 2012 through December 25, 2013, and August 22, 2011 through December 25,
2012. These two periods correspond approximately to the 2012 season and to 2013 season.
Among the 181 players selected, 22 were nominee players for the Ballon d’Or award in
2013 and 20 of them were nominee players for Ballon d’Or award. So in total, there are 42
nominee player statistics and 139 non-nominee player statistics. We did not choose the total
of 23 players in those years, because some of them were goalkeepers.

We did not include the goalkeepers because the relevant statistics for a goalkeeper
are very different from all other types of players. It would take another data set only to deal
with goalkeepers to get an accurate result.

In order to obtain a balanced data set in terms of player’s position, we got a similar
proportion of players who act in the same position among the 42 nominee players and
among the 139 nominee players. This is very important in this research because we have a
very limited number of instances to work with, and most of those are Center or Wide
Forwards. Thus, in this case, there would be a risk that the classification models obtained
by Data Mining and Machine Learning methods could only describe a common feature of
any average Forward if there were not enough proportion of Forwards among the non-
nominee players. There are 20 Forwards, 11 Attacking Midfielders, 7 Defensive
Midfielders, 2 Fullbacks and 2 Center-backs among the 42 nominees. The Forwards
account for nearly half of all nominees. That is why we collected data from 51 Forwards,

4

1 http://espnfc.com/
http://www.ogol.com.br/
http://www.fifa.com/
http://br.soccerway.com/
http://www.whoscored.com/

38 Attacking Midfielders, 23 Defensive Midfielders, 13 Fullbacks and 14 Center-backs
among the 139 non-nominees.

We managed to gather more attributes than those 29, which are:

(0) Number of times a player started a game playing in that season;

(1) Number of times a player was on the bench and came into the match in that season;

(2) Total number of goals a player scored in that season;

(3) Total number of passes a player made that lead directly to a goal for his teammate,
that is, assists, in that season;

(4) Average number of goals a player scored per match in that season;

(5) Average number of assists a player did per match in that season;

(6) Total number of yellow cards a player received in that season;

(7) Total number of red cards a player received in that season;

(8) Average number of shots a player attempted to the goal either on or off target per
game;

(9) Average number of winning a header in a direct contest with an opponent per game;

(10) Average number of time a player dispossess an opponent, whether the tackling
player comes away with the ball or not, per game;

(11) Average number of opponent’s pass intercepted by a player per game;

(12) Average number of fouls committed by a player per game;

(13) Average number of times a player is the last man to step up to catch an opponent in
offside position per game;

(14) Average number of fouls clearances a player made to remove attacking threat on his
goal per game;

(15) Average number of times a player was dribbled by an opponent without winning a
tackle per game;

(16) Average number of times a player blocked a shot by opponent per game;

(17) Total number of own goals by a player in that season;

(18) Average number of passes a player made to lead to a shot at goal from a team mate
per game;

(19) Average number of times a player successfully dribbles past per game;

(20) Average number of time a player is fouled by opposite team per game;

(21) Average number of times a player is caught offside per game;

(22) Average number of times a player is tackled by an opponent without attempting to
dribble past them per game;

5

(23) Average number of times a player loses possession due mistake or poor control per
game;

(24) Average number of passes a player attempts (short passes, long balls, through balls,
crosses) per game;

(25) Percentage of attempted passes by a player that successfully found a teammate per
game;

(26) Average number of attempted and accurate pass from a wide position to a central
attacking area by a player per game;

(27) Average number of attempted and accurate pass of 25 yards or more by a player per
game;

(28) Average number of an attempted and accurate pass between opposition players in
their defensive line to find an onrushing teammate per game;

Some other attributes, such as the number of wins and losses by the team he is
playing, have been ignored because we assume that the Ballon d’Or is an award exclusively
for individual skills. From some tournament types, we were not able to collect data for all
29 attributes. But at least, from the 5 major European national leagues2 plus the Brazilian
national league, we gathered all the data. Fortunately most of the matches played by a
regular player in a season comes from the national league.

In addition, from the UEFA Champions League, which is the most important
tournament in Europe, we gathered all the data as well. We have also included data related
to the UEFA Europa League since it is the second most important tournament in Europe.
From all other tournaments, such as African Cup of Nations, AFC Asian Cup, Copa
America, Club World Cup, National Cups of the 5 major European soccer leagues, we were
not able to collect data for all these 29 attributes.

In order to get the best possible data set to avoid overfitting, we consider to choose
the statistics of the players not just in terms of their position but also in terms of the league
he plays. This is because we believe that each league has specific characteristics of game
style and an algorithm may have the risk of learning the underlying concept of a given
game style for a certain league in detriment of others. This is the reason why the data set
has a similar proportion of players acting in each league. This was not in a strictly way as
was done to equalize the proportion of players by position, but we tried not to choose the
players in a way that a given league becomes much more prevalent than the others in
relation to the group of the Ballon D’Or nominees and the non-nominees.

Everything that has been said before in this section is related to the training data.
However, a very similar approach was made to create the testing data in order to have
consistency with the training data. For example, there was no goalkeeper among the
instances in the testing data. Again, we used only statistics of the players in the 5 major

6

European Soccer Leagues. We only included data from the National Leagues, UEFA
Champions League and the UEFA Europa League.

The differences between training data relies on the number of instances. We have
chosen to gather 52 instances, where 26 are Ballon d’Or nominees and the other 26 are non-
nominees.

We chose each player by position and league he plays, so we had equally divided
them in both groups of Ballon d’Or nominees and non-nominees: 11 Forwards, 8 Attacking
Midfielders, 3 Defensive Midfielders, 3 Center-backs and 1 Fullback. Thus, we kept the
same proportion of positions between the Ballon d’Or nominees and non-nominees, in
order to make the test more reliable.

Another important difference with the training set is that the testing set was done
with statistics of the players of the 2016/2017 season, that is, much more recent data than
the training set, which were from 2011/2012/2013.

III. Data Preparation

We organized the Data Preparation step into 3 stages: data cleaning, data
transformation and feature selection.

On data cleaning, that is, preparing the data in a way that reduces noise and
manipulates missing values, we had no real trouble since we chose the attributes in relation
to the data available on the Internet. Otherwise, there would be many non-nominee players
with missing values, since the statistical data for these types of players are difficult find on
the Internet.

On data transformation, for some experiments, we decided to use normalization for
the training set. Specifically, we use the Z-score normalization, whose transformation of the
value of an attribute a of a n instance xi can be described as:

(1)

where:

x’i(a) is the new value for the instance i for attribute a,

xi(a) is the initial raw value for the instance i for attribute a,

μ(a) is the mean of the set of values of attribute a,

σ(a) is the standard deviation of the set of values of attribute a.

7

On feature selection, we experimented with two different functions to select the k
attributes with the highest score, according to the definition of its function. k is an integer
that can be arbitrarily chosen between 1 and the number of attributes in that data set. The
functions we chose were: Chi-square statistics (χ2) [8] between each attribute and the target
vector and the ANOVA F-value [9] between each feature and the target vector.

IV. Algorithms

We have selected algorithms ranging from the simplest one to the most
sophisticated, where all of them possess a very different concept between each one of them.
We will briefly explain how each of them works as follows.

1. ZeroR

ZeroR, short for Zero rule, is the simplest classification algorithm since it depends
only on the values of the target attribute and ignores all other feature attributes. ZeroR
simply predicts the majority class in a data set by building a model based on the most
frequent value in the target attribute. In other words, the ZeroR predictor model would be:

 ‘target attribute’ = ‘most frequent value of the target attribute’

2. OneR

OneR, short for "One Rule", is a simple and accurate classification algorithm that
generates a rule for each attribute in the data, and then selects the rule with the lowest total
error as a "single rule" associated with only 1 attribute.

OneR is considered to be one of the simplest existing classifiers. Nevertheless, it is
always good to try a simple version firstly. It has been shown that OneR produces rules
only slightly less accurate than very sophisticated classification algorithms, while
producing rules that are simple for humans to interpret.

In short, this algorithm chooses only 1 of all the attributes to create a rule. In other
words, it is based on the value of ony one, the best attribute to classify all future data. The
pseudocode of this algorithm is presented as follows.

For each attribute A:

For each value V of that attribute, create a rule:

 Count how often each class appears

 Find the most frequent class, c

 Make a rule "if A=V then C=c"

 Calculate the error rate of this rule

 Pick the attribute whose rules produce the lowest error rate

8
2Bundesliga - German 1st division football league
Barclays Premier League - English 1st division football league
La Liga - Spanish 1st division football league
Serie A - Italian 1st division football league
Ligue 1 - French 1st division football league

3. Decision Tree

CART, short for Classification and Regression Trees, is very similar to C 4.5.
C 4.5 is used in classification problems and it is one of the most used algorithm for building
Decision Trees [10]. It improves and extends the ID3 algorithm [11] by dealing with both
continuous and discrete attributes, missing values and pruning trees after construction. C
4.5 dynamically defines a discrete attribute (based on numerical variables) that partitions
the continuous attribute value into a discrete set of intervals. C 4.5 converts the trained trees
into sets of if-then rules. These accuracy of each rule is then evaluated to determine the
order which they should be applied. Pruning is done by removing a rule’s precondition if
the accuracy of the rule improves without it [12].

The difference between CART and C 4.5 is that CART supports numerical target
variables and does not compute rule sets. CART constructs binary trees using the feature
and threshold that yield the largest information gain at each node [12].

In the following we present the pseudo code of CART.

Check for base cases.
For each attribute a calculate:

Normalized information gain from splitting on attribute a.
 Select the best attribute
 Create a decision node that splits on best of attribute
Recurs on the sub lists obtained by splitting on best of attribute and add those nodes as
children node.

The selection of best attribute in CART refers to selecting an attribute that produces
the purest daughter nodes. The purest node possible is a leaf with only one class either
“Yes” or “No”, so it will not have to be split further and it will favors for smaller tree. In
other words, we select an attribute on which objects are partitioned most clearly after
objects are partitioned. This brings on the concept of entropy and information gain.




Entropy is a function defined by equation (2). Here pc is the probability that a
certain instance belongs to class c. In our case, probability can be defined just as frequency,
that is, the proportion of instances which belong to class c in the data set T.

9

In the case of our research, where there are only 2 classes possible: “Yes Ballon
d’Or” and “No Ballon d’Or”, we could reduce the sum in two parts only. The first term is
related to the positive instances of T and the second one to the negative instances of T.

Entropy measures the impurity of a set of training instances T. That is, it represents
the expected amount of information that would be needed to specify whether a new
instance should be classified in a positive class “Yes Ballon d’Or” or a negative class “No
Ballon d’Or”, in the case of our research.

Using this concept of entropy, it is used the concept of information gain, which is
defined by the difference of entropy of parent node and average entropy of the children
nodes. This is better described in the equation (3).

 ...(3)

Here T denotes a set of training examples, each of the form (x,y) = (x1, x2, x3 ,.., xk

,y) where xa belongs to vals(a) is the value of the ath attribute of the instance x and y is the
corresponding target value. The information gain of attribute a in terms of entropy H.

In that way it’s possible to check which of the attributes give us the highest
information gain. So that attribute is selected as the best and taken as criteria for splitting.
Then the nodes are expanded until all leaves are pure. The pruning is done while expanding
the leaves, where the node will split if this split induces a decrease of the impurity greater
than or equal to a threshold, arbitrarily chosen by us. In the figure 1 there is the function of
entropy for the case of 2 classes.

Figure 1: Graphical representation of the entropy function,where the x-axis is proportion of instances in the set
belonging to the class X=1. Notice that this graph illustrates only the case where there are only two classes in the data set.

10

Assuming there are 2 classes, one class labeled “0” and one class as “1”, it is
possible to see that the entropy of a set S is maximum when the probability of a class X,
Pr(X=1) is exactly 0.5. This value occurs when the set S is equally divided into class “0”
and class “1”.

When S is completely homogeneous, that is, when S represents the purest child
nodes possible in a decision tree, then the entropy equals 0. This means that there is no
need to split more nodes since it can not have any information gain thereafter.

4. Logistic Regression

It is a modification of the Linear Regression method [13], but instead of producing a
continuous numerical value, it generates only two possible values for the target value.

Unlike Linear Regression which simply uses the difference of the actual target value
with its linear function to compute cost, Logistic Regression calculates cost in a different
way. Another crucial difference is that whereas Linear Regression model function is only a
linear combination with the attribute weights, the Logistic Regression model function is a
function σ whose parameter is a linear combination with the attribute weights. This can be
expressed in Equation (4), where

 (4)

Here, hθ is our hypothesis function, x is a vector of all the attribute values of a given
instance and θT is the transpose vector of the weights that we need to find to construct a
classifier for the hypothesis function.

Logistic Regression uses a sigmoid function σ(t) , which receives any real input and
outputs a value between zero and one, as show in Figure 2.

11

Figure 2: Graphical representation of the sigmoid function. Notice that its y intercept is exactly 0.5 and that all the possible
outputs are in the interval of [-1,1].

This function is defined in Equation (5).

 (5)

The cost function is defined in Equation (6), which measures how well the algorithm
learns in each iteration.

(6)

Thus, we penalize the learning algorithm by a very large cost as it commits mistakes,
because that equation states that:

(7)

and

(8)

Then, the algorithm tries to minimize the Cost J(θ) defined in Equation (9).

(9)

After a defined number of iterations, the algorithm stops and delivers the hypothesis
function hθ with the weights θ that have been calculated so far.

12

5. Support Vector Machines

Support Vector Machines (SVM) is a powerful algorithm for machine learning
classification, which aims to design a hyperplane that best classifies all training instances
into two classes. That is done by maximizing the margin between two classes. The margin
is the distance between the hyperplane and the nearest instance of a class.

The pseudocode of the SVM algorithm is shown as follows:

Define an optimal hyperplane: maximize margin.

Extend the above definition for non-linearly separable problems: have a penalty
term for misclassification.

Map data to high dimensional space where it is easier to classify with linear
decision surfaces: reformulate problem so that data is mapped implicitly to this space.

The hyperplane is designed equidistantly for its closest instance of both classes. The
hyperplane can be defined in Equation (10):

 (10)

Here, w is a vector of weights and b is a constant, such as a bias. It will provide
values equal to or greater than 1 for all instances of class 1 and will provide values equal to
or less than -1 to all instances of class 2. The vectors that define w are called support
vectors.

In the end, an optimization problem is used to maximize the width of the margin w,
with the constraints defined for the classification of class 1 and class 2, as stated in the
previous paragraph.

Therefore, in order to maximize the separability between the two classes, it is
necessary to minimize the value of the vector w. An ideal SVM analysis should produce a
hyperplane that completely separates the vectors (cases) into two non-overlapping classes.
However, perfect separation may not be possible. In this situation, the SVM finds the
hyperplane that maximizes the margin and minimizes the classification error. For this, it
penalizes each instance that falls off the margin with a slack variable ξi . This slack variable
for a given instance is then added to the constraint equation for that instance.

The new objective adds a new term related to the penalization of all instances in the
model. This is described as the product of a constant C and the sum of the slack variables of
all instances.

13

3. Proposed Solutions

In Feature Engineering, LibreOffice Calc was used to manually construct the
training and testing sets. After collecting data from several soccer-related websites, the
attributes were filtered and arranged in columns to be included in the data set. This task was
done manually, from choosing the player statistics to placing the data sets and formatting
the values in the data set table before converting them to CSV files. These data sets used in
our research were:

(A) For the data without the attribute which counts the number of times a player started
playing a match:

- CSV2012-2013_ALL_PLAYERS _No_app_no goalkeeper_ No MOM.csv as the training
set;

- 2016-2017season.csv as the testing set;

(B) For the data with the attribute which counts the number of times a player started
playing a match:

- CSV2012-2013_ALL_PLAYERS _YES_app_no goalkeeper_ No MOM.csv as the
training set;

- 2016-2017season_YESapp.csv as the testing set;

In the end, after analyzing the results from both data sets, we decided to discuss in
this report only the results from data set B. It was found out that the attribute which counts
the number of times a player is much more important as we thought. Initially, we believed
that the results were not coherent to our knowledge of soccer, however, later on we
reconsidered to have a different perspective about the game. Thus, the data set B brought
more relevant and complete results than data set A. We will discuss that later in the section
of results.

All the code generated along this work was implemented in Python programming
language, version 2.7. We also used the following libraries:
- pandas – to manipulate the data set;
- csv – to open the CSV files;
- numpy – for several purposes, such as manipulatation of arrays and other data structures;
- scikit-learn – the most important library in this research, which contains the machine
learning algorithms used in our experiments.

The only algorithms that we did not use any scikit-learn implementation to code
them were ZeroR and OneR. All other algorithms, such as Decision Trees, Logistic
Regression and Support Vector Machines, were implemented using sklearn.tree ,
sklearn.linear_model and sklearn.SVC, respectively. For all these three algorithms, we

14

used the following classes, respectively, to run each of these algorithms:
DecisionTreeClassifier, LogisticRegression and SVC.

We set the default parameters to initialize each algorithm. There were exceptions,
such as the DecisionTreeClassifier class, in which we used the criterion=”entropy”
parameter, since we intended to use this concept instead of using the Gini Index to become
the concept for the criteria for dividing each node. In addition, the min_impurity_decrease
parameter (that is, the threshold for splitting each node) was set to its default value of 0.
This means that it would not prune any tree.

Another exception was the SVC() class, where we used the kernel=”linear”
parameter to retrieve the coefficients of each attribute. This was made to maintain it
coherent with the method proposed in Section II, where there was no transformation of the
original space resulting from the kernel transformation and, therefore, the coefficients are
directly related to the dimension of the data set.

Specifically, in the OneR implementation, we implemented the discretization of the
data set to 5, 6, 7, 8, …, 19, 20 categorical values for each attribute.

For OneR only, we implemented a version where we used k-fold cross-validation
[14]. We applied k=10, which is dividing the training set into 10-folds, where 9 of them
were used to build the classifier and 1 of them was used as the validation fold in each one
of the 10 total iterations. One important aspect to notice is that we used StratifiedKFold
class from scikit-learn library, so the folds were made by preserving the percentage of
samples for each class. When using the testing set, among the 10 generated OneR
classifiers, only one is chosen, the one that obtained the highest accuracy in the validation
set.

For the other algorithms, except ZeroR, since it does not work with the non-target
attributes, the data preparation was made with the scikit-learn library. Standardization with
Z-norm was done with sklearn.preprocessing, whereas the Feature Selection was made
with sklearn.feature_selection.

To normalize using Z-score, we used the StandardScaler() method. To make the
feature selection, the choice of the method depended on the type of experiments we did.

For experiments in which we needed to work with discrete data, we used Chi-square
as the function to be computed for the SelectKBest() method to select the k best attributes.
To work with the data without discretizing them, we used f_classif , that is, the ANOVA F-
value, as the function to be computed for the SelectKBest() method.

It is important to mention that the Z-score normalization may produce negative
values in the data set. Since Chi-square function does not accept negative values, it was not
possible to use feature selection using chi2. We only used f_classif for feature selection
after Z-score normalization.

4. Results

All the results were obtained by running the programs in Python. Some of the
results were obtained via Weka Software, but the objective of doing that was just to
compare them with its equivalent algorithm in a program coded by us.

15

We used the same training and testing sets that were defined in Section II for the
Weka and Python programs.

I. ZeroR

ZeroR gave very modest results, but it was useful in order to have a baseline for the
performance of the other algorithms.

It does not matter whether we applied Z-score normalization or used the
SelectKBest() during the data preparation because this algorithm uses only the target
attribute values. We tested the same algorithm in the Weka software and obtained exactly
the same results. Prediction of class value: Ballon d’Or Nominee = “No”.

Here are the results for the testing data:

* Correctly classified instances =50%

* Confusion matrix:

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 0 26

Actual “No” 0 2

It is obvious that the prediction rule would be to set the target value Ballon d’Or
Nominee to “No” value, since most instances in the training set are not nominees. Only a
few players are selected each year to be nominated.

Moreover, since the testing set was equally divided between the instances into the
two classes, it was evident that the accuracy of ZeroR classifier would be 50%. As it is
possible to see from the confusion matrix, ZeroR classified all instances in the testing set as
“No”. Hence, we did not have true positives among the correctly classified instances.
Because of this, the other half of the instances that were misclassified were all false
positives.

II. OneR
For all classifiers generated by OneR, we always had to discretize the numerical

values to obtain categorical values for the algorithm to work. Some experiments were
applied to the k-fold cross-validation, for others only Z-score normalization, for others only
feature selection , for other two of them together, and for others no kind of preprocessing.

First, we will show OneR results with 10-fold cross-validation. After testing with
several number of bins (b) for discretization, as mentioned in Section III, we found that the
best accuracy for the testing, using the minimum possible value for b, occurred when b=6.

16

Its overall mean accuracy for all the 10-fold validations were 89.40% and their accuracy in
the testing data was 59.62%.

For instance, for b=10 it gave a total mean accuracy of 89.90% for all 10 folds and
an accuracy in the testing data equals 55.77%. For b=5, it was 82.73% and 51.92%,
respectively. For b=20, it was 88.72% and 55.77%, respectively.

The set of rules with the best validation accuracy among all iterations for b = 6 is
shown below:

IF Appearances = 0.0 to 10.0 THEN Ballond'OrNominee = No

IF Appearances = 10.0 to 20.0 THEN Ballond'OrNominee = No

IF Appearances = 20.0 to 30.0 THEN Ballond'OrNominee = No

IF Appearances = 30.0 to 40.0 THEN Ballond'OrNominee = No

IF Appearances = 40.0 to 50.0 THEN Ballond'OrNominee = Yes

IF Appearances = 50.0 to Infinite THEN Ballond'OrNominee = Yes

Incredibly, the accuracy in the validation set of that specific iteration was 100%.
The confusion matrix for b=6, using 10-fold cross-validation or not using it, was exactly
the same. By applying SelectKBest with the parameter f_classif, the results also remained
the same.

* Correctly classified instances =59.62 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 5 21

Actual “No” 0 26

OneR can correctly predict all 26 players who were not candidates for the Ballon
d’Or. However, it was difficult to correctly classify the nominee players.

Probably the main reason for that is that the generation of rules based on the values
of a single one attribute is not enough to classify a Ballon d’Or nominee, that is, the
characterization of the nominee is not só simple to be described.

However, using the chi2 parameter, b=6 using 10-fold cross-validation, the total
average accuracy for all iterations was slightly lower at 86.69%, but the accuracy for the
testing data drastically increased to 67.31%. Its confusion matrix is as follows:

* Correctly classified instances =67.31 %

17

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 9 16

Actual “No” 0 26

There were no significant difference with the confusion matrix using f_classif or not
using any feature selection, since it could correctly guess all 26 non-nominee players, but it
was not very effective to detect Ballon d’Or nominees, even though it improved.

No matter how we set the parameter b, the attribute chosen to generate the rules has
always been the number of times a player starts playing a match (‘Appearances’), attribute
(0). Astoundingly, even without using the 10-fold cross-validation or even without using the
SelectKBest feature selection method, the chosen attribute was always ‘Appearances’, the
attribute (0), no matter if f_classif or chi2 is used as the function to calculate the score of
each attribute.

Not only that, but the accuracy metrics, the classifying rules and the confusion
matrix were exactly the same. In this case, no matter what value for k for SelectKBest is
chosen, the results remain the same. Every variation applied to the algorithm does not seem
to have any change in the results, except when using Z-score normalization before the
feature selection.

It was found that the results of the confusion were very different from the previous
results. For instance, using b=6, the total average accuracy for all 10-fold validations was
slightly lower than 88.78% and their accuracy in the testing data was also lower, 50.00%.

* Correctly classified instances =50 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 26 0

Using Z-score normalization before applying SelectKBest with the f_classif
parameter, even if the statistical metrics dropped, specially the accuracy testing, the results
were promising. After all, this time it could guess correctly all the Ballon d’Or nominees.
However, it could not detect any non-nominee.

According to Weka software, we tried to replicate the same kind of experiments,
however, it does have some limitations. One was that it could not use the set of rules

18

generated in the cross-validation stage to test it in the testing data. Then, instead we got
only the accuracy of the selected set of rules from all iterations. For this, we chose to use a
filter in Preprocessing section of Weka, which is called Discretize, to discretize the data. We
set its parameters to discretize into 6 bins. The results were almost the same, since their
percentage of Correctly Classified Instances was 88.95% and the set of rules was exactly
the same as the algorithm developed by us. In this case, we used stratified 10-fold cross-
validation and number of bins for discretization equal to 6.

To test a set of rules generated by Weka with the testing data created by us, we did
not have to discretize the training data. Unfortunately, Weka has some incompatibilities to
deal with categorical values (generated by the discretization of the data into bins) and the
numerical values of the testing data. Weka can not interpret a categorical value from the
transformed training data and associate it with a range of numerical values that would be
used for the values of the training set. This is because it can not split the string name from
the categorical value and find out what numeric interval it refers to. On the contrary, in our
coded program, we were able to deal with that.

We then used the raw numeric value in the training and provided the testing data
and obtained the following results:

Apps:

< 39.5 -> No

>= 39.5 -> Yes

* Correctly Classified Instances = 59.62 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 5 21

Actual “No” 0 26

Here, ‘Apps’ refers to attribute (0), the number of times a player starts playing a
match. Working with numerical values, Weka discovers the best numerical value to create
only two predicting rules. We set the minBucketSize parameter to its default value, 6. That
is the minimum number of instances for discretizing the numeric values.

As it is possible to see in the confusion matrix, the results were exactly the same as
the algorithm coded by us, when we did not use any normalization or when we used
f_classif as the function for SelectKBest.

19

Using the Weka Standardize preprocessing filter, that is, Z-score normalization
before doing the training and testing, the results obtained were exactly the same as that
obtained with the algorithm coded by us. That is:

* Correctly classified instances =50 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 26 0

In short, OneR brought results that go against the known knowledge about soccer
that number of goals is the determining statistical metric for a player to be considered a
Ballon d’Or nominee. On the contrary,it shows that the number of appearances of a player
starting a match is the most important statistical metric to define whether a player will be
nominated for Ballon d’Or.

III. Decision Tree

We did experiments on the program coded by us, where we used scikit-learn
libraries. In order to compare Weka results with the results of our program, we had to adapt
the Weka decision tree algorithm since it is based on C4.5 and not in CART.

Without using any kind of preprocessing method, we had the following results when
we ran the program coded by us:

* Correctly Classified Instances = 71.15 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 11 15

Actual “No” 0 26

20

This was a large increase in accuracy over OneR experiments, even without Z-Score
normalization and feature selection. However it is possible to see in the confusion matrix
that the model remained with characteristics similar to those generated by OneR. Scikit-
learn CART could perfectly predict all true negatives, but failed to perform well to predict
the true positives. Only 11 of them were detected, that is, less than half, in the same way
that the models generated by OneR behaved. Figure 3 shows the tree generated by scikit-
learn CART.

Figure 3: Visual representation of the decision tree generated by the program coded by us in Python programming language
using the scikit-learn libraries. Here, no feature selection or Z-score normalization was performed before the training.

As it is possible to see in the decision tree of Figure 3, the first attribute to split is
the attribute (0), the number of times a player starts playing a match, as it was stated earlier
in Section II. It is worth mentioning that CART does no prune with our current algorithm
configuration.

The other attributes chosen to split the nodes were from top to bottom:

- attribute (2), number of goals;

- attribute (16), average times he blocked a shot per game;

- attribute (8), average shots in the goal per game;

- attribute (10), average number of tackles per game;

- attribute (24), average number of passes per game;

21

- attribute (18), average number of keypasses per game;

- attribute (1), number of times the player came in from the bench;

- attribute (9), average aerial duels won per game;

- attribute (11), average number of pass interceptions per game;

- attribute (25), percentage of successful pass per game.

By using only SelectKBest as a preprocessing method, we decided to try different
values of k, but specifically values around 11. This is because, in experiment with no
preprocessing method, only 11 attributes were chosen to split the nodes. Therefore, there is
no reason to set k as high as 25, for example.

First, we will analyze the results from setting the chi2 (Chi-square) parameter to the
SelectKBest. For k=5,6,7,8, we had accuracy lower than the previous CART experiment,
fluctuating around 65%. For k ≥ 15, we still had a decrease in accuracy compared to the
previous CART experiment, where it fluctuates around 68%. For k=9,10,11,12,13,14, the
accuracy was equal to or higher than 70%. The best accuracy in the testing was obtained
with k=13, where the results are below:

* Correctly Classified Instances = 80.77 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 18 8

Actual “No” 2 24

22

Figure 4: Visual representation of the decision tree generated by the program coded by us in Python, using scikit-learn
libraries. Here, only feature selection using chi-squared function to calculate the score of each attribute was used. Here,
k=13 for the SelectKBest feature selection function.

By using f_classif as parameter for SelectKBest, we were able to get worser results
than with chi2. In fact, even worse than the first CART experiment. The accuracy fluctuated
around 61% for any value of k. The best result was obtained with k=13:

* Correctly Classified Instances = 67.31 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 11 15

Actual “No” 2 24

23

Figure 5: Visual representation of the decision tree generated by the program coded by us in Python, using scikit-learn
libraries. Here, only feature selection using ANOVA F-value to calculate the score of each attribute was used. Here, k=13
for the SelectKBest feature selection function.

Finally, we performed the experiment where we applied Z-score normalization
before SelectKBest. However, the results were very disappointing as most of the values for
k produced accuracy rates in the testing set of 50.0%. The best result was for k=12:

* Correctly Classified Instances = 51.92 %

24

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 25 1

25

Figure 6: Visual representation of the decision tree generated by the program coded by us in Python, using scikit-learn
libraries. Here, Z-score normalization was applied in the data set before applying feature selection, which used ANOVA F-
value to calculate the score of each attribute was used. Here, k=12 for the SelectKBest feature selection function.

Again, as in the previous OneR experiment with Z-score normalization, the
generated model was good to predict true positives, all 26 instances in this case, but failed
poorly in predicting the true negatives, only 1. For the other values of k, they were not able
to get a single true negative.

At Weka, we chose to use the J48 algorithm to generate the decision trees, because
it is based on C4.5 and has some similarities with CART. To make it more similar to CART,
we have activated the parameter Unpruned, since CART does not prune the trees either.

Then, without using any Weka preprocessing method, we set the default parameters
of J48 and obtained the following results:

* Correctly Classified Instances = 71.15 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 11 15

Actual “No” 0 26

Goals <= 22

| Apps <= 41

| | Assists <= 8

| | | Red <= 0: No

| | | Red > 0

| | | | Goals <= 11: No

| | | | Goals > 11

| | | | | Apps <= 30: Yes

| | | | | Apps > 30: No

| | Assists > 8

| | | SpG <= 2.9

| | | | TB <= 0.6: No

| | | | TB > 0.6: Yes

| | | SpG > 2.9: Yes

| Apps > 41

| | OffWon <= 0.641463

| | | BlkShots <= 2.04: Yes

26

| | | BlkShots > 2.04: No

| | OffWon > 0.641463: No

Goals > 22: Yes

Figure 7: Visual representation of the decision tree generated by Weka J48. Here, there was neither feature selection nor
normalization.

As it is possible to see from the previous confusion matrix, J48 is good to predict
true negatives, such as the decision trees given by our program, and it struggles to properly
classify the true positives.

By applying the Standardize filter before running J48, we obtained similar results
from our program when we applied Z-score normalization in the training data:

* Correctly Classified Instances = 53.85 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 24 2

Goals <= 0.935882

| Apps <= 0.812868

| | Assists <= 0.446482

| | | Red <= -0.503933: No

| | | Red > -0.503933

| | | | Trn <= -0.161462: No

| | | | Trn > -0.161462: Yes

| | Assists > 0.446482

| | | SpG <= -0.102306

| | | | TB <= 2.025302: No

| | | | TB > 2.025302: Yes

| | | SpG > -0.102306: Yes

| Apps > 0.812868

| | OffWon <= -0.086301

| | | BlkShots <= -0.066309: Yes

| | | BlkShots > -0.066309: No

| | OffWon > -0.086301: No

Goals > 0.935882: Yes

Figure 8: Visual representation of the decision tree generated by Weka J48. Here, only Z-score normalization was applied in
the training data.

27

One important aspect to notice in both trees generated by Weka is that the attribute
which was chosen to be the root of the decision trees was the number of goals, attribute (2).

The other attributes chosen to split the nodes were from the top to the bottom:

-Apps: attribute (0), number of times a player started playing a match;

-Assists: attribute (3), total number of assists;

-Red: attribute (7), number of red cards received;

-Trn: attribute (23), average number of times he lost the ball – turn overs;

-SpG: attribute (8), average number of shots in the goal per game;

-OffWon: attribute (13), average number of times he won an offside per game;

-BlkShots: attribute (16), average times a player blocked a shot per game;

IV. Logistic Regression

First, we will present the classifiers generated by Logistic Regression with no
preprocessing. In comparison with the OneR classifier, with no preprocessing, this
performed slightly better:

* Correctly Classified Instances = 76.92 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 15 11

Actual “No” 1 25

The weights θi of each attribute i of the obtained hypothesis function were:

Apps,attribute (0): -0.0896512579183

SubIn,attribute (1): -0.213789836045

Goals,attribute (2): 0.124552431694

Assists,attribute (3): 0.252873708623

AverageGoalspermatch,attribute (4):-0.044132979153

AverageAssistspermatch,attribute (5):-.0495894673716

Yellow,attribute (6): 0.0542204850821

Red,attribute (7): 0.0170118179154

SpG,attribute (8): -0.00115065975868

AW,attribute (9): -0.0222022168281

Tackle,attribute (10): -0.125403971544

Int,attribute (11): -0.233378868554

28

Fouls,attribute (12): -0.127731974841

OffWon,attribute (13): 0.0518291587652

Clr,attribute (14): -0.14279934855

WasDribbled,attribute (15): -0.177817918935

BlkShots,attribute (16): -0.0472284139999

OG,attribute (17): -0.0379192704386

KeyPasses,attribute (18): -0.246934474823

Dribbles,attribute (19): -0.0558734777214

Fouled,attribute (20): 0.0704385343643

Offs,attribute (21): -0.0190723253703

Disp,attribute (22): 0.00787598410165

Trn,attribute (23): -0.0112693476882

Avg.Passes,attribute (24): 0.0152446752573

PassSuc%,attribute (25): -5.0585247178e-05

Crosses,attribute (26): -0.203654178301

LB,attribute (27): 0.257716874307

TB,attribute (28): 0.0408887908759

This was the first experiment among all the evaluated machine learning algorithms,
without using any kind of preprocessing, where it performed relatively well in predicting
true positives and true negatives. It was able to correctly classify 25 out of 26 true negatives
and more than half of the true positives, 15.

Regarding the attribute weights, it is possible to see that the attribute with the

highest weight value θi was attribute (27) LB, the average number of accurate long passes.
Then, that is closed followed by attribute (3) Assists and by attribute (2) Goals. In 4th place,
we have the attribute (20) Fouled, the average number of times a player is fouled per match.
In 5th place, we have the attribute (6) Yellow, the total number of yellow cards a player has
received in a season.

Then, we decided to use only the SelectKBest feature selection method to see if
performance would improve even further. Unfortunately, the accuracy in the testing set for
several values of k decreased to about 70% for the f_classif parameter.

For higher values of k, such as k≥12, the accuracy was better, around the same as
the first Logistic Regression experiment, 76%. The best result found was for k=13 using
f_classif as parameter for SelectKBest:

* Correctly Classified Instances = 78.85 %

29

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 15 11

Actual “No” 0 26

Here, we see that there has been a slight improvement in performance, since now it
was able to perfectly predict all true negatives. However, the performance to detect the true
positives remained the same, classifying more than half of the nominees correctly.

The selected attributes and their respective weights θi of the obtained hypothesis
function were:

Apps,attribute (0): 0.0111982316675

SubIn,attribute (1): -0.0929594156751

Goals,attribute (2): 0.0996933242685

Assists,attribute (3): 0.192223983619

AverageAssistspermatch,attribute(5):0.70660587160

Yellow,attribute (6): 0.0869674209114

SpG,attribute (8): -0.00039233514483

AW,attribute (9): -0.0014341502202

Fouls,attribute (12): -0.00149380563039

Offs,attribute (21): 0.0093501369622

Disp,attribute (22): 0.00105222885208

LB,attribute (27): 0.00114216070071

TB,attribute (28): 0.00984643565113

It is possible to see that the attribute with the highest value of weight θi was attribute
(3), Assists. It is then followed by attribute (2), Goals . In 3rd place, we have the attribute (0),
Apps, the total number of times a player started playing a match. In 4th place, we have the
attribute (28), TB, the average number of accurate ball passes.

By changing the parameter to chi2, the classifiers performed slightly worse than
with the f_classif parameter. Another detail that we noticed was that, for very small k, such
as k=5,6,7,8, the accuracy dropped to about 57% and the attribute with the highest weight
was attribute (27), the average number of accurate long ball passes per match. For values
greater than k, the accuracy increased to about 67% to 73% and the attribute with higher
weight always remained as the attribute (2), total number of goals.

From all the previous experiments with the program coded by us, it was the first
time that the attribute (2), Goals, was considered the most relevant attribute for a classifier

30

model. That is a great achievement for a classifier, since in soccer, the most important
aspect of the game is scoring goals. The results for k=16 are shown as follows, where the
accuracy achieved its maximum:

* Correctly Classified Instances = 78.85 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 16 10

Actual “No” 1 25

The best result using Feature Selection with parameter chi2 is very similar to the best
result using Feature Selection with f_classif. The selected attributes and their respective
weights θi from the obtained hypothesis function are shown below:

Apps,attribute (0): 0.0506707059288

Goals,attribute (1): 0.29390276458

Assists,attribute (2): 0.159004344493

SpG,attribute (8): -0.241836968065

Tackle,attribute (10): -0.772517293095

Int,attribute (11): -0.197015352283

Fouls,attribute (12): -0.469273095401

Clr,attribute (14): 0.00162924326583

BlkShots,attribute (16): -0.039735344662

KeyPasses,attribute (18): -0.822165422067

Dribbles,attribute (19): -7.23320313241e-05

Fouled,attribute (20): -0.373782462666

Trn,attribute (23): -0.651245331231

Avg.Passes,attribute (24): 0.146103286381

PassSuc%,attribute (25): -0.100363583165

LB,attribute (27): 0.0412252310124

By applying Z-score normalization before the feature selection, we have noticed that
the performance of Logistic Regression dropped even more. For most values of k, the
accuracy remained 50% and stabilized around it. The results for k=10 are:

31

* Correctly Classified Instances = 51.92 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 25 1

It is possible to see that the performance to detect true positives for k=10 has greatly
increased, performing flawlessly. However, the classifier no longer detected the true
negatives, detecting only 1 of them. For other smaller values of k, the classifier could not
even detect a single true negative.

The selected attributes and their respective weights θi from the obtained hypothesis
function are shown below:

Apps,attribute (0): 1.45382002462

Goals,attribute (2): 1.32574403033

Assists,attribute (3): 0.752794826885

Yellow,attribute (6): 0.51169220902

SpG,attribute (8): -0.0202936708261

AW,attribute (9): 0.160291411787

Fouls,attribute (12): 0.190964883888

Offs,attribute (21): 0.35479468468

LB,attribute (27): 0.497315968041

TB,attribute (28): -0.0813653864442

It is possible to see that the attribute with the highest value of weight θi was attribute
(0), Apps. It is then followed by attribute (2), Goals. In 3rd place, we have the attribute (3),
Assists. In 4th place, we have the attribute (27), LB, the average number of accurate long
passes. In 5th and with a value very close to the 4th comes the attribute (21), Offs, the average
number of times a player is caught offside. Using Z-score normalization, it is clear to see
that the weight of the selected attributes is only higher in comparison with the weights
obtained in previous Logistic Regression experiments.

V. Support Vector Machines

Although we were expecting a better accuracy with SVM when compared to all the
previous experiments using the other algorithms, the results were not so better than the
previous ones.

The results when not applying any sort of preprocessing method were:

* Correctly Classified Instances = 71.15 %

32

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 11 15

Actual “No” 0 26

 Apps,attribute (0): 0.0691666460651

SubIn,attribute (1): 0.0372047861213

Goals,attribute (2): 0.0746694439984

Assists,attribute (3): 0.130409558566

AverageGoalspermatch,attribute(4):-0.0257449362893

AverageAssistspermatch,attribute(5):-0.150991421621

Yellow,attribute (6): -0.0016515270002

Red,attribute (7): -0.0389464619581

SpG,attribute (8): -0.000560025090302

AW,attribute (9): 0.0931713095751

Tackle,attribute (10): -0.261224217197

Int,attribute (11): -0.892310084742

Fouls,attribute (12): -0.0345770328897

OffWon,attribute (13): 0.0800112926712

Clr,attribute (14): 0.0401774928635

WasDribbled,attribute (15): -0.662987773041

BlkShots,attribute (16): 0.380578923743

OG,attribute (17): -0.285385088073

KeyPasses,attribute (18): -0.544282754791

Dribbles,attribute (19): -0.158342815635

Fouled,attribute (20): 0.340399629064

Offs,attribute (21): -0.816133377578

Disp,attribute (22): -0.0857702135888

Trn,attribute (23): -0.0747773595098

Avg.Passes,attribute (24): 0.0421985638021

PassSuc%,attribute (25): 1.57686866942e-06

Crosses,attribute (26): -0.319002176927

LB,attribute (27): 0.168812078952

TB,attribute (28): 0.52579820497

33

According to the values of the 5 largest coefficients, the most relevant attributes are
in this order: attribute (28), attribute (16), attribute (20), attribute (27) and attribute (3).

The accuracy in the testing set was reasonable, but it was no better than Logistic
Regression and was equal to the Decision Tree algorithm. The classifier has similar
characteristic to the previous ones, such as the Decision Trees: good at predicting true
negatives, but not good at predicting true positives.

Applying the feature selection with f_classif, we noticed that the performance
improved slightly, but incredibly remained high even for low values of k as k ≤ 9, where the
accuracy was around 71% to 73%.

The best results that we obtained, for k=12 using f_classif as parameter for the
method SelectKBest, were:

* Correctly Classified Instances = 75.00 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 13 13

Actual “No” 0 26

Apps,attribute (0): 0.0305908098896

SubIn,attribute (1): -0.0268005083012

Goals,attribute (2): 0.0615295918123

Assists,attribute (3): 0.189554157237

Yellow,attribute (6): 0.162572454409

Tackle,attribute (10): -0.879016612217

Fouls,attribute (12): -0.306479133393

Dribbles,attribute(19):0.00166183872254

Trn,attribute (23): -0.239214509481

Crosses,attribute (26): -0.99210984003

LB,attribute (27): 0.286536702973

TB,attribute (28): 0.229336448984

There has been an improvement over the first SVM experiment, as the classifier can
now predict with 50% of reliability to distinguish true positives from false negatives. The

34

highest coefficient was from the attribute (27), LB, the average number of accurate long
ball passes per match and attribute (28), TB, the average number of accurate ball passes per
match. The attribute (2), Goals, was only the 5th largest coefficient among the selected
attributes.

When exchanging the parameter to chi2, the results remained similar to the SVM
experiment with f_classif, because for most of values of k the accuracy fluctuated very little
around 71% to 73%. The results for k=19 are shown below, the best result we got with the
lowest possible k using SelectKBest with chi2:

* Correctly Classified Instances = 76.92 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 14 12

Actual “No” 0 26

Apps,attribute (0): 0.067671232728

Goals,attribute (1): 0.156197251022

Assists,attribute (2): 0.135797222985

SpG,attribute (8): -0.000611496143071

Tackle,attribute (10): -0.157172057037

Int,attribute (11): -0.389386470346

Fouls,attribute (20): -0.609677357671

OffWon,attribute (13): 0.388556695879

Clr,attribute (14): 0.00922404729827

WasDribbled,attribute (15): -1.00494778692

BlkShots,attribute (16): 0.110227469587

KeyPasses,attribute (18): -0.69535878156

Dribbles,attribute (19): 0.00265564936444

Fouled,attribute (20): -0.112983509619

Disp,attribute (22): -0.0264271147589

Trn,attribute (23): -0.282688310721

35

Avg.Passes,attribute (24): 0.0917683211418

PassSuc%,attribute (25): -0.034247014047

LB,attribute (27): 0.00276411919278

It is interesting that by applying feature selection with the function chi2 as the score
of an attribute, the best accuracy in the testing set was achieved with a very high number of
selected attributes. Compared to all other classifiers shown in this report so far, the optimal
values of k were around 12 and 13. However, this compensated a bit because the accuracy
increased slightly compared to previous SVM experiments.

A strange behavior occurred with the SVM classifiers generated when the Z-score
normalization was applied before the feature selection. For all results, no matter what value
was set for k, the accuracy and the confusion matrix remained exactly the same. Even when
only Z-score normalization and no feature selection were applied, the results remained the
same:

* Correctly Classified Instances = 50.00 %

m=52 Classified as “Yes” Classified as “No”

Actual “Yes” 26 0

Actual “No” 26 0

Apps,attribute (0): 1.56815577613

SubIn,attribute (1): 0.143726455708

Goals,attribute (2): 1.02114616628

Assists,attribute (3): 0.389867650195

AverageGoalspermatch,attribute(4): 0.0158012120793

AverageAssistspermatch,attribute(5): -0.0156668974297

Yellow,attribute (6): 0.230149845737

Red,attribute (7): 0.0474276358559

SpG,attribute (8): -0.207892012549

AW,attribute (9): -0.902180621659

Tackle,attribute (10): -0.0110217393071

Int,attribute (11): -0.0109137540541

36

Fouls,attribute (12): -0.044968350705

OffWon,attribute (13): -0.0104289342007

Clr,attribute (14): -0.0383385789957

WasDribbled,attribute (15): -0.129640822321

BlkShots,attribute (16): 0.00332567581064

OG,attribute (17): -0.536709058974

KeyPasses,attribute (18): -0.000339580609229

Dribbles,attribute (19): -0.0335981914283

Fouled,attribute (20): -0.0278680223573

Offs,attribute (21): -0.506999763484

Disp,attribute (22): -0.043148488996

Trn,attribute (23): -0.0742089254777

Avg.Passes,attribute (24): 0.0437469568713

PassSuc%,attribute (25): 0.00703605950738

Crosses,attribute (26): -0.162623385914

LB,attribute (27): 0.241753576979

TB,attribute (28): 0.417234197656

For some reason, the highest coefficient in all cases has always been the attribute

(0), the number of times a player starts playing a match.

5. Conclusion

In this research, we obtained several classifiers using five Machine Learning
methods, namely ZeroR, OneR, CART (Decision Tree), Logistic Regression and Support
Vector Machines to gain insights into players who are nominated for the Ballon d’Or award
each year.

We obtained common-sense rules and surprisingly unexpected rules. This was
interesting because it involved some discussion in preconceived concepts and ideas
regarding modern soccer as the prominence of a player on a team being a regular starting
XI in order to increase his chances of being nominated Ballon d’Or, for example, according
to the results of OneR and Decision Trees, where attribute (0) was the chosen attribute of
OneR and the root node for Decision Tree CART.

The same occurred for SVM with Z-score normalization, where the attribute (0) had
the highest coefficient associated with all values of k for SelectKBest. But this experiment

37

and all other experiments using Z-score normalization are not reliable, since their accuracy
barely exceeds 50% for all algorithms.

A strange pattern in the results we have seen using Z-score normalization is that no
matter which algorithm do you use, the accuracy in testing set was always low around 50%
and it could not detect true negatives, but could detect very well true positives.

Another pattern in the results that we noticed in all algorithms used in this research,
except ZeroR, is that they tend to be very consistent and often perfect for detecting true
negatives. However, they are not good at detecting true positives, most of the times they
failed to detect 50% of true positives in the testing set.

References

[1] FIFA. FIFA Survey: approximately 250 million footballers worldwide, 2000. Available from:
http://www.fifa.com/aboutfifa/organisation/news/newsid=88048/index.html [Retrieved 2018-30-06].

[2] 2016 Ballon D’Or. Available from: https://en.wikipedia.org/wiki/2016_Ballon_d%27Or [Retrieved
2018-30-06].

[3] B. Wang and L. Wang, Research of Association Rules in Analyzing Technique of Football Match,
presented at Second International Conference on Power Electronics and Intelligent Transportation
Systems, 178-180, 2009.
[4] R. Agrawal and R. Srikant, Fast Algorithms For Mining Association Rules, presented at 20th VLDB
Conference,487-499, 1995.
[5] B. Chai, Time Series Data Mining Implemented on Football Match, Applied Mechanics and Materials,
vol. 26-28, pp. 98-103, 2010.
[6] S. Nunes and M. Sousa, Applying Data Mining Techniques to Football Data from European
Championships, presented at Conferência de Metodologias de Investigação Científica (CoMIC'06), 4-16,
2006.
[7] Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Available from:
http://www.cs.waikato.ac.nz/ml/weka/ [Retrieved 2014-11-08].
[8] C. E. Weatherburn, A First Course in Mathematical Statistics, Cambridge, pp. 164-182, 1968.
[9] D. Rumsey, Statistics II for Dummies, Wiley Publishing, pp. 151-218, 2015.
[10] T. Mitchell, Machine Learning, McGraw-Hill, pp. 52-78, 1997.

[11] J. R. Quinlan, Induction of Decision Trees, pp 81-106,1986.

[12] Decision Trees. Available from: http://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-
c4-5-c5-0-and-cart [Retrieved 2018-30-06].

[13] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, pp. 137-147, 2007.

[14] T. Hastie, R. Tibshirani and J. Friedman, Elements of Statistical Learning, Springer, Second edition,
pp. 241-245, 2009.

38

	Data Mining Approach to Prediction of Nominee Soccer Players for Ballon d’Or Award
	1. Introduction
	2. Methods
	I. Reasons for the use of Machine Learning and Data Mining Algorithms
	II. Feature Engineering
	III. Data Preparation
	IV. Algorithms
	1. ZeroR
	2. OneR
	
	3. Decision Tree
	4. Logistic Regression
	5. Support Vector Machines

	3. Proposed Solutions
	4. Results
	I. ZeroR
	II. OneR
	III. Decision Tree
	IV. Logistic Regression
	V. Support Vector Machines

	5. Conclusion
	References

