2

4

4

SimPoints aplicado a
multiplas entradas

Luis Fernando Antonioli Rodolfo Azevedo

Relatério Técnico - IC-PFG-17-05
Projeto Final de Graduagdo
2017 - Julho

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetido deste relatério é de tnica responsabilidade dos autores.

SimPoints aplicado a multiplas entradas

Luis Fernando Antonioli* Rodolfo Azevedo*

Resumo

Compreender o comportamento a nivel de ciclos de um processador executando um
programa € vital para a pesquisa moderna de arquitetura de computadores. Visando
obter essa informagao, simuladores detalhados geralmente sao utilizados. A simulagao
completa de um benchmark padrao pode demorar semanas ou até meses para ser con-
cluida. Para enderecar esses problemas, técnicas estatisticas tais como a metodologia
SimPoint foram propostas. A metodologia SimPoint tenta identificar fases repetitivas
e encontrar um conjunto pequeno de amostras da execugao do programa que representa
a maior parte da execucao do programa, ou seja, busca prever alguma propriedade da
arquitetura baseando-se na execugao individual de amostras das fases do programa.
Arquiteturas podem ser comparadas simulando o seu comportamento nas amostras de
cédigo selecionadas pelo SimPoint para rapidamente determinar que arquitetura tem o
melhor desempenho. A metodologia SimPoint realiza a anilise das fases de cada par
programa-entrada separadamente. Neste trabalho estudamos a metodologia SimPoint,
propomos e implementamos uma extensao dela para que permita a andlise de fases de
um programa para varias entradas visando assim tentar diminuir o nimero total de
SimPoints necessasarios para simular um benchmark inteiro.

1 Introducao

Pesquisas na area de Arquitetura de computadores geralmente requerem o entendimento
detalhado do comportamento de um processador durante a execucao de um programa.

Muitos programas tem comportamentos bem distintos durante partes de sua execucao
que denominamos fases. Durante um momento podem usar intensamente a memoria, em
outros podem sofrer bastante com erros no preditor de desvios.

Para obter esse nivel de informagao, pesquisadores geralmente utilizam simuladores que
modelam cada ciclo executado. Infelizmente esse detalhamento da simulacao tras consigo
penalidades no tempo de simulagao o que acarreta que benchmarks utilizados pela industria
demorem meses para serem executados completamente.

Agravando ainda mais a situacao do tempo de simulacao, geralmente é necessédrio simular
um mesmo benchmark inimeras vezes até que os pesquisadores encontrem uma configuragao

*Instituto de Computagao, Universidade Estadual de Campinas (UNICAMP), Campinas, SP

2 Antonioli, L. F. e Azevedo, R. J.

de arquitetura que tenha um bom equilibrio entre consumo, desempenho, complexidade e
area, ou seja, muitas vezes um mesmo par de programa-entrada é simulado vérias vezes
para que possa ser examinado a diferenca no desempenho que a mudanca no tamanho de
uma cache pode trazer para uma determinada arquitetura.

Este problema nao deixou de ser notado pela comunidade académica, e muitos pesqui-
sadores desenvolveram técnicas que buscam reduzir o tempo de simulagao [1]. Uma das
técnicas propostas para resolver esse problema é chamada SimPoint [2, 3, 4] que inteligen-
temente escolhe um conjunto de amostras do programa chamada de Simulation Points para
realizar a simulagao do programa, provendo um desempenho preciso da execugao completa
do programa.

A metodologia SimPoint utiliza algoritmos de agrupamento para automaticamente en-
contrar padroes repetitivos na execucao de um programa. Simulando apenas um represen-
tante de cada fase do programa, o tempo de simulagao pode ser reduzido a minutos ao invés
de semanas implicando apenas em um perda pequena de precisao.

Um ponto chave da metodologia SimPoint é que os Simulation Points escolhidos pela
técnica sao independentes da arquitetura utilizada para a simulacao permitindo assim que
o mesmo conjunto de Simulation Points possa ser utilizado para a simulagao de diversas
configuracoes de arquitetura.

Para que a escolha dos Simulation Points seja independente da arquitetura, foi proposto
em [5] o conceito do perfilamento do programa utilizando uma estrutura chamada BBV
(Basic Block Vectors) para permitir uma maneira de capturar comportamentos importantes
de um programa durante sua execugao.

O BBV é um vetor onde cada posicao representa um bloco béasico do programa. Cada
elemento do vetor guarda a quantidade de vezes que um determinado bloco bésico foi
executado durante um intervalo e como nao estamos interessados no valor absoluto de cada
posicao do vetor e sim na proporcao da execucao de cada bloco béasico, normalmente o
BBV é normalizado dividindo cada elemento pela soma de todos elementos do vetor. Essa
normalizacao garante que a soma de todos os elementos do vetor seja 1, fazendo com que a
comparacao de BBV de intervalos de tamanhos diferentes seja possivel.

Dessa forma se guardarmos o BBV de cada trecho do programa, podemos capturar a
frequéncia relativa dos blocos de cédigo executados durante uma dada parte da execucao
de um programa.

Encontramos muitos trabalhos na literatura académica propondo técnicas na andlise de
fases. Esses trabalhos aplicam a andlise de fases para cada par programa-entrada separada-
mente. Neste trabalho temos por objetivo estender a técnica do SimPoints para que possa
fazer essa andlise para um conjunto de entradas de um mesmo programa visando tentar
otimizar o caso de simulacao de um benchmark inteiro.

2 Trabalhos Relacionados

Dentre os trabalhos relacionados existem aqueles que buscam reduzir o tempo de simulacao
utilizando ou nao andlise de fases e aqueles que utilizam a andlise de fases para outros fins
que nao sao necessariamente a reducao do tempo de simulagao.

SimPoints aplicado a miiltiplas entradas 3

Em [6] Wunderlich et al. propoem uma abordagem chamada SMARTS (Sampling Mi-
croarchitecture Simulation) que aplica a teoria de amostragem estatistica para enderegar
problemas na simulacao de amostragens. Diferentemente de outras abordagens antes dele,
ele descreve um procedimento exato e construtivo para selecionar um subconjunto minimal
do fluxo de execucao de instrucoes de um benchmark para se atingir um determinado in-
tervalo de confianca. Dessa forma é possivel saber qual o nimero de amostras necessarias
para se obter o intervalo de confianca desejado.

Em [7] Girbal et al. apresentam um esquema distribuido de simulagdo onde para di-
minuir o tempo de simulagao, é realizada distribuicao de partes da simulacao para N pro-
cessadores diferentes. E interessante notar que, no esquema proposto, todas as instrugoes
do programa sao executadas e para mitigar os problemas de acuracia vindos da divisao
da simulacao para varios processadores é utilizado um mecanismo automético e dinamico
pra ajustar o tamanho do intervalo de warm-up. Nos resultados mostrados pelos autores
é visto que a aceleracdo da execucao é escaldvel em respeito a quantidade de recursos de
computacgao disponiveis trazendo em média um ganho de velocidade de 7,35 vezes utilizando
10 méquinas com um erro médio do CPI de 1,81%

Anélise de fases nem sempre tem por objetivo a reducdo de tempo de simulacdo. Em
[8] os autores discutem a caracterizagao das fazem de um programa com foco no consumo
de energia.

Existem varios trabalhos na academia relacionados a metodologia SimPoints. Dentre
eles podemos destacar 2] onde os autores descrevem a metodologia em alto nivel, [9] onde
é discutido uma modificagao na técnica dos SimPoints para que exista um ganho de de-
sempenho através da selecao de Simulation Points que aparecem mais cedo na execucao do
programa e assim diminuem o tempo de emulacdo que é necessario até chegar nos Simu-
lation Points. Em [10] os autores validam a técnica do SimPoints utilizando o benchmark
SPEC CPU 2006 e em [11] os autores discutem a técnica quando aplicada em multiplos
bindrios para um mesmo programa.

3 Objetivos

A metodologia SimPoint encontra automaticamente um pequeno conjunto de Simulation
Points que representam a completa execucao de um programa para uma dada entrada para
uma simulagao precisa e eficiente. Dessa forma a analise realizada pela metodologia é feita
para cada par programa-entrada separadamente.

Neste trabalho buscamos estender a metologia para que realize as andlises de multiplas
entradas de um mesmo programa ao mesmo tempo, buscando assim encontrar Simulation
Points que sejam representativos para mais de uma entrada.

Se um mesmo Simulation Point é utilizado para caracterizar mais de uma entrada,
diminuimos o numero total de Simulation Points necessarios para simular um conjunto
de entradas de um programa sem perdermos a capacidade de simularmos cada entrada
individualmente. Dessa forma obtemos as métricas de hardware como CPI, cache miss,
branch misprediction e etc, para cada entrada individualmente. Ao reduzirmos o numero
de Simulation Points necessarios para simular um conjunto de entradas reduzimos também

4 Antonioli, L. F. e Azevedo, R. J.

o tempo de simulag@o necessario para simularmos todas as entradas.

4 Ferramentas

Apresentaremos em seguida algumas ferramentas e métodos que sao de extrema importancia
para o esse trabalho.

4.1 Analises de fases do programa

A maneira como os programas se comportam durante sua execugdo geralmente nao sao
aleatérias. Muitos estudos [12, 8] mostraram que geralmente os programas entram em
comportamentos repetitivos chamados de fases.

Os autores de [12] definem fases como o conjunto de intervalos (ou fatias no tempo)
dentro da execugao de um programa que tem comportamento similar, independentemente
de adjacéncia temporal.

908_-
Nog-g—_
31_-_
% 0.2
O T T T I T T T T T
> 1
2
D = 0.5 - |t ! 1! =
@ 31
9 ' | |
0.6 -
.]
=2 0.4
><0.2— M M H
0 T T T I T T T T | T L)
1.5
-5 14
© % 0.5
0 T 1 T T T T T : :
1 A A~
? S 40
8 %20
0 e L
143
Q 1
a
N ()15
BN T " "
0 50 100
(a) No. of instructions (billions)

Figura 1: Grafico de algumas métricas sobre bilhoes de instrugoes executadas pelo
programa gzip com uma entrada gréafica. Imagem retirada de [12]

SimPoints aplicado a miiltiplas entradas 5

A figura 1 mostra a variacao de algumas métricas como CPI, gasto de energia e outras
durante a execugao programa BZIP. Nela podemos ver claramente um comportamento de
fases no programa que inclusive se repete ao longo do tempo.

Uma observacao chave que torna o estudo de fases de um programa importante é que
qualquer métrica de um programa é funcao direta da forma que um programa passeia pelo
cédigo durante a execugao [12]. Dessa forma, é possivel encontrar fases de um programa
examinando apenas proporgoes de que regides do codigo estao sendo executadas através do
tempo.

Uma maneira facil de coletar esse tipo de informacao é através da utilizacao de basic
block vectors e posteriormente aplicar algum algoritimo de agrupamento para identificar
basic block vectors semelhantes que correspondem a intervalos que gastaram quase a mesma
proporcao de seu tempo em regides iguais e portanto deveriam pertencer a mesma fase.

4.2 SimPoint

SimPoint é uma metodologia para identificar porgoes representativas de um programa.
Na metodologia, a execucao de um programa é dividida em intervalos de iguais nimeros
de instrugoes. Uma fase de um programa é o conjunto de intervalos que possuem um
comportamento semelhante. O objetivo é encontrar um intervalo representativo ou um
Simulation Point de cada uma das fases.

Para cada intervalo, um BBV é coletado. O algoritmo do SimPoint entao agrupa os
vetores de blocos basicos (BBV) utilizando o algoritmo K-means [13]. Em seguida sao
encontrados os intervalos que sao os centroides de cada grupo encontrado pelo algoritmo de
agrupamento e esses intervalos centroides sao chamados de Simulation Points.

Como pode se perceber as fases de um programa tem tamanhos diferentes e como cada
um desses Simulation Points encontrados representam uma fase do programa, naturalmente
cada Simulation Point tem uma parcela diferente na composicao do comportamento do
programa inteiro.

Dessa maneira, caso se deseje prever qual o valor de CPI do programa inteiro simulando-
se apenas os Simulation Points é necessario que o valor de CPI de cada Simulation Point
seja ponderado por um peso que seja a proporcional ao tamanho da fase que ele representa.
No SimPoint esse peso associado a cada Simulation Point é calculado como sendo a razao
entre o nimero de instrugoes pertencentes aquele agrupamento de onde ele veio e o nimero
total de instrugoes do programa.

4.3 Pin

Pin [14] é uma ferramenta de instrumentagao de bindrios dindmica para os conjuntos de
instrugoes IA-32, x86-64 e MIC que permite a criacao e ferramenta de andlise de programas.

Ele é um software proprietario desenvolvido pela Intel e é disponibilizado gratuitamente
para fins nao comerciais. O Pin é especialmente importante para nosso trabalho pois ele ¢ a
base do PinPlay, que serd descrito mais adiante e, através de sua API, permite construirmos
diversas ferramentas para a extragao de dados importantes na execucao de um programa,
como por exemplo a construcao dos basic block vectors discutidos anteriormente.

6 Antonioli, L. F. e Azevedo, R. J.

Address Space

Pintool

Instrumentation APIs

Virtual Machine (VM) -
c
2 JIT Compiler 8 Code
3 a Cache
a a
& 2 H
Emulation Unit a
R srermeesmmsmrren A 3 ST -

Operating System

Hardware

Figura 2: Arquitetura de software do Pin. Imagem retirada de [15]

Na figura 2 vemos a arquitetura de software do Pin. Note que ele é composto por
um compilador JIT (Just-In-Time compiler) e uma maquina virtual para permitir a ins-
trumentacdo dinamica do programa. A Pintool é a ferramenta que deve ser implementada
para permitir a instrumentacao desejada do cédigo.

4.4 PinPlay

PinPlay [16] é uma ferramenta que permite a captura e repeticao deterministica da execucao
de um programa que permite a andlise de grandes programas em um tempo razoavel. Ele
¢é baseado no Pin e estende as funcionalidades do Pin através da disponibilizacao de uma
pintool para a captura da execu¢ao de um programa (gerando arquivos de log chamados
de pinballs e disponibilizando outra pintool que permite que outras ferramentas baseadas
no Pin executem essas pinballs como se estivessem executando o bindario original. Como a
execugao ¢ registrada em pinballs, execugoes das pinballs sao deterministicas e assim garan-
tem a reprodutibilidade da execucao do programa. Essa funcionalidade é muito importante
pois permite que as ferramentas de andlise executem um programa diversas vezes e tenham
sempre a mesma execucao, mesmo no caso de programas com multiplas threads e chamadas
ao sistema operacional.

Na figura 3 temos ilustrado a interacao do PinPlay com o Pin. Note que a pinball é
autocontida e ela esta atrelada a uma execucao especifica do programa e nao ao binario do
programa. Esse é o motivo de nao precisarmos das entradas do programa para repetirmos
sua execucao

SimPoints aplicado a miiltiplas entradas 7

Pin

Normal
Program
NS+ Logger ™. inpan + (Pjrft%ruatm
l Pin
Other
Progr
SM Replayer |+ Pintool

/ \ Deterministic

Replay +
Analysis

*any machine

Figura 3: Interagao entre o PinPlay e o Pin. Imagem retirada de [16]

4.5 PinPoints

PinPoints é o resultado da juncao da técnica SimPoint com a ferramenta PIN. Em [17]
os autores descrevem como as combinaram. A metodologia SimPoint utiliza um perfil de
execucao para identificar regioes representativas de uma aplicacao. Essas regioes, também
chamadas de Simulation Points sao validadas por sua vez contra o comportamento do
programa inteiro. Os autores descrevem que a metodologia é composta dos seguintes passos:

1. Coleta do perfil do programa utilizando uma ferramenta baseada no Pin

2. Andlise do perfil do programa utilizando a metodologia SimPoint para encontrar
regioes representativas. Essas regices sao denominadas PinPoints pelos autores.

3. Comparacao do comportamento dos PinPoints em relagao ao comportamento do pro-
grama inteiro utilizando o Pin e o pfmon [18§]

Nosso objetivo é construir uma ferramenta com funcionamento semelhante ao PinPoints,
entretanto que permita o uso de nosso método de SimPoints que analisa multiplas entradas
a0 mesmo tempo.

4.6 Sniper

Sniper [19] é um simulador de x86 paralelo e de alto desempenho. Sua importancia para esse
trabalho é que ele nos permite simular programas inteiros e regioes (Simulation Points) para
assim podermos comparar os erros de predi¢ao realizados por nosso método nas métricas
de arquitetura (como o CPI por exemplo).

8 Antonioli, L. F. e Azevedo, R. J.

A escolha do simulador Sniper for feita por ele ser construido utilizando o Pin.

5 Desenvolvimento do trabalho

Nesse trabalho implementamos uma extensao da metodologia SimPoints onde nosso obje-
tivo é analisar multiplas entradas de um mesmo programa ao mesmo tempo para permitir-
mos agrupar fases equivalentes na execucao dessas entradas a fim de diminuir o niimero de
intervalos representativos, i.e. Simulation Points.

Para tanto, implementamos uma infraestrutura para testar nossa proposta. Abaixo
listamos os passos executados por nossa infraestrutura para a execucao da técnica proposta.

1. Para cada entrada do programa, ¢é utilizado o PinPlay para registrar sua execucao.
Ao final dessa etapa é gerado um Pinball para cada entrada.

2. Cada Pinball gerado na etapa anterior é executado utilizando o PinPlay para garantir
que nao houveram falhas no processo de registro da execugao

3. Através do uso do PinPlay junto com o Pin, a execucao das Pinballs da primeira etapa
¢é instrumentada para produzir um arquivo para cada entrada contendo os BBVs dos
intervalos daquela entrada. Esses arquivos sao nomeados t,.bb onde n é o nimero da
entrada

4. Os arquivos arquivos t,.bb gerados no passo anterior sao unificados em um tnico
arquivo t.bb apenas. Nesse passo, o desafio é conseguir indexar o BBV de forma que
uma determinada posi¢ao no vetor de blocos bésicos represente o mesmo bloco béasico
do programa para todas as entradas

Note que esse problema nao existe na metodologia original, visto que na metodolo-
gia original sé é necessario que exista a consisténcia de atribuicao de identificadores
para os blocos béasicos entre intervalos do mesmo programa enquanto que agora essa
consisténcia também tem que ocorrer entre multiplas entradas.

Outro fator que agrava o problema é que o endereco inicial do bloco bésico nao pode ser
utilizado para identifica-lo unicamente, visto que em cada execucao o programa pode
ser carregado em lugares diferentes da memdria, bem como as bibliotecas dindmicas
podem estar em lugares diferentes.

Dessa maneira, para identificar um bloco bésico unicamente, é utilizado a distancia
do endereco inicial do bloco bésico e o inicio do binario no qual ele se encontra,
acompanhado de qual binario aquele bloco béasico esta contido, ja que é possivel a
utilizacao de varios binarios e bibliotecas num programa.

5. Depois de unificados os arquivos contendo os BBVs de todas as entradas, é utilizado
uma projecao aleatoéria para reduzir para 15 dimensoes os vetores de blocos basicos.
Esse passo é necessario pois os vetores de blocos bésicos possuem milhares de di-
mensoes e caso nao fosse feito iria acarretar num aumento significativo no tempo de
execucao do algoritmo de agrupamento do passo seguinte.

SimPoints aplicado a miiltiplas entradas 9

10.

11.

Nessa etapa ¢ utilizado o algoritmo de agrupamento K-means para agrupar os inter-
valos semelhantes (lembre-se que cada BBV representa um intervalo de execugao de
uma entrada). Como o algoritmo recebe como parametro o K, que é quantos grupos
ele vai retornar, é realizado uma busca binaria para encontrar o menor K que tenha
ao menos 90% da qualidade do K médximo, que por sua vez é uma entrada do nosso
método.

Apés os intervalos serem agrupados, o intervalo mais préximo do centro do grupo
(o centroide) é escolhido como representante daquele grupo. Além disso também é
necessario saber o quao importante aquele grupo é para a execucao de cada entrada.
Seja w; j a importancia do grupo ¢ para a execucao da entrada j, calculamos w; ; como
a razao entre o nimero de intervalos da entrada j dentro do grupo ¢ pelo niimero total
de intervalos da entrada j. Dessa forma ao final dessa etapa sabemos quais intervalos
representam cada grupo ¢ e qual importancia w; ; o grupo ¢ tem para a execucao da
entrada j.

Com a informacao de quais intervalos sao os representantes de cada grupo, é utilizado
novamente o PinPlay para repetir a execucao gravada de cada entrada e registrar cada
intervalo representante em uma Pinball diferente para permitir que cada intervalo seja
executado individualmente quando necessario.

Esses ultimos passos sao opcionais mas foram implementados pois permitem a ava-
liacao da qualidade dos Simulation Points escolhidos. Nesse passo, para cada entrada,
é utilizado o simulador Sniper para simular os Simulation Points (Pinballs geradas
no passo anterior) e, através da utilizagdo dos valores w; ; citados anteriormente, é
possivel realizar a predicao do comportamento das métricas do programa. Por exem-
plo, seja J o conjunto de todas as entradas e I o conjunto de todos os Simulation
Points, podemos calcular o CPI para a entrada j € J como:

CPlpreditoj = Y _wij x CPI,
iel

Novamente utilizando o Sniper é simulada a execucao completa de cada entrada e
entao assim é possivel saber qual é o valor real de cada métrica desejada.

Por fim é feito uma comparacao entre o valor real e o predito pela técnica a fim de
comparar-se desempenho.

6 Resultados

Para testarmos nossa técnica realizamos uma série de experimentos utilizando programas
do benchmark SPEC CPU 2006 [20] [21]. Abaixo é mostrado o resultado de alguns expe-
rimentos.

10 Antonioli, L. F. e Azevedo, R. J.

6.1 Variacao no erro da predicao do CPI em funcao escolha do represen-
tante de cada fase

Neste experimento é comparado o erro na predicao do CPI quando escolhemos como re-
presentante o intervalo mais préximo do centro do grupo (centroide) e quando escolhemos
como representante o intervalo que foi executado mais cedo, ou seja um intervalo que pode
estar em qualquer ponto do grupo. Com esse experimento queremos saber se o erro na
predicao é muito dependente da escolha do representante de um grupo ou se a variacao
entre a escolha de um representante causa um impacto pequeno.

Para realizar o teste, é realizado a predicdo do CPI para as 8 entradas do programa
GCC do SPEC CPU 2006 e os resultados sao ilustrados na figura 4.

50 B Frimeiro intervalo

B Centroide
411

40

30 7.68

]

20

Erro na predigdo do CPI (%)

10,09

GCC1 GCC2 GCC3 GCC 4 GCCS GCC6E GCC7 GCC&

Figura 4: Variagao do erro da predicao do CPI: centroide vs primeiro intervalo do grupo

Como podemos ver, as os erros mudam muito com a troca do representante no grupo,
indicando que a metologia SimPoints é muito sensivel a escolha do representante dentro do
grupo.

6.2 Comparagao entre o nimero de Simulation Points do método de
multiplas entradas e o original

Nesse experimento ¢é realizada a execucao do método SimPoints de miltiplas entradas e do
original para cinco programas do SPEC CPU 2006. Ao final é sumarizado o nimero de
Simulation Points necessarios para simular todas as entradas de cada programa. Na figura

SimPoints aplicado a miiltiplas entradas 11

5 temos ilustrados os resultados

400 B simPoints
tradicional

B SimPoints maltiplas

entradas
300

100

Murmero total de Simulation Points

Perlbench BZIPZ GCC Gobmk

Figura 5: Comparagao entre o nimero de Simulation Points gerados pela técnica SimPoint
de multiplas entradas e a original

E possivel ver que o nimero de Simulation Points necessarios é bem menor na técnica
proposta. Isso acarreta numa diminuicao de tempo de execucao de todas as entradas de um
determinado programa em uma mesma proporc¢ao que a diminuicao de Simulation Points.

6.3 Comparagao entre os erros dos método

O sucesso da técnica SimPoint nao vem apenas da diminuicao do tempo de execucao, mas
também do fato dos erros gerados por essa diminuigao serem pequenos. Nas figuras 6, 7,
8 e 9 temos a comparacao dos erros para cada entrada dos programas perlbench, bzip, gcc
e gobmk respectivamente.

12 Antonioli, L. F. e Azevedo, R. J.

25 B SimPoints original
22.18)
B SimPoints maltiplas
entradas
20
& 15.57
i
O 15
[=]
=
(=]
0
o
3
5 10
[1:]
=
e
LD
5
0.37
0

Perlbench 1 Perlbench 2 Perlbench 3

Figura 6: Variacao do erro da predigao do CPI para diferentes entradas do programa

perlbench
&0 56.03 B SimPoints original
B SimPoints multiplas
entradas
£
[+
L)
[=]
=
(=]
O
=
=
[
[=1
Z 20
2 ;
E 12.06
8.49 : 8.64 797,
6.04 7.81 7.15
2.59

BZIP21 BAIP22 BIIPZ3 BZIPZ4 BAIPZ S

Figura 7: Variacao do erro da predigao do CPI para diferentes entradas do programa bzip

SimPoints aplicado a miiltiplas entradas 13

40 B SimPoints original
B SimPoints multiplas
4044 entradas

0 26.16
E .
i
L]
=
2 20 184
i3
=
@ 13.85
— - -
= 1158 10.64
= 555 8.77
D10

3.6
23 250 2438 | A 4,
' 0.358 0.1

GCC1 GCC2 GCC3 GCC4 GCC 5 GCCo GCCY GCC 8

Figura 8: Variacao do erro da predigao do CPI para diferentes entradas do programa gcc

25 B SimPoints original
2158 B SimPoints multiplas
entradas

20
F 16.09
o E
5 15 13,80
(=]
=
= 11.44
o
= 9.38
s .
= 10
[15]
=
e
i

Y 26 271

1.21 1.62

Gobmk1 GobmkZ Gobmk3 Gobmk4 Gobmk3s

Figura 9: Variagao do erro da predicao do CPI para diferentes entradas do programa
gobmk

Essas figuras mostram um erro em média maior para nosso método do que para o origi-

14 Antonioli, L. F. e Azevedo, R. J.

nal. Acreditamos que isso possa ter ocorrido pela distribui¢ao de intervalos nos grupos nao
ocorrer de forma homogénea fazendo com que os representantes de cada grupo nao corres-
pondessem aos centroides dos grupos quando se é analisado cada entrada separadamente.
Como vimos anteriormente, a escolha dos representantes é muito sensivel a distancia do
representante ao centro do grupo.

7 Conclusoes

Nesse trabalho foi apresentados uma extensao da técnica dos SimPoints com o intuito de
explorar fases semelhantes em execugoes de entradas distintas. Também pudemos imple-
mentar e testar a extensao proposta, comparando seus resultados com a técnica original.

Através desse trabalho concluimos que apesar de existirem redundancias de fases entre
diferentes execucoes de entradas de um mesmo programa, elas nao necessariamente estao
agrupadas de forma homogéneas nos grupos encontrados quando analisadas sob a dtica
dos vetores de blocos bésico. Para explorar essa redundéncia, outras ideias ligadas ao
algoritmo de agrupamento ou a caracterizagao dos intervalos possivelmente sao necessarias
para diminuir os erros de predi¢do e tornar o método mais 1til.

Os resultados na diminuicao de Simulation Points também confirmaram nossa motivagao
de que existe bastante similaridade entre fases de execugoes de um mesmo programa com
entradas distintas e que essas similaridades podem realmente diminuir o tempo de simulacao
de um programa e um benchmark inteiro.

Referéncias

[1] Lieven Eeckhout. Computer architecture performance evaluation methods. Synthesis
Lectures on Computer Architecture, 5(1):1-145, 2010.

[2] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad
Calder. Using simpoint for accurate and efficient simulation. In ACM SIGMETRICS
Performance Fvaluation Review, volume 31, pages 318-319. ACM, 2003.

[3] Greg Hamerly, Erez Perelman, and Brad Calder. How to use simpoint to pick simulation
points. ACM SIGMETRICS Performance Evaluation Review, 31(4):25-30, 2004.

[4] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster
and more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1-28, 2005.

[5] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Parallel Architectures
and Compilation Techniques, 2001. Proceedings. 2001 International Conference on,
pages 3—-14. IEEE, 2001.

SimPoints aplicado a miiltiplas entradas 15

[6]

[15]

Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe. Smarts:
Accelerating microarchitecture simulation via rigorous statistical sampling. In Compu-
ter Architecture, 2003. Proceedings. 30th Annual International Symposium on, pages
84-95. IEEE, 2003.

Sylvain Girbal, Gilles Mouchard, Albert Cohen, and Olivier Temam. Dist: A simple,
reliable and scalable method to significantly reduce processor architecture simulation
time. In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages 1-12.
ACM, 2003.

Canturk Isci and Margaret Martonosi. Phase characterization for power: evaluating
control-flow-based and event-counter-based techniques. In HPCA, volume 3, pages
121-132, 2006.

Erez Perelman, Greg Hamerly, and Brad Calder. Picking statistically valid and early
simulation points. In Parallel Architectures and Compilation Techniques, 2003. PACT
2003. Proceedings. 12th International Conference on, pages 244-255. IEEE, 2003.

Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages 397-403. IEEE,
2008.

Erez Perelman, Jeremy Lau, Harish Patil, Aamer Jaleel, Greg Hamerly, and Brad Cal-
der. Cross binary simulation points. In Performance Analysis of Systems € Software,
2007. ISPASS 2007. IEEE International Symposium on, pages 179-189. IEEE, 2007.

Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE micro, 23(6):84-93, 2003.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C' (Applied Statistics), 28(1):100—
108, 1979.

Vijay Janapa Reddi, Alex Settle, Daniel A Connors, and Robert S Cohn. Pin: a binary
instrumentation tool for computer architecture research and education. In Proceedings
of the 2004 workshop on Computer architecture education: held in conjunction with the
31st International Symposium on Computer Architecture, page 22. ACM, 2004.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Low-
ney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building custo-
mized program analysis tools with dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190-200. ACM, 2005.

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2—11. ACM, 2010.

16

[17]

[18]

[19]

[20]

[21]

Antonioli, L. F. e Azevedo, R. J.

Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel®) itanium®) programs
with dynamic instrumentation. In Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on, pages 81-92. IEEE, 2004.

David Mosberger and Stephane Eranian. IA-64 Linuz kernel: design and implementa-
tion. Prentice Hall PTR, 2001.

Trevor E Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: exploring the le-
vel of abstraction for scalable and accurate parallel multi-core simulation. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for, pages 1-12. IEEE, 2011.

John L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1-17, 2006.

Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages 397—403. IEEE,
2008.

	Introdução
	Trabalhos Relacionados
	Objetivos
	Ferramentas
	Análises de fases do programa
	SimPoint
	Pin
	PinPlay
	PinPoints
	Sniper

	Desenvolvimento do trabalho
	Resultados
	Variação no erro da predição do CPI em função escolha do representante de cada fase
	Comparação entre o número de Simulation Points do método de múltiplas entradas e o original
	Comparação entre os erros dos método

	Conclusões

