
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Utilização de Redes Neurais
para Previsões no Mercado

de Ações
R. Castelão

Relatório Técnico - IC-PFG-18-01

Projeto Final de Graduação

2018 - Junho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



Utilização de Redes Neurais para Previsões no Mercado de

Ações

R. Castelão∗

Resumo

Esse trabalho tem como objetivo desenvolver um sistema capaz de realizar projeções
dos preços de abertura de ações de empresas participantes da BOVESPA e NASDAQ.
Para atingir tais objetivos foram criados scripts em Python utilizando bibliotecas es-
pećıficas de aprendizado de máquina para criar duas propostas de solução: uma baseada
em redes neurais recorrentes com tecnologia LSTM e outra com base na ferramenta open
source do Facebook, o Prophet. Com base nos resultados obtidos, percebeu-se que a
utilização de redes neurais recorrentes apresenta uma assertividade maior, chegando a
um erro de 5.21 RMSE para o dataset de teste no melhor caso, para ações da American
Airlines Group (AAL). Foi também constatado que a tarefa de previsão pode apresentar
um erro razoável, porém, a identificação de tendências futuras é muito bem retratada
pelo algoritmo, o que mostra que o sistema possui utilidade prática. A pesquisa também
constatou que o Prophet é uma ferramenta bem interessante no mercado, sendo utili-
zada na tomada de decisões dentro do próprio Facebook. Os resultados obtidos foram
bem relevantes se olhado para um horizonte de previsão de aproximadamente 50 dias,
apresentando erro menor que 10 RMSE.

1 Introdução

Com a popularização da Inteligência Artificial, diversos investidores e pesquisadores tem
buscando criar soluções, o mais assertivas posśıveis, para realizar projeções sobre o com-
portamento de ações de forma a obter maior lucro a partir da negociação de ações com
conhecimento prévio.

Além disso, com o número cada vez maior de engenheiros e cientistas de computação
trabalhando no mercado financeiro, cresceu a variedade de aplicações dos conhecimentos
adquiridos na universidade nessas áreas. Um bom meio de se fazer isso é pensar em soluções
tecnológicos com base nas dificuldades enfrentadas nesses setores.

Finalmente, redes neurais tem sido utilizadas parta comprovar/refutar a Hipótese de
Mercados Eficientes, que afirma que nenhum sistema poderia ser superior ao mercado,
porque, se tal sistema existisse, de alguma forma ele se tornaria público e qualquer indiv́ıduo
poderia utilizá-lo, fato que diminuiria seu ganho potencial.

Dado o cenário apresentado, o objetivo principal deste projeto foi a criação de um sistema
baseado em aprendizado de máquina para prever os valores de abertura de ações (a empresa

∗Instituto de Computação, Universidade Estadual de Campinas, 13081-970 Campinas, SP.

1



2 R. Castelão

mais trabalhada durante o projeto foi a American Airlines Group) e as tendências desses
preços. Para isso foi necessário desenvolver um script em Python, fortemente baseados
na biblioteca keras e sklearn, para implementar uma rede neural recorrente baseada na
tecnologia LSTM (Long Short-Term Memory, ou em português, Memória de Longo e Curto
Prazo). Arquiteturas distintas de redes neurais foram testadas e suas performances na
tarefa foram mensuradas.

As previsões também foram testadas através da ferramenta Prophet. Para isso foi criado
um script em Python com utilização da biblioteca fbprophet para a criação das rotinas de
treino e cross validation do modelo. Sua performance também foi testada e avaliada, além
de comparada com a performance das redes neurais.

As próximas seções descrevem o problema e detalham a metodologia e resultados obtidos.
O conteúdo está distribúıdo da seguinte forma:

• No caṕıtulo 2 estão descritos os fundamentos do mercado financeiro, bem como as
hipóteses que regem essa área de estudo.

• No caṕıtulo 3 estão descritos o funcionamento das redes neurais recorrentes. É deta-
lhado o que são modelos sequenciais, as formulações matemáticas das redes neurais e
o funcionamento de perceptrons LSTM.

• O caṕıtulo 4 apresenta o Prophet, bem como seu funcionamento e motivações para
utilização.

• O caṕıtulo 5 contém a explicação detalhada da metodologia utilizada para criar
os scripts em Python, tanto para a implementação das redes neurais, como para o
Prophet. No caṕıtulo 6 é mostrado os resultados obtidos com ambas as tecnologias.
Foram feitos diversos testes com diferentes cenários de redes neurais e medido seus
desempenhos.

• O caṕıtulo 7 descreve as conclusões obtidas com o estudo.

1.1 Objetivos

Esse projeto tem como objetivo estudar técnicas de aprendizado de máquina para atuar na
previsão dos preços de abertura de ações para empresas participantes da BOVESPA (Bolsa
de Valores de São Paulo) e NASDAQ (Associação Nacional de Corretores de T́ıtulos de
Cotações Automáticas).

2 Fundamentos do Mercado Financeiro

2.1 A Hipótese de Mercados Eficientes

A Hipótese de Mercados Eficientes descrita por Fama (1970, 1991) se insere dentro da
Moderna Teoria de Finanças. Essa teoria parte do pressuposto que, no processo de tomada
de decisões, o homem é capaz de analisar todas as informações dispońıveis e considerar
todas as hipóteses para a solução do problema [1].



Redes Neurais no Mercado de Ações 3

Assim, um mercado de capitais é eficiente se ele explora todas as informações dispońıveis
para a precificação dos ativos. Portanto, os preços desse mercado refletem todas as in-
formações dispońıveis de forma lógica e instantânea. Logo, como não há um lapso de tempo
entre a disponibilidade da informação e sua disseminação no mercado, não há como um
investidor obter vantagem sobre outro investidor [2].

Fama (1970, 1991) definiu três formas de eficiência de mercado:

• Forma forte: qualquer informação que se relaciona com o valor da ação, conhecida
por pelo menos um investidor, estará refletida no preço da ação. Assim, os preços
das ações refletem plenamente todas as informações existentes no mercado, sejam elas
públicas ou privadas.

• Forma semi-forte: os preços das ações refletem todas as informações dispońıveis
aos investidores. Dessa forma, não é posśıvel obter vantagem no mercado com base
na análise dessas informações, porque outros analistas já fizeram isso e os preços já
foram ajustados.

• Forma fraca: os preços das ações refletem todas as informações contidas no histórico
de preços, além de volumes já negociados.

2.2 Testes de Eficiência de Mercado

De acordo com o modelo Random Walk de Disorntetiwat [3], as ações não se comportam de
maneira previśıvel, mas sim de maneira aleatória, e por isso a melhor expectativa de preço
para o dia seguinte é o próprio peŕıodo atual.

A fim de examinar quais estratégias de investimento serão mais bem sucedidas no sentido
de gerar retorno, foram criados diversos tipos de testes de eficiência de mercado. Alguns
testes também avaliam os custos de transações e de prováveis execuções.

Grandes estudos feitos a partir de 1970 tentam refutar o modelo do Random Walk. O
ramo de Finanças Comportamentais, por exemplo, tenta mostrar que os preços não variam
de forma aleatória, mas sim que seguem o prinćıpio de retorno a média, além de serem
altamente influenciados pela subjetividade do comportamento humano.

2.3 Métodos de Previsão de Ações

Desde que o modelo de Random Walk não seja completamente verdade, é válido estudar
e criar métodos de previsão do mercado de ações, a fim de obter vantagens transacionais.
Esses métodos estão em constante evolução nos últimos anos, e graças ao crescente poder
computacional, diversas anomalias no histórico de preços estão sendo explicadas e adicio-
nadas em modelos teóricos.

Alguns desses métodos são apresentados em seguida. Com eles é posśıvel ter uma noção
de como evolúımos até as análises de redes neurais.



4 R. Castelão

2.3.1 Análise Técnica

Afirma que os preços se movem em tendências ditadas pelas constantes mudanças de atitudes
de investidores em resposta a diferentes forças. Utiliza o histórico de movimento de preços e
volumes e outras caracteŕısticas, ignorando fatores externos, para prever o comportamento
de ações [2].

Na análise técnica, os investidores tentam identificar anomalias e tendências através
do estudo de gráficos. Acredita-se que essas tendências tem comportamento ćıclico e são
baseadas nas leis de oferta e demanda. Há inúmeros indicadores técnicos derivados desse
tipo de análise a partir dos quais podem ser inferidas regras de aplicação e entradas em
redes neurais, como: indicadores de filtro, indicadores de volume, indicadores de momento,
análise de curva de tendência, médias móveis, análise de padrões etc.

2.3.2 Análise Fundamentalista

Procura informações não só referentes ao histórico de preços e volume, mas faz um estudo
profundo sobre a empresa, no qual se avalia seu panorama setorial, suas conjunturas macro
e microeconômicas, demonstrações financeiras, capital humano da organização, balanço
patrimonial etc.

Esse modelo tem vantagem sobre a análise técnica pelo fato de que sua abordagem
permite prever mudanças antes que elas apareçam efetivamente nos gráficos. Como as
companhia são comparadas entre si e seus panoramas de crescimento são comparados de
acordo com o ambiente econômico, os investidores tornam-se mais familiares com o aspecto
geral da empresa e mercado.

Esse tipo de abordagem é mais dif́ıcil de automatizar, utilizando redes neurais, por
exemplo, pela complexidade das análises, subjetividade das informações coletadas, presença
de fatores desconhecidos dos analistas e demora até que o resto do mercado interprete as
informações da mesma forma.

2.3.3 Séries Temporais

Séries temporais são sequências de vetores x(t), onde t representa o tempo. Analisar esses
elementos é identificar as caracteŕısticas e propriedades que descrevem o fenômeno gerador
da série [4].

A maior aplicação da análise de séries temporais é a geração de modelos de previsão.
A partir de informações passadas da série e outras variáveis importantes ao problema é
posśıvel inferir com certo grau de confiabilidade valores futuros. O uso desses modelos de
previsão são fundamentais para diminuir os riscos nas tomadas de decisão.

As séries temporais foram extensamente utilizadas na implementação desse projeto, e são
trabalhadas especialmente com redes neurais recorrentes, que serão explicadas na próxima
seção.



Redes Neurais no Mercado de Ações 5

2.3.4 Teoria do Caos

A teoria do caos parte do pressuposto de que não existe ordem em casualidade e por-
tanto acredita que um processo tem, ao mesmo tempo, caracteŕısticas determińısticas e
aleatórias [5]. Ela tenta explicar sistemas que são caóticos, ou seja, processos não-lineares
com caracteŕısticas aleatórias. Portanto, sistemas de redes neurais são perfeitos para in-
terpretar esses sistemas, pois conseguem olhar tanto para o conjunto de informações de-
termińısticas, que são as informações históricas, como para as informações aleatórias, que
utilizam parâmetros estat́ısticos de uma dada função.

2.3.5 Sistemas Computacionais Especialistas

Existem diversas outras técnicas computacionais para auxiliar investidores a tomar decisões
no mercado de ações, entre elas estão os sistemas computacionais especialistas. Esses são
usados na criação de regras de negociação baseadas em indicadores técnicos, ou na previsão
do comportamento de ações com o aux́ılio de redes neurais.

A maior dificuldade nesses sistemas é que nem mesmo os investidores mais experientes
tem conhecimento em fórmulas as regras com as quais esses sistemas trabalham, visto
que é muito dif́ıcil um entendimento completo do mercado. As redes neurais, no entanto,
apresentam aqui a vantagem de extráırem essas regras sem que seja necessário o completo
entendimento delas.

3 As Redes Neurais Recorrentes

3.1 Modelos Sequenciais

Redes neurais artificiais (RNA) representam um modelo de processamento que tem como
propósito imitar o funcionamento do nosso cérebro para resolver problemas. Atualmente,
graças ao rápido avanço tecnológico, podemos ver RNAs sendo usadas em uma variedade
de aplicações no mercado [6]. Os maiores motivos desse avanço foram:

1. O avanço das GPUs tem melhorado drasticamente nosso poder computacional nos
últimos anos, o que nos possibilitou aumentar vastamente a profundidade e tamanho
das camdas dos neurônios (perceptrons no contexto de redes neurais artificiais).

2. O fato de que agora redes neurais podem processar dados sequenciais tanto no input
como no output. Esse é o modo como nosso cérebro trabalha. Ele não soluciona
problemas de classificação binários para entender ideias complexas, mas sim formula
pensamentos baseados em sequências de informações e gera uma resposta também
baseada em sequências.

O processamento de dados sequenciais é posśıvel graças aos modelos de sequenciamento,
categoria nas quais as redes neurais recorrentes - estrutura utilizada nesse projeto - se
encaixam.

Algumas aplicações onde modelos sequenciais são úteis nos dias de hoje são:



6 R. Castelão

• Reconhecimento de voz: a entrada na rede é um clip de áudio, enquanto a sáıda
é um texto. Ambos são dados sequenciais. A entrada por ser um dado que varia no
tempo, e a sáıda pode ser uma sequência de palavras.

• Geração de música: o input aqui pode ser diverso (um conjunto vazio, um in-
teiro representando o gênero musical, um conjunto de parâmetros denotando aspectos
musicais, etc.). O output é uma música, caracterizada por uma sequência de notas
musicais distribúıdas no tempo.

• Classificação de sentimento: o input aqui é um texto que será analisado e portanto
um dado sequencial, enquanto o output é uma classificação, por exemplo, número de
estrelas de 0 a 5 para um filme.

• Análise de sequência de DNA: o DNA é representado por quatro letras do alfa-
beto, A, C, G e T, portanto podemos analisar em qual região existe, por exemplo,
alguma protéına.

• Tradução: o input é um texto em uma ĺıngua, e o output o texto anterior traduzido
para uma outra linguagem.

• Reconhecimento de atividade em v́ıdeos: o input é uma sequência de frames de
v́ıdeo e o output é a descrição do que as imagens estão mostrando.

• Predição do comportamento do mercado de ações: o input é a variação das
ações ao longo do tempo, e o output é o comportamento que essas ações terão nos
próximos dias.

3.2 Redes Neurais Recorrentes

Para entender sobre redes neurais recorrentes, é interessante entender sobre redes neurais
feedforward. Essa é uma estrutura de aprendizado de máquina onde a informação se move
em apenas uma direção: camada de entrada (input layer) para as camadas intermediárias
(hidden layers) para a camada de sáıda (output layer), como mostrado na Figura 1. Como
a informação se move de forma unidirecional através da rede, ela nunca passa duas vezes
no mesmo perceptron (nó da rede) [7].

Redes neurais feedforward não são boas em resolver problemas que envolvem dados
sequenciais. Isso porque elas não possuem nenhuma memória do input que receberam
previamente, apenas o atual, não existindo assim noção de ordem no tempo ou relação
entre duas entradas sequenciais.

Imagine um problema que receba como input um texto incompleto e tente adivinhar a
próxima palavra que melhor se encaixa no final da sentença. Considere o texto:

”Hoje o dia está nublado, com diferentes cores de nuvens no...”

Uma rede neural feedforward pode identificar que a palavra que completa a frase seja
”céu”, isso porque a rede não precisa de nenhum conhecimento prévio para inferir isso. Já
para a frase:



Redes Neurais no Mercado de Ações 7

Figura 1: Arquitetura básica de uma rede neural artificial.

”Assim que chegaram a França, João percebeu que não entendia uma palavra do que era
dito pelas pessoas de lá. Por sorte, Ana estava com ele. Ela é fluente em...”

Uma rede feedforward não consegue inferir com precisão qual a próxima palavra. A
rede pode até compreender que a palavra que segue a sentença represente um idioma, mas,
para saber qual, ela deve levar em consideração informações passadas. Mesmo sabendo que
anteriormente o páıs da França foi referenciado, ela não consegue carregar essa informação
para as partes mais à frente no texto. Uma rede neural recorrente já conseguiria inferir que
a palavra seguinte é ”francês”, porque ela consegue ”lembrar”do conhecimento adquirido
anteriormente.

Melhor explicando, o que uma rede neural recorrente faz é que cada feature x de um
input alimenta a rede neural A (como a da Figura 2) e gera um output ŷ, quando a rede lê
a próxima feature, ela carrega alguma informação do passo anterior para gerar um output
e assim por diante até o final do dado sequencial, como é mostrado na Figura 2 [8, 9].

Figura 2: Arquitetura básica de uma rede neural recorrente. A imagem à esquerda é sua
forma simplificada, enquanto à direita é sua forma ”desenrolada”.

A Figura 3 apresenta, com com maiores detalhes, a estrutura de uma rede neural re-
corrente (RNN - Recurrent Neural Network). Toda vez que a rede neural computa o valor
de ŷ<t> ela passa para o próximo step uma variável de ativação a<t>, que é levada em
consideração no cálculo de ŷ<t+1>. A RNN analisa os dados sequenciais da esquerda para



8 R. Castelão

Figura 3: Rede neural recorrente com indicação das matrizes de pesos utilizadas para
predição.

a direita e os pesos usados para cada passo, dados pela matriz Wax, são compartilhados
entre todos os passos. As conexões horizontais são governadas pela matriz de pesos Waa,
enquanto a responsável pelo output é a matriz Way.

Como já foi citado, a RNN usa informações não apenas do input correspondente, mas de
todos os outros anteriores, assim para prever ŷ<3> foi levada em consideração informações
de x<3>, x<2> e x<1>. Porém, não são levadas em consideração informações posteriores
ao input correspondente, esse é o caso das redes neurais recorrentes bidirecionais (BRNN -
Bidirectional Recurrent Neural Network).

A RNN funcionando em forward propagation é regida então pelas seguinte fórmulas:

a<0> = ~0 (1)

a<t> = g(Waaa
<t−1> +Waxx

<t> + ba) (2)

ŷ<t> = g(Wyaa
<t> + by) (3)

onde a<t> é a variável de ativação, g() é a função de ativação sendo utilizada, ba é um
fator de correção para o cálculo de a<t> e by é o fator de correção para o cálculo de ŷ<t>.

3.3 Backpropagation Através do Tempo

O exemplo anterior funciona em forward propagation. Para que a rede aprenda através do
backpropagation, é preciso uma função de custo. Para isso, será definida seguinte função:

L<t>(ŷ<t>, y<t>) = −y<t>logŷ<t> − (1 − y<t>)log(1 − ŷ<t>) (4)

que é a função de custo da regressão loǵıstica padrão.

Para definir uma função de custo geral da sequência inteira, basta fazer o somatório das
funções de custo de 1 até Ty, nesse caso Tx = Ty. Portanto:



Redes Neurais no Mercado de Ações 9

L(ŷ, y) =

Ty∑
t=1

(ŷ<t>, y<t>) (5)

O cômputo do backpropagation é realizada coforme apresentado pelas setas vermelhas
da Figura 4.

Figura 4: Rede neural recorrente com backpropagation, mostrando a função de custo L para
cada timestep, assim como a função geral e as direções da backpropagation em vermelho.

3.4 Unidades de Memória de Longo-Curto Prazo (LSTM)

Até então é posśıvel perceber que o output ŷ foi influenciado principalmente pelos valores
da sequência próximos a si. Por outro lado, há situações em que as features possuem longas
dependências com dados mais distantes. RNNs básicas não são tão eficientes em capturar
essas dependências de longo prazo, porque essas redes não conseguem propagar para os
timesteps mais no passado o efeito dos pesos. Assim, para focar no problema conhecido
como “vanishing gradients”, quando a rede “esquece” o que aconteceu anteriormente e não
consegue propagar as dependências através da sequência inteira, são usadas as LSTMs.

As LSTMs são um tipo especial de RNN, introduzidas por Hochreiter & Schmidhuber
(1997). Elas funcionam extremamente bem em uma grande quantidade de problemas e são
extensamente utilizadas no mercado financeiro [10].

Diferentemente das RNNs padrões, as LSTMs possuem um módulo de repetição, até
então composto por uma única camada de rede neural, um pouco diferente. Esses módulos
são compostos por quatro camadas que interagem de forma especial, como pode ser visto
na Figura 5.

O core da LSTM é o estado da célula, que é a linha horizontal que atravessa o topo
do diagrama. Ela atravessa a cadeia inteira sofrendo apenas pequenas alterações causadas
pelas estruturas conhecidas como “gates”. Esses são meios que opcionalmente deixar a
informação atravessar a cadeia, e são compostos por uma camada sigmoid e uma operação



10 R. Castelão

Figura 5: Unidade de LSTM mostrando todos os componentes estruturais como estado da
célula, gates e operações matemáticas.

de multiplicação. O sinal sigmoid tem como sáıda valores de 0 a 1, que representam deixar
o sinal passar inteiramente ou não passar, respectivamente. Uma LSTM possui três gates
como esse para proteger e controlar o estado da célula [11, 12].

O primeiro desses gates é o “forget gate”, que olha para o valor de a<t−1> e x<t> e gera
um número de 0 a 1 para cada número no estado da célula . A fórmula para o forget gate
é:

ft = σ(Wf [a<t−1>, x<t>] + bf ) (6)

onde Wf é uma matriz de parâmetros que recebe a<t−1> e x<t>, e bf é um valor de
correção.

O próximo passo é para decidir qual nova informação será armazenado no estado da
célula. Para isso há duas partes: a primeira é uma camada sigmoid chamada “input gate”,
que decide quais valores serão atualizados, a segunda é uma camada tanh que cria um vetor
de novos valores candidatos, ˜C<t>, que podem ser adicionadas ao estado, sendo:

ut = σ(Wu[a<t−1>, x<t>] + bu) (7)

˜C<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (8)

onde Wu e Wc são matrizes de parâmetros que recebem a<t−1> e x<t>, e bu e bc são
valores de correção.

Na sequência, o antigo C<t−1> é atualizado com um novo C<t>, multiplicando o estado
antigo por ft e depois adicionando ut ∗ ˜C<t>. Portanto:

C<t> = ft ∗ C<t−1> + ut ∗ ˜C<t> (9)

Finalmente, é decidido qual será o output. Primeiro, roda-se uma camada sigmoid que
decide quais partes do estado farão parte da sáıda. Depois, submete-se o estado da célula



Redes Neurais no Mercado de Ações 11

a uma função tanh (resultando em valores entre -1 e 1) e multiplica-se a sáıda da função
sigmoid, de acordo com:

o<t> = σ(Wo[a
<t−1>, c<t>] + bo) (10)

a<t> = ot ∗ tanh(C<t>) (11)

Essa estrutura de gates permitindo o fluxo de informações de um estado de célula é
o que permite a solução de diversos problemas relacionados a modelos sequenciais com
dependências de longo prazo, como é o caso do problema de previsões do mercado de ações
proposto nesse relatório.

4 Prophet

4.1 Introdução ao Prophet

O Prophet [13] é uma ferramenta de previsões open source do Facebook e disponibilizada
tanto em Python como em R. Ela foi concebida para facilitar a tarefa de forecasting que é
extremamente complexa tanto para máquinas quando para experientes cientistas de dados.
O Prophet é otimizado para realizar previsões na área de negócios, tomando como base as
tarefas encontradas no Facebook, que possuem as seguintes caracteŕısticas:

• Observações horárias, diárias ou semanais com pelo menos alguns meses ou anos de
base histórica.

• Sazonalidades presentes: dia da semana e tempo do ano.

• Feriados importantes que são previamente conhecidos, como campeonatos de futebol.

• Um número razoável de informações faltantes e outliers.

• Mudança de comportamento históricas, como quebra de uma companhia ou lançamento
de um produto.

• Tendências que não são lineares, onde a tendência atinge um limite natural ou um
ponto de saturação.

Portanto, essa ferramenta torna-se interessante para realizar previsões no mercado de
ações, que é um ambiente que se enquadra em quase todas as caracteŕısticas listadas acima.

4.2 Como o Prophet Funciona

Como parte central, o Prophet funciona como um modelo de regressão aditivo com quatro
componentes principais:

• Uma tendência de curva de crescimento linear ou loǵıstica. O Prophet detecta mu-
danças em tendências selecionando diferentes pontos dos dados.



12 R. Castelão

• Um componente sazonal anual modelado usando séries de Fourier.

• Um componente sazonal semanal modelado usando variáveis explicativas.

• Um número razoável de informações faltantes e outliers.

• Uma lista de feriados provida pelo usuário.

O que resulta em um modelo bem interessante para previsões que possuem alta sazona-
lidade e que algumas informações, como feriados, já foram pré-estabelecidas.

4.3 Utilização do Prophet em Séries Temporais

O projeto em questão não usou o Prophet na sua forma mais completa, por exemplo, através
de inputs de uma lista de feriados como parâmetro. O Prophet foi utilizado neste contexto
para fazer previsões de séries temporais, mais precisamente, flutuação do mercado de ações.

O modelo, que consiste em dados históricos do preço de abertura de algumas ações, foi
treinado através do Prophet. Após esse passo foi aplicada a técnica de cross validation,
utilizando as ferramentas de diagnóstico do Prophet. Avaliar performance em séries tempo-
rais é diferente do que fazer isso em outros tipos de datasets com variáveis independentes,
porque esses podem ser divididos em seções de treino, validação e teste enquanto aqueles
não podem. Para realizar a cross validation, o Prophet usa o que é chamado de dados de
cutoff. Para cada dado de cutoff, o modelo é treinado usando dados exclusivamente antes
desse dado. As previsões são então realizadas em um intervalo de tempo após o cutoff. Esse
intervalo é conhecido como horizonte e as métricas de erro são calculadas comparando as
previsões com os valores reais [13]. Esses parâmetros podem ser melhor interpretados com
a Figura 6.

Através do utilitário performance metrics do Prophet é posśıvel calcular o erro sobre
a previsão em diferentes métricas, como erro quadrático relativo (RSE), a ráız do erro
quadrático médio (RMSE), erro absoluto médio (MAE) e erro percentual absoluto médio
(MAPE). Esse erro é calculado como função da distância do cutoff, dada pelo horizonte,
como podemos ver através da Figura 7, que é o output da função plot cross validation metric [14].

O Prophet consegue ser uma ferramenta bem poderosa para análises de séries temporais,
tendo performance superior a muitas soluções interessantes no mercado, como a ARIMA.

5 Metodologia

5.1 Redes Neurais Recorrentes baseadas em LSTM

5.1.1 Dados de Entrada

Para este projeto, os dados utilizados referem-se a séries históricas de ações da BOVESPA
(Bolsa de Valores de São Paulo) e NASDAQ (Associação Nacional de Corretores de T́ıtulos
de Cotações Automáticas), que transaciona milhares de ações de diferentes empresas.



Redes Neurais no Mercado de Ações 13

Figura 6: Procedimento de Cross Validation do Prophet atuando sobre uma base de dados.
Pode-se ver os parâmetros de cutoff e o horizonte, bem como o parâmetro chamado de
inicial, que representa o tamanho do primeiro cutoff. Os pontos pretos são os dados reais e
o azul é a previsão realizada pelo Prophet.

Figura 7: Erro percentual absoluto médio (MAPE) da previsão em cross validation do
Prophet para quanto mais distante do cutoff a previsão fica, ou seja, em função do horizonte.

Esses dados são facilmente coletados do Yahoo! Finance, que disponibiliza os dados
históricos em arquivos .csv com as informações de abertura, máxima, mı́nima, fechamento,
fechamento ajustado e volume em uma escala de tempo diária.



14 R. Castelão

Para tratar esses dados, foi criado um script em Python para limpar os dados e adicioná-
los a uma estrutura de DataFrame da biblioteca pandas, como pode ser observado na Figura
8. Visualizando esses dados em forma de gráfico (Figura 9), através da biblioteca plotly, é
posśıvel perceber que os valores são muito próximos entre si, e é por esse motivo que a rede
neural constrúıda leva em consideração uma série temporal univariada, e que, portanto, só
possui um único escalar como elemento de observação.

Figura 8: DataFrame tratado com a biblioteca pandas mostrando os primeiros valores da
base de dados do Yahoo! Finance para as ações da American Airlines Group (AAL).

Figura 9: Gráfico das principais variáveis dos dados históricos da empresa American Airlines
Group plotado com o aux́ılio da biblioteca plotly.

5.1.2 Normalização dos Dados

Como a rede neural trabalha com uma série temporal univariada, mais especificamente com
os dados de abertura das ações, o DataFrame foi transformado em um Array da biblioteca
numpy com apenas essa variável indexada pela data.



Redes Neurais no Mercado de Ações 15

Para normalizar esses dados foi utilizada a função MinMaxScalar da biblioteca sklearn,
própria para machine learning. Essa função tem como objetivo mapear os dados a serem
normalizados no intervalo [0, 1]. Assim, o maior valor do array que está sendo normalizado,
receberá o valor de 1, e o menor, o valor de 0, os valores intermediários serão transformados
em números dentro desse intervalo.

A normalização é um passo importante para se trabalhar com redes neurais, além de
agilizar o processo de gradiente descendente, evita que o algoritmo tome decisões erradas
devido ao grande intervalo de valores das variáveis utilizadas.

5.1.3 Defasagem dos Dados

Uma próxima modificação que os dados passam é no sentido de transformar a série temporal
em um problema de regressão. Para isso, é feito o que é conhecido como “defasar” o dado, ou
seja, para cada linha do nosso dataset, vamos adicionar uma quantidade pré-determinada,
chamada de lag, de variáveis contendo informações de dados anteriores no tempo. Por
exemplo, se o lag for igual a 3, para cada linha de informação, no tempo t, de abertura da
ação, serão adicionadas mais duas variáveis com os valores de abertura de t − 1 e t − 2,
fazendo com que cada linha seja uma tupla contendo [t, t-1, t-2].

Desta forma, a rede neural consegue olhar para mais do que um dia para fazer a pre-
visão, porém, há controvérsias se defasar o dado realmente melhora a performance da rede
neural [15].

5.1.4 Criação da Rede Neural

O problema proposto faz uso de séries temporais com um input muito grande, e para a
previsão ser o mais assertiva posśıvel, a rede neural deve levar em consideração os inputs
desde o começo do dataset. Por esse motivo, foi escolhido uma rede neural com base em
LSTMs.

Para a criação da rede, foi utilizada a biblioteca keras, que é especializada em deep
learning. Primeiro foi instanciado um modelo sequencial, visto que estamos trabalhando
com séries temporais. Em seguida, foram instanciados um número de perceptrons com
módulo de repetição de uma LSTM. Esses perceptrons possuem função de ativação softmax
e função recorrente de ativação relu.

A função de ativação é aquela que aparece na equação 3 e que funciona como output
para o valor de y<t>. A função softmax atribúıda a essa ativação tem como objetivo mapear
os valores no intervalo [0, 1], assim como a função sigmoid. Porém, ela também divide cada
output até que a soma de todos eles seja 1. Matematicamente a função de softmax está
representada na equação 12, onde z é o vetor de inputs e j é o ı́ndice dos elementos do
vetor [16].

σ(z)j =
ezj∑K
k=1 e

zk
(12)

Já a função de ativação relu é aquela que aparece na equação 2 e que funciona para
gerar o valor de a<t>. A função relu aplicada aqui utiliza rectified linear units, que gera



16 R. Castelão

um valor igual a 0, caso o input seja negativo, e um valor igual ao input, caso seja maior
ou igual a 0. Esse tipo de função de ativação está sendo cada vez mais usado no lugar da
função sigmoid. Ela é a forma mais simples de ativação não-linear existente, pois quando o
input é positivo, a derivada é simplesmente 1, portanto não há o efeito squeezing encontrado
em erros com backpropagation como há na função sigmoid. Um estudo da Universidade de
Toronto [17] comprovou que relu resulta em um treinamento muito mais rápido para redes
muito grandes. Matematicamente, a função relu está representada na equação 13:

f(x) = max(x, 0) (13)

Em seguida, foi instanciado um perceptron do tipo Dense com 1 unit, que recebe os
inputs da rede de LSTMs e devolve um array de tamanho 1 com o valor da previsão do
preço de abertura da ação. A função de ativação utilizada aqui é a linear, que simplesmente
devolve o valor do input recebido.

A Figura 10 mostra a estrutura da rede neural constrúıda. O número de features, x<t>,
é dado pelo tamanho da defasagem dos dados, lags. A quantidade de perceptrons LSTM é
definida no modelo, e portanto a quantidade de valores preditos pela camada LSTM, y<t>.
O modelo é composto por um perceptron do tipo Dense que recebe as informações de todos
os y<t> e retorna a resposta final, r. As funções de ativação estão indicadas nas setas de
fluxo da informação.

Figura 10: Gráfico com o modelo de rede neural constrúıdo no projeto. As features de
entrada são dadas por x<t>, as previsões da camada LSTM por y<t>, e a previsão final por
r. As funções de ativação estão indicadas nas setas de fluxo da informação.



Redes Neurais no Mercado de Ações 17

5.1.5 Treinamento da Rede Neural

Após a criação da rede neural, foi feita a compilação dessa rede através do comando compile
da biblioteca keras. A função de custo, que é a função que tenta ser minimizada pela rede
neural, escolhida foi a de erro quadrático médio.

Após compilar a rede, foi realizado o treinamento dela com o dataset de treino, que
corresponde aos primeiros 70% da série histórica de ações da empresa escolhida. Esses 70%
precisam ser sequenciais a partir do ponto mais antigo dos dados, já que estamos lidando
com um problema de séries temporais. Foi também passado como input do treinamento, o
dataset de validação, ou teste, que são os próximos 30% da série histórica.

Além do dataset, são passados mais dois inputs: epoch e batch size. A epoch, ou época, é
a quantidade de vezes que os dados de treino são passados inteiramente pela rede neural para
treiná-la. Portanto, se o número de épocas é definido como 1, a rede neural treina o modelo
passando os dados apenas uma vez por seus perceptrons. Porém, se o número de épocas
é 2, a rede neural passa os dados de treino duas vezes pelos perceptrons, a fim de deixar
a rede mais bem treinada. Após cada época a rede é testada com os dados de validação,
se a função de custo não diminuir, o learning rate α do passo de gradiente descendente é
dividido pela metade, a fim de treinar o modelo melhor [18].

O batch size é o tamanho do lote do dataset que é passado para a rede neural Uma vez
que é impraticável passar todo o dataset para a rede neural de uma vez só, pelo grande
volume de dados, o mesmo é dividido em diversas partes que são os batches.

Em seguida, é necessário entender se esse modelo está com um bom fit, ou seja, não está
sofrendo overfitting e nem underfitting. Overfitting é quando o modelo foi demasiadamente
treinado, a ponto de conseguir fazer previsões com erros baix́ıssimos para os dados que
foram treinados, mas quando um novo dado é apresentado, o erro é alto. A rede aprendeu
a memorizar os exemplos de treino, mas não aprendeu a generalizar esse conhecimento para
novas informações. O problema de underfitting é justamente o oposto, é quando a rede foi
tão pouco treinada que não consegue fazer previsões assertivas.

Para endereçar esse problema foi analisado o comportamento do modelo revisitando
sua performance a cada época. Quando a rede é treinada, ela retorna uma variável cha-
mada history, que contém informações da função de custo definida na compilação. Essas
informações são colhidas a cada época tanto para os exemplos de treino, quanto para os da-
dos de validação. Com posse dessas informações é posśıvel identificar se o modelo está bem
treinado ou não. Se o modelo está underfit ele apresentará uma performance ruim tanto no
treino, quanto na validação. Se o modelo está overfit ele terá uma excelente performance
no conjunto de treino mas, a medida que o modelo continua a ser treinado, a acurácia no
conjunto de validação piora pois a rede se torna especialista no conjunto de treinamento.
Um bom modelo é aquele treinado até o ponto em que a função de custo retorna curvas de
decaimento próximas para os exemplos de treino como para os de validação (Figura 11) [19].

5.1.6 Predição dos Valores

Finalmente, foram realizadas as predições com a função predict da biblioteca keras. O
retorno dessa função já é um array de previsões. Esse array precisa passar por uma trans-



18 R. Castelão

Figura 11: Gráfico da função do custo atingida pelo treinamento do modelo de rede neural
baseada em LSTMs com um número ótimo de épocas, atingindo o best fit.

formação inversa a fim de retornar seu valor para um formato inverso ao obtido pela função
MinMaxScaler na fase de normalização.

Para cada dataset, são feitas as predições dos dados de treino, de teste e os dados reais.
O gráfico obtido é apresentado na Figura 12.

5.2 Prophet

5.2.1 Dados de Entrada

O procedimento aplicado para tratar os dados de entrada para o Prophet são iguais aos
apresentados para a rede neural recorrente na seção anterior. Aqui o dataset também vem
da fonte Yahoo! Finance e a variável escolhida para treinar o modelo e ser prevista é a de
abertura da ação ao longo dos dias. Também trabalhamos com séries temporais univariadas
no Prophet.

5.2.2 Treinamento e Previsão

Como mencionado anteriormente, o Prophet foi criado com o intuito de facilitar a tarefa de
fazer previsões, gerando valores confiáveis e assertivos. Por esse motivo, é extremamente
fácil treinar um modelo e criar previsões a partir dele com essa ferramenta. Para treinar o
modelo, basta utilizar a função fit, que recebe como parâmetro o dataset de treino. Com a
função make future dataframe é posśıvel determinar o número de dias no futuro que terão
seus valores previstos, portanto essa função recebe como parâmetro essa quantidade de dias,
chamada de periods.



Redes Neurais no Mercado de Ações 19

Figura 12: Gráfico com as previsões obtidas pela rede neural para os dados de treino e de
teste, além da curva dos dados reais.

Finalmente, é feita a predição desses valores futuros com a função predict. Essa função
retorna um DataFrame com as informações de previsão, ŷ, o limite superior da previsão,
ŷupper, e o limite inferior, ŷlower.

A visualização da previsão é feita plotando-se as informações retornadas pela função
predict. Na Figura 13 é posśıvel ver um exemplo da previsão feita pelo Prophet. Os pontos
pretos representam os valores reais do dataset utilizado, no caso em questão os valores dos
preços das ações de uma empresa espećıfica, a linha azul representa os valores previstos pelo
modelo e o sombreamento azul em torno da linha representa os limites superior e inferior
da previsão.

5.3 Cross Validation

Foi explicado anteriormente que o Prophet inclui a funcionalidade de cross validation para
medir o erro da predição usando séries históricas. Também mencionamos que isso é feito
através da seleção de pontos de cutoff. O modelo é treinado para todos os pontos da série
antes do ponto de cutoff e em seguida faz a previsão para um intervalo de tempo após esse
ponto, conhecido como horizonte. Após a previsão, o cross validation pega o próximo ponto
de cutoff que está a uma quantidade de pontos a frente do último cutoff, essa quantidade é
definida pela variável period. O primeiro ponto de cutoff é definido pela variável initial [14].

Para iniciar o método de cross validation, as variáveis initial, period e horizon devem
ser definidas. O padrão utilizado no projeto foi que initial é 60% do tamanho do dataset
completo, enquanto period e horizon são 5% e 10%, respectivamente.



20 R. Castelão

Figura 13: Gráfico com a previsão obtida pelo Prophet para uma série temporal univariada.
Os pontos pretos representam os valores reais do dataset, a linha azul representa os valores
previstos pelo modelo e o sombreamento azul em torno da linha representa os limites superior
e inferior da previsão.

Em seguida, o modelo é treinado com a função fit, detalhada anteriormente. Para rodar a
ferramenta de diagnóstico de cross validation é utilizada a função diagnostics.cross validation
e são passados como parâmetros o modelo treinado e as variáveis initial, period e horizon.

Para imprimir o diagnóstico com o erro desejado é usada a função plot cross validation metric,
que recebe como parâmetro o output da função diagnostics.cross validation, a variável me-
tric, que define o tipo de erro a ser utilizado na medição, e a variável rolling window,
que define a razão de dias que será usada para calcular os erros usando médias móveis.
Por padrão, a rolling window é 10% do tamanho do dataset, o que significa que 10% das
predições serão inclúıdas em cada janela.

Plotando-se o gráfico de cross validation referente a previsão feita na Figura 13 para o
tipo de erro raiz do erro quadrático médio (RMSE), tem-se o gráfico da Figura 14.

6 Experimentos e Resultados

6.1 Introdução

Este caṕıtulo apresenta os experimento realizados e a análise dos resultados obtidos na
implementação do projeto. As simulações foram iniciadas com a rede neural recorrente
baseada em LSTM. Foram gerados vários testes com parâmetros distintos. Durante os
testes, foi sendo alterado o número de defasagem dos dados, o número de épocas a fim de



Redes Neurais no Mercado de Ações 21

Figura 14: Gráfico de cross validation realizado pelo Prophet para o modelo treinado com os
mesmos dados da Figura 13. Os valores das variáveis initial, period, horizon e rolling window
são, respectivamente, 60%, 5%, 10% e 10% do tamanho total do dataset. Foi utilizada a
raiz do erro quadrático médio (RMSE) como medição.

atingir o best fit do modelo, as funções de ativação e ativação recorrente dos blocos LSTM,
o número de perceptrons LSTM, etc. Em seguida, foi feita uma simulação da previsão e
do erro RMSE obtidos pelo Prophet para o mesmo conjunto de dados usados para a rede
neural.

O objetivo dos experiementos é entender o impacto dos diversos parâmetros na previsão
dos dados. Além disso, gerar material suficiente para compararmos os resultados obtidos
pela rede neural LSTM e aqueles do Prophet.

6.2 Rede Neural Recorrente

O primeiro teste com a rede neural recorrente baseada em LSTM foi realizado com a série
histórica de preços da American Airlines Group. Esse dataset possui 3207 pontos dis-
tribúıdos em uma base de tempo diária que vai de 27-09-2005 até 22-06-2018. A variável do
dataset que foi utilizada na rede é a de abertura do preço da ação, assim, o sistema trata
uma série temporal univariada.

Em seguida, a normalização MinMaxScaler é aplicada, além da defasagem dos dados
em 3 unidades de tempo, lags. O dataset é dividido em treino e teste, sendo o treino os
primeiros 70% da série temporal e o teste os últimos 30%.

Para a criação da rede neural nesse primeiro teste, foram instanciados 5 perceptrons



22 R. Castelão

do tipo LSTM com função de ativação e ativação recorrente dos tipos relu e hard sigmoid,
respectivamente. Além disso, foi criado um perceptron do tipo Dense com 1 unit e com
função de ativação linear para gerar a previsão do preço de abertura da ação.

O modelo foi treinado levando em consideração 5 epochs e batch size 100. Quando o
gráfico da função de custo dos dados de treino e teste foram plotados, o resultado da Figura
15 foi observado, o que indica que o modelo está underfi pois ambas as curvas ainda estão
em decaimentot.

Figura 15: Gráfico da função de custo dos dados de treino e teste, da empresa American
Airlines Group em função do número de épocas do modelo. Pode-se perceber que o modelo
está apresentando underfitting.

Foi então aumentado o número de épocas para 12 para tentar deixar o modelo melhor
treinado. O gráfico obtido (Figura 16) mostra que o modelo está próximo ao best fit, uma
vez que as funções de custo do treino e do teste aproximam-se na época 12.

Em seguida, os dados de treino e teste foram passados como input para a rede neural
prever os valores de abertura das ações. Para os exemplos de treino, o RMSE obtido foi de
7.64, enquanto que para os exemplos de teste, o RMSE foi de 9.29, o que faz sentido, uma
vez que o modelo é treinado com os dados de treino e, portanto, deve apresentar melhor
resultado na previsão desse grupo.

A Figura 17 mostra uma visualização dos dados obtidos pela predição da rede neural
LSTM com base nos dados anteriores. A Figura 18 mostra a mesma curva, porém apenas
para os dados de teste.

O segundo teste, tem como principal objetivo mudar o número da defasagem dos dados
de 3 para 10 lags. Para obter o best fit o número de épocas foi reduzido para 3. Porém,
como é posśıvel observar na Figura 19, a curva de custo dos dados de treino cai muito
abruptamente, o que pode não ser bom para o modelo.



Redes Neurais no Mercado de Ações 23

Figura 16: Gráfico da função de custo dos dados de treino e teste, da empresa American
Airlines Group em função do número de épocas do modelo. Pode-se perceber que o modelo
está em seu best fit.

Figura 17: Gráfico da predição da rede neural LSTM em seu primeiro teste.

Nesse segundo teste, a rede obteve RMSE igual a 7.30 para os exemplos de treino e
RMSE de 13.10 para os dados de teste. Em relação ao teste anterior, esse apresentou um
fit melhor para o treino, o que faz sentido com o aumento de lags, mas tem uma piora na



24 R. Castelão

Figura 18: Gráfico da predição dos dados de teste da rede neural LSTM em seu primeiro
teste.

Figura 19: Gráfico da função de custo dos dados de treino e teste, da empresa American
Airlines Group em função do número de épocas do modelo. Os dados utilizados nesse
modelo estão com defasagem igual a 10 lags. Pode-se perceber que a curva de custo dos
dados de teste cai muito abruptamente, o que pode não ser bom para a previsão de valores.



Redes Neurais no Mercado de Ações 25

previsão dos dados de teste. Esse caso mostra que o aumento da defasagem dos dados não
é benéfico para a assertividade do modelo.

Para o próximo teste, o valor de defasagem de 3 lags foi retomado, porém, agora as
funções de ativação e ativação recorrente dos blocos LSTM são softmax e relu, respecti-
vamente. Isso porque essas funções são teoricamente mais adequadas para esse tipo de
problema. O número de épocas escolhido foi 10, por apresentar o melhor fit.

O erro deste experimento para os dados de treino foi de 6.20 RMSE, e para os dados de
teste, de 8.09 RMSE. Já é posśıvel ver uma melhora considerável nesse teste em relação aos
anteriores, o que mostra a importância em escolher o melhor tipo de função de ativação.

O último teste leva em consideração um número muito maior de blocos LSTM. Enquanto
os testes anteriores tinham 5 perceptrons LSTM, esse possui 300. O número de épocas
ideal é 33, alcançando assim o melhor fit. O erro dessa rede para os dados de treino é de
apenas 3.35 RMSE, e para os dados de teste, de 5.21 RMSE. Isso mostra a importância
da complexidade da rede para prever resultados mais assertivos. Os gráficos da previsão
dos preços de abertura da American Airlines Group por essa rede pode ser observado nas
Figuras 20 e 21.

Figura 20: Gráfico da previsão do modelo de rede neural com 300 perceptrons LSTM com
funções de ativação e ativação recorrente iguais a softmax e relu, respectivamente.

A partir dos experimentos foi posśıvel perceberque todos os modelos tem uma taxa de
acerto de direção muito alta. Mesmo os primeiros testes, em que os modelos possuem um
erro RMSE considerável. Uma taxa de acerto de direção implica que o modelo pode não
acertar a previsão no valor correto, mas ele consegue identificar melhor os peŕıodos em que
uma ação vai subir ou descer. Claro que fatores externos que interfiram diretamente no
valor das ações, não serão previstos nesse tipo de modelo.



26 R. Castelão

Figura 21: Gráfico da previsão dos dados de teste do modelo de rede neural com 300
perceptrons LSTM com funções de ativação e ativação recorrente iguais a softmax e relu,
respectivamente.

6.3 Prophet

Para os experimentos com Phophet, a mesma base de dados e o mesmo arquivo utilizado
para os testes com as redes neurais LSTM referentes as séries históricas do preço de abertura
das ações da American Airlines Group foram aplicados.

Através do modelo de predição do Prophet, quando dado como entrada essa série tem-
poral univariada, pedido para fazer a previsão do modelo inteiro e ainda mais 2 anos de
dados futuros, que não existem mapeados, o gráfico da Figura 22 é obtido.

Submetendo o dataset ao método de cross validation apresentado anteriormente com os
parâmetros initial, period, horizon, rolling window e error metric iguais a 60%, 5%, 10%,
10% e RMSE, respectivamente, o gráfico do erro calculado pela raiz do erro quadrático
médio é representado na Figura 23.

7 Conclusão

A tarefa de prever preços no mercado de ações é extremamente complexa e envolve muito
mais variáveis do que simplesmente a série histórica de preços. No entanto, é posśıvel
perceber bons resultados utilizando-se de redes neurais recorrentes com base em LSTM
sendo treinados por séries temporais. Também é posśıvel perceber resultados razoáveis
através da ferramenta open source do Facebook, o Prophet.

Neste projeto, os resultados alcançados com as redes neurais recorrentes foram muito
positivos, especialmente pelo fato de ser posśıvel variar muitas caracteŕıstica da rede e



Redes Neurais no Mercado de Ações 27

Figura 22: Gráfico da previsão da abertura das ações da American Airlines Group pelo
Prophet. Também é tentada fazer a previsão para os próximos dois anos de dados não
mapeados, não podendo ser calculado o erro desse peŕıodo.

Figura 23: Gráfico do erro RMSE analisado pelo método de cross validation realizado sobre
os dados de abertura das ações da American Airlines Group.



28 R. Castelão

visualizar as diferentes performances de cada cenário. Foi posśıvel variar a defasagem dos
dados, as funções de ativação da rede, o número de perceptrons etc. Ao final, chegou-se a
um cenário ótimo com erro no dataset de treino, que era de 30% do dataset total, de 5.21
RMSE. No entanto, mesmo a previsão não sendo extremamente assertiva, foi percebido pela
Figura 21, que a rede neural consegue prever muito bem a tendência das ações, ou seja,
quando ela irá subir e quando irá cair, o que pode sim auxiliar muito a tomada de decisões
de investidores.

O Prophet é uma ferramenta com menos liberdade de variação dos parâmetros, uma
vez que age como uma caixa-preta em muitas das operações. Ainda assim, é posśıvel ver
um erro relativamente bom, menor que 10 RMSE para horizontes não muito distantes, por
volta de 50 dias. Essa ferramenta ainda possui diversos utilitários que não foram explorados
no projeto, como análise de tendências.

Como melhorias, podeŕıamos treinar outros tipos de redes neurais recorrentes e utilizar
outras ferramentas de previsão dispońıveis no mercado, como é o caso da ARIMA. Ainda,
é posśıvel levar em consideração outros variáveis na previsão de preços de ações. Uma ação
que seria muito interessante, seria fazer uma análise de sentimento em not́ıcias relacionadas
as empresas, como report de bancos, e identificar se as empresas estão indo bem ou mal
com base no texto analisado. A conclusão retirada desses reports pode ser adicionada como
um conjunto de variáveis para a rede neural, a fim de deixar o modelo mais preciso.

O link com os algoritmos de previsões no mercado de ações em Python tanto para a rede
neural recorrente baseada em LSTM quanto para a implementação com o Prophet podem
ser encontrados no seguinte git: Predicting Stock Prices with Machine Learning Algorithms.

Referências

[1] Gabriel, F. S., Ribeiro, R. B., and de Sousa Ribeiro, K. C. (2013), Hipóteses de mercado
eficiente: um estudo de eventos a partir da redução do IPI, Revista de Gestão, Finanças
e Contabilidade.

[2] do Carmo Roque, R., and de Mello, F. L. (2009), Estudo sobre a empregabilidade da
previsão do ı́ndice BOVESPA usando Redes Neurais Artificiais.

[3] Malkiel, B. G., and Fama, E. F. (1970), Efficient Capital Markets; a review of theory
and empirical work, Journal of Finance.

[4] Dorffner, G. (1996), Neural networks for time series processing, Neural Network World.

[5] Lawrence, R. (1997), Using neural networks to forecast stock market prices, University
of Manitoba.

[6] Srivastava, T. (2018), ”A Must-Read Introduction to Sequence Modelling (with use
cases)”, available at: www.analyticsvidhya.com/blog/2018/04/sequence-modelling-an-
introduction-with-practical-use-cases/ (acessed 28 June 2018).

https://github.com/rafaelfariac/PredictingStockPrices


Redes Neurais no Mercado de Ações 29

[7] Sinha, N. (2018), ”Understanding LSTM and its Quick Implementation in Keras
for Sentiment Analysis”, available at: https://towardsdatascience.com/understanding-
lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47 (aces-
sed 28 June 2018).

[8] Cavaioni, M. (2014), ”DeepLearning series: Sequence Models”, available
at: https://medium.com/machine-learning-bites/deeplearning-series-sequence-models-
7855babeb586 (acessed at 27 June 2018).

[9] NG, A., Katanforoosh, K. and Mourri, Y. B. (2018), ”Sequence Models”, available at:
www.coursera.org/learn/nlp-sequence-models (acessed 28 June 2018).

[10] Olah, C. (2015), ”Understanding LSTM Networks”, available at:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (acessed 28 June
2018).

[11] Chen, E. (2017), ”Exploring LSTMs”, available at:
http://blog.echen.me/2017/05/30/exploring-lstms/ (acessed 29 June 2018).

[12] Hochreiter, S. and Schmidhuber, J. (1997), Long Short-Term Memory, Johannes Kepler
University Linz.

[13] Taylor, S. J., and Letham, B. (2017), Forecasting at scale, The American Statistician,
PeerJ Preprint.

[14] Facebook Open Source (2018), ”Prophet Documentation - Diagnostics”, available at:
https://facebook.github.io/prophet/docs/diagnostics.html (acessed 2 July 2018).

[15] Brownlee, J. (2017), ”How to Use Timesteps in LSTM Networks for Time Series
Forecasting”, available at: https://machinelearningmastery.com/use-timesteps-lstm-
networks-time-series-forecasting/ (acessed 30 June 2018).

[16] Zhang, C., Yan, J., Li, C., Rui, X., Liu, L., and Bie, R. (2016), On estimating air
pollution from photos using convolutional neural network, Proceedings of the 2016 ACM
on Multimedia Conference.

[17] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), Imagenet classification with
deep convolutional neural networks, Advances in neural information processing systems.

[18] Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010), Recur-
rent neural network based language model, Eleventh Annual Conference of the Interna-
tional Speech Communication Association.

[19] Brownlee, J. (2017) ”How to Diagnose Overfitting and Underfitting of LSTM Models”,
available at: https://machinelearningmastery.com/diagnose-overfitting-underfitting-
lstm-models/ (acessed 30 June 2018).


	Introdução
	Objetivos

	Fundamentos do Mercado Financeiro
	A Hipótese de Mercados Eficientes
	Testes de Eficiência de Mercado
	Métodos de Previsão de Ações
	Análise Técnica
	Análise Fundamentalista
	Séries Temporais
	Teoria do Caos
	Sistemas Computacionais Especialistas


	As Redes Neurais Recorrentes
	Modelos Sequenciais
	Redes Neurais Recorrentes
	Backpropagation Através do Tempo
	Unidades de Memória de Longo-Curto Prazo (LSTM)

	Prophet
	Introdução ao Prophet
	Como o Prophet Funciona
	Utilização do Prophet em Séries Temporais

	Metodologia
	Redes Neurais Recorrentes baseadas em LSTM
	Dados de Entrada
	Normalização dos Dados
	Defasagem dos Dados
	Criação da Rede Neural
	Treinamento da Rede Neural
	Predição dos Valores

	Prophet
	Dados de Entrada
	Treinamento e Previsão

	Cross Validation

	Experimentos e Resultados
	Introdução
	Rede Neural Recorrente
	Prophet

	Conclusão

