
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

SimPoints aplicado a
múltiplas entradas

Luis Fernando Antonioli Rodolfo Azevedo

Relatório Técnico - IC-PFG-17-05

Projeto Final de Graduação

2017 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



SimPoints aplicado a múltiplas entradas

Luis Fernando Antonioli∗ Rodolfo Azevedo∗

Resumo

Compreender o comportamento a ńıvel de ciclos de um processador executando um
programa é vital para a pesquisa moderna de arquitetura de computadores. Visando
obter essa informação, simuladores detalhados geralmente são utilizados. A simulação
completa de um benchmark padrão pode demorar semanas ou até meses para ser con-
clúıda. Para endereçar esses problemas, técnicas estat́ısticas tais como a metodologia
SimPoint foram propostas. A metodologia SimPoint tenta identificar fases repetitivas
e encontrar um conjunto pequeno de amostras da execução do programa que representa
a maior parte da execução do programa, ou seja, busca prever alguma propriedade da
arquitetura baseando-se na execução individual de amostras das fases do programa.
Arquiteturas podem ser comparadas simulando o seu comportamento nas amostras de
código selecionadas pelo SimPoint para rapidamente determinar que arquitetura tem o
melhor desempenho. A metodologia SimPoint realiza a análise das fases de cada par
programa-entrada separadamente. Neste trabalho estudamos a metodologia SimPoint,
propomos e implementamos uma extensão dela para que permita a análise de fases de
um programa para várias entradas visando assim tentar diminuir o número total de
SimPoints necessasários para simular um benchmark inteiro.

1 Introdução

Pesquisas na área de Arquitetura de computadores geralmente requerem o entendimento
detalhado do comportamento de um processador durante a execução de um programa.

Muitos programas tem comportamentos bem distintos durante partes de sua execução
que denominamos fases. Durante um momento podem usar intensamente a memória, em
outros podem sofrer bastante com erros no preditor de desvios.

Para obter esse ńıvel de informação, pesquisadores geralmente utilizam simuladores que
modelam cada ciclo executado. Infelizmente esse detalhamento da simulação trás consigo
penalidades no tempo de simulação o que acarreta que benchmarks utilizados pela indústria
demorem meses para serem executados completamente.

Agravando ainda mais a situação do tempo de simulação, geralmente é necessário simular
um mesmo benchmark inúmeras vezes até que os pesquisadores encontrem uma configuração

∗Instituto de Computação, Universidade Estadual de Campinas (UNICAMP), Campinas, SP

1



2 Antonioli, L. F. e Azevedo, R. J.

de arquitetura que tenha um bom equiĺıbrio entre consumo, desempenho, complexidade e
área, ou seja, muitas vezes um mesmo par de programa-entrada é simulado várias vezes
para que possa ser examinado a diferença no desempenho que a mudança no tamanho de
uma cache pode trazer para uma determinada arquitetura.

Este problema não deixou de ser notado pela comunidade acadêmica, e muitos pesqui-
sadores desenvolveram técnicas que buscam reduzir o tempo de simulação [1]. Uma das
técnicas propostas para resolver esse problema é chamada SimPoint [2, 3, 4] que inteligen-
temente escolhe um conjunto de amostras do programa chamada de Simulation Points para
realizar a simulação do programa, provendo um desempenho preciso da execução completa
do programa.

A metodologia SimPoint utiliza algoritmos de agrupamento para automaticamente en-
contrar padrões repetitivos na execução de um programa. Simulando apenas um represen-
tante de cada fase do programa, o tempo de simulação pode ser reduzido a minutos ao invés
de semanas implicando apenas em um perda pequena de precisão.

Um ponto chave da metodologia SimPoint é que os Simulation Points escolhidos pela
técnica são independentes da arquitetura utilizada para a simulação permitindo assim que
o mesmo conjunto de Simulation Points possa ser utilizado para a simulação de diversas
configurações de arquitetura.

Para que a escolha dos Simulation Points seja independente da arquitetura, foi proposto
em [5] o conceito do perfilamento do programa utilizando uma estrutura chamada BBV
(Basic Block Vectors) para permitir uma maneira de capturar comportamentos importantes
de um programa durante sua execução.

O BBV é um vetor onde cada posição representa um bloco básico do programa. Cada
elemento do vetor guarda a quantidade de vezes que um determinado bloco básico foi
executado durante um intervalo e como não estamos interessados no valor absoluto de cada
posição do vetor e sim na proporção da execução de cada bloco básico, normalmente o
BBV é normalizado dividindo cada elemento pela soma de todos elementos do vetor. Essa
normalização garante que a soma de todos os elementos do vetor seja 1, fazendo com que a
comparação de BBV de intervalos de tamanhos diferentes seja posśıvel.

Dessa forma se guardarmos o BBV de cada trecho do programa, podemos capturar a
frequência relativa dos blocos de código executados durante uma dada parte da execução
de um programa.

Encontramos muitos trabalhos na literatura acadêmica propondo técnicas na análise de
fases. Esses trabalhos aplicam a análise de fases para cada par programa-entrada separada-
mente. Neste trabalho temos por objetivo estender a técnica do SimPoints para que possa
fazer essa análise para um conjunto de entradas de um mesmo programa visando tentar
otimizar o caso de simulação de um benchmark inteiro.

2 Trabalhos Relacionados

Dentre os trabalhos relacionados existem aqueles que buscam reduzir o tempo de simulação
utilizando ou não análise de fases e aqueles que utilizam a análise de fases para outros fins
que não são necessariamente a redução do tempo de simulação.



SimPoints aplicado a múltiplas entradas 3

Em [6] Wunderlich et al. propõem uma abordagem chamada SMARTS (Sampling Mi-
croarchitecture Simulation) que aplica a teoria de amostragem estat́ıstica para endereçar
problemas na simulação de amostragens. Diferentemente de outras abordagens antes dele,
ele descreve um procedimento exato e construtivo para selecionar um subconjunto minimal
do fluxo de execução de instruções de um benchmark para se atingir um determinado in-
tervalo de confiança. Dessa forma é posśıvel saber qual o número de amostras necessárias
para se obter o intervalo de confiança desejado.

Em [7] Girbal et al. apresentam um esquema distribúıdo de simulação onde para di-
minuir o tempo de simulação, é realizada distribuição de partes da simulação para N pro-
cessadores diferentes. É interessante notar que, no esquema proposto, todas as instruções
do programa são executadas e para mitigar os problemas de acurácia vindos da divisão
da simulação para vários processadores é utilizado um mecanismo automático e dinâmico
pra ajustar o tamanho do intervalo de warm-up. Nos resultados mostrados pelos autores
é visto que a aceleração da execução é escalável em respeito a quantidade de recursos de
computação dispońıveis trazendo em média um ganho de velocidade de 7,35 vezes utilizando
10 máquinas com um erro médio do CPI de 1,81%

Análise de fases nem sempre tem por objetivo a redução de tempo de simulação. Em
[8] os autores discutem a caracterização das fazem de um programa com foco no consumo
de energia.

Existem vários trabalhos na academia relacionados a metodologia SimPoints. Dentre
eles podemos destacar [2] onde os autores descrevem a metodologia em alto ńıvel, [9] onde
é discutido uma modificação na técnica dos SimPoints para que exista um ganho de de-
sempenho através da seleção de Simulation Points que aparecem mais cedo na execução do
programa e assim diminuem o tempo de emulação que é necessário até chegar nos Simu-
lation Points. Em [10] os autores validam a técnica do SimPoints utilizando o benchmark
SPEC CPU 2006 e em [11] os autores discutem a técnica quando aplicada em múltiplos
binários para um mesmo programa.

3 Objetivos

A metodologia SimPoint encontra automaticamente um pequeno conjunto de Simulation
Points que representam a completa execução de um programa para uma dada entrada para
uma simulação precisa e eficiente. Dessa forma a análise realizada pela metodologia é feita
para cada par programa-entrada separadamente.

Neste trabalho buscamos estender a metologia para que realize as análises de múltiplas
entradas de um mesmo programa ao mesmo tempo, buscando assim encontrar Simulation
Points que sejam representativos para mais de uma entrada.

Se um mesmo Simulation Point é utilizado para caracterizar mais de uma entrada,
diminúımos o número total de Simulation Points necessários para simular um conjunto
de entradas de um programa sem perdermos a capacidade de simularmos cada entrada
individualmente. Dessa forma obtemos as métricas de hardware como CPI, cache miss,
branch misprediction e etc, para cada entrada individualmente. Ao reduzirmos o número
de Simulation Points necessarios para simular um conjunto de entradas reduzimos também



4 Antonioli, L. F. e Azevedo, R. J.

o tempo de simulação necessário para simularmos todas as entradas.

4 Ferramentas

Apresentaremos em seguida algumas ferramentas e métodos que são de extrema importância
para o esse trabalho.

4.1 Análises de fases do programa

A maneira como os programas se comportam durante sua execução geralmente não são
aleatórias. Muitos estudos [12, 8] mostraram que geralmente os programas entram em
comportamentos repetitivos chamados de fases.

Os autores de [12] definem fases como o conjunto de intervalos (ou fatias no tempo)
dentro da execução de um programa que tem comportamento similar, independentemente
de adjacência temporal.

Figura 1: Gráfico de algumas métricas sobre bilhões de instruções executadas pelo
programa gzip com uma entrada gráfica. Imagem retirada de [12]



SimPoints aplicado a múltiplas entradas 5

A figura 1 mostra a variação de algumas métricas como CPI, gasto de energia e outras
durante a execução programa BZIP. Nela podemos ver claramente um comportamento de
fases no programa que inclusive se repete ao longo do tempo.

Uma observação chave que torna o estudo de fases de um programa importante é que
qualquer métrica de um programa é função direta da forma que um programa passeia pelo
código durante a execução [12]. Dessa forma, é posśıvel encontrar fases de um programa
examinando apenas proporções de que regiões do código estão sendo executadas através do
tempo.

Uma maneira fácil de coletar esse tipo de informação é através da utilização de basic
block vectors e posteriormente aplicar algum algoŕıtimo de agrupamento para identificar
basic block vectors semelhantes que correspondem a intervalos que gastaram quase a mesma
proporção de seu tempo em regiões iguais e portanto deveriam pertencer a mesma fase.

4.2 SimPoint

SimPoint é uma metodologia para identificar porções representativas de um programa.
Na metodologia, a execução de um programa é dividida em intervalos de iguais números
de instruções. Uma fase de um programa é o conjunto de intervalos que possuem um
comportamento semelhante. O objetivo é encontrar um intervalo representativo ou um
Simulation Point de cada uma das fases.

Para cada intervalo, um BBV é coletado. O algoritmo do SimPoint então agrupa os
vetores de blocos basicos (BBV) utilizando o algoritmo K-means [13]. Em seguida são
encontrados os intervalos que são os centroides de cada grupo encontrado pelo algoritmo de
agrupamento e esses intervalos centroides são chamados de Simulation Points.

Como pode se perceber as fases de um programa tem tamanhos diferentes e como cada
um desses Simulation Points encontrados representam uma fase do programa, naturalmente
cada Simulation Point tem uma parcela diferente na composição do comportamento do
programa inteiro.

Dessa maneira, caso se deseje prever qual o valor de CPI do programa inteiro simulando-
se apenas os Simulation Points é necessário que o valor de CPI de cada Simulation Point
seja ponderado por um peso que seja a proporcional ao tamanho da fase que ele representa.
No SimPoint esse peso associado a cada Simulation Point é calculado como sendo a razão
entre o número de instruções pertencentes àquele agrupamento de onde ele veio e o número
total de instruções do programa.

4.3 Pin

Pin [14] é uma ferramenta de instrumentação de binários dinâmica para os conjuntos de
instruções IA-32, x86-64 e MIC que permite a criação e ferramenta de análise de programas.

Ele é um software proprietário desenvolvido pela Intel e é disponibilizado gratuitamente
para fins não comerciais. O Pin é especialmente importante para nosso trabalho pois ele é a
base do PinPlay, que será descrito mais adiante e, através de sua API, permite construirmos
diversas ferramentas para a extração de dados importantes na execução de um programa,
como por exemplo a construção dos basic block vectors discutidos anteriormente.



6 Antonioli, L. F. e Azevedo, R. J.

Figura 2: Arquitetura de software do Pin. Imagem retirada de [15]

Na figura 2 vemos a arquitetura de software do Pin. Note que ele é composto por
um compilador JIT (Just-In-Time compiler) e uma máquina virtual para permitir a ins-
trumentação dinâmica do programa. A Pintool é a ferramenta que deve ser implementada
para permitir a instrumentação desejada do código.

4.4 PinPlay

PinPlay [16] é uma ferramenta que permite a captura e repetição determińıstica da execução
de um programa que permite a análise de grandes programas em um tempo razoável. Ele
é baseado no Pin e estende as funcionalidades do Pin através da disponibilização de uma
pintool para a captura da execução de um programa (gerando arquivos de log chamados
de pinballs e disponibilizando outra pintool que permite que outras ferramentas baseadas
no Pin executem essas pinballs como se estivessem executando o binário original. Como a
execução é registrada em pinballs, execuções das pinballs são determińısticas e assim garan-
tem a reprodutibilidade da execução do programa. Essa funcionalidade é muito importante
pois permite que as ferramentas de análise executem um programa diversas vezes e tenham
sempre a mesma execução, mesmo no caso de programas com múltiplas threads e chamadas
ao sistema operacional.

Na figura 3 temos ilustrado a interação do PinPlay com o Pin. Note que a pinball é
autocontida e ela está atrelada a uma execução espećıfica do programa e não ao binário do
programa. Esse é o motivo de não precisarmos das entradas do programa para repetirmos
sua execução



SimPoints aplicado a múltiplas entradas 7

Figura 3: Interação entre o PinPlay e o Pin. Imagem retirada de [16]

4.5 PinPoints

PinPoints é o resultado da junção da técnica SimPoint com a ferramenta PIN. Em [17]
os autores descrevem como as combinaram. A metodologia SimPoint utiliza um perfil de
execução para identificar regiões representativas de uma aplicação. Essas regiões, também
chamadas de Simulation Points são validadas por sua vez contra o comportamento do
programa inteiro. Os autores descrevem que a metodologia é composta dos seguintes passos:

1. Coleta do perfil do programa utilizando uma ferramenta baseada no Pin

2. Análise do perfil do programa utilizando a metodologia SimPoint para encontrar
regiões representativas. Essas regiões são denominadas PinPoints pelos autores.

3. Comparação do comportamento dos PinPoints em relação ao comportamento do pro-
grama inteiro utilizando o Pin e o pfmon [18]

Nosso objetivo é construir uma ferramenta com funcionamento semelhante ao PinPoints,
entretanto que permita o uso de nosso método de SimPoints que analisa múltiplas entradas
ao mesmo tempo.

4.6 Sniper

Sniper [19] é um simulador de x86 paralelo e de alto desempenho. Sua importância para esse
trabalho é que ele nos permite simular programas inteiros e regiões (Simulation Points) para
assim podermos comparar os erros de predição realizados por nosso método nas métricas
de arquitetura (como o CPI por exemplo).



8 Antonioli, L. F. e Azevedo, R. J.

A escolha do simulador Sniper for feita por ele ser constrúıdo utilizando o Pin.

5 Desenvolvimento do trabalho

Nesse trabalho implementamos uma extensão da metodologia SimPoints onde nosso obje-
tivo é analisar múltiplas entradas de um mesmo programa ao mesmo tempo para permitir-
mos agrupar fases equivalentes na execução dessas entradas a fim de diminuir o número de
intervalos representativos, i.e. Simulation Points.

Para tanto, implementamos uma infraestrutura para testar nossa proposta. Abaixo
listamos os passos executados por nossa infraestrutura para a execução da técnica proposta.

1. Para cada entrada do programa, é utilizado o PinPlay para registrar sua execução.
Ao final dessa etapa é gerado um Pinball para cada entrada.

2. Cada Pinball gerado na etapa anterior é executado utilizando o PinPlay para garantir
que não houveram falhas no processo de registro da execução

3. Através do uso do PinPlay junto com o Pin, a execução das Pinballs da primeira etapa
é instrumentada para produzir um arquivo para cada entrada contendo os BBVs dos
intervalos daquela entrada. Esses arquivos são nomeados tn.bb onde n é o número da
entrada

4. Os arquivos arquivos tn.bb gerados no passo anterior são unificados em um único
arquivo t.bb apenas. Nesse passo, o desafio é conseguir indexar o BBV de forma que
uma determinada posição no vetor de blocos básicos represente o mesmo bloco básico
do programa para todas as entradas

Note que esse problema não existe na metodologia original, visto que na metodolo-
gia original só é necessário que exista a consistência de atribuição de identificadores
para os blocos básicos entre intervalos do mesmo programa enquanto que agora essa
consistência também tem que ocorrer entre múltiplas entradas.

Outro fator que agrava o problema é que o endereço inicial do bloco básico não pode ser
utilizado para identifica-lo unicamente, visto que em cada execução o programa pode
ser carregado em lugares diferentes da memória, bem como as bibliotecas dinâmicas
podem estar em lugares diferentes.

Dessa maneira, para identificar um bloco básico unicamente, é utilizado a distância
do endereço inicial do bloco básico e o inicio do binário no qual ele se encontra,
acompanhado de qual binário aquele bloco básico esta contido, já que é posśıvel a
utilização de vários binários e bibliotecas num programa.

5. Depois de unificados os arquivos contendo os BBVs de todas as entradas, é utilizado
uma projeção aleatória para reduzir para 15 dimensões os vetores de blocos básicos.
Esse passo é necessário pois os vetores de blocos básicos possuem milhares de di-
mensões e caso não fosse feito iria acarretar num aumento significativo no tempo de
execução do algoritmo de agrupamento do passo seguinte.



SimPoints aplicado a múltiplas entradas 9

6. Nessa etapa é utilizado o algoritmo de agrupamento K-means para agrupar os inter-
valos semelhantes (lembre-se que cada BBV representa um intervalo de execução de
uma entrada). Como o algoritmo recebe como parâmetro o K, que é quantos grupos
ele vai retornar, é realizado uma busca binária para encontrar o menor K que tenha
ao menos 90% da qualidade do K máximo, que por sua vez é uma entrada do nosso
método.

7. Após os intervalos serem agrupados, o intervalo mais próximo do centro do grupo
(o centroide) é escolhido como representante daquele grupo. Além disso também é
necessário saber o quão importante aquele grupo é para a execução de cada entrada.
Seja wi,j a importância do grupo i para a execução da entrada j, calculamos wi,j como
a razão entre o número de intervalos da entrada j dentro do grupo i pelo número total
de intervalos da entrada j. Dessa forma ao final dessa etapa sabemos quais intervalos
representam cada grupo i e qual importância wi,j o grupo i tem para a execução da
entrada j.

8. Com a informação de quais intervalos são os representantes de cada grupo, é utilizado
novamente o PinPlay para repetir a execução gravada de cada entrada e registrar cada
intervalo representante em uma Pinball diferente para permitir que cada intervalo seja
executado individualmente quando necessário.

9. Esses últimos passos são opcionais mas foram implementados pois permitem a ava-
liação da qualidade dos Simulation Points escolhidos. Nesse passo, para cada entrada,
é utilizado o simulador Sniper para simular os Simulation Points (Pinballs geradas
no passo anterior) e, através da utilização dos valores wi,j citados anteriormente, é
posśıvel realizar a predição do comportamento das métricas do programa. Por exem-
plo, seja J o conjunto de todas as entradas e I o conjunto de todos os Simulation
Points, podemos calcular o CPI para a entrada j ∈ J como:

CPIpreditoj =
∑
i∈I

wi,j ∗ CPIi

10. Novamente utilizando o Sniper é simulada a execução completa de cada entrada e
então assim é posśıvel saber qual é o valor real de cada métrica desejada.

11. Por fim é feito uma comparação entre o valor real e o predito pela técnica a fim de
comparar-se desempenho.

6 Resultados

Para testarmos nossa técnica realizamos uma série de experimentos utilizando programas
do benchmark SPEC CPU 2006 [20] [21]. Abaixo é mostrado o resultado de alguns expe-
rimentos.



10 Antonioli, L. F. e Azevedo, R. J.

6.1 Variação no erro da predição do CPI em função escolha do represen-
tante de cada fase

Neste experimento é comparado o erro na predição do CPI quando escolhemos como re-
presentante o intervalo mais próximo do centro do grupo (centroide) e quando escolhemos
como representante o intervalo que foi executado mais cedo, ou seja um intervalo que pode
estar em qualquer ponto do grupo. Com esse experimento queremos saber se o erro na
predição é muito dependente da escolha do representante de um grupo ou se a variação
entre a escolha de um representante causa um impacto pequeno.

Para realizar o teste, é realizado a predição do CPI para as 8 entradas do programa
GCC do SPEC CPU 2006 e os resultados são ilustrados na figura 4.

Figura 4: Variação do erro da predição do CPI: centroide vs primeiro intervalo do grupo

Como podemos ver, as os erros mudam muito com a troca do representante no grupo,
indicando que a metologia SimPoints é muito senśıvel a escolha do representante dentro do
grupo.

6.2 Comparação entre o número de Simulation Points do método de
múltiplas entradas e o original

Nesse experimento é realizada a execução do método SimPoints de múltiplas entradas e do
original para cinco programas do SPEC CPU 2006. Ao final é sumarizado o número de
Simulation Points necessários para simular todas as entradas de cada programa. Na figura



SimPoints aplicado a múltiplas entradas 11

5 temos ilustrados os resultados

Figura 5: Comparação entre o número de Simulation Points gerados pela técnica SimPoint
de múltiplas entradas e a original

É posśıvel ver que o número de Simulation Points necessários é bem menor na técnica
proposta. Isso acarreta numa diminuição de tempo de execução de todas as entradas de um
determinado programa em uma mesma proporção que a diminuição de Simulation Points.

6.3 Comparação entre os erros dos método

O sucesso da técnica SimPoint não vem apenas da diminuição do tempo de execução, mas
também do fato dos erros gerados por essa diminuição serem pequenos. Nas figuras 6, 7,
8 e 9 temos a comparação dos erros para cada entrada dos programas perlbench, bzip, gcc
e gobmk respectivamente.



12 Antonioli, L. F. e Azevedo, R. J.

Figura 6: Variação do erro da predição do CPI para diferentes entradas do programa
perlbench

Figura 7: Variação do erro da predição do CPI para diferentes entradas do programa bzip



SimPoints aplicado a múltiplas entradas 13

Figura 8: Variação do erro da predição do CPI para diferentes entradas do programa gcc

Figura 9: Variação do erro da predição do CPI para diferentes entradas do programa
gobmk

Essas figuras mostram um erro em média maior para nosso método do que para o origi-



14 Antonioli, L. F. e Azevedo, R. J.

nal. Acreditamos que isso possa ter ocorrido pela distribuição de intervalos nos grupos não
ocorrer de forma homogênea fazendo com que os representantes de cada grupo não corres-
pondessem aos centroides dos grupos quando se é analisado cada entrada separadamente.
Como vimos anteriormente, a escolha dos representantes é muito senśıvel a distância do
representante ao centro do grupo.

7 Conclusões

Nesse trabalho foi apresentados uma extensão da técnica dos SimPoints com o intuito de
explorar fases semelhantes em execuções de entradas distintas. Também pudemos imple-
mentar e testar a extensão proposta, comparando seus resultados com a técnica original.

Através desse trabalho conclúımos que apesar de existirem redundâncias de fases entre
diferentes execuções de entradas de um mesmo programa, elas não necessariamente estão
agrupadas de forma homogêneas nos grupos encontrados quando analisadas sob a ótica
dos vetores de blocos básico. Para explorar essa redundância, outras ideias ligadas ao
algoritmo de agrupamento ou a caracterização dos intervalos possivelmente são necessárias
para diminuir os erros de predição e tornar o método mais útil.

Os resultados na diminuição de Simulation Points também confirmaram nossa motivação
de que existe bastante similaridade entre fases de execuções de um mesmo programa com
entradas distintas e que essas similaridades podem realmente diminuir o tempo de simulação
de um programa e um benchmark inteiro.

Referências

[1] Lieven Eeckhout. Computer architecture performance evaluation methods. Synthesis
Lectures on Computer Architecture, 5(1):1–145, 2010.

[2] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad
Calder. Using simpoint for accurate and efficient simulation. In ACM SIGMETRICS
Performance Evaluation Review, volume 31, pages 318–319. ACM, 2003.

[3] Greg Hamerly, Erez Perelman, and Brad Calder. How to use simpoint to pick simulation
points. ACM SIGMETRICS Performance Evaluation Review, 31(4):25–30, 2004.

[4] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster
and more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1–28, 2005.

[5] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Parallel Architectures
and Compilation Techniques, 2001. Proceedings. 2001 International Conference on,
pages 3–14. IEEE, 2001.



SimPoints aplicado a múltiplas entradas 15

[6] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe. Smarts:
Accelerating microarchitecture simulation via rigorous statistical sampling. In Compu-
ter Architecture, 2003. Proceedings. 30th Annual International Symposium on, pages
84–95. IEEE, 2003.

[7] Sylvain Girbal, Gilles Mouchard, Albert Cohen, and Olivier Temam. Dist: A simple,
reliable and scalable method to significantly reduce processor architecture simulation
time. In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages 1–12.
ACM, 2003.

[8] Canturk Isci and Margaret Martonosi. Phase characterization for power: evaluating
control-flow-based and event-counter-based techniques. In HPCA, volume 3, pages
121–132, 2006.

[9] Erez Perelman, Greg Hamerly, and Brad Calder. Picking statistically valid and early
simulation points. In Parallel Architectures and Compilation Techniques, 2003. PACT
2003. Proceedings. 12th International Conference on, pages 244–255. IEEE, 2003.

[10] Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages 397–403. IEEE,
2008.

[11] Erez Perelman, Jeremy Lau, Harish Patil, Aamer Jaleel, Greg Hamerly, and Brad Cal-
der. Cross binary simulation points. In Performance Analysis of Systems & Software,
2007. ISPASS 2007. IEEE International Symposium on, pages 179–189. IEEE, 2007.

[12] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE micro, 23(6):84–93, 2003.

[13] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–
108, 1979.

[14] Vijay Janapa Reddi, Alex Settle, Daniel A Connors, and Robert S Cohn. Pin: a binary
instrumentation tool for computer architecture research and education. In Proceedings
of the 2004 workshop on Computer architecture education: held in conjunction with the
31st International Symposium on Computer Architecture, page 22. ACM, 2004.

[15] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Low-
ney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building custo-
mized program analysis tools with dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190–200. ACM, 2005.

[16] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2–11. ACM, 2010.



16 Antonioli, L. F. e Azevedo, R. J.

[17] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel R© itanium R© programs
with dynamic instrumentation. In Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on, pages 81–92. IEEE, 2004.

[18] David Mosberger and Stephane Eranian. IA-64 Linux kernel: design and implementa-
tion. Prentice Hall PTR, 2001.

[19] Trevor E Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: exploring the le-
vel of abstraction for scalable and accurate parallel multi-core simulation. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for, pages 1–12. IEEE, 2011.

[20] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[21] Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages 397–403. IEEE,
2008.


	Introdução
	Trabalhos Relacionados
	Objetivos
	Ferramentas
	Análises de fases do programa
	SimPoint
	Pin
	PinPlay
	PinPoints
	Sniper

	Desenvolvimento do trabalho
	Resultados
	Variação no erro da predição do CPI em função escolha do representante de cada fase
	Comparação entre o número de Simulation Points do método de múltiplas entradas e o original
	Comparação entre os erros dos método

	Conclusões

