
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Editor Web
de Podcasts

Gabriel Bueno de Oliveira Gustavo Amgarten de Lêdo
Matheus Yokoyama Figueiredo Leandro Aparecido Villas

Relatório Técnico - IC-PFG-18-05

Projeto Final de Graduação

2018 - Junho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Editor Web de Podcasts

Gabriel Bueno de Oliveira Gustavo Amgarten de Lêdo
Matheus Yokoyama Figueiredo Leandro Aparecido Villas ∗

Resumo

Com o intuito de aproximar alunos e professores das plataformas de tecnologia, foi
realizada uma parceria com a empresa de educação Clickideia para um protótipo inicial
de um ambiente de criação de podcasts web, facilitando a distribuição de conhecimento
e a interação entre as partes através da internet.

Sumário

1 Introdução 2

2 Objetivos 2

3 Justificativa 2

4 Metodologia 2

5 Arquitetura 3
5.1 Cliente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5.2 Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Funcionalidades 7

7 Guia de Desenvolvimento 8
7.1 Cliente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7.2 Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1



2 Oliveira, Lêdo e Figueiredo

1 Introdução

O Instituto de Computação (IC) da Universidade Estadual de Campinas (Unicamp) vem
realizando diversas parcerias para o desenvolvimento de projetos. Com esse intuito, a
empresa Clickideia, atuante na área de educação no Brasil, propôs o desenvolvimento de
uma plataforma web de edição e gravação de podcasts, auxiliando alunos e professores a
criarem conteúdos educacionais.

Foi realizado, nas reuniões iniciais, a extração dos requisitos, importante para que fosse
posśıvel entender melhor as dificuldades e exigências do projeto, e permitiu com que hou-
vesse um planejamento para o restante do desenvolvimento.

2 Objetivos

O objetivo desse projeto foi fornecer uma arquitetura, lógica de negócio e interface inicial,
para uma ferramente utilizável por alunos e professores, a fim de criarem e gerenciarem
podcasts em uma plataforma web. As edições incluem sobreposição de áudio, ajuste de
volume e recorte de intervalos. Esse sistema inicial pode ser adaptado para uso junto de
diversas tecnologias, de modo que futuras alterações sejam de fácil acesso e sem muitas
dificuldades.

A ferramenta visa um meio para que alunos e professores possam criar um podcasts
com conteúdos educacionais. O usuário deve ser capaz de, através da ferramenta, criar
gravações, cortar trechos, sobrepor e concatenar múltiplos áudios.

3 Justificativa

A principal justificativa é a tentativa de aproximar professor e alunos ao meio educacional
digital para que exista mais conteúdos com uma abordagem mais moderna.

Essa ferramenta visa auxiliar esse processo através dos podcasts.

4 Metodologia

Para o desenvolvimento do projeto, foram utilizadas práticas e conceitos de desenvolvimento
ágil, bastante presente no mercado de desenvolvimento de software.

Foram usadas as ferramentas presentes no ambiente do GitLab que auxiliavam a aplicação
da metodologia, como por exemplo adição, classificação e resolução de estórias. Reuniões
periódicas entre os membros também fizeram-se presente para acompanhamento do plane-
jamento. Dessa forma, fez-se uso de:

Controle de versão (Git)a)

Planejamento e releasesb)

Integrações curtasc)



Editor WEB de podcasts 3

5 Arquitetura

O sistema foi desenvolvido em dois repositórios separados: um para o Frontend desenvol-
vido utilizando o framework React, e outro para o Backend baseado em uma arquitetura
REST e desenvolvido fazendo uso da tecnologia Node.js.

5.1 Cliente

Como citado anteriormente, o cliente web foi constrúıdo utilizando o framework React, e
portanto a linguagem javascript (ES6).

O design da interface foi planejada para ser uma página dividida em 3 áreas principais:

• Header: Topo da página contendo informações de projeto, player geral e botões de
gravação/upload de arquivos.

• Linha do tempo: Região central que contém todos os elementos de áudio em suas
respectivas posições no projeto. O tamanho de cada fatia é proporcional ao tempo
aud́ıvel de cada uma.

• Editor: Parte inferior, contém as informações de cada faixa, player individual e
opções de edição, como corte, deslocamento e ajuste de volume.

Esse panorama geral é mostrado na Figura 1.



4 Oliveira, Lêdo e Figueiredo

Figura 1: Header, linha do tempo e editor

Para a gravação de áudio e upload de arquivos, são exibidas popups com as funcionali-
dades particulares de cada caso, como mostram as Figuras 2 e 3.

Na popup de gravação temos o botão para iniciar o processo, assim como o campo para
nomear o arquivo e salvá-lo.

Já na área de upload de arquivos, simplesmente é disponibilizado um botão para a
seleção do mesmo.



Editor WEB de podcasts 5

Figura 2: Popup de gravação

Figura 3: Linha do tempo e editor



6 Oliveira, Lêdo e Figueiredo

5.2 Servidor

Foi utilizada a linguagem de programação JavaScript em cima do runtime NodeJS. A ar-
quitetura da aplicação seguiu a estrutura API RESTful, podendo atender assim a aplicação
em frontend feita em React e ao mesmo tempo flexibilizar a utilização da mesma em ou-
tras infraestruturas, já que não era conhecido a priori como ia se dar a utilização desta
ferramenta.

Em conjunto do framework ExpressJS em uma estrutura Controller-Service-Repository,
foi utilizada a biblioteca Sequelize para atender as conexões de banco de dados e ao mesmo
tempo definir os modelos de entidades utilizados e também duas bibliotecas ficaram res-
ponsáveis pelo gerenciamento dos arquivos de audio, multerS3, uma branch da conhecida
biblioteca multer responsável por fazer o middleware de requisições com arquivos e enviá-los
ao servidor AWS S3, e aws-sdk que utilizamos para fazder o download e upload dos arquivos
manipulados.

Figura 4: Modelagem da base de dados



Editor WEB de podcasts 7

Toda nossa infraestrutura estava modularizada nos serviços da Amazon AWS, já que este
é um dos principais provedores do serviço e o que a maioria das empresas utiliza atualmente.
Contávamos com um servidor, rodando em uma EC2 mini utilizando o sistema operacional
Ubuntu 16.04, que se comunicava com o serviço de banco de dados RDS(Relational Database
Service) em MySQL, sendo mapeado pelos models utilizando a biblioteca Sequelize. Foi
também utilizado o serviço de armazenamento Amazon S3 para o armazenamento dos áudios
originais, intermediários e para o arquivo de áudio final gerado pelo serviço, com todas as
alterações realizadas pelo usuário.

Figura 5: Modelo de organização do servidor

A biblioteca utilizada para manipulação de audio foi a sox-audio, que implementa um
interface simplificada em JavaScript para fazer chamadas a biblioteca SOX - do próprio
site: ”SoX is a cross-platform (Windows, Linux, MacOS X, etc.) command line utility that
can convert various formats of computer audio files in to other formats. It can also apply
various effects to these sound files, and, as an added bonus, SoX can play and record audio
files on most platforms.”.

A biblioteca em JavaScript faz chamadas CLI para o SOX afim de manipular os audios.
A biblioteca possibilitou a implementação de diversos efeitos de som, dentre eles volume,
corte, delay e sobreposição, e ainda permite a possibilidade de expandir o uso da ferramenta
para outros efeitos, visto que a biblioteca JavaScript viabiliza o uso de todos os comandos
implementados na SOX.

6 Funcionalidades

• Criar novo projeto.

• Atualizar projeto.



8 Oliveira, Lêdo e Figueiredo

• Deletar projeto.

• Gerar o arquivo intermediário/final com todas os áudios editados.

• Adicionar arquivo de áudio.

• Ajustar volume.

• Cortar um trecho do áudio.

• Reproduzir o áudio com as edições aplicadas.

7 Guia de Desenvolvimento

7.1 Cliente

Para executar o cliente é necessário a instalação do Node para o uso do NPM. Assim que
for instalado, deve-se fazer o download das dependências do projeto. Para isso, acesse o
diretório do projeto (onde está localizado o arquivo package.json) e execute o comando:

$ npm i n s t a l l

Após todas as dependências terem sido devidamente instaladas, execute a aplicação com
o comando:

$ npm s t a r t

Por padrão, o cliente é acessado através da porta 3000.

7.2 Servidor

Recomenda-se a utilização do sistema operacional Ubuntu 16.04, que foi a versão utilizada
para o desenvolvimento, foi também utilizado os serviços da Amazon AWS RDS e S3, sendo
assim é necessário a criação das instâncias e a substituição das API keys no projeto. Uma
outra opção é a substituição por outros servições similares.

1. Executar o seguinte comando no terminal:

$ sudo apt i n s t a l l sox
$ sudo apt i n s t a l l l i b sox−fmt−mp3

2. Instalar o Node

$ c u r l −sL https : // deb . nodesource . com/ setup 8 . x | sudo −E bash −
$ sudo apt−get i n s t a l l −y node j s

3. Ir ao diretório do projeto e instalar as dependências

$ npm i n s t a l l



Editor WEB de podcasts 9

Os repositórios podem ser encontrados em:

• Backend: https://gitlab.ic.unicamp.br/ra139455/pfg-podcast

• Frontend: https://gitlab.ic.unicamp.br/ra139490/pfg-podcast-webapp

Referências

[1] Nodejs. https://nodejs.org/en/download/package-manager/

Acessado em 28/06/2018.

[2] SOX.http://sox.sourceforge.net/

Acessado em 28/06/2018.

[3] API.https://matheusfigueiredo1.docs.apiary.io/

Acessado em 28/06/2018.

[4] Sequelizejs: http://docs.sequelizejs.com/

Acessado em 28/06/2018.

[5] React: http://docs.sequelizejs.com/

Acessado em 28/06/2018.

https://gitlab.ic.unicamp.br/ra139455/pfg-podcast
https://gitlab.ic.unicamp.br/ra139490/pfg-podcast-webapp
https://nodejs.org/en/download/package-manager/
http://sox.sourceforge.net/
https://matheusfigueiredo1.docs.apiary.io/
http://docs.sequelizejs.com/
https://reactjs.org

	Introdução
	Objetivos
	Justificativa
	Metodologia
	Arquitetura
	Cliente
	Servidor

	Funcionalidades
	Guia de Desenvolvimento
	Cliente
	Servidor


