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Abstract

This work uses the deep learning model known as DDQN to learn control policies for
a variety of NES games. The input given to the model are raw pixels of the game screen
and the output is a value function estimating future rewards. The learning process
uses reinforcement learning exclusively and the same set of hyper-parameters for every
game, with no adjustments. This work provides initial insight into RL used for NES
games and provides full-support for the training of any other NES game using DDQN
as its underlying learning agent.

1 Introduction

Progress in Artificial Intelligence (AI) has been continuously increasing over the last years
[2]. Among the trends followed in the field, artificial neural networks are currently a top
trend, mainly because of advancements in large data handling, computing power and the
arrival of techniques such as backpropagation and deep learning neural networks [5, 3].

A neural network traditionally starts as a tabula rasa, and must be fed a training data
set and learn patterns from it to successfully solve the problem it was designed to address for
a given testing data set. The learning process and, hence, the description of ways in which
to let a machine learn from a training set can be divided into three categories: supervised,
unsupervised and reinforcement learning (RL) [13].

In supervised learning, the training data set is labeled by a human supervisor before
being fed to the network, that is, the machine already knows the output for that given data
set, and only needs to figure out the steps and patterns that produce the desired output
given the input. The main advantage of supervised learning is the fact that the output for
the training set is already known and hence, it is much easier to design the machine to learn
from the data set, while the main disadvantage is the fact that there is a need of a human
supervisor in order to treat a training data set first before using it. It is widely used in
many Machine Learning (ML) systems across the world given its ease of design.

In unsupervised learning, on the other hand, the training data is not labeled by a human
supervisor, and hence, the machine needs to learn from the raw training data without any

*Universidade Estadual de Campinas
Hnstitute of Computing, University of Campinas, 13081-970 Campinas, SP



2 Mageste and Colombini

additional information. The main advantage for unsupervised learning is the fact that there
is no need to treat a training data set prior to using it and also that the machine is able to
think independently from the way a human thinks, learning its own way of handling data
in the learning process, without any human bias. As the main disadvantage we have the
increased difficulty in designing unsupervised algorithms in comparison to supervised ones
for many Al problems, which is reflected in its low usage in ML problems across the world.

Reinforcement Learning (RL) tries to emulate human behavior and the fact that humans
can learn from a completely clean slate, that is, acquiring knowledge from experience and
perception without depending on inherited expertise or memory [15]. Mainly, it programs
the machine (also known as learning agent) to take actions in an environment to maximize
some notion of cumulative reward. The environment is mainly treated as a Markov decision
process (MDP) [23] and although similar to a dynamic programming approach, a reinforce-
ment learning approach does not assume knowledge of an exact mathematical model of the
MDP and target large MDPs where exact methods become unfeasible. A direct consequence
of this approach is that the training data set for the learning agent is entirely generated
by the training agent itself and its actions on the environment and hence does not need a
human expert to label it; a virtually infinite training data set is generated on demand and
tagged according to the agent’s reward system in order for the agent to progress further in
its learning process, always looking for a greater reward.

A game (and moreover a computer game) is an excellent candidate for a reinforcement
learning approach since every game has a set of rules, a set of available commands and a
victory condition or some score system, which the player wants to achieve or maximize.

Google’s Deepmind group used these concepts to create the first deep learning model
(namely Deep Q-Networks, also knows as DQNs) to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. Their model was
trained in a set of Atari 2600 games and was able to deliver state-of-the-art results without
any adjustment of the architecture or the learning algorithm [17].

Many improvements were presented in the literature since DQN has been released,
including Double DQN (DDQN) [8], a DQN algorithm that decouples the action selection
and evaluation in the target computation step to avoid the overoptimism of DQN, what
demonstrated to lead to more stable results.

Given the state-of-the-art results observed for Atari 2600 games, the primary purpose
of this work is to adapt the DDQN to be used on Nintendo Entertainment System (NES)
games and evaluate its performance. The Atari games are known for their simplicity and
almost complete absence of information unrelated to the play-ability (that is, graphics that
only appeal to the player eye and whose lack would not affect the player’s performance),
while NES games have a bigger screen size, broader color palette and commands and are, in
general, far more complex and have far more ”irrelevant” graphics (as we can see in Figure

1).
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(a) Enduro, from Atari 2600 (b) Bump ’'n’ Jump, from NES

Figure 1: The figure shows a racing game from each platform. Notice how
(b) is a far more complex game when compared to (a) taking detail and
scenery into account. Additionally, the player in (b) has more freedom in
their actions, being able to move horizontally, vertically and also being
able to jump, while in (a) the player can only move horizontally

1.1 Objectives

The main objective of this work is to fully adapt the original DQN’s Atari 2600 code to
work with any NES game. For that, we will prepare a database of games from different
genres so they can be learned through the algorithm. With this algorithm in hand, we aim
at showing that the algorithms can be trained for different games and that corresponding
metrics necessary to evaluate the techniques are available.

2 Revised Bibliography

Artificial Neural Networks (ANNs) are computing systems whose original goal was to em-
ulate how a human brain works. As such, they are a collection of units which, in turn,
are connected to each other, called artificial neurons, as a neuron in a human brain. Each
connection between two artificial neurons, as synapses in a human brain, can transmit a
signal from one artificial neuron to another. A typical process is that each artificial neuron
gets signals from other artificial neurons, process them into its signal and then transmits it
to more artificial neurons. Each ANN must, before being used to solve a task, be trained
for that given task. This process requires that a large number of inputs are available and,
during training, updates occur on the weights, i.e., on each connection between artificial
neurons, to approximate the desired output.

According to the nature of connections between artificial neurons in an ANN, it can be
classified as a feedforward, whose graph is a directed acyclic graph, or a recurrent neural
network, whose graph is a cycled graph.

ANNs were successful in a variety of problems since their conception, for example in
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computer vision, speech translation and game playing [14]. They are still extensively ex-
plored and were responsible for much of the current increased interest in Al

The concept of layers is essential for ANNs. A layer is a collection of artificial neurons
which are not connected to each other but are, in turn, connected to the ANN’s next layer’s
artificial neurons. An ANN typically consists of an input layer, which receives the raw input
from the system, an output layer, which provides the desired output to a given input and
an arbitrary number of hidden layers between the input and output layers, which further
process the data before feeding it to the output layer. An ANN that has more than one
hidden layer is called a Deep Artificial Neural Network or DNN.

Input Hidden Output

\ /
Figure 2: A representation of a Feedforward Artificial Network with a sin-

gle hidden layer. The input, hidden and output layers are fully-connected
and have, respectively, three, four and two artificial neurons

In its initial conception, layers in neural networks were fully-connected to the next layer,
that is, all artificial neurons of a previous layer have a link to each of the neurons of the
next layer. This approach initially worked, but as problems grew in complexity, so did the
need for more hidden layers to process data. The computational cost for fully-connected
layers, however, are substantial, since for two layers with n artificial neurons each, at least
n? operations (n signals for each neuron in the second layer) need to be done to transfer
data from one layer to the other. Because of this, many solutions were unfeasible precisely
due to the time necessary to train a given network.

One of the ways to make ANNs’ training less computational-heavy is through the use
of convolutional layers [1]. Instead of being fully-connected, for convolutional layers, each
artificial neuron in the next layer typically gets signals only from a small range of spatially-
close artificial neurons in the previous layer. This process uses a filter over the last layer
for each of the neurons in the next one.
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To illustrate how a convolutional layer works, let us suppose we have an input layer,
where each neuron represents each pixel of a gray-scale image of 5x5 size. To produce a
convolutional layer, we may create a 3x3 filter and roll it through the image, from left to
right and top-down. This filter applies an operation in a 3x3 portion of the image, and the
result goes to the neuron of the next layer as its input. How fast this filter rolls (also known
as its stride), that is, how many pixels (or neurons) it walks over at each new calculation
step, affects the number of neurons we shall have at the next layer and hence, the number of
operations we need to perform to propagate data from one layer to another. A typical stride
value is 2, and as such we would pass this filter on this 5x5 image only four times, therefore
generating only 4 artificial neurons for the next layer, instead of the 25 of the previous layer.
At each layer, multiple filters may be passed on the last layer (generating multidimensional
artificial neurons), and each filter used typically identifies a pattern. At first, the patterns
are very rudimentary, representing the edges in an image: vertical, horizontal, diagonal,
etc. In the next layer, those edges may be convoluted and identified as shapes: circles,
squares, triangles. As a general rule, at each layer, the abstraction increases further, and
more complex shapes and patterns may be identified in the image. Figure 3 depicts an
example of how convolutional filters work.

255 255255

0 |100

180]150 Convolution Result

5x5 Image

ole]e|e

255 255, 3x3 filter 50 | 255 50 | 100 50 | 255
0 J100|150)100] O ojoj1 50 | 50 | 50 | 255 50 | 50 _245
150|150] 50 | 50| © of-1]1
255255 255 |255]255
50 |255] 50 100§ O 21-2|1
0 |100]150f100} O 0 j100]1
50 | 50 | 50 |255] O
50] 0 150|150
100] o 50 | 255
255] 0 50 | 50
(a) Image Dbeing (b) Filter being ap- (¢) Result from the
analyzed and fil- plied to the image convolution operation
ter used in the with its stride value to be used by the net-
convolutional layer of 2 work’s next layer

Figure 3: The figure shows the process of how a convolutional filter works,
starting from an input layer representing an image 5x5, where each ar-
tificial neuron’s value is equal to the image’s greyscale pixel value. (a)
shows both the filter and the image it is being applied on. (b) shows the
four positions the filter is being applied to the image, since the filter has a
stride of 2. This specific filter is applied by multiplying the filter’s values
to the corresponding positions in the image and adding the results. (c)
shows the final result of the convolution process, where four new values
are calculated from the previous twenty-five and which shall be used as
the values of the artificial neurons of the next layer

Although the use of convolutional layers results in loss of data, the computational power
needed to process a convolutional layer is much lesser than a fully-connected, allowing to
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concatenate several more hidden convolutional layers than their fully-connected counter-
parts for the same computational cost without compromising their efficiency. One effect of
the use of convolutional networks in the network is the spatial-locality, that is, the patterns
or shapes are identified only if the information that composes them are close to each other.
But, since the filter is applied to every neuron region equally, this also means that the fea-
tures or patterns may be located anywhere within the image, what has an excellent effect
for image classification problems. For example, if we wanted to identify a nose in an image,
all the information that translates as a nose needs to be next to each other in the image for
it to be considered a nose or the ANN could identify a nose in an image with two scattered
nostrils.

A DQN, as proposed in the original article, is a deep feedforward convolutional network
that uses reinforcement learning instead of a supervised training approach. In the tasks,
an agent interacts with an environment through a sequence of observations, actions, and
rewards. The agent’s goal is to select actions in a way to maximize cumulative future
reward, or in other words, to use the ANN to approximate the reinforcement learning
optimal action-value function.

The action-value function used in the original DQN article is fairly straightforward: it
is the maximum sum of rewards r; discounted by v at each timestep ¢, achievable by a
behavior policy m = P(als), after making an observation (s) and taking an action (a)[16].

Q" (s,a) = mgfﬂE[rt +Yre+1 + ’72Tt+2 +...|s = 5,0 = ay, 7] (1)

The original formula has an overestimation problem since it selects a maximum value.
Suppose, for example, one of the given estimates is very noisy and differs from its actual
value. Since the formula picks the maximum value, it will end up selecting a value with a
high positive error, propagating it further to other states [11].

To address this problem, the function used in the particular version of DQN used in
this work is the one known as Double Learning [7]. Instead of using only one @ function, it
uses two - ()1 and ()2 - which are independently learned. One of them is used to estimate
the maximizing action and the other to estimate its value and either of them are update
according to:

Qi(s,a) = r +1Qa(s , argmaz,Qu(s ,a)) (2)

Qa(s,a) =1 +7Qu (s, argmaz,Qa(s , a)) 3)

Decoupling the maximizing action from its value eliminates the overestimation problem
found in the original algorithm of the DQN [9].

By taking advantage of the fact that in a DQN there are already two networks: () and
Q (the target value) it is possible to simplify the algorithm above, although the networks
are not entirely independent.
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Qs,a) =7 +7Q(s , argmaz,Q(s , a)) (4)

This is the action-value function used in this version of DQN, also known as DDQN
(Double Deep Q-Network), and although performance is not always improved, the stability
of the learning process is greatly enhanced [7].

When a nonlinear function approximator (such as an ANN) is used to represent the
action-value (also known as @ in DQN) function, reinforcement learning tends to be unstable
or even diverge [18], mostly due to correlation between data and the fact that even small
updates to the @) value may change the learning policy significantly [16].

To deal with these problems, a mechanism termed experience replay, which randomizes
over the data, removing correlations in the observation sequence and also an iterative update
that adjusts Q) towards target values that are only updated periodically, effectively reducing
correlations with the target, is in place.

It is not the purpose of this work to give a minute explanation about how DQN works
but to explain its basic concepts. For more in-depth details about the operation of DQN,
the reading of the original article is greatly encouraged.

The Deep Reinforcement Learning approach, of which DQN is a part of, has been consis-
tently and successfully used to perform many complicated tasks ever since its development.

Using DQN as its underlying learning mechanism,the Deepmind group developed an
agent (AlphaGo Zero) that learned only through self-play was able to achieve a win-ratio
of 99.8% against other Als in the game Go and further beating European Go champion by
5 games to 0, the first time an Al has done so [20].

An agent (Giraffe) was also created for playing the popular board game chess, where it
achieved performance compared to the top 2.2% players of the world using only self-plays
in order to learn [12].

A Learning Environment for the game Starcraft II was developed in Python (PySC2)
by the Deepmind group in partnership with the game’s company Blizzard [22]. Starcraft
IT is one of the biggest and most successful games of all time and players have competed
in Starcraft tournaments for over twenty years. A good portion of StarCraft’s longevity
is due to the rich, multi-layered gameplay, which also makes it an ideal environment for
AT research. Along with PySC2, many RL mini-games within the Starcraft II game were
created by Deepmind where developers may evaluate their Als built using PySC2. One
such example is a Mineral Shard collector AI made using PySC2 [21].

DeepMimic uses Deep Reinforcement Learning to learn robust control policies capable
of imitating a broad range of example motion clips, while also learning complex recoveries,
adapting to changes in morphology, and accomplishing user-specified goals. The results
are demonstrated in multiple characters and a large variety of skills, including locomotion,
acrobatics, and martial arts [19].

Recently, a novel model called Reinforcement Learning with Decision Trees (RL-DT)
was introduced, that uses decision trees to learn the model by generalizing the relative effect
of actions across states. Such a model was tested in an environment of robots performing
penalty kicks and trying to score goals. The algorithm was very successful in teaching the
robot to score a goal quickly [10].
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The original DQN article had a wrapper to communicate with an Atari 2600 emulator
and thus allow the agent to effectively play games. A wrapper for the FCEUX Emulator
for NES was developed by Ehren Brav in order to train an agent to play the game Super
Mario Bros. Although the implementation utilized DDQN at its core, it was not essentially
pure reinforcement learning, since the author had to apply an extra virtual reinforcement
to the agent: a reward is given to the agent in case Mario moves forwards and a penalty in
case he moves backward. Since the objective of a Mario level is to reach its end, which is
always located in the far right, said reward makes sense, but it is not extracted from the
game score itself. This exemplifies how poorly correlated the score in Super Mario Bros. is
to the actual progress in a level: a player can actually run through the entire level without
obtaining any score (which is tied to power-ups, coins and enemies killed) and still pass a
level [4].

The adaptation of Ehren Brav’s code which utilizes DDQN in its latest version (3.0) as
its underlying learning agent is the base of this work.

3 Methodology

Many aspects of the project needed to be taken into consideration, besides the learning
process itself, which used DDQN at its core. For simplicity’s sake, the DDQN was not
modified in any way, besides its hyperparameters, like its learning and discount rate or the
number of hidden layers. But apart from it, it was still mandatory that any NES game could
be supported by our algorithm (but that we focus on only a chosen few, best candidates for
RL), that the training of an agent could be resumed from some failure (since the training
process is very time-consuming) and that critical information about the development of the
agent saved during its training in order to evaluate its progress.

3.1 Game Database selection

In this work, the selection of games considered those where the score in them reflects real
progress in the game. Therefore, exploration games were mostly not taken into account
(like Super Mario Bros.), while fighting (like Double Dragon), racing (like Bump 'n’ Jump)
and shooter (like Galaga) games were outstanding candidates, what allows us to not use
any approach besides a pure RL one.

The selection happened upon watching hundreds of NES games gameplay videos and
selecting those that felt most suited to the RL approach. The 17 games supported and
used for this work were: Bump 'n’ Jump, Spyhunter, Rampage, Kungfu, Galaga, Joust,
Lifeforce, Breakthru, Gradius, Contra, Double Dragon, Gun Smoke, Hudson’s Adventure
Island, Mach Rider, Punch-Out!!, Balloon Fight and Rad Racer. Some of them are presented
in Figure 4.

3.2 DQN integration with NES

The initial integration of the DQN with the NES FCEUX emulator was a work of Ehren
Brav. It was mainly a matter of providing an interface between the emulator and the
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(d) Balloon Fight (e) Punch-Out!! (f) Rampage

Figure 4: Six of the database games chosen for testing the algorithm

network. More specifically, the network needed to get the game’s information: for example,
the screen pixels used as input, while the emulator required the output from the system,
that is, the actions the network propose as the best ones for that given screen frame.

Since only this exchange of information is necessary, adapting the original article’s DQN,
that worked with an Atari 2600 emulator, to an NES emulator, was a task that did not need
to change the actual code related to the network nor the functions call used between these
models. It was merely to rewrite all necessary functions on the emulator side, including the
needed ones for the interface, taking the Atari’s implementation as a model. For example,
acquiring the game’s score and pressing a button (which must be the one provided by the
network) are some functions that need to be implemented at the emulator’s side, but their
counterparts at the network’s side may remain unchanged.

3.3 Providing support for NES games

For this work, Ehren Brav’s algorithm (and mainly the emulator’s side functions) was
adapted to support any game in the NES (given that information about its score, controls
and game-over indication) and perform in a reinforcement learning approach. This was
accomplished through the modularization of the functions responsible for acquiring the
score, lives (when possible) and a game-over indication, as well as giving a list of the
controls available for each game and skipping each game’s title screen to be able to play the
game itself.

In regards to rewards, our pure RL approach dictates that nothing should be used
besides the raw pixels from the screen for the agent to learn. It means that the only
rewards received by the agent are in the form of the game’s score, which the agent will
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always pursue to maximize. Therefore, this score needs to be acquired, converted to value
and used by our agent. The agent could obtain the score from the pixels and then use its
value for a reward, but the process would require very high accuracy and a tailored solution
for each game according to the font used, the pixels they occupy, the screen position and so
on. Instead of doing so, we acquired the score directly from the RAM of each game, which
is a more straightforward process than the one described above, but that yields the same
results. The same procedure was done to acquire the remaining lives for a game (when
possible).

Besides the score, concern was also the game-over indication. The games’ behavior
when the user enters into the game-over screen is very erratic: the user may be prompted
to press some specific button combination to go back to gaming, they may go back to the
title screen, they may simply be put back into the game with no action needed, etc. Besides
this, there was also the problem of identifying when a game-over occurs in a game to start
a routine to replay the game. To address these two problems, our solution was to identify
the game-over through the RAM of each game, just like with the score and, besides this,
for simplicity’s sake, to reset the game as soon as a game-over is reached. In this way, the
entire tailored routine needed for each game to replay is out.

Although for some very famous NES games, like Super Mario Bros. and Castlevania,
which are intensely modified by the gaming community in order to change their graphics,
levels, etc. (a process known as modding or hacking), much of their RAM was already
mapped and widely available in forums and websites specialized at game hacking like Dat-
acrystal, for other games the information was simply not found. So, to acquire it, a RAM
searching tool within the FCEUX NES Emulator (Figure 5) was used to monitor the RAM
of each game used in the database and find out which bytes corresponded to the game’s
score and lives and which byte could represent a game-over indication.

Finding such information is not a very straightforward task. The RAM in NES games
has 1024 bytes, and any could be the information we are looking for since the way the data
is stored does not necessarily reflect what happens on the screen. For example, the game
Gun Smoke saves its score as digits in RAM, but instead of counting from 0 to 9 for each
digit, it counts from 88 (which means 0) to 97 (which means 9). Therefore, much trial and
error was needed to identify the information we were looking for, especially the ones stored
in an elusive way: at first the focus was at finding exact values, for example, the value 5
in the RAM when we want to see the byte that dictates where is the digit 5 in the game’s
score, but this approach more than often yielded zero possibilities in the long run. After
much trial, the usual solution that worked well was to look for changes in the value, not
the exact amount, we were looking for. Therefore, to narrow our possible candidates, it
is mandatory that we keep track of the changes in the game’s information we are looking
for and check which bytes have behaved the way we were expecting. A typical routine
performed to acquire each score of the games used for this work was to keep track of all
RAM byte values at first, then perform an action that increases the score, pausing the game
and removing from our possible candidates all of the bytes that have not changed at all or
changed more than one time between those two game instances. A handy routine was also
to perform many actions unrelated to the information we are looking for (like exploring the
stage in a game that does not reward a player for it when looking for the score information),
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Figure 5: The RAM search tool embedded within the FCEUX Emulator
for Windows OS running the game Gradius

then pause the game and removing all bytes from our candidates that did change. By doing
both routines a couple of times, one can narrow the candidates to a few dozen or fewer byte
positions and be able to track their behavior as the game is being played, eventually finding
out where and how the information is stored for that specific game. The RAM search tool
in FCEUX handles the pausing, filtering and monitoring of the game’s RAM bytes nicely, so
the process for finding each game’s information, although tedious, was faster than imagined.

By repeating the process above for every game used in the proposed game database,
their information was successfully mapped and ready to be used by the learning agent. This
is though, unfortunately, a limitation in our work: that for every new game supported, its
RAM needs to be scanned in order to find such information and doing so is not very trivial.

The controls for each supported game also need to be provided, that is, how many
unique commands are there for that game. Finding the commands are relatively trivial, one
needs to press all buttons and also their possible combinations to find out which commands
do different actions in each game. The NES joystick (Figure 6), unlike modern ones, does not
support analogical commands. Therefore all of its buttons have only two states: activated
or not. In regards to directions, traditionally the player may move with the directional
button, which has four courses (up, down, left, right) but they could also be combined in
order to move the player to four possible extra directions (up and left, up and right, down
and left, down and right). In regards to actions, the buttons traditionally related to them
are two: A and B; they may be pressed individually or together. Besides the directional
and action buttons, there are also the start button and the select button, which are mostly
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unrelated to gameplay, being used in menus. So, in total, there are nine possible actions
related to movement (the eight directions above and not pressing any button at all) and
four possible actions related to game actions (pushing: A; B; A and B; none at all). When
combined, they yield a maximum of thirty-six possible actions, offering much more freedom
than Atari’s ten possible operations (five for directions, that is: staying idle and pressing up,
down, left or right; and two for actions, that is: staying idle or pressing the action button).
Upon testing all these button combinations for each game and checking the game’s behavior,
it is relatively easy to identify which combinations provide unique actions in each game and
updating the algorithm’s code to support these actions for each supported game.

As a side note, it would actually be possible to train all games allowing all of these
control combinations for every game, independent of its behavior. There could be multiple
commands with the same effects which would probably add degrees of divergence and in-
stability to the network, since it aims to select the best action for a given state and some
of these actions would have an identical outcome.

(a) Original joystick from ATARI 2600 (b) Original joystick from NES

Figure 6: The figure shows both original controllers for the NES and
Atari 2600 platforms. The directional stick in (a) may seem like an analog
controller, but it is actually a digital one.

To skip the title screen (Figure 7) there were mainly two possibilities considered: pressing
buttons specific to each game to get to the actual game screen or loading a save state (a file
that holds all bytes of the RAM in a given point of the game) at the beginning of the actual
game screen. The former, although more laborious method, was chosen, mainly because of
the "randomness” (pseudo-randomness in reality) that we lose when loading a save state
and is very important for machine learning to prevent over-fitting. Luckily, the majority
of NES games has almost always the same routine to start its gameplay: wait for the title
screen to appear, press A (which selects the option for a one-player game) and wait until
the game begins. This routine worked for many of the games in our database. For those few
ones that it did not work, there are methods invoked, specific to each game., what limits
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our approach since in order to support a new game that does not follow this routine, a
new routine needs to be added via code, but creating a method is very straightforward and
relatively simple for someone with little programming experience.
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(c) Title screen from Joust (d) Title screen from Balloon Fight

Figure 7: (a), (b) and (d) are very similar title screens, although from
very different genres. (c), on the other hand, has no options at all in the
title screen, since there is just one mode in the game which is started by
pressing a button. So, in reality, the routine to start the game in those
four games above are identical.

With all these considerations, all of the games in our database were supported by the
algorithm and, mostly, any other NES game could be supported by following the steps
previously mentioned.

3.4 Resuming agent training from a failure

As already stated, the process of training the network is very time-consuming, so the need
for failure handling and resuming training from a given point is essential. To address both
of these problems, not only the network is saved periodically into a file, but its hyper-
parameters, set in the training’s initialization, are also kept in a separate file in order to
resume training with the same hyper-parameters in case a failure occurs or if the training
needs to be interrupted and resumed at any time.

Saving the network file also allows the evaluation of the agent’s performance in a game
at any given point by calling a test routine, which does not update the network file, just
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uses an action with the largest ()-value for each particular instant of the game and plays it,
in order to witness the network’s performance.

3.5 Progress over the training process

To be able to check the progress of the agent over time during the training process, an
evaluation routine (much like the test routine) is called frequently to evaluate the progress
of the agent. Upon the routine’s end, a few relevant parameters that are related to the
agent’s development are stored:

e the loss of the network, which is defined as how much the network has deviated
from the start of the evaluation to its end. This parameter should ideally decrease
over time, since the network adapts over time to better predict which actions will
yield more rewards and the more the network is trained the better at predicting it is
and the lesser it should deviate from a previous state;

e the mean (-value, defined as the average maximum value of ) for all states in
the network.This should ideally increase over time, since the network should select a
specific action for each instance of a game, in contrast with a random approach, which
is the behavior of an untrained network;

e the mean score in the game achieved during the evaluation process, which may
take multiple gameplays. This value is a much more practical way to evaluate the
performance.

Now, besides the qualitative result of testing the final trained network by using it to play
the game, the data above shares meaningful information about the whole training process.

3.6 Proposed Model

Taking into account what has been mentioned above, the final model used for this work was
developed, divided into two parts: the model representing how a new game gets supported
(as shown in Figure 8) and the model describing the learning process (as shown in Figure
9).
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Yes: Append command to the makes the player advance into gameplay from title screen
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Updates learning
model

l<«———Yes: Saves data location and how it is stored

Figure 8: The model shows the process to support a new game. Each color represents a
flux of steps that are done in order to acquire relevant data from the game. It requires the
intervention of a human supervisor.

4 Experiments and Results

At first, after executing the necessary modifications to support the game database, a few
games were tested using the same hyper-parameters as Ehren Brav used in his implemen-
tation.

The initial results were not very promising. Although the network did indeed learn, as
can be seen by the data below, the learning rate was prolonged and very inferior to that of
a human player, even a beginner. The training process of the network for the game Galaga
may be seen in Figure 10 below.

Since the training process takes quite some time to be done and the fact that the agent
indicated that it could learn further with more training time, some modification to the
network was considered to accelerate the training process. Considering hyper-parameters,
an adaptive learning rate o which decreased at each epoch k and a discount rate v which
increased at each epoch k until the value of 0.99 was found to achieve better results for
Atari games [6].
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Figure 9: The model represents the learning process for any game supported by the algo-
rithm. It is totally automatized and does not require the intervention of a human supervisor.
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Figure 10: The figure shows the learning process for a pure RL approach
in game Galaga without any modifications to the original algorithm. Al-
though the mean score seems to be improving over time, in case a linear
fit is done for (a), figure (b), that although initially increasing its value, as
expected, suffers a sudden decrease, and figure (c), that does not decrease
over time (as expected), have an erratic behavior

Qg1 = ay % 0.98, ap = 0.0005 (5)

Th+1 =1 =098 % (1 =), 70 = 0.95 (6)
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The initial values for « and 7 were set, respectively, at 0.0005 (double the original value
of 0.00025) and 0.95 (the original value was fixed at 0.99). An epoch was set at 200.000
learning steps of the algorithm, so the values above would be updated after these many
steps. The effects may be seen in Figure 11 below.

0.99 = = = = 0.0005

0.00045 - —

0.0004 ~ —

0.00035 - —

0.0003 ~ —

0.00025 - —

Discount
°
o
N
T
|
Learning_Rate

0.0002 -~ —

0.00015 - -
0.96 -
0.0001 ~ -

0.955 - 5605 |- i

L L L L L L 0 L L L h
0 50000 100000 150000 200000 250000 300000 35000C 0 50000 100000 150000 200000 250000 300000 35000C

time (s) time (s)

(a) Discount value used in the (b) Learning Rate value used
algorithm during training pro- i the algorithm during training
cess process

Figure 11: Figures (a) and (b) show the behavior of discount and learning
rate over time during training for any game. Both of them increase and
decrease exponentially, as can be expected from their functions, but only
(a) stops increasing after reaching a limit (0.99), while (b) continues to
decrease over time, as long as floating point precision allows it to.

After the modification above the network achieved better learning rates quicker than
before, although results were still far from these expected of a human player. Below we
may see the results for the same game Galaga in Figure 12.

To analyze the effects of the approach described above in a game after much more
training steps, when the learning rate approaches 0, the same game Galaga was trained
again and its results are shared below in Figure 13.

Other games of the database were tested, but none of the games tested had a performance
comparable to that of a human player and evolved in a much more erratic way than Galaga,
probably due to the fact that Galaga was the game with the most simple set of commands
and with the simplest graphics out of all games selected and hence, less complex.

All of the tests above were conducted in an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz,
16GB of RAM, and an NVIDIA GTX Corporation Device 1080 running Ubuntu 16.04.4
LTS.

5 Conclusion

Although the pure RL approach worked, its results were not very encouraging, probably
due to NES games superior complexity against Atari 2600 games.
Although results may at first seem discouraging, the interface and methods necessary
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Figure 12: The figure shows the learning process for a pure RL approach
in game Galaga with a decreasing LR and increasing Discount up to 0.99.
(a), (b) and (c) show a much less erratic behavior now, and although (a)
did not achieve a score as high as the previous approach this time, the
deviation of the curve is much lesser than before and certainly increasing
over time. (b) now, although with a clear behavior, deviates from the
expected, increasing over time, while it should be decreasing. (c), on the
other hand, shows a consistent increasing behavior, just like expected
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Figure 13: The figure shows the learning process for a pure RL approach
in game Galaga with a decreasing LR and increasing Discount up to 0.99
after many learning steps. Notice how after 200,000 seconds of training,
(a), (b) and (c) deviate behavior drastically, with (a) suddenly decreasing
to start increasing again, (b) suddenly decreasing as expected and (c)
increasing with a higher rate. Said behavior may be attributed to the
learning rate, as Figure 11 shows, to a learning rate very close to the
value of 0. It could be that the steps taken during training were too
large and it was not able to pursue a specific local maximum among the
possibilities, instead switching over and over, while with smaller steps the
algorithm was able to concentrate its efforts into achieving a specific local
maximuim.

to test any of the games above and any other game in the NES are now open source and
available and future works with different approaches and more training time are greatly



REFERENCES 19

encouraged.

More specifically, for future works, it is advised that:
e the number of the network’s layers are increased to further increase abstraction;

e the initial values and epoch of LR and discount should also be modified and the results
analyzed;

e the networks are given much more time to train.

Unfortunately, the options above were out of scope for this work due to time constraints.
The algorithm described in this work is available at

https://github.com/lmageste/DeepQNetwork.
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