2

4

4

Sistema Supervisorio e de
Atuacao Remota de Robos
Humanoides
Bruno Takeshi Hori RA: 145539

André Tsuyoshi Sakiyama RA: 150547
Orientadora: Profa. Dra. Esther Luna Colombini

Relatério Técnico - IC-PFG-18-03
Projeto Final de Graduagdo
2018 - Julho

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de tnica responsabilidade dos autores.

Sistema Supervisorio e de Atuacao Remota de Robos
Humanoides

André Tsuyoshi Sakiyama Bruno Takeshi Hori

1 Introducao

Este trabalho visa desenvolver um sistema supervisério e de atuagdao remota de Robos
Humanoides que permita a um leigo operar um rob6 bipede real de 25 graus de liberdade
(DOF), monitorando, em tempo real, seus diversos sensores.

LEFT ARM RIGHT ARM

TTL 3.3V TTL 3.3V

-
TL 3.3V

TTL 3.3V

X
s [TTL3aV

BATTERY 2 | o [}
o]
Y —
USNDYNMIXELE\ g USWE‘ g{ *
Y &l
uset use2
kL
BATTERY1 | 148V | s - P o Voltage Converter
4.6V 12V
usBe3 use4

r.&_-_’ RS2I2TTL Convaner

Figura 1: Imagem representativa do Robo

2 André e Bruno

E imprescindivel que, em todo o momento, o sistema reflita a atual situacao do robo
no mundo. A comunicacdo entre o sistema e o robo devera ser realizada de forma que o
moédulo remoto interfira minimamente na operacao do robo.

2 Justificativa

O intuito do projeto foi criar um sistema de supervisao para que pessoas sem conhe-
cimento técnico do robd possam verificar cada propriedade dos motores a partir das in-
formacgoes da interface.

O trabalho foi separado em 2 partes: comunicacao com os motores e interface grafica. A
parte de comunicacao foi responsabilidade de André Tsuyoshi enquanto a parte de interface
ficou sobre responsabilidade de Bruno Takeshi.

3 Objetivos

Neste projeto, objetiva-se:

e Definir a lista de comandos que podem ser executados pelo robo;

e Definir a lista de sensores que podem ser executados pelo robo;

e Definir as interfaces de comunicacao;

e Projetar a interface grafica mais adequada ao projeto;

e Definir o protocolo 16gico de comunicagao dos comandos;

e Implementar o sistema de controle remoto do robd, preferencialmente cross-platform;
e Validar o sistema através da comunicacao com o robo real.

4 Desenvolvimento do Trabalho

O trabalho foi dividido em trés grandes fases: Planejamento, Desenvolvimento e Teste.

A primeira fase se constituiu em discutir as funcionalidades finais e gerar o calendéario
com cronograma do planejamento e separacao de tarefas do grupo. Além disso, nesta
mesma fase, foi feito o levantamento dos requisitos funcionais e nao funcionais do sistema
e o desenvolvimento da interface grafica, com todas a interagoes possiveis que o usuario
poderia executar.

A fase de Desenvolvimento se resume em preparacao do ambiente e execucao do plane-
jamento feito na fase passada. Para a construgdo dos componentes graficos, foi utilizada a
biblioteca WxWidget. A escolha desta biblioteca se deve ao fato que a implementagao é
feita em C++, portanto o seu desempenho se destaca em relagao a bibliotecas baseadas em
linguagens de mais alto nivel. Junto com o WxWidget, foi utilizada a biblioteca pthread
com o intuito de possibilitar a execugao simultanea de diferentes funcionalidades. A comu-
nicacao com os componentes motor e sensor inercial foi feita via USB serial com o auxilio
da Dynamixel SDK.

Por fim, na fase de Teste foi feita a validacdao do produto final testando todas as fun-
cionalidades discutidas na fase nimero um. Os teste foram feito utilizando dois motores
Dynamixel MX-64 e um sensor inercial UM7-LT

Sistema Supervisdrio

4.1 Requisitos nao-funcionais

o Foi decidido que o projeto seria feito em C+-+ para melhorar a performance do sistema.

e A interface sera feita utilizando a biblioteca wxWidgets.

e Os comandos mandados para o robo serao feitos com o auxilio da SDK do Dynamixel.

e Usudrio pode conferir e modificar as diversas varidveis de um motor que for selecionado.

e Para realizar as funcées em multi-thread foi utilizado a biblioteca de pthreads.

4.2 Requisitos funcionais

e Usudrio podera conferir e modificar a posicao assim como o tempo que levard a
transicao dos motores que foram selecionados.

e Usudrio poderd salvar as informagoes recuperadas dos motores conectados.

e Usuario podera carregar a partir de um arquivo os movimentos dos motores conectados

do robo.

4.3 Interface grafica

@ tec

Add Load Save Play 500
Motors Movements
1=02=0
124005224095
1=0
2=0
2-1635
223505

1=1375,2=2063

Fal
FofLoown

Position Velocity Torque

4094
4094

cooocoocooooo oo o

0

cooococooooo00o o

True
True
False
False
False
False
False
False
False
False
False
False
False
False
False

Cument Tenst Accel Accel Accel GyroX GyroV GyroZ

8
0
0
0
0
0
0
0
0
0
0
0
0
0
0

132 -0.152 -0.06.. 0948 -0.00.. -0.00.. 0.000
133
0

coocoocooooooo
~
v

Figura 2: Imagem da interface grafica

4 André e Bruno

Thread Leitura Thread Ul Principal Thread Leitura
dos Motores do Sensor

Thread Movimento dos
Motores (Iniciada toda
vez que O usuario
aperta play)

Figura 3: Representacao das threads

Primeiramente, a interface grafica foi feita utilizando as bibliotecas do Qt Creator, porém
houve muitas dificuldades para integrar outras bibliotecas como por exemplo pthreads.

Consequentemente, tentamos fazer a interface utilizando Java com integracao com C++
por bibliotecas nativas, por causa da comunicacao com os motores. No entanto, houve
novamente problemas com a integragao.

Finalmente, foi decidido a utilizacao da biblioteca wxWidgets, a qual conseguimos inte-
grar praticamente tudo, somente a biblioteca do OpenCV nao funcionou de forma esperada.

4.4 Modo de Uso

Antes de inicializar a aplicagao é necesséario atualizar o arquivo de configuragao: mo-
tor.cfg encontrado na mesma pasta que o arquivo executavel.

O arquivo de configuracao necessita estar no seguinte formato:

sensorPort=NOME_DA _PORTA_USB_DO_SENSOR

numberOfPorts=N , sendo N = nimero de portas para os motores

portI=NOME_DA _PORTA_USB_DOS_MOTORES , para cada I portas

motorI=INDICE_CONFIGURADO_DO_MOTOR._I

bodylI=LABEL_DO_MOTOR_I_NA_TABELA , para cada I motores

Exemplo:

sensorPort=COMG6

numberOfPorts=1

port1=COMS5

motorl=1

bodyl=head

motor2=2

body2=body

O usudrio podera executar diversos comandos com esta aplicacgao:

1. Adicionar movimento a cena

Sistema Supervisério 5

2. Ler de um arquivo uma cena

3. Salvar em um arquivo uma cena

4. Executar uma cena

5. Deletar movimento da cena

6. Locomover movimento na cena

7. Salvar informagdes da tabela de valores dos motores

8. Salvar informagdes da tabela de valores do sensor

4.4.1 Adicionar Movimento

Metors Movements Time
1=0;2=0 1000
1=4095:2=40095 1000
1=0 1000
2=0 1000
1000
500
500

2=1635
2=3505
1=1375

4 AnTEL e

Figura 4: Adicionar movimento

O programa verifica quais motores estao ativos (Motor cuja label do CheckBox se encon-
tra com a cor verde) e selecionados e verifica a posi¢ao dos sliders e adiciona um movimento
a tabela de movimentos da cena, definindo o torque no final do movimento e em quantos
segundos durard o movimento.

4.4.2 Ler ou salvar cena

Motors Movements
1=0:2=0
1=40952=4085

1=0
2=0
2=1635
2=3505
1=1373

1 1TFELY e

6 André e Bruno

Figura 5: Botoes de SAVE e LOAD

Ao clicar no botao ”Load”, uma tela para selecionar um arquivo do tipo .txt se abrird.
Apés aberto, a aplicacao ird adicionar cada movimento no arquivo & tabela de movimentos.
Esse arquivo deverd estar escrito no seguinte formato para poder ser lido pela aplicagao:

(index do motor)=(posigdo que se deseja) seguido de ; para cada motor seguido de :
time=(tempo do movimento) seguido de : torque=(true ou false, torque que se deseja)
seguido de | caso tenha um préximo movimento.

Exemplo:

1=3;2=10:time=10:torque=true|7=111;8=40:time=35:torque=false

Ao clicar no botao ”Save”, uma tela para selecionar um arquivo do tipo .txt se abrira.
A aplicagéo salvard a cena no seguinte formato:

(index do motor)=(posigao que se deseja) seguido de ; para cada motor seguido de :
time=(tempo do movimento) seguido de : torque=(true ou false, torque que se deseja)
seguido de | caso tenha um préximo movimento para cada movimento na tabela de movi-
mentos.

Exemplo:
1=3;2=10:time=10:torque=true|7=111;8=40:time=35:torque=false

4.4.3 Executar cena

Ao clicar no botao ”Play”, a aplicacao gera uma nova thread para execucao dos movi-
)
mentos.

(T tec .

Add Load Save 500

Metors Movements Time To Index Position Velocity Torque Current Tens: Accel Accel Accel GyroX Gyro¥ GyroZ

False

False

False

False

False

120,220 1000 Fal 1 w090 Tue 8 122 0152 -006.. 0948 -0.00.. -0.00.. 0.000

L/ 124095:2=4095 1000 Fal 2 094 Tue 0 133
1=0 1000 Fal 3 False 0 0

220 1000 Fal 4 False 0

221635 1000 Fal H False 0

223505 s0 Falf P N6 False 0

1=1375 500 Fal 7 False 0

1=1375:2=2063 500 Fal pow] 8 False 0

DELETE | o False 0

[}

[}

0

]

[}

[}

coocococoooo000 oo
coococooooooooo

~

v

False

coooocoooo0o 0000

Figura 6: Executar cena

Sistema Supervisério 7

4.4.4 Locomover movimento na cena

87 tec -]
Add Load Save Play || 2000
Motors Movements Time To Index Position Velocity Torque Curent Tensi | Accel Accel Accel GyoX Gyro¥ GyroZ
1 0% 0 Tue 9 126 00302 -006. 0958 -000.. 0000 0000
2 w090 Tue 0 124
3 0 0 False 0 0
4 0 0 False 0 0
1=0 2000 Fal 5 0 0 False 0 0
6 0 0 False 0 0
7 0 0 False 0 0
3 0 0 False 0 0
9 0 0 False 0 0
10 0 0 False 0 0 < I >
11 0 0 False 0 0
20 0 False 0 0
B0 0 False 0 0
o0 0 False 0 0
50 0 False 0 0
% 0 0 False 0 0
70 0 False 0 0
B0 0 False 0 0
90 0 False 0 0
20 o0 0 False 0 0
21 0 0 False 0 0
2 o 0 False 0 0
3 0 0 False 0 0
u 0 0 False 0 0
35 0 0 False 0 0
< I < I >

Figura 7: Movimento Selecionado

7 tec -
Add Load Save Play || 2000
Motors Movements Time To Index Position Velocity Torque Cument Tensi | Accel Accel Accel GyoX Gyro¥ GyroZ
124090224095 000 Fal 1 w09 0 Tue 9 125 00301 -006.. 0958 0000 0000 0000
120220 2000 Fal 2 w094 0 Tue 0 126
12129 2000 Fal 3 0 0 False 0 0
220 2000 Fal 4 0 0 False 0 0
1=0 2000 Fal H 0 0 False 0 0
6 0 0 False 0 0
7 0 0 False 0 0
8 0 0 False 0 0
9 0 0 False 0 0
10 0 0 False 0 0 < I >
11 0 0 False 0 0
20 0 False 0 0
B0 0 False 0 0
uo0 0 False 0 0
50 0 False 0 0
16
< > < I >

Figura 8: Locomovendo o movimento para cima

8 André e Bruno

Position Velocity Torque Current Tens: Accel Accel GyroX GyroY GyroZ

True 9 X -0.06.. 0957 -0.00.. -0.00.. 0.000
True

0
False 0
False 0
False 0
False 0
False 0
False 0
False 0
False 0
False 0
False 0
False 0

0
0
0
0
0
0
0
0
0
0
0

False
False
False
False
False
False
False
False
False
False
False

Figura 9: Locomovendo o movimento para baixo

O usudrio pode selecionar um movimento da tabela e clicar nos botoes ” Up” ou ” Down” para
locomover o movimento selecionado na cena.

4.4.5 Deletar movimento

(57 tec -] X
Add Load Save Play 2000
Motors Movements Time To Index Position Velocity Torque Curent Tens: | Accel Accel Accel GyroX GyroV GyroZ
400 0 True 10 125 00285 -006.. 0956 -0.00.. 0.000 0000
084 0 Tue 0 125
0 0 False 0 0
0 0 False 0 0
0 0 False 0 0
< >

Figura 10: Movimento Deletado

O usudrio pode selecionar um movimento da tabela e clicar no botao ”Delete”para
deletar da cena o movimento selecionado.

Sistema Supervisério 9

4.4.6 Salvar tabela de valores dos motores

[tec -
Add Load Save Play 500
Motors Movements Time To Index Position Velocity Torque Curent Tensd| « Accel Accel Accel GyroX GyreY GyroZ
120220 1000 Fal 7 0840 Tue 8 132 0152 -006.. 0948 -000.. -000. 0000
L/ 124095;2=4095 1000 Fal 2 4094 0 Tue 0 133
120 1000 Fal 3]] False 0 [}
220 1000 Fal 4 [} 0 False 0 0
2-1635 1000 Fal 5 0 [} False 0 0
2-3505 w0 fil % s [} [False 0 0
121375 50 Fall pown | 7 [} [False 0 0
121375222063 500 Fal ED E] 0 0 False 0 0
DELETE | ¢ 0 0 False 0 0
10 0 [False 0 0 < I >
1" 0 0 False 0 0
2 0 [} False 0 0
3 [} [} False 0 0
14 [} [False 0 0
15 0 0 False 0 0
16 0
< I > < I >

Figura 11: CheckBox para salvar tabela de valores dos motores

Ao deixar selecionado o CheckBox da tabela de valores dos motores, a aplicagdo ira
salvar os valores dos motores ativos em um arquivo cujo nome é ”valueOutput.txt” enquanto
0 CheckBox estiver selecionado.

4.4.7 Salvar tabela de valores do sensor

7 tec -
Add Load Save Play 500
Motors Movements Time To Index Position Velocity Torque Curent Tens: | Accel Accel Accel GyroX GyroY GyroZ
120220 1000 Fal 1 004 0 Tue 8 132 0152 -006.. 0848 -000.. -000.. 0.000
L/ 124005224095 1000 Fal 2 084 0 Tue 0 133
1=0 1000 Fal 3 [} [} False 0 0
220 1000 Fal 4 [} [False 0
2=1635 1000 Fal 5 [} 0 False 0 0
223505 0 il P s 0 [} False 0 0
1=1375 50 Fall pown | 7 [} [False 0 0
121375222063 500 Fal 2 [} [False 0 0
DELETE | ¢ 0 0 False 0 0
10 0 [} False 0 0 < I >
" [} [False 0 [}
2 0 0 False 0 0
13 0 [} False 0 0
14 [} [} False 0 0
15 [} [False 0 0
16 0
< I > < I >

Figura 12: CheckBox para salvar tabela de valores do sensor

Ao deixar selecionado o CheckBox da tabela de valores do sensor, a aplicagao iréd salvar
os valores do sensor em um arquivo cujo nome é ”sensorOutput.txt”enquanto o CheckBox
estiver selecionado.

10 André e Bruno

4.5 Motores e sensores

O modelo dos motores utilizados é o Dynamixel MX-64. A sua comunicacdo foi feita
com o auxilio da biblioteca Dynamixel SDK e se baseia em abrir uma porta serial onde estao
conectados um ou mais motores com IDs diferentes, definidos em momentos anteriores. Apéds
a abertura da porta é possivel escrever e ler dados em espago do meméria especificos de cada
motor, de acordo com o protocolo utilizado. O protocolo estabelecido foi 0 2.0 e este define
qual funcionalidade representa um determindado espago do memoéria. A leitura e escrita
do dados do motor pode ser feita independente em cada motor, respeitando os requisitos
funcionais e possibilitando a leitura em tempo real junto com o motor em movimento.

O modelo do sensor utilizado é o UM7-LT juntamento com o adaptador USB to TTL. O
adaptador necessita de um driver para seja estabelecida a comunicagao. Da mesma forma
que motor, é necessario que seja aberta uma porta serial para leitura dos dados. Porém,
neste caso, o cédigo de leitura do sensor foi fornecido e utilizado como API.

5 Teste e validacao

Apés o término da fase de desenvolvimento, foi iniciada a fase de teste. Esta fase
basicamente averigua as funcionalidades inicialmente requisitadas e coloca em pratica o
fluxo de execucao de um usudrio comum.

Os testes foram feitos com dois motores Dynamixel MX-64 e um sensor inercial UM7-LT.

Inicialmente os motores e o sensor foram conectados, respectivamente, nas portas seriais
COMS5 e COMG6 e logo em seguida foi iniciado o programa. A interface grafica do projeto
foi aberta, permitindo a visualizacao dos motores conectados e ja mostrando os dados em
tempo real do motores e do sensor inercial com uma taxa de atualizagao de 10Hz.

Em seguida foram adicionados alguns comandos de movimento na fila para os motores
conectados e o botao Play foi pressionado. Os dois motores comecaram a se mover de acordo
com os comandos enfileirados e os dados de leituras continuaram a atualizar.

Por fim para testar o armazenamento de arquivos, o botao Save foi pressionado para
guardar os comandos enfileirados em um arquivo e as caixas Save Motor Values e Save
Sensor Values foram selecionadas por um espago de tempo para guardar os valores dos
motores e do sensor por este tempo. Os dados anteriores foram guardados no arquivos
commands.txt, valueOutput.txt e sensorOutput.txt.

Um dos testes teve como saida :

valueOutput.txt:

time61700Motor 1: position=3247: velocity=242: torque=true: current=42
time61700Motor 0: position=4093: velocity=0: torque=true: current=11
time61900Motor 1: position=4095: velocity=0: torque=true: current=0
time62000Motor 1: position=4095: velocity=0: torque=true: current=-2
time62000Motor 0: position=3605: velocity=-210: torque=true: current=-24
time62200Motor 1: position=3666: velocity=-196: torque=true: current=-59
time62200Motor 0: position=2639: velocity=-219: torque=true: current=-38

Sistema Supervisério 11

time62300Motor 1: position=2946: velocity=-224: torque=true: current=-37
time62300Motor 0: position=1937: velocity=-229: torque=true: current=-33

sensorOutPut.txt:

time 1053400 Sensor AccelX: 0.013393 AccelY: -0.085611 AccelZ: 0.956323 GyroX:
0.000099 GyroY: -0.000741 GyroZ: 0.009812 MagX: -0.049988 MagY: -0.085611 MagZ:
0.851992 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.088971 EulerY:
-0.014189 EulerZ: -1.609333

time 1053500 Sensor AccelX: 0.013393 AccelY: -0.085611 AccelZ: 0.956323 GyroX:
0.000099 GyroY: -0.000741 GyroZ: 0.009812 MagX: -0.049988 MagY: -0.085611 MagZ:
0.851992 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.088971 EulerY:
-0.014189 EulerZ: -1.609333

time 1053600 Sensor AccelX: 0.013393 AccelY: -0.085611 AccelZ: 0.956323 GyroX:
0.000099 GyroY: -0.000741 GyroZ: 0.009812 MagX: -0.049988 MagY: -0.085611 MagZ:
0.851992 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.088971 EulerY:
-0.014189 EulerZ: -1.609333

time 1053700 Sensor AccelX: -0.004604 AccelY: -0.050065 AccelZ: 0.974630 GyroX:
-0.136961 GyroY: -0.032016 GyroZ: 0.054498 MagX: -0.046442 MagY: -0.050065 MagZ:
0.851997 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.107187 EulerY:
-0.018216 EulerZ: -1.599363

time 1053800 Sensor AccelX: -0.004604 AccelY: -0.050065 AccelZ: 0.974630 GyroX:
-0.136961 GyroY: -0.032016 GyroZ: 0.054498 MagX: -0.046442 MagY: -0.050065 MagZ:
0.851997 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.107187 EulerY:
-0.018216 EulerZ: -1.599363

time 1053900 Sensor AccelX: -0.004604 AccelY: -0.050065 AccelZ: 0.974630 GyroX:
-0.136961 GyroY: -0.032016 GyroZ: 0.054498 MagX: -0.046442 MagY: -0.050065 MagZ:
0.851997 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.107187 EulerY:
-0.018216 EulerZ: -1.599363

time 1054000 Sensor AccelX: -0.004604 AccelY: -0.050065 AccelZ: 0.974630 GyroX:
-0.136961 GyroY: -0.032016 GyroZ: 0.054498 MagX: -0.046442 MagY: -0.050065 MagZ:
0.851997 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.107187 EulerY:
-0.018216 EulerZ: -1.599363

time 1054100 Sensor AccelX: 0.031585 AccelY: -0.125313 AccelZ: 0.949779 GyroX: -
0.049821 GyroY: -0.023105 GyroZ: 0.037196 MagX: -0.040240 MagY: -0.125313 MagZ:
0.842496 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.146303 EulerY:
-0.028570 EulerZ: -1.569067

time 1054200 Sensor AccelX: 0.031585 AccelY: -0.125313 AccelZ: 0.949779 GyroX: -
0.049821 GyroY: -0.023105 GyroZ: 0.037196 MagX: -0.040240 MagY: -0.125313 MagZ:
0.842496 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.146303 EulerY:
-0.028570 EulerZ: -1.569067

time 1054300 Sensor AccelX: 0.031585 AccelY: -0.125313 AccelZ: 0.949779 GyroX: -
0.049821 GyroY: -0.023105 GyroZ: 0.037196 MagX: -0.040240 MagY: -0.125313 MagZ:
0.842496 QuatX: -0.038000 QuatY: 0.027896 QuatZ: -0.793511 EulerX: -0.146303 EulerY:

12

André e Bruno

-0.028570 EulerZ: -1.569067

6

Conclusao

Nesse projeto conseguimos planejar e desenvolver um sistema funcional de controle e

monitoramento de componentes basicos que constituem um rob6é humandide.

A nossa aplicacao possui uma interface intuitiva a qual um usuério sem conhecimento
técnico conseguiria a partir das informagoes retiradas inferir possiveis problemas no com-

portamento dos componentes do robo.

Referéncias

1]

Pégina oficial da biblioteca wxWidgets
https://www.wxwidgets.org/

Manual oficial do ROBOTICS
http://emanual.robotis.com/docs/en/dxl/mx/mx-64/

Dynamixel SDK
http://www.robotis.us/dynamixelsdk/

Sensor Inercial UM7-LT
https://www.pololu.com/product /2740 /resources

Motor Dynamixel MX-64

http://support.robotis.com/en/product/actuator/dynamixel /mx_series/mx-
64(2.0).htm

Repositorio do Projeto

https://github.com/Dekkoh/TCC-MC030

