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Localizacao probabilistica em robotica

Joao Guilherme Fidelis* Esther Colombinit

Resumo

O problema de auto localizagdo é fundamental para diversos tipos de robos au-
tonomos. Os robos dependem de sua posigao local para tomar muitas de suas decisoes
de quais serao suas préoximas agoes. Neste trabalho, discutimos o problema de loca-
lizagao voltado para robos humanoides que participam da tarefa do futebol de robos
da RoboCup. Estudamos o algoritmo probabilistico do filtro de particulas de Monte
Carlo e fizemos uma implementagdo do mesmo que roda num simulador Webots com
um modelo virtual do rob6 Nao da Aldebaran. Chegamos a conclusdo que é possivel
obter boas estimativas de posi¢ao, dependendo principalmente do seu modelo de mo-
vimentagao e modelo de observagao. Também mostramos que aumentar o aumento do
nimero particulas do filtro diminui o erro das estimativas.

1 Introducao

1.1 A RoboCup

A RoboCup|3] é uma competicao mundial de robética que acontece anualmente com o obje-
tivo de promover a robdtica e a pesquisa em inteligéncia artificial ao oferecer um problema
desafiador e ao mesmo tempo interessante para o publico. O grande objetivo da competicao
é que até o meio do século XXI, um time de robds consiga jogar de igual para igual com
o time de futebol que for campeao da Copa do Mundo FIFA com as regras do futebol
profissional.

Suas competicoes envolvem nao apenas futebol mas também competicoes que vao desde
o regaste de vitimas, tarefas assisitivas até a de dangas entre robds. A liga que envolve
futebol é a RoboCup Soccer. Dentro dessa liga ha outras sub-ligas, incluindo a a Standard
Platform League. Nessa liga, os times utilizam um robd padrao e apenas focam em de-
senvolver o software utilizado por ele. Desde 2009, apenas robos Nao, desenvolvidos pela
empresa Aldebaran sao utilizados. A outra liga, a Humanoid League[4], é dividida em trés
categorias: kids (40-90cm de altura), teens (80-140cm de altura) e adult (130-180cm de al-
tura). Atualmente, é a liga que estd mais perto do grande objetivo de jogar contra jogadores
profissionais.
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Figura 1: Dimensoes do campo usado na Standard League da RoboCup

ID | Description Length (in mm) || ID | Description Length (in mm)
A | Field length 9000 E | Penalty area length 600
B | Field width 6000 F | Penalty area width 2200
C | Line width 50 G | Penalty cross distance | 1300
D | Penalty cross size | 100 H | Center circle diameter | 1500
I | Border strip width 700

Os robos Nao (figura 2) sao robos de formato humanoide que andam sobre duas pernas.
A versao mais atual tem 58 centimetros de altura e pesa 4.3 quilos. Ele tem véarios mo-
tores pelo corpo que funcionam como suas juntas, permitindo que ele realize movimentos
complexos, como dar passos, andar, chutar, sentar, levantar, etc.

As regras do futebol de robéds [5] ainda sd@o muito diferentes do futebol profissional de
humanos, porém, a cada ano, pequenas mudangas sao feitas para deixar ambos mais pare-
cidos. Por exemplo, antigamente, as traves dos gols tinham cores diferentes de cada lado
do campo, para facilitar sua diferenciacao. Hoje, todas ja sdo brancas. A bola antigamente
era laranja, hoje ja também ¢é branca (mas ainda é bem menor que uma bola de futebol pro-
fissional), essas duas pequenas mudancas j& forcam os times a adotarem outras estratégias.
O campo tem as dimensdes 9 metros de largura e 6 metros de altura. Os gols tem altura
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Figura 2: Rob6 humandide Nao

de 0.8 metro e 1.6 metro de largura (ver mais detalhes do campo na figura 1).

Alguns dos grandes desafios de robos humanoides sdo a movimentacao, andar, correr,
levantar, chutar, passar a bola, tudo isso mantendo o equilibrio.

Um dos problemas mais importantes da RoboCup é o de localizacdo, que permite ao
robo estimar sua posi¢ao no campo, assim como a da bola e outros elementos que podem ser
interessantes. Com base na sua posicao e orientacao, ele pode tomar decisdes importantes,
por exemplo, um rob6é pode se comportar de maneira diferente se souber que ele estd em
seu campo de defesa e que um oponente tem a bola.

A proposta deste trabalho é estudar técnicas e algoritmos de localizagdo probabilisticos
comumente utilizadas e conhecidas e aplicar alguns conceitos num experimento pratico
simulado no simulador Webots [2]. Essas técnicas sdo muito utilizadas nos robos auténomos
pois dependem apenas de componentes j& presentes nele (nao precisa de GPS, por exemplo)
e tem um bom desempenho computacional.

2 Justificativa

O problema de localizagao é imprescindivel para robos autonomos, mesmo para os que tem
funcGes completamente diferentes dos robos da RoboCup. Na RoboCup, esse problema é
extremamente importante para que a tomada de decisao seja corretamente realizada. O
robd deve saber onde estd para saber se deve defender, chutar, se estd chutando contra o
proprio gol, se estd no campo e se foi sequestrado por cometer uma infragao, deve poder
voltar a compreender o mundo ao seu redor de forma auténoma. Como podemos observar,
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é uma funcionalidade importantissima para a competicao e por isso, muitos times gastam
muito tempo de desenvolvimento nesse moédulo.

3 Objetivos

O objetivo desse trabalho é estudar e entender o problema da localizagao localizagdo no
contexto da RoboCup e implementar o algoritmo mais utilizado, o filtro de particulas de
Monte Carlo levando em conta o baixo poder de processamento do robé comparado a outras
arquiteturas.

3.1 Definigoes e Conceitos
3.1.1 O Problema de Localizagao

Os algoritmos de localizagao probabilisticos fornecem uma estimativa da posigao do robo.
Sem a disponibilidade de um GPS, é impossivel termos as coordenadas exatas de um sis-
tema no mundo, mas com algoritmos ja bastante conhecidos e testados, é possivel obter
aproximacgoes muito boas.

Para obter bons resultados o robo6 precisa principalmente de dois médulos funcionando
muito bem: movimentacao e observacao. Ele precisa ter um bom modelo de movimentacao
e também uma maneira eficaz de extrair caracteristicas do ambiente ao seu redor e estimar
a distancia de possiveis pontos de referéncia (chamados de landmarks).

3.1.2 Modelo de Movimentagao

O modelo de movimentacao é o componente do robd que dado certo movimento execu-
tado pelo robo, estima o seu deslocamento. Para o caso do nosso simulador, ele daria o
deslocamento do rob6 nas coordenadas x, y e #, ou seja, o deslocamento nos eixos e em
rotacao.

Para robos de rodas, esse problema é relativamente simples, porém, para robos hu-
manoides, ele se torna bem mais complexo. O Nao é um rob6é humanoide com um con-
junto de servomotores que formam e simulam suas juntas (ver figura 3 com os motores
disponiveis). Quando o robd quer se locomover, eles aceleram em determinada diregdo em
tempos pré-calculados e fazem o movimento correto para o robé andar. Uma sequéncia
desses movimentos, permite ao rob6 levantar a perna, dar um passo, chutar, etc.

Devido a essa complexidade, nao é simples fazer um modelo de movimentagao para um
rob6 humanoide. H& muitas pesquisas exclusivamente voltadas para essa area. Durante
nossa pesquisa, tentamos integrar o modelo de movimentacao do time B-Human|[1], modelo
utilizados por eles no RoboCup em seu robo Nao, porém nao obtivemos sucesso, devido a
complexidade do codigo e de integrar Python e C+—+.

Com o intuito de explorar as caracteristicas do algoritmo de localizagao, optamos por
utilizar um modelo simplificado de movimento. O modelo criado usa o né supervisor do
Webots para acessar as coordenadas absolutas do rob6 Nao simulado no campo para calcular
a variacao do deslocamento nos eixos x e y. Uma das grandes dificuldades foi mapear o
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Figura 3: Motores disponiveis no Nao
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angulo do rob6 para o angulo que desejavamos, para obter corretamente a variacao no eixo
de rotacao do robo e para posteriormente verificarmos os resultados obtidos. Isto foi feito
obtendo a matriz de rotagao do robo e com ela, pudemos descobrir sua rotagao em relacao
ao eixo-z, que é o desejado. Com ela, podemos obter a tangente do angulo do robo e utilizar
a fungao arcotangente para, apés mais algumas transformacoes, obtermos o angulo do robo.
Definimos que 0 graus seria o rob6 olhando para o gol direito (ver figura 4) e uma rotacao
positiva ocorre é no sentido horario. A cada 300 passos de simulagao do supervisor, ele
envia uma atualizacdo da odometria, que é um vetor de trés posicoes, contendo um Ax, Ay
e A6 desde o ultimo envio.

3.1.3 Modelo de Observagao

Outra peca fundamental no trabalho foi o algoritmo que permite identificar e estimar a
distancia e o angulo do rob6 para pontos de referéncias do mapa através de sua camera.
Utilizamos como base o trabalho prévio conduzido por Magalhaes e Colombini [9], que
produz 6timos resultados e é capaz de nos informar a distancia para o landmark, o angulo
do robd para ele e qual o landmark (trave esquerda, trave direita ou canto de escanteio).
Essa terceira informagao é importante para podermos calcular a distancia esperada e o
angulo esperado corretamente para landmark achado. O tnico problema do algoritmo é o
numero de falsos positivos que aparecem e por vezes fazem o erro da estimativa da posicao
mudar muito, pois achamos haver um landmark onde ndo hé. Na figura 5 podemos observar
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Figura 4: Robd com rotagao de 0 graus de acordo com nosso referencial
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um exemplo do momento em que o algoritmo detectou a trave esquerda e direita, ja nos
fornecendo distéancia e angulo para cada. Na figura 6, vemos alguns exemplos de falsos
positivos perto do circulo central.

4 Revisao Bibliografica

O tema de localizagao de robds é muito frequente e comum entre robés auténomos. Como
diferentes robos com outros propésitos tem diferentes sensores disponiveis e variados poderes
de processamento, o numero de fontes foi bastante restringida. Na RoboCup, times utilizam
diversos algoritmos diferentes.

Sobre o tema especifico de localiza¢ao na RoboCup, Nikolaos Kargas [8] fez um trabalho
extenso sobre varios algoritmos e sobre o problema de localizacao em si. Neste trabalho, o
autor estuda diferentes tipos de filtros como o de Monte Carlo, o filto de Kalman e o filtro de
Kalman Estendido. Apés discutir os trés métodos, ele discorre sobre o filtro utilizado em seu
robo, que acabou sendo um Filtro de Kalman Estendido pois é mais eficiente e permite uma
integracao dos estados do rob6 e da bola em um estado compartilhado global de maneira
mais facil. O algoritmo proposto usa Acompanhamento de multiplas hipdteses onde, quando
o robo faz uma previsao de landmark, ele pode nao ter certeza de qual landmark é, criando
uma arvore de possibilidades para as possiveis observacoes do robd. Cada hipdtese gera
um filtro separado que considera uma pose diferente do rob6 e uma distribuigdo Gaussiana
diferente. Kargas também estuda as técnicas utilizadas por alguns times e menciona que na
época, o B-Human utilizava um filto Monte Carlo com otimizag¢tes, como a Particle Swarm
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Figura 5: Modelo de Observagao detectando as traves esquerda e direita

Optimization, utilizando a técnica desenvolvida por Burchardt, Laue e Rofer [7], apesar de
hoje em dia utilizar um filtro de Kalman Estendido.

Strasdat, Bennewitz e Behnke [10] estudaram o algoritmo de Monte Carlo, porém com
um modelo de observagao bem mais robusto. O modelo por eles proposto conseguia extrair
as linhas laterais do campo, o circulo central, utilizando a biussola para eliminar ambigui-
dades. E interessante que eles conseguem dar um valor de confianga para cada observagao
feita, assim, observactes em que o modelo tem mais certeza que estao corretas, tem valores
de confianca maiores e contribuem mais para o calculo dos pesos das particulas. Ele chega
em resultados bastante satisfatérios em seus trabalhos.

No trabalho conduzido por Aguias, Maximo e Pinto[6] uma versao padrao do filtro de
particulas foi inicialmente utilizada. Entretanto, os autores identificaram que o algoritmo
cléssico padrao é muito suscetivel a falsos positivos, outros erros do modelo de observacao
e tem problemas para lidar com o ”sequestro”do rob6. Isso ocorre pois se obtivermos
um erro do modelo de observacdo, particulas ficardo com o peso errado e apds o passo de
resample, as particulas erradas sobrevivem com mais chance e tendem a guiar as estimativas
para um valor errado, até o algoritmo se ajustar novamente com o tempo e mais estimativas
corretas. Eles fizeram modificacoes para dar probabilidades as observagoes vindas do modelo
de observacao e criaram memérias curtas e longas no algoritmo original, armazenando na
memoéria aquelas observagoes mais confiaveis, prevenindo que um erro recente do modelo de
observagao mexa muito nos valores estimados atuais. Porém, o algoritmo nao leva em conta
landmarks ambiguos, o que é uma limitacao e deveria ser adaptado antes de se colocar num
robo de verdade.

Os trabalhos [6] e [10] utilizaram fungoes similares para atualizar o peso de suas particulas,
porém com uma pequena diferenca. Enquanto os primeiros utilizam o quadrado da diferenca
entre os valores observados e calculados, os 1ltimos utilizam apenas a diferenca absoluta
entre eles. A abordagem do grupo do ITA d4 mais peso para particulas boas e piora o peso
de particulas ruins, o que é algo que pode fazer diferenca.
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Figura 6: Exemplos de falsos positivos no modelo de observagao

5 Desenvolvimento do Trabalho

5.1 Configuracoes do Ambiente

O simulador escolhido para realizar os experimentos foi o Webots, da Cyberbotics. No
ambiente criado, ha uma representacao do campo de futebol, da bola e do jogador, todos
simulados com tamanho real. O Webots funciona através de nds, tendo cada né propriedades
préprias que os descrevem e essas propriedades podem ter outros nés. Por exemplo, o nd
Robot, que é derivado da classe Solid (classe que contém propriedades para objetos fisicos),
tem um no para sua camera, para seu GPS, etc. Ea partir desses nds que nds temos acesso
a dados como a matriz de imagens da camera. A classe Solid tem propriedades que dizem
sua posicao no mapa e sua rotacgao. E com um né SUpEervisor que conseguimos acessos
a essas propriedades e podemos calcular a variacao em x, y e 6, criando um modelo de
movimentacao basico.

O campo tem coordenadas que vao de -4.5 a 4.5 no eixo x (refletindo os 9 metros de
largura do campo) e no eixo z do Webots (que para nés seria chamado de eixo y comumente),
vai de -3 a 3.

Podemos observar na figura 7 um exemplo do sistema de nés do Webots e entender
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Figura 7: Exemplo de estrutura de nés do Webots
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melhor como o rob6 Nao é composto e simulado no programa.

5.2 Arquitetura do Ambiente

Em nosso sistema, temos trés arquivos em Python importantes. O primeiro é o controlador
do robo, que faz ele andar e tem acesso a camera. O segundo é o controlador do supervisor
que funciona como o modelo de movimentacao, enviando ao servidor de imagens a odometria
a cada 300 passos de simulagao.

O terceiro e mais importante é o servidor de imagens, que contém o modelo de ob-
servacao, que identifica os pontos de referéncia e estima o dngulo e a distancia para eles, e
o filtro de particulas. Ao receber uma odometria do controlador do supervisor, ele aplica as
diferencas descritas pela odometria em todas as particulas e continua calculando seus pesos
ao ver pontos de referéncias novos.

O servidor escuta uma porta TCP e espera a conexao dos dois clientes. Ao se conectarem,
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Figura 8: Arquitetura do projeto
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ele abre uma thread para cada cliente e trata dos pacotes provenientes deles nela. O
controlador do supervisor envia de tempos em tempos a odometria e o angulo atual do
robo, enquanto o controlador do robo envia a matriz de imagem que vem de sua camera e
as coordenadas de seu GPS. O servidor recebe essas dados e processa-os.

A figura 8 apresenta os componentes, como se ligam e o que é enviado de um para o
outro.

5.3 Filtro de Particulas

O algoritmo de filtro de particulas é, em esséncia, um filtro Bayesiano onde um nimero
N de particulas, que representam estados aleatdrios inicias, é criado. Neste trabalho, os
estados de cada particula sao (x, y, #). Cada paticula também tem um peso, que varia
de acordo com a crenca de que aquela particula representa a melhor estimativa de estado
ou nao, dependendo das observacoes do modelo de observagoes. Na geracao da particula,
é escolhido um valor aleatério para cada uma dessas varidveis, sendo x no intervalo [-4.5,
4.5], y no intervalo [-3. 3] e # no intervalo [0, 360). Distribuimos as particulas de forma
uniformemente aleatéria pelas possiveis coordenadas do campo.

Inicialmente, N particulas foram geradas com o mesmo peso, um. Ao recebermos uma
odometria vinda do modelo de movimentagao, o deslocamento descrito pela odometria no
estado (x, y, €) é aplicado a todas as particulas.

Neste projeto, consideramos trés tipos de pontos de referéncia (landmarks): trave es-
querda, trave direita e canto de escanteio. Quando o modelo de observagao detecta algum
landmark, o mesmo é inserido em uma lista com a distancia observada, o angulo observado
e o tipo do landmark.

No filtro de particulas, para cada particula nés calculamos a distancia esperada, uti-
lizando uma equacao de distancia entre pontos simples, e o angulo esperado. O angulo
esperado ¢ calculado através da equagao do angulo entre dois vetores:
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Para o nosso problema, adotamos um vetor onde a primeira posicao é o seno do angulo
que a particula tem e a segunda posigao é o cosseno desse angulo. O segundo vetor é o vetor
da diferenca entre a posi¢ao do landmark para a posigao (x, y) da particula (um vetor que
aponta da particula para o landmark). Utilizando as equagoes (1) e (2), podemos calcular
o angulo esperado entre a particula e o landmark.

Com a distancia observada, angulo observado, distancia calculada e angulo calculado,
podemos utilizar a equacao de Strasdat, Bennewitz e Behnke[10] para obtermos o peso de
uma particula, dada uma observagao e o seu estado.

A equacgao utilizada é:

Plandmark = eXp(_HdozdeH> : eXp(_HQO296H) (3)
Sendo d, a distancia observada, d. a distancia esperada, 6, o angulo observado e 6. o
angulo esperado
Esta funcao é bastante apropriada para o nosso propodsito pois quanto menor ¢é a diferenca
entre os resultados esperados e observados, mais perto de um chega a fungao. Quanto maior
¢é a diferenca, o peso da particula cai de forma exponencial. Apds calcularmos o peso para
cada landmark observado, combinamos os pesos calculados através de:

w; = Hpte * Ptd * Pesc (4)

Sendo w; o peso de uma particula, ps o valor associado daquela particula a trave es-
querda, p;q o valor calculado para a trave direita e pes. 0 valor daquela particula para o
landmark de escanteio. Se algum landmark nao foi visto, ele fica com valor um, nao afetando
o produtério.

Finalmente, com o peso das particulas definido, fazemos um resample, que é um passo
de extrema importancia no filtro, responsavel pela resultado da crenca a posteriori. Nele,
as particulas sao salvas e continuam no filtro de acordo com seu peso, porém de forma
aleatéria. Aquelas com maior peso, tendem a se manterem vivas. As que ndo sdo salvas
podem ser geradas aleatoriamente novamente ou, como no nosso algoritmo, sao substituidas
por copias de particulas ja existentes no filtro, que provavelmente tem um peso maior. Esse
passo é muito importante pois ajuda com que particulas mais corretas (de maior peso)
sobrevivam em maior niimero e assim, o resultado da estimativa do estado do rob6 tende a
convergir para um valor mais correto e de forma mais rapida. A estimativa de pose no final
é a média ponderada dos estados (x, y, teta) de todas as particulas. O pseudo-cédigo para
o algoritmo de localizagdo de Monte Carlo estd descrito no Algoritmo 1.

Em nosso pseudo-cédigo (Algoritmo 1), a fungao draw_random_particle() desenha uma
particula com os valores (x, y, #) distribuidos de forma uniforme pelo campo.

A fungao calculate weight_for_landmark(d,, 6,, tipo) utiliza a equagado 3 para calcular
o peso de tal particula de acordo com o landmark encontrado. A funcao de resample recebe
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Algorithm 1 Algoritmo de Monte Carlo

1: procedure SIMPLE_MCL

2 Inicializagao

3 for todas as particulas p em M do

4 p = draw_random_particle()

5: Calculando Pesos

6 for L em landmarks vistos do

7 do = L[0]

8 0, = L[1]

9: tipo = L|[2]

10: for todas as particulas p em M do
11: p.peso x= calculate_weight_for_landmark(d,, 8,, tipo)
12: peso_total = 0

13: for todas as particulas p em M do
14: peso_total += p.peso

15: Resample(peso_total, M)

a soma total de pesos do filtro e modifica o vetor de particulas M, sendo aquelas com maior
peso as com maiores chances de sobreviverem.

5.4 Diferenciagao de Landmarks

O algoritmo do modelo de observagoes nos diz apenas a distancia observada, angulo obser-
vado e o tipo do landmark, mas ndo qual é exatamente. A partir do momento que temos
duas traves esquerdas idénticas, duas traves direitas idénticas e quatro escanteios iguais,
temos muitos problemas de ambiguidade relacionados a simetria do campo.

Duas abordagens foram utilizadas para tratar deste problema. Uma deles foi, antes
de calcular os pesos para cada particula, fazer um sistema de votacdo onde testdvamos a
distancia calculada de cada particula para os dois landmarks possiveis (por exemplo, trave
esquerda do gol ”esquerdo”e trave esquerda do gol "direito”) e o landmark vencedor seria
0 que mais particulas tivessem uma distancia mais proxima da distancia observada pelo
modelo de observagoes. Se das 100 particulas 51 votassem que o gol correto que o robo esta
olhando é o direito, utilizariamos ele como landmark para o calculo do peso de todas. Porém,
isso levou a siatuagao onde, na primeira iteracao, quando as particulas estavam distribuidas
de forma aleatoria pelo mapa, se o gol errado vencesse a votacao, muitas particulas que
eram muito boas e estavam de fato na posi¢do mais correta ficavam com pesos errados e no
passo de resample apenas particulas "ruins”sobreviviam e o a estimativa nunca convergia
para valores bons.

Na segunda estratégia, a mais simples, os resultados foram melhores. Se sabemos que o
landmark é um escanteio, por exemplo, testamos a distancia da particula para cada possivel
posicao do escanteio no mapa e guardamos a distacia calculada mais préxima da observada.
Também utilizamos o angulo calculado para esse landmark escolhido por esse critério. Isso
pode gerar algumas inconsisténcias pois o gol encontrado para uma particula pode nao ser
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o mesmo que o de outra, para o mesmo landmark.

6 Experimentos e Resultados

Os testes foram automatizados para evitar que entradas diferentes produzissem resultados
muito diferentes. Mesmo que com as mesmas entradas, devido a rotagao do robo de forma
involuntaria quando andando para frente, isso ndo pode ser controlado e como é variante
e imprevisivel, nao era possivel produzir uma combinacao de movimentos idénticos mesmo
com as mesmas entradas.

Os experimentos foram feitos com o robd partindo da coordenada (0, 0), ou seja, no
circulo central, centro do campo, com diferentes rotagoes iniciais (no sentido horério, defi-
nido previamente): 11 graus, 45 graus e 90 graus. Devido a problemas no OpenCV usado
pelo Modelo de Observacao, muitas vezes crashes prematuros aconteciam, entdo usamos
apenas dados para o qual conseguimos pelo menos 30 atualizacoes de pesos no vetor de
particulas (ou seja, o peso de cada paticula foi atualizado 30 vezes diferentes). Variamos
também o nimero de particulas geradas pelo filtro para vermos se terfamos algum impacto
na precisao das estimativas.

Para cada diferente valor de rotacao inicial e nimero de particulas diferentes foram
conduzidas 3 simulag¢ées com no minimo 30 atualizagdes no filtro de particulas. Em cada
atualizacdo, o valor da estimativa de posi¢ao atual, contendo o (x, y e teta) estimado e os
valores atuais do robd (x, y, teta) foi armazenado para futura comparacao. Para cada um
desses estados, observamos a diferenca entre o estimado e o valor real e calculamos uma
média das diferencas de todas as medigoes dos trés testes para aquele grau inicial e nimero
de particulas.

Particulas | Erro Médio X | Erro Medio Y | Erro Médio 6 | DP Erro X | DP Erro Y | DP Erro 6
100 0.515452 1.941689 63.966194 0.303512 0.344193 41.001778
500 0.318755 0.482954 31.977962 0.150749 0.304204 29.391581
1000 0.108255 0.430408 27.779501 0.109885 0.318679 34.625565

Tabela 1: Dados para testes com #; = 11 graus

Na tabela 1 observamos que os erros de X, Y e # cafram drasticamente conforme au-
mentamos o numero de particulas. O erro médio caiu cerca de cinco vezes em X, quase
cinco vezes em Y e um pouco mais de duaz vezes em 6, se compararmos os filtros com 100

e 1000 particulas.

Particulas | Erro Médio X | Erro Médio Y | Erro Médio # | DP Erro X | DP Erro Y | DP Erro 6
100 0.369013 1.411293 70.197061 0.434384 0.708392 55.308130
500 0.523084 1.934724 49.804047 0.395546 0.941398 50.539249
1000 0.513263 2.236002 38.360232 0.403360 0.888961 28.253801

Ja nas tabelas 2 e 3, para rotacao inicial de 45 graus e 90 graus, nao notamos uma
grande melhora, de certa forma, houve piora em algumas métricas, conforme o ntimero de

Tabela 2: Dados para testes com 6; = 45 graus
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Particulas | Erro Médio X | Erro Medio Y | Erro Médio # | DP Erro X | DP Erro Y | DP Erro 6
100 0.766046 1.243715 75.771592 0.747579 0.563879 35.592377
500 0.261203 1.727628 83.040452 0.277899 1.118833 25.404026
1000 0.385618 1.634717 67.375540 0.381629 1.408556 46.374294

Tabela 3: Dados para testes com 6; = 90 graus

particulas aumentou. Isso ocorre pois nessas duas configuragoes, o robd leva muito tempo
para observar landmarks reais e acontece de registrar alguns landmarks falsos positivos que
poluem os pesos das particulas e apds o resample, particulas que nao refletem bem o estado
atual do rob6 sobrevivem por estarem erroneamente com o peso alto.

Observamos que para os testes de 45 graus, o erro médio aumentou em todas as varidveis
exceto em #, conforme o ntimero de particulas aumentou, o que foi surpreendente.

Os altos valores de desvio padrao para quase todos os valores sao reflexo do fato de que
durante os testes, enquanto o robo olhava e encontrava apenas landmarks corretos, o erro
diminuia e ficava baixo, porém, ao sair da area e ir para lugares onde encontrava falsos
positivos, sua estimativa era contaminada e o erro comecava a crescer muito. Por isso,
os valores encontrados podem ser muito distantes da média, justificando um alto desvio
padrao.

Este comportamento com os falsos-positivos ajuda a explicar o aumento do erro médio
no caso de 45 graus e 90 graus. Como temos mais particulas, o filtro resiste mais a mudancas.
Quando um falso positivo é observado cedo, o filtro fica com particulas com pesos de acordo
com aquele falso positivo. Ao fazer uma nova observacgao, por ter mais particulas no filtro,
essas novas observacoes tem menos impacto no filtro do que se ele tivesse menos particulas,
pois hé mais particulas contribuindo para a média ponderada que nos da nossa estimativa
final. Com menos particulas, qualquer mudanca faz mais efeito na estimativa, fazendo com
que caso seja visto um falso positivo e depois um landmark correto, demore menos para o
filtor se ajustar com essas informacoes corretas.

Outra hipétese para a causa do desempenho ruim com essas rotacoes de 450 e 900, se
comparando com os resultados de 6; = 11 graus, é que a primeira observacao do robo nesse
caso é a um escanteio e nosso processo de diferenciacao de landmarks nao é muito robusto,
fazendo com que particulas erradas estimem fiquem com pesos altos desde a primeira ob-
servacao. Foi testada essa hipdtese fazendo com que o robé informasse para o filtro de
particula, qual landmark exato ele estava vendo (incluindo suas coordenadas), para termos
certeza que as particulas calculariam distancia esperada e angulo esperado para o landmark
correto. Porém essa mudanca nao trouxe resultados bons, o que refutou essa hipdtese.
Foi feita uma simulacao com um filtro de 500 particulas e rotagao inicial de 90 graus e o
resultado, visto na tabela 4, indica um erro médio muito grande na rotagao e em Y.

Erro Médio X
0.373558

Erro Medio Y
3.692411

Erro Médio 6
169.631442

DP Erro X
0.485772

DP Erro Y
0.480491

DP Erro 6
25.361045

Particulas
500

Tabela 4: Dados para testes com 6; = 90 graus e robo6 passando para o filtro qual o landmark
observado
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Para vermos se o desempenho do filtro de 100 particulas é realmente melhor do que o
de 1000 particulas quando a rotacao inicial é 90 graus, executamos o teste mais vezes e
analisamos cada rodada separadamente.

Teste | Erro Médio X | Erro Medio Y | Erro Médio 6
1 1.332009 0.879561 103.594207
2 1.329695 1.304658 54.855036
3 0.062738 1.391539 76.173352
4 0.441256 1.559879 60.188987
) 0.367362 0.139170 15.117687
6 0.234999 2.682297 60.189420
7 0.436979 1.119430 56.190269
8 0.889214 0.761387 99.074575
9 0.567084 1.948849 80.909181
10 0.981894 2.655215 66.939608

Tabela 5: Dados para testes com 6; = 90 graus e 100 particulas

Teste | Erro Médio X | Erro Medio Y | Erro Médio 6
1 0.199659 1.255442 64.590630
2 0.769619 2.618150 84.789096
3 0.181164 0.911235 46.462462
4 0.307883 0.641667 72.434127
5 0.120552 0.676549 24.847971
6 0.293788 0.996593 47.468835
7 0.237513 0.655006 68.971646
8 0.318901 0.616482 41.827624
9 0.499596 0.725518 34.436462
10 0.344210 0.476304 35.910712

Tabela 6: Dados para testes com 6; = 90 graus e 1000 particulas

Comparando as tabelas 5 e 6, verificamos que o algoritmo com 1000 particulas funciona
melhor, na média. A partir da tabela 7, que contém as médias do valores da tabela 5 e 6,
confirmamos que na média, o filtro com 1000 particulas teve resultados melhores.

7 Trabalhos Futuros

Considerando os experimentos realizados verificou-se que o filtro de particulas é vidvel
para aplicacoes online de localizacao de robos auténomos, mas que, seria interessante estu-
dar como técnicas de diferenciagao de landmarks podem influenciar os resultados obtidos.
Também seria 1til estudar como o algoritmo consegue se comportar em caso de kidnapping,
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Particulas | Média do Erro Médio X | Média do Erro Medio Y | Média do Erro Médio 6

100 0.664323 1.444198 67.323232
1000 0.327289 0.957295 52.173957

Tabela 7: Média dos dados das tabelas 5 e 6

0 que nao tivemos tempo de fazer nesse trabalho. Seria de profundo interesse estudar me-
lhor como esse algoritmo se comportaria com um modelo de movimentacao real, com um
modelo de observagao mais robusto e no rob6 de verdade.

8 Conclusao

Através deste trabalho, podemos concluir com o algoritmo de Monte Carlo é excelente para
conseguir estimativas de posicao para o robd Nao na tarefa do futebol da RoboCup. Vimos
nos nossos experimentos alguns fatos importantes: quanto mais particulas no filtro melhor
sao suas estimativas, na média, e que o filtro é bastante sensivel a falsos positivos. Também
foi possivel observar que a qualidade deste algoritmo depende da qualidade e nimero de
landmarks extraidos da cena.

Para obtermos resultados melhores, seria necessario um modelo de obervagao mais ro-
busto, que fosse capaz de identificar e estimar distancias para outros landmarks, como as
faixas do campo. Isso solucionaria alguns dos problemas de nosso algoritmo que tende a nao
ter resultados bons enquanto o robo olha para as laterais do campo, longe dos escanteios e
gols. Ali também, tendem a aparacer muitos falsos positivos, o que poderia ser melhorado
no modelo de observacao também.

Antes de usar o algoritmo em um robo, seria bom achar um valor étimo para o niimero
de particulas em seu filtro. O algoritmo tem desempenho que tem relagao linear com o
tamanho do vetor, logo, é necessario achar um valor que garanta um tempo de execucao
bom e um erro aceitavel.

O cédigo desenvolvido neste trabalho esta disponivel em: https://github.com/jgfidelis/Self-
Localization-Nao-Robot.
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