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Localização probabiĺıstica em robótica

João Guilherme Fidelis∗ Esther Colombini†

Resumo

O problema de auto localização é fundamental para diversos tipos de robôs au-
tonômos. Os robôs dependem de sua posição local para tomar muitas de suas decisões
de quais serão suas próximas ações. Neste trabalho, discutimos o problema de loca-
lização voltado para robôs humanoides que participam da tarefa do futebol de robôs
da RoboCup. Estudamos o algoritmo probabiĺıstico do filtro de part́ıculas de Monte
Carlo e fizemos uma implementação do mesmo que roda num simulador Webots com
um modelo virtual do robô Nao da Aldebaran. Chegamos a conclusão que é posśıvel
obter boas estimativas de posição, dependendo principalmente do seu modelo de mo-
vimentação e modelo de observação. Também mostramos que aumentar o aumento do
número part́ıculas do filtro diminui o erro das estimativas.

1 Introdução

1.1 A RoboCup

A RoboCup[3] é uma competição mundial de robótica que acontece anualmente com o obje-
tivo de promover a robótica e a pesquisa em inteligência artificial ao oferecer um problema
desafiador e ao mesmo tempo interessante para o público. O grande objetivo da competição
é que até o meio do século XXI, um time de robôs consiga jogar de igual para igual com
o time de futebol que for campeão da Copa do Mundo FIFA com as regras do futebol
profissional.

Suas competições envolvem não apenas futebol mas também competições que vão desde
o regaste de v́ıtimas, tarefas assisitivas até a de danças entre robôs. A liga que envolve
futebol é a RoboCup Soccer. Dentro dessa liga há outras sub-ligas, incluindo a a Standard
Platform League. Nessa liga, os times utilizam um robô padrão e apenas focam em de-
senvolver o software utilizado por ele. Desde 2009, apenas robôs Nao, desenvolvidos pela
empresa Aldebaran são utilizados. A outra liga, a Humanoid League[4], é dividida em três
categorias: kids (40-90cm de altura), teens (80-140cm de altura) e adult (130-180cm de al-
tura). Atualmente, é a liga que está mais perto do grande objetivo de jogar contra jogadores
profissionais.

∗Inst. de Computação, UNICAMP, 13083-852 Campinas, SP. ra136242@students.ic.unicamp.br
†Inst. de Computação, UNICAMP, 13083-852 Campinas, SP. esther@ic.unicamp.br

1



2 Fidelis, Colombini

Figura 1: Dimensões do campo usado na Standard League da RoboCup

Os robôs Nao (figura 2) são robôs de formato humanoide que andam sobre duas pernas.
A versão mais atual tem 58 cent́ımetros de altura e pesa 4.3 quilos. Ele tem vários mo-
tores pelo corpo que funcionam como suas juntas, permitindo que ele realize movimentos
complexos, como dar passos, andar, chutar, sentar, levantar, etc.

As regras do futebol de robôs [5] ainda são muito diferentes do futebol profissional de
humanos, porém, a cada ano, pequenas mudanças são feitas para deixar ambos mais pare-
cidos. Por exemplo, antigamente, as traves dos gols tinham cores diferentes de cada lado
do campo, para facilitar sua diferenciação. Hoje, todas já são brancas. A bola antigamente
era laranja, hoje já também é branca (mas ainda é bem menor que uma bola de futebol pro-
fissional), essas duas pequenas mudanças já forçam os times a adotarem outras estratégias.
O campo tem as dimensões 9 metros de largura e 6 metros de altura. Os gols tem altura
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Figura 2: Robô humanóide Nao

de 0.8 metro e 1.6 metro de largura (ver mais detalhes do campo na figura 1).

Alguns dos grandes desafios de robôs humanoides são a movimentação, andar, correr,
levantar, chutar, passar a bola, tudo isso mantendo o equiĺıbrio.

Um dos problemas mais importantes da RoboCup é o de localização, que permite ao
robô estimar sua posição no campo, assim como a da bola e outros elementos que podem ser
interessantes. Com base na sua posição e orientação, ele pode tomar decisões importantes,
por exemplo, um robô pode se comportar de maneira diferente se souber que ele está em
seu campo de defesa e que um oponente tem a bola.

A proposta deste trabalho é estudar técnicas e algoritmos de localização probabiĺısticos
comumente utilizadas e conhecidas e aplicar alguns conceitos num experimento prático
simulado no simulador Webots [2]. Essas técnicas são muito utilizadas nos robôs autônomos
pois dependem apenas de componentes já presentes nele (não precisa de GPS, por exemplo)
e tem um bom desempenho computacional.

2 Justificativa

O problema de localização é imprescind́ıvel para robôs autônomos, mesmo para os que tem
funções completamente diferentes dos robôs da RoboCup. Na RoboCup, esse problema é
extremamente importante para que a tomada de decisão seja corretamente realizada. O
robô deve saber onde está para saber se deve defender, chutar, se está chutando contra o
próprio gol, se está no campo e se foi sequestrado por cometer uma infração, deve poder
voltar a compreender o mundo ao seu redor de forma autônoma. Como podemos observar,
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é uma funcionalidade important́ıssima para a competição e por isso, muitos times gastam
muito tempo de desenvolvimento nesse módulo.

3 Objetivos

O objetivo desse trabalho é estudar e entender o problema da localização localização no
contexto da RoboCup e implementar o algoritmo mais utilizado, o filtro de part́ıculas de
Monte Carlo levando em conta o baixo poder de processamento do robô comparado a outras
arquiteturas.

3.1 Definições e Conceitos

3.1.1 O Problema de Localização

Os algoritmos de localização probabiĺısticos fornecem uma estimativa da posição do robô.
Sem a disponibilidade de um GPS, é imposśıvel termos as coordenadas exatas de um sis-
tema no mundo, mas com algoritmos já bastante conhecidos e testados, é posśıvel obter
aproximações muito boas.

Para obter bons resultados o robô precisa principalmente de dois módulos funcionando
muito bem: movimentação e observação. Ele precisa ter um bom modelo de movimentação
e também uma maneira eficaz de extrair caracteŕısticas do ambiente ao seu redor e estimar
a distância de posśıveis pontos de referência (chamados de landmarks).

3.1.2 Modelo de Movimentação

O modelo de movimentação é o componente do robô que dado certo movimento execu-
tado pelo robô, estima o seu deslocamento. Para o caso do nosso simulador, ele daria o
deslocamento do robô nas coordenadas x, y e θ, ou seja, o deslocamento nos eixos e em
rotação.

Para robôs de rodas, esse problema é relativamente simples, porém, para robôs hu-
manoides, ele se torna bem mais complexo. O Nao é um robô humanoide com um con-
junto de servomotores que formam e simulam suas juntas (ver figura 3 com os motores
dispońıveis). Quando o robô quer se locomover, eles aceleram em determinada direção em
tempos pré-calculados e fazem o movimento correto para o robô andar. Uma sequência
desses movimentos, permite ao robô levantar a perna, dar um passo, chutar, etc.

Devido a essa complexidade, não é simples fazer um modelo de movimentação para um
robô humanoide. Há muitas pesquisas exclusivamente voltadas para essa área. Durante
nossa pesquisa, tentamos integrar o modelo de movimentação do time B-Human[1], modelo
utilizados por eles no RoboCup em seu robô Nao, porém não obtivemos sucesso, devido a
complexidade do código e de integrar Python e C++.

Com o intuito de explorar as caracteŕısticas do algoritmo de localização, optamos por
utilizar um modelo simplificado de movimento. O modelo criado usa o nó supervisor do
Webots para acessar as coordenadas absolutas do robô Nao simulado no campo para calcular
a variação do deslocamento nos eixos x e y. Uma das grandes dificuldades foi mapear o
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Figura 3: Motores dispońıveis no Nao

ângulo do robô para o ângulo que desejávamos, para obter corretamente a variação no eixo
de rotação do robô e para posteriormente verificarmos os resultados obtidos. Isto foi feito
obtendo a matriz de rotação do robô e com ela, pudemos descobrir sua rotação em relação
ao eixo-z, que é o desejado. Com ela, podemos obter a tangente do ângulo do robô e utilizar
a função arcotangente para, após mais algumas transformações, obtermos o ângulo do robô.
Definimos que 0 graus seria o robô olhando para o gol direito (ver figura 4) e uma rotação
positiva ocorre é no sentido horário. A cada 300 passos de simulação do supervisor, ele
envia uma atualização da odometria, que é um vetor de três posições, contendo um ∆x, ∆y
e ∆θ desde o último envio.

3.1.3 Modelo de Observação

Outra peça fundamental no trabalho foi o algoritmo que permite identificar e estimar a
distância e o ângulo do robô para pontos de referências do mapa através de sua câmera.
Utilizamos como base o trabalho prévio conduzido por Magalhães e Colombini [9], que
produz ótimos resultados e é capaz de nos informar a distância para o landmark, o ângulo
do robô para ele e qual o landmark (trave esquerda, trave direita ou canto de escanteio).
Essa terceira informação é importante para podermos calcular a distância esperada e o
ângulo esperado corretamente para landmark achado. O único problema do algoritmo é o
número de falsos positivos que aparecem e por vezes fazem o erro da estimativa da posição
mudar muito, pois achamos haver um landmark onde não há. Na figura 5 podemos observar
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Figura 4: Robô com rotação de 0 graus de acordo com nosso referencial

um exemplo do momento em que o algoritmo detectou a trave esquerda e direita, já nos
fornecendo distância e ângulo para cada. Na figura 6, vemos alguns exemplos de falsos
positivos perto do ćırculo central.

4 Revisão Bibliográfica

O tema de localização de robôs é muito frequente e comum entre robôs autônomos. Como
diferentes robôs com outros propósitos tem diferentes sensores dispońıveis e variados poderes
de processamento, o número de fontes foi bastante restringida. Na RoboCup, times utilizam
diversos algoritmos diferentes.

Sobre o tema espećıfico de localização na RoboCup, Nikolaos Kargas [8] fez um trabalho
extenso sobre vários algoritmos e sobre o problema de localização em si. Neste trabalho, o
autor estuda diferentes tipos de filtros como o de Monte Carlo, o filto de Kalman e o filtro de
Kalman Estendido. Após discutir os três métodos, ele discorre sobre o filtro utilizado em seu
robô, que acabou sendo um Filtro de Kalman Estendido pois é mais eficiente e permite uma
integração dos estados do robô e da bola em um estado compartilhado global de maneira
mais fácil. O algoritmo proposto usa Acompanhamento de múltiplas hipóteses onde, quando
o robô faz uma previsão de landmark, ele pode não ter certeza de qual landmark é, criando
uma árvore de possibilidades para as posśıveis observações do robô. Cada hipótese gera
um filtro separado que considera uma pose diferente do robô e uma distribuição Gaussiana
diferente. Kargas também estuda as técnicas utilizadas por alguns times e menciona que na
época, o B-Human utilizava um filto Monte Carlo com otimizações, como a Particle Swarm
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Figura 5: Modelo de Observação detectando as traves esquerda e direita

Optimization, utilizando a técnica desenvolvida por Burchardt, Laue e Röfer [7], apesar de
hoje em dia utilizar um filtro de Kalman Estendido.

Strasdat, Bennewitz e Behnke [10] estudaram o algoritmo de Monte Carlo, porém com
um modelo de observação bem mais robusto. O modelo por eles proposto conseguia extrair
as linhas laterais do campo, o ćırculo central, utilizando a bússola para eliminar ambigui-
dades. É interessante que eles conseguem dar um valor de confiança para cada observação
feita, assim, observações em que o modelo tem mais certeza que estão corretas, tem valores
de confiança maiores e contribuem mais para o cálculo dos pesos das part́ıculas. Ele chega
em resultados bastante satisfatórios em seus trabalhos.

No trabalho conduzido por Aguias, Máximo e Pinto[6] uma versão padrão do filtro de
part́ıculas foi inicialmente utilizada. Entretanto, os autores identificaram que o algoritmo
clássico padrão é muito suscet́ıvel a falsos positivos, outros erros do modelo de observação
e tem problemas para lidar com o ”sequestro”do robô. Isso ocorre pois se obtivermos
um erro do modelo de observação, part́ıculas ficarão com o peso errado e após o passo de
resample, as part́ıculas erradas sobrevivem com mais chance e tendem a guiar as estimativas
para um valor errado, até o algoritmo se ajustar novamente com o tempo e mais estimativas
corretas. Eles fizeram modificações para dar probabilidades às observações vindas do modelo
de observação e criaram memórias curtas e longas no algoritmo original, armazenando na
memória aquelas observações mais confiáveis, prevenindo que um erro recente do modelo de
observação mexa muito nos valores estimados atuais. Porém, o algoritmo não leva em conta
landmarks amb́ıguos, o que é uma limitação e deveria ser adaptado antes de se colocar num
robô de verdade.

Os trabalhos [6] e [10] utilizaram funções similares para atualizar o peso de suas part́ıculas,
porém com uma pequena diferença. Enquanto os primeiros utilizam o quadrado da diferença
entre os valores observados e calculados, os últimos utilizam apenas a diferença absoluta
entre eles. A abordagem do grupo do ITA dá mais peso para part́ıculas boas e piora o peso
de part́ıculas ruins, o que é algo que pode fazer diferença.
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Figura 6: Exemplos de falsos positivos no modelo de observação

5 Desenvolvimento do Trabalho

5.1 Configurações do Ambiente

O simulador escolhido para realizar os experimentos foi o Webots, da Cyberbotics. No
ambiente criado, há uma representação do campo de futebol, da bola e do jogador, todos
simulados com tamanho real. O Webots funciona através de nós, tendo cada nó propriedades
próprias que os descrevem e essas propriedades podem ter outros nós. Por exemplo, o nó
Robot, que é derivado da classe Solid (classe que contém propriedades para objetos f́ısicos),
tem um nó para sua câmera, para seu GPS, etc. É a partir desses nós que nós temos acesso
a dados como a matriz de imagens da câmera. A classe Solid tem propriedades que dizem
sua posição no mapa e sua rotação. É com um nó supervisor que conseguimos acessos
a essas propriedades e podemos calcular a variação em x, y e θ, criando um modelo de
movimentação básico.

O campo tem coordenadas que vão de -4.5 a 4.5 no eixo x (refletindo os 9 metros de
largura do campo) e no eixo z do Webots (que para nós seria chamado de eixo y comumente),
vai de -3 a 3.

Podemos observar na figura 7 um exemplo do sistema de nós do Webots e entender
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Figura 7: Exemplo de estrutura de nós do Webots

melhor como o robô Nao é composto e simulado no programa.

5.2 Arquitetura do Ambiente

Em nosso sistema, temos três arquivos em Python importantes. O primeiro é o controlador
do robô, que faz ele andar e tem acesso à câmera. O segundo é o controlador do supervisor
que funciona como o modelo de movimentação, enviando ao servidor de imagens a odometria
a cada 300 passos de simulação.

O terceiro e mais importante é o servidor de imagens, que contém o modelo de ob-
servação, que identifica os pontos de referência e estima o ângulo e a distância para eles, e
o filtro de part́ıculas. Ao receber uma odometria do controlador do supervisor, ele aplica as
diferenças descritas pela odometria em todas as part́ıculas e continua calculando seus pesos
ao ver pontos de referências novos.

O servidor escuta uma porta TCP e espera a conexão dos dois clientes. Ao se conectarem,
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Figura 8: Arquitetura do projeto

ele abre uma thread para cada cliente e trata dos pacotes provenientes deles nela. O
controlador do supervisor envia de tempos em tempos a odometria e o ângulo atual do
robô, enquanto o controlador do robo envia a matriz de imagem que vem de sua câmera e
as coordenadas de seu GPS. O servidor recebe essas dados e processa-os.

A figura 8 apresenta os componentes, como se ligam e o que é enviado de um para o
outro.

5.3 Filtro de Part́ıculas

O algoritmo de filtro de part́ıculas é, em essência, um filtro Bayesiano onde um número
N de part́ıculas, que representam estados aleatórios inicias, é criado. Neste trabalho, os
estados de cada part́ıcula são (x, y, θ). Cada pat́ıcula também tem um peso, que varia
de acordo com a crença de que aquela part́ıcula representa a melhor estimativa de estado
ou não, dependendo das observações do modelo de observações. Na geração da part́ıcula,
é escolhido um valor aleatório para cada uma dessas variáveis, sendo x no intervalo [-4.5,
4.5], y no intervalo [-3. 3] e θ no intervalo [0, 360). Distribúımos as part́ıculas de forma
uniformemente aleatória pelas posśıveis coordenadas do campo.

Inicialmente, N part́ıculas foram geradas com o mesmo peso, um. Ao recebermos uma
odometria vinda do modelo de movimentação, o deslocamento descrito pela odometria no
estado (x, y, θ) é aplicado a todas as part́ıculas.

Neste projeto, consideramos três tipos de pontos de referência (landmarks): trave es-
querda, trave direita e canto de escanteio. Quando o modelo de observação detecta algum
landmark, o mesmo é inserido em uma lista com a distância observada, o ângulo observado
e o tipo do landmark.

No filtro de part́ıculas, para cada part́ıcula nós calculamos a distância esperada, uti-
lizando uma equação de distância entre pontos simples, e o ângulo esperado. O ângulo
esperado é calculado através da equação do ângulo entre dois vetores:
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x =
~v · ~u
‖~v‖ · ‖~u‖

(1)

θ = arccos(x) (2)

Para o nosso problema, adotamos um vetor onde a primeira posição é o seno do ângulo
que a part́ıcula tem e a segunda posição é o cosseno desse ângulo. O segundo vetor é o vetor
da diferença entre a posição do landmark para a posição (x, y) da part́ıcula (um vetor que
aponta da part́ıcula para o landmark). Utilizando as equações (1) e (2), podemos calcular
o ângulo esperado entre a part́ıcula e o landmark.

Com a distância observada, ângulo observado, distância calculada e ângulo calculado,
podemos utilizar a equação de Strasdat, Bennewitz e Behnke[10] para obtermos o peso de
uma part́ıcula, dada uma observação e o seu estado.

A equação utilizada é:

plandmark = exp(−‖do − de‖
2

) · exp(−‖θo − θe‖
2

) (3)

Sendo do a distância observada, de a distância esperada, θo o ângulo observado e θe o
ângulo esperado

Esta função é bastante apropriada para o nosso propósito pois quanto menor é a diferença
entre os resultados esperados e observados, mais perto de um chega a função. Quanto maior
é a diferença, o peso da part́ıcula cai de forma exponencial. Após calcularmos o peso para
cada landmark observado, combinamos os pesos calculados através de:

wi =
∏

pte · ptd · pesc (4)

Sendo wi o peso de uma part́ıcula, pte o valor associado daquela part́ıcula à trave es-
querda, ptd o valor calculado para a trave direita e pesc o valor daquela part́ıcula para o
landmark de escanteio. Se algum landmark não foi visto, ele fica com valor um, não afetando
o produtório.

Finalmente, com o peso das part́ıculas definido, fazemos um resample, que é um passo
de extrema importância no filtro, responsável pela resultado da crença a posteriori. Nele,
as part́ıculas são salvas e continuam no filtro de acordo com seu peso, porém de forma
aleatória. Aquelas com maior peso, tendem a se manterem vivas. As que não são salvas
podem ser geradas aleatoriamente novamente ou, como no nosso algoritmo, são substitúıdas
por cópias de part́ıculas já existentes no filtro, que provavelmente tem um peso maior. Esse
passo é muito importante pois ajuda com que part́ıculas mais corretas (de maior peso)
sobrevivam em maior número e assim, o resultado da estimativa do estado do robô tende a
convergir para um valor mais correto e de forma mais rápida. A estimativa de pose no final
é a média ponderada dos estados (x, y, teta) de todas as part́ıculas. O pseudo-código para
o algoritmo de localização de Monte Carlo está descrito no Algoritmo 1.

Em nosso pseudo-código (Algoritmo 1), a função draw random particle() desenha uma
part́ıcula com os valores (x, y, θ) distribúıdos de forma uniforme pelo campo.

A função calculate weight for landmark(do, θo, tipo) utiliza a equação 3 para calcular
o peso de tal part́ıcula de acordo com o landmark encontrado. A função de resample recebe
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Algorithm 1 Algoritmo de Monte Carlo

1: procedure SIMPLE MCL
2: Inicialização
3: for todas as partı́culas p em M do
4: p = draw random particle()

5: Calculando Pesos
6: for L em landmarks vistos do
7: do = L[0]
8: θo = L[1]
9: tipo = L[2]

10: for todas as partı́culas p em M do
11: p.peso ∗= calculate weight for landmark(do, θo, tipo)

12: peso total = 0
13: for todas as partı́culas p em M do
14: peso total += p.peso

15: Resample(peso total,M)

a soma total de pesos do filtro e modifica o vetor de part́ıculas M , sendo aquelas com maior
peso as com maiores chances de sobreviverem.

5.4 Diferenciação de Landmarks

O algoritmo do modelo de observações nos diz apenas a distância observada, ângulo obser-
vado e o tipo do landmark, mas não qual é exatamente. A partir do momento que temos
duas traves esquerdas idênticas, duas traves direitas idênticas e quatro escanteios iguais,
temos muitos problemas de ambiguidade relacionados a simetria do campo.

Duas abordagens foram utilizadas para tratar deste problema. Uma deles foi, antes
de calcular os pesos para cada part́ıcula, fazer um sistema de votação onde testávamos a
distância calculada de cada part́ıcula para os dois landmarks posśıveis (por exemplo, trave
esquerda do gol ”esquerdo”e trave esquerda do gol ”direito”) e o landmark vencedor seria
o que mais part́ıculas tivessem uma distância mais próxima da distância observada pelo
modelo de observações. Se das 100 part́ıculas 51 votassem que o gol correto que o robô está
olhando é o direito, utilizaŕıamos ele como landmark para o cálculo do peso de todas. Porém,
isso levou a siatuação onde, na primeira iteração, quando as part́ıculas estavam distribúıdas
de forma aleatória pelo mapa, se o gol errado vencesse a votação, muitas part́ıculas que
eram muito boas e estavam de fato na posição mais correta ficavam com pesos errados e no
passo de resample apenas part́ıculas ”ruins”sobreviviam e o a estimativa nunca convergia
para valores bons.

Na segunda estratégia, a mais simples, os resultados foram melhores. Se sabemos que o
landmark é um escanteio, por exemplo, testamos a distância da part́ıcula para cada posśıvel
posição do escanteio no mapa e guardamos a distâcia calculada mais próxima da observada.
Também utilizamos o ângulo calculado para esse landmark escolhido por esse critério. Isso
pode gerar algumas inconsistências pois o gol encontrado para uma part́ıcula pode não ser
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o mesmo que o de outra, para o mesmo landmark.

6 Experimentos e Resultados

Os testes foram automatizados para evitar que entradas diferentes produzissem resultados
muito diferentes. Mesmo que com as mesmas entradas, devido a rotação do robô de forma
involuntária quando andando para frente, isso não pode ser controlado e como é variante
e impreviśıvel, não era posśıvel produzir uma combinação de movimentos idênticos mesmo
com as mesmas entradas.

Os experimentos foram feitos com o robô partindo da coordenada (0, 0), ou seja, no
ćırculo central, centro do campo, com diferentes rotações iniciais (no sentido horário, defi-
nido previamente): 11 graus, 45 graus e 90 graus. Devido a problemas no OpenCV usado
pelo Modelo de Observação, muitas vezes crashes prematuros aconteciam, então usamos
apenas dados para o qual conseguimos pelo menos 30 atualizações de pesos no vetor de
part́ıculas (ou seja, o peso de cada pat́ıcula foi atualizado 30 vezes diferentes). Variamos
também o número de part́ıculas geradas pelo filtro para vermos se teŕıamos algum impacto
na precisão das estimativas.

Para cada diferente valor de rotação inicial e número de part́ıculas diferentes foram
conduzidas 3 simulações com no mı́nimo 30 atualizações no filtro de part́ıculas. Em cada
atualização, o valor da estimativa de posição atual, contendo o (x, y e teta) estimado e os
valores atuais do robô (x, y, teta) foi armazenado para futura comparação. Para cada um
desses estados, observamos a diferença entre o estimado e o valor real e calculamos uma
média das diferenças de todas as medições dos três testes para aquele grau inicial e número
de part́ıculas.

Part́ıculas Erro Médio X Erro Medio Y Erro Médio θ DP Erro X DP Erro Y DP Erro θ

100 0.515452 1.941689 63.966194 0.303512 0.344193 41.001778

500 0.318755 0.482954 31.977962 0.150749 0.304204 29.391581

1000 0.108255 0.430408 27.779501 0.109885 0.318679 34.625565

Tabela 1: Dados para testes com θi = 11 graus

Na tabela 1 observamos que os erros de X, Y e θ cáıram drasticamente conforme au-
mentamos o número de part́ıculas. O erro médio caiu cerca de cinco vezes em X, quase
cinco vezes em Y e um pouco mais de duaz vezes em θ, se compararmos os filtros com 100
e 1000 part́ıculas.

Part́ıculas Erro Médio X Erro Médio Y Erro Médio θ DP Erro X DP Erro Y DP Erro θ

100 0.369013 1.411293 70.197061 0.434384 0.708392 55.308130

500 0.523084 1.934724 49.804047 0.395546 0.941398 50.539249

1000 0.513263 2.236002 38.360232 0.403360 0.888961 28.253801

Tabela 2: Dados para testes com θi = 45 graus

Já nas tabelas 2 e 3, para rotação inicial de 45 graus e 90 graus, não notamos uma
grande melhora, de certa forma, houve piora em algumas métricas, conforme o número de
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Part́ıculas Erro Médio X Erro Medio Y Erro Médio θ DP Erro X DP Erro Y DP Erro θ

100 0.766046 1.243715 75.771592 0.747579 0.563879 35.592377

500 0.261203 1.727628 83.040452 0.277899 1.118833 25.404026

1000 0.385618 1.634717 67.375540 0.381629 1.408556 46.374294

Tabela 3: Dados para testes com θi = 90 graus

part́ıculas aumentou. Isso ocorre pois nessas duas configurações, o robô leva muito tempo
para observar landmarks reais e acontece de registrar alguns landmarks falsos positivos que
poluem os pesos das part́ıculas e após o resample, part́ıculas que não refletem bem o estado
atual do robô sobrevivem por estarem erroneamente com o peso alto.

Observamos que para os testes de 45 graus, o erro médio aumentou em todas as variáveis
exceto em θ, conforme o número de part́ıculas aumentou, o que foi surpreendente.

Os altos valores de desvio padrão para quase todos os valores são reflexo do fato de que
durante os testes, enquanto o robô olhava e encontrava apenas landmarks corretos, o erro
diminúıa e ficava baixo, porém, ao sair da área e ir para lugares onde encontrava falsos
positivos, sua estimativa era contaminada e o erro começava a crescer muito. Por isso,
os valores encontrados podem ser muito distantes da média, justificando um alto desvio
padrão.

Este comportamento com os falsos-positivos ajuda a explicar o aumento do erro médio
no caso de 45 graus e 90 graus. Como temos mais part́ıculas, o filtro resiste mais a mudanças.
Quando um falso positivo é observado cedo, o filtro fica com part́ıculas com pesos de acordo
com aquele falso positivo. Ao fazer uma nova observação, por ter mais part́ıculas no filtro,
essas novas observações tem menos impacto no filtro do que se ele tivesse menos part́ıculas,
pois há mais part́ıculas contribuindo para a média ponderada que nos da nossa estimativa
final. Com menos part́ıculas, qualquer mudança faz mais efeito na estimativa, fazendo com
que caso seja visto um falso positivo e depois um landmark correto, demore menos para o
filtor se ajustar com essas informações corretas.

Outra hipótese para a causa do desempenho ruim com essas rotações de 45o e 90o, se
comparando com os resultados de θi = 11 graus, é que a primeira observação do robô nesse
caso é a um escanteio e nosso processo de diferenciação de landmarks não é muito robusto,
fazendo com que part́ıculas erradas estimem fiquem com pesos altos desde a primeira ob-
servação. Foi testada essa hipótese fazendo com que o robô informasse para o filtro de
part́ıcula, qual landmark exato ele estava vendo (incluindo suas coordenadas), para termos
certeza que as part́ıculas calculariam distância esperada e ângulo esperado para o landmark
correto. Porém essa mudança não trouxe resultados bons, o que refutou essa hipótese.
Foi feita uma simulação com um filtro de 500 part́ıculas e rotação inicial de 90 graus e o
resultado, visto na tabela 4, indica um erro médio muito grande na rotação e em Y.

Part́ıculas Erro Médio X Erro Medio Y Erro Médio θ DP Erro X DP Erro Y DP Erro θ

500 0.373558 3.692411 169.631442 0.485772 0.480491 25.361045

Tabela 4: Dados para testes com θi = 90 graus e robô passando para o filtro qual o landmark
observado
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Para vermos se o desempenho do filtro de 100 part́ıculas é realmente melhor do que o
de 1000 part́ıculas quando a rotação inicial é 90 graus, executamos o teste mais vezes e
analisamos cada rodada separadamente.

Teste Erro Médio X Erro Medio Y Erro Médio θ

1 1.332009 0.879561 103.594207

2 1.329695 1.304658 54.855036

3 0.062738 1.391539 76.173352

4 0.441256 1.559879 60.188987

5 0.367362 0.139170 15.117687

6 0.234999 2.682297 60.189420

7 0.436979 1.119430 56.190269

8 0.889214 0.761387 99.074575

9 0.567084 1.948849 80.909181

10 0.981894 2.655215 66.939608

Tabela 5: Dados para testes com θi = 90 graus e 100 part́ıculas

Teste Erro Médio X Erro Medio Y Erro Médio θ

1 0.199659 1.255442 64.590630

2 0.769619 2.618150 84.789096

3 0.181164 0.911235 46.462462

4 0.307883 0.641667 72.434127

5 0.120552 0.676549 24.847971

6 0.293788 0.996593 47.468835

7 0.237513 0.655006 68.971646

8 0.318901 0.616482 41.827624

9 0.499596 0.725518 34.436462

10 0.344210 0.476304 35.910712

Tabela 6: Dados para testes com θi = 90 graus e 1000 part́ıculas

Comparando as tabelas 5 e 6, verificamos que o algoritmo com 1000 part́ıculas funciona
melhor, na média. A partir da tabela 7, que contém as médias do valores da tabela 5 e 6,
confirmamos que na média, o filtro com 1000 part́ıculas teve resultados melhores.

7 Trabalhos Futuros

Considerando os experimentos realizados verificou-se que o filtro de part́ıculas é viável
para aplicações online de localização de robôs autônomos, mas que, seria interessante estu-
dar como técnicas de diferenciação de landmarks podem influenciar os resultados obtidos.
Também seria útil estudar como o algoritmo consegue se comportar em caso de kidnapping,
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Part́ıculas Média do Erro Médio X Média do Erro Medio Y Média do Erro Médio θ

100 0.664323 1.444198 67.323232

1000 0.327289 0.957295 52.173957

Tabela 7: Média dos dados das tabelas 5 e 6

o que não tivemos tempo de fazer nesse trabalho. Seria de profundo interesse estudar me-
lhor como esse algoritmo se comportaria com um modelo de movimentação real, com um
modelo de observação mais robusto e no robô de verdade.

8 Conclusão

Através deste trabalho, podemos concluir com o algoritmo de Monte Carlo é excelente para
conseguir estimativas de posição para o robô Nao na tarefa do futebol da RoboCup. Vimos
nos nossos experimentos alguns fatos importantes: quanto mais part́ıculas no filtro melhor
são suas estimativas, na média, e que o filtro é bastante senśıvel a falsos positivos. Também
foi posśıvel observar que a qualidade deste algoritmo depende da qualidade e número de
landmarks extráıdos da cena.

Para obtermos resultados melhores, seria necessário um modelo de obervação mais ro-
busto, que fosse capaz de identificar e estimar distâncias para outros landmarks, como as
faixas do campo. Isso solucionaria alguns dos problemas de nosso algoritmo que tende a não
ter resultados bons enquanto o robô olha para as laterais do campo, longe dos escanteios e
gols. Ali também, tendem a aparacer muitos falsos positivos, o que poderia ser melhorado
no modelo de observação também.

Antes de usar o algoritmo em um robô, seria bom achar um valor ótimo para o número
de part́ıculas em seu filtro. O algoritmo tem desempenho que tem relação linear com o
tamanho do vetor, logo, é necessário achar um valor que garanta um tempo de execução
bom e um erro aceitável.

O código desenvolvido neste trabalho está dispońıvel em: https://github.com/jgfidelis/Self-
Localization-Nao-Robot.
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