2
W

Machine Learning Applied to
Sorting Permutations by
Reversals and Transpositions

Flavio Altiner Mazimiano da Silva Andre Rodrigues Oliveira
Zanoni Dias

Relatério Técnico - IC-PFG-17-03
Projeto Final de Graduacdo
2017 - Julho

UNIVERSIDADE ~ ESTADUAL DE  CAMPINAS
INSTITUTO DE COMPUTACAO

The contents of this report are the sole responsibility of the authors.
O contetdo deste relatério é de tnica responsabilidade dos autores.




Machine Learning Applied to Sorting Permutations
by Reversals and Transpositions

Flavio Altinier Maximiano da Silva* Andre Rodrigues Oliveiral

Zanoni Dias'

Abstract

The problem of determining relationship trees between genomes is fundamental when
studying life evolution on the planet. As mutations are rare, it is believed that when
one genome transforms into another, it probably used the fewest operations possible.
If we represent genomes as numeric permutations, we reduce that problem to the one
of sorting permutations using specific operations. In this work we use two of the most
common genome mutations: reversals and transpositions. We propose a machine learn-
ing approach where a classifier is trained on a set of features of small permutations and
then used to sort bigger permutations. Results show that this method is competitive
when compared to others in literature, specially when dealing with small permutations
or considering the others’ maximum approximation factors.

1 Introduction

Sequence comparison of different genomes is an important study for deriving evolutionary
relationships between genes. In this sense, computational molecular biology is becoming
widely used in genetics, for it is capable of aiding researchers by highlighting affiliations
between genes which could be difficult for a human to perceive.

Still, classical algorithms usually focus on individual nucleotides mutations (which are
the most common), but neglect other global rearrangements, i.e., movements of full frag-
ments of the DNA filament. In this project, we focus primarily on those global mutations,
which operate on long fragments of genes.

Two of the most common mutations which occur during genome replication are reversals
and transpositions. When a fragment of the DNA filament gets reversed in the final replica,
that mutation is called a reversal. On the other hand, if two fragments of DNA change
places during the replication process (but do not get reversed), that mutation is called a
transposition.

Phylogenetics (the study of evolutionary history and relationships between species) relies
strongly on the Principle of Parsimony: the idea that, given a set of possible explanations for
a fact, the simplest explanation is most likely to be correct. As mutations are relatively rare,
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when scientists try to put together an evolutionary relationship tree between species, they
try to make it so that species have the fewest common ancestors as possible. For example,
it is much more likely that two species that have both prominent incisor teeth have evolved
from the same common ancestor which developed that trait, rather than believe that trait
evolved twice, from different species.

Determining the minimum number of mutations necessary for one genome to transform
into another, however, is not an easy problem to solve. In this work, we try to address that
problem when it is known that only reversal and transposition mutations have occurred.

Consider the numeric sequence (1,2,...,n) of size n as the original genome. Given any
permutation of the elements of that sequence as the final genome, the problem consists
in creating an efficient sorting algorithm (that ideally uses the least number of operations
possible) for the sequence where only reversal and transposition operations are allowed.

Another common approach to the representation of genomes is using the orientation of
the genes, in which case we represent the genome with 4+ and — symbols for each gene, e.g.,
(+1,—2,...,—n). That is called in the literature a signed permutation; if we do not have
information about the orientation of the genes, these signs are omitted and it is called an
unsigned permutation. In this work, we focused primarily on unsigned permutations.

Many have addressed the problem of sorting permutations by genome rearrangements
using different algorithms. Using only reversal operations, first Kececioglu and Sankoff [15]
proposed a 2.0-approximation algorithm which focused on removing reversal breakpoints
(a concept later described in this document). Later on, Bafna and Pevzner [2] created
a 1.75-approximation using the breakpoints graph of the permutation, and Christie [10] a
1.5-approximation using its reversals graph. The current state of the art was developed by
Berman et al. [4]: a 1.375-approximation algorithm. Also worth mention are the works by
Berman and Karpinski [5] (in which they proved that the best possible heuristic is at most
a 1.0008-approximation) and by Caprara [8] (who proved the problem is NP-hard).

When working with signed permutations, though, the problem of sorting by reversals
has been proved to be polynomial. Hannenhalli e Pevzner [14] were the first to design a
polynomial algorithm, with complexity O(n?). The state of the art today was proposed
by Tannier et al. [19]: an exact algorithm with O(n%@) complexity. If the operations
themselves are not needed, just the number of operations necessary for sorting, there is a
linear time algorithm proposed by Bader et al. [1].

When we consider only transpositions, we can again cite Bafna and Pevzner [3], who
presented a 1.5-approximation algorithm and showed derivations on lower bounds on trans-
position distances (number of transpositions necessary to rearrange the permutation). Later
on, Christie [11] created a simpler algorithm with the same approximation factor. The state
of the art was proposed by Elias and Hartman [13], in 2006: a 1.375-approximation heuris-
tic. It was only in 2011 that Bulteau, Fertin and Rusu [6] were able to prove that sorting
by transpositions is also NP-hard, with a reduction of the SAT problem.

Most algorithms in the literature consider some features of the permutations for sorting,
and try to find other permutations which can be reached by performing one operation on
it, trying to incur precise alterations on those features. It is only natural to think that
machine learning algorithms might be more efficient on reaching that goal; the literature,
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however, falls short when it comes to that.

In this work, we propose a machine learning approach for sorting permutations by
reversals and transpositions, which is trained on small and manageable permutations and
can be adapted for bigger permutations, and investigate how it performs when compared
to other heuristics presented in literature.

2 Definitions

In this section we expatiate on common operations and definitions when managing genomes.
Genomes can be represented by permutations (n-tuples where n is the number of genes),
where each gene is represented by a number, and we assume that all genes are different.

In other words, a permutation 7 of size n is represented by m = (m w2 ... m,), with
T 6{1,2,...,71} andﬂ'i#ﬂ'j = i #].

In this sense, we define ¢ as the identity permutation, i.e., t = (12 ... n).

The composition of two permutations 7w and o is given by 70 = (75, Toy ... Toy). We
define the inverse of a permutation 7 as 71, such that 7=! -7 = ¢.

The extended notation of a permutation m = (m w2 ... m,), denoted by 7., is defined
as me = (0w mo ... m, n+ 1), i.e., two elements are added to m: 0 before the first element

of the permutation, and n + 1 after the last element. Defining the extended notation of a
permutation is necessary for performing operations further described later in this section.

Given two permutations m and o and a set of operations M = {p1,p2,...,pr}, the
problem of transforming 7 into o consists of performing the least possible operations of
M on 7 so that it becomes equal to ¢. The number of operations needed is called the
distance between 7 and o, and is represented by d(m, o). To make notations simpler, we
make d(m,¢) = d(m).

Note that the problem of finding the distance between permutations 7 and o is equivalent
to the problem of finding the distance between some permutation « and the identity ¢, where
a = o~1. 7. That is true because d(m,0) = d(c~! - m,07! - o) = d(a,1) = d(a). So, if we
want to find the distance between two permutations m and o, that problem is exactly the
same as sorting o~! - . For example, consider 7 = (132 54) and 0 = (24 5 1 3): we have
that 0=1 = (415 2 3), what makes a = 0=! -7 = (514 3 2). So the distance between 7
and o is the same as the sorting distance for a.

For the symmetric group S, (the set of all permutations of size n), the maximum distance
in S, is called the diameter of the symmetric group, and is represented by D(n).

This permutation sorting work consists then on using machine learning models to try
to approximate d(m,t) = d(7).

2.1 Reversal

A reversal operation p,(i,j), with 1 < i < j < n reverts a fragment of the permutation,
ie., pr(i,7) applied to 7 = (m ... m_1 m ... T Tjp1 ... 7y) generates 7w - pr(4,5) =
(M1 oo M1 T oo T Tjg1 - Ty).

Consider, for example, 7 = (1 3254 7 6) and the reversal operation p,(2,5). We have
then that 7 - p,(2,5) =(1452376).
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2.2 Transposition

A transposition operation p:(i,j, k) with 1 < i < j < k < n+ 1 transposes two adjacent
fragments of the permutation, the first from ¢ to j — 1 and the second from j to k£ — 1,

ie., pi(i,7,k) applied to 7 = (m ... mi—1 ™ ... Wj—1 T ... Tg—1 T ... Tp) generates
mope(, 5, k) =(m1 oL Mo T M1 T . Tl T ... Tp).
Consider again, for example, 7 = (1 3 2 5 4 7 6) and the transposition operation

pt(2,5,8). By applying that operation on 7, we have that 7 - p;(2,5,8) = (1476325).

2.3 Breakpoints

Breakpoints are divided into two categories: reversal breakpoints and transposition break-
points.

Reversal breakpoints count the number of elements which are not side-by-side with their
identity-neighbors. Formally, a reversal breakpoint happens when, for element 7; and ;11
of permutation 7, |m; — m11] # 1. The identity is the only permutation with no reversal
breakpoints. For example, given 7 = (3412 6 5), we have two reversal breakpoints: one
between elements (4, 1) and another between elements (2, 6).

Transposition breakpoints happen when an element breaks sequence. Formally, a trans-
position breakpoint happens when, for elements 7; and ;41 of permutation 7, w11 —m; # 1.
The identity is, again, the only permutation with no transposition breakpoints. Consider
the same example permutation 7 = (3 4 1 2 6 5): it has three transposition breakpoints,
between elements (4, 1), elements (2,6) and elements (6,5).

2.4 Strips

Strips are fragments of a permutation that do not present breakpoints. Given a permutation
7, a strip of 7 is a sequence of elements 7; ... 7;, with 0 <7 < j <n + 1 such that:

1. (mj—1,m;) is a breakpoint;
2. Either j =n+1, or j <n+1 and (7, 7j4+1) is a breakpoint.

3. There is no breakpoint between (7, mp11) VEk|i <k <j—1

If elements of a strip, in order, form an ascending sequence, it is called an increasing
strip. Otherwise, it is a decreasing strip. Finally, if a strip contains only one element, it is
considered a special case of an increasing strip, called singleton.

For example, take the permutation 7 = (1 4 5 6 3 2 7). Considering only reversal
breakpoints, 7 has four strips: two singletons (1) and (7), the increasing strip (4,5, 6), and
the decreasing strip (3,2). Taking only transposition breakpoints into account, on the other
hand, there are five strips in m: singletons (1), (3), (2) and (7), and the increasing strip
(4,5,6).
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2.5 Longest Increasing and Decreasing Subsequences

First, we must define subsequence: let X = [x1 9 ...x,] be a sequence of integers. A
sequence Y = [y1 y2 ...Ym] is a subsequence of X if Y C X, m < n and order is preserved,
ie., Vyi,y;, with ¢« < j, 3 2,2, with k& < [ such that y; = x; and y; = ;. For example,
consider the permutation X = (42351 7 6 8): one possible subsequence of X is Y =
(23517).

The Longest Increasing Subsequence (LIS) of a permutation is the subsequence which
has the maximum possible number of elements in increasing order. A permutation may
have more than one LIS. Consider again the example X = (423 51 7 6 8): one possible
LISof X isY = (2356 8).

The Longest Decreasing Subsequence (LDS) of a permutation, on the other hand, is the
longest subsequence with elements in decreasing order. A permutation may also have more
than one LDS. Considering the same X = (423 51 7 6 8), one possible LDS of X is
Y=(421).

2.6 Entropy

Entropy measures the disorganization of a permutation. We can calculate the entropy of
an element m; of permutation 7 as entropy(m;) = |m; — i|, i.e., the distance between m; and
its position in the identity. It is easy then to define the entropy of 7 as:

n
entropy(m) = Z entropy(m;)
i=1

For example, consider permutation 7 = (4 23 51 6). To get 7’s entropy, we first iterate
on the elements getting their entropy:

Entropy of m = |4 —1| =3

Entropy of my = |2 -2/ =0

Entropy of 73 =13 —3| =0

Entropy of my = |5 — 4| =1

Entropy of 75 = |1 — 5| =4

Entropy of m¢ = [6 — 6| =0

So, in the end we have that entropy(m) =3+ 1+4=238.

2.7 Left and Right Coding

The left code of an element m; of a permutation 7 is defined as the number of elements
greater than m; that are positioned left of it in w. Likewise, the right code of m; is the
number of elements smaller than m; positioned right of it in .
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The left code of a permutation 7 is then defined as the array of left-codes for each
element of 7 (similarly for the right code of a permutation).

The left plateau of a permutation is the size of the maximal sequence of elements which
have the same not-null code (similarly for the right plateaw).

For example, take permutation 7 = (4 2 3 51 6). Now, for each element, we populate
an array L with the left code of each element in 7:

e Left code of 1y =0

e Left code of mg = 1 (because 4 > 2 and is positioned left of it)

e Left code of m3 =1 (because 4 > 3 and is positioned left of it)
e Left code of m4y =0

e Left code of m5 = 4 (because 4,2,3 and 5 are left of it)

e Left code of mg =0

So now we have that the left code of permutation 7 is given by L = (01104 0). With
that, we can say that the left plateau of 7, denoted pl(lc(m)) = 2, because we have the
following not-null sequences of the same value: (1 1) and (4).

Using the same example to get the right plateau of =, first we must calculate the right
code of 1, R=(311100). The right plateau of 7 is then pl(rc(r)) = 2, because we have
two not-null sequences of the same value: (3) and (11 1).

2.8 Correct Prefix and Suffix

Given a permutation 7, its correct prefiz is defined as the number of elements, from left to
right, that are in the correct position before finding one in the wrong place. For example,
consider permutation m = (1 23 54 6). The correct prefix of 7 is then equal to 3, because
we can find three elements in the correct position before finding one incorrect.

Similarly, the correct suffiz of a permutation is the number of elements in the right place,
from right to left, until finding one in the wrong position. For example, if 7 = (32415 6),
the correct suffix of 7 is 2 (elements 5 and 6).

The identity is the only permutation with correct prefix = correct suffix = n.

2.9 Inversions

Given a permutation 7, there is an inversion between elements m; and ; if |m;| > |7;| and
J > 1, i.e., m; should appear before m;, but is actually right of ;.
The number of inversions of 7, denoted by inv(w) is defined as the total number of
inversions present in the permutation, when comparing every possible pair of elements.
For example, take m = (253 4 1 6). We can, for each element 7;, calculate inv(m;):

e inv(m) = 1, because element 1 is to the right of it.
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Figure 1: Breakpoints graph of permutation (2 1 3 6 4 5), where solid lines represent black
labeled edges, and dashed lines represent gray labeled edges.

e inv(me) = 3, because 3,4 and 1 are to the right of it.

e inv(m3) = 1, because element 1 is to the right of it.

(
(
e inv(my) = 1, because element 1 is to the right of it.
o inv(ms) =

(

e inv(mg) =

So we have that inv(m) = 14+341+1 = 6. In this example we calculated the number of
inversions element by element (a O(n?) algorithm, comparing every pair of elements). We
can, however, calculate inv(m) faster, using a modified version of merge-sort [17].

2.10 Cycles

The concept of cycles is fundamental in the study of sorting permutations, and many of the
features we use to train the machine learning sorting algorithm depend heavily on cycles.

To define cycles, we must first define the breakpoints graph of a permutation w, denoted
by Gy(m). Gp(7) is formed by a set of vertices V' = {mg, 71, ..., T, Tn+1} (where each vertex
corresponds to an element in the extended notation of 7) and a set E of edges, which can
be either labeled as black or gray. Edges are positioned as follows:

e There is a black edge between vertices m; and m;11 (with 0 < i < n) if there is a
reversal breakpoint between m; and ;4.

e There is a gray edge between vertices m; and 7; (for 0 <i < j <n+1)if | —7mj| =1
(i.e., they are adjacent in the identity) and 7; and 7; are not adjacent in .

An example of a breakpoints graph, for permutation 7 = (2 1 3 6 4 5), is shown on
Figure 1.

The cycle graph of m, noted G(r), can then be obtained from Gj(7). To do so, we must
first add one black edge and one gray edge between all elements where |m; — m;+1| = 1 and
they are adjacent in 7: these new edges form the set ¢,(m). A visual representation of the
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Figure 2: Breakpoints graph of permutation (2 1 3 6 4 5) with the extra edges in ¢ (),
where solid lines represent black labeled edges, and dashed lines represent gray labeled
edges.

Figure 3: Two possible maximal decompositions of permutation 7 = (2 1 3 6 4 5) in
alternating cycles. Solid lines represent black edges, and dashed lines represent gray edges.
Red and yellow oriented edges represent cycles in Gy(7), and blue edges are the ones in

Eb(ﬂ).

breakpoints graph for the permutation 7 = (2 1 3 6 4 5) with those new edges added can
be seen in Figure 2.

Now, a cycle graph of m, denoted by G(r), is formed by the maximal decomposition of
Gp(m) Ucp(m) into alternating cycles, i.e., cycles in which the edges alternate between black
and gray. Two possible maximal decompositions for permutation 7 = (213 6 4 5) can be
seen in Figure 3.

To find such maximal decomposition into alternating cycles has been proved to be a
NP-hard problem [7]. The best know approximation, proposed by Chen [9], is 1.4167 + €,
for € > 0.

Given the cycle graph G(7) of permutation 7, the black edges are labeled 1 to n+1 (so
edge (m;, mi—1) is labeled 7).

A k-cycle is defined as a cycle with & black edges. The parity of a cycle is determined
by the parity of k: if the cycle has an even number of black edges, it is called an even cycle;
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otherwise, it is an odd cycle. The identity is the only permutation with n + 1 odd cycles.
A k-cycle with k < 3 is also called a short cycle; if k > 3, it is called a long cycle.

A cycle C is represented by the vertices in it, in order (e.g., C' = (v1,v2,vs,...)). It is a
convention to make v; the right-most element of the cycle (considering original positions in
7). A simplified form of C notes only the black edges in it, such as {(v1, v2), (v3,v4),...}.

We can also label the black edges in the cycle: if it goes from right to left in 7’s original
order, it is a positive edge. On the other hand, if it goes from left to right, it is a negative
edge. As for any cycle vy is always the right-most vertex, the edge (v1,v2) is always positive.

A k-cycle (with k > 3) is called non-oriented if its black edges are listed in decreasing
order; otherwise, it is called an oriented cycle.

If all black edges in a k-cycle are positive, it is called a convergent cycle. Otherwise, it
is a divergent cycle.

3 Methodology

Now that all definitions and nomenclatures are explained, we can go on to the methodology
of the experiments.

The foundation of this project is built on the idea that we can train a machine learning
algorithm to sort small permutations and then use that same algorithm to sort bigger
permutations.

3.1 Training Data

The training data used in this project considers all permutations of size n = 10. We define
M = {pi1,p2,...,pr} as the set of allowed operations, which are all possible reversals and
transpositions. As our permutations have size 10, there are 45 possible reversals and 165
possible transpositions, summing up to a total of |[M| = 210 operations. Also, it is easy to
show that there are 10! = 3628800 possible permutations of size 10.

We have then, for every permutation 7° of size 10, applied all possible operations of
M = {p1,p2,...,pr}. We denote the result of operation p,, on ¥ as 7™, i.e., 7 = p,,(7°).
We then calculate d(7™) and compare it to d(7):

1. if d(7™) < d(7") (i.e., 7™ needs less operations than 7% to be transformed into ¢) then

we label p,,,(7°) as a good operation on 7°.

2. if d(7™) > d(n°) (i.e., 7™ needs more operations than ¥ to be transformed into ¢)

then we label p,,(7%) as a bad operation on 7°.

3. otherwise, i.e., d(7™) = d(n?), we label p,,(7") as a neutral operation on 7°.

and those are the labels we use to train our classifier.

After generating 7™, we can compare many characteristics of 7™ and 7¥, and use them
as features for our classifier. Table 1 describes each one of the 30 selected features for the
feature vector F' = (f1, fa,..., f30); they are all calculated considering:
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value of b in 7™ — value of b in 7¥

p =

maximum possible value for b

As we divide every feature by the maximum value b can assume, it is easy to see every
feature is normalized to values between —1 and 1. As normalization is intrinsic to the
features, the same definition can be extrapolated to bigger permutations and hopefully
generate similar classification results.

For example, consider we are generating the final feature vector for permutation # =
(10345986 71 2) when applying operation p:(2,5,7), transforming in into 7" =
(1098345671 2). First we must calculate all features for permutation 7, then for =™,
then finally use those values to populate the feature vector, as can be seen in Table 2.

In summary, our training data consists of features extracted from every possible opera-
tion applied on every possible permutation of size 10, and considers if that is a good, bad
or neutral transformation.

3.2 Classifier

The classifier chosen for this project is the Stochastic Gradient Descent Classifier (SGDC)
from python’s scikit-learn 0.18.1 package.

As we have a relatively large volume of data (10! x 210 samples, using more than 110GB
of storage), it would be unfeasible to use all of this input as training data. Instead, we
decided to use mini-batches of data, 1000 samples at a time, to train the classifier (as the
SGDC supports online learning, this is not a problem) until reaching convergence.

The loss function chosen for the experiments is the Modified Huber Loss function, also
from scikit-learn. This function is less sensitive to outliers than other functions, but proves
useful for us for another reason: with it, it is possible to estimate the probability of a
label being positive in the test set. With that information at hand when rearranging a
permutation, we can choose to apply on it the operation the algorithm is most confident
will reduce the distance to the identity.

3.3 Workflow

Having described the core goals and methods of this project, we move on to the pipeline of
actions.

First, we train the classifier using the data described in Section 3.1, thus creating a
classifier model. Then, we feed that model with an unseen permutation of arbitrary size.
The model then increases a counter of rounds by one, applies every possible operation on
that permutation, calculates all 30 features for the results, and decides for the one with
highest probability of reducing the distance to the identity. If the result is not the identity,
we feed this new permutation to the model again; if it is the identity, then the permutation
is sorted and we record the number of rounds needed as the result. A graphic representation
of the workflow can be seen in Figure 4.

To illustrate the complete workflow, take the permutation 7 = (1034598 6 7 1 2)
of size 10, for example. First, we take all 210 operations which can be applied on the
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Table 1: Description of the characteristics considered when constructing the feature vector,
where b is the index of the feature in F'.

b

Description
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24
25
26
27
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30

number of reversal breakpoints

number of transposition breakpoints

142

length of biggest non-singleton strip

number of non-singleton strips

sum of the lengths of all non-singleton strips
number of non-singleton increasing strips
number of decreasing strips

sum of the lengths of all non-singleton increasing strips
sum of the lengths of all decreasing strips
number of elements in the correct position (m; = 7)
number of fixed elements (m; = i, every m; < i
is to the left of m; and every m; > i is to the right of ;)
number of inversions

length of correct prefix

length of correct suffix

length of LIS

length of LDS

entropy

size of left plateau

size of right plateau

number of cycles

number of odd cycles

number of short cycles

number of divergent even cycles

number of oriented cycles

number of unitary cycles

length of biggest cycle

number of cycle components

number of edges in biggest component
number of cycles in biggest component
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Table 2: Final feature vector calculations for permutations 7 = (1034598 6 7 1 2) and

7 =(10983456712).
Features for #  Features for 7™

b

Final Feature Vector
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-0.18
-0.09
-0.14
0.20
-0.20
0.10
-0.20
0.00
0.00
0.10
0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.12
0.00
-0.11
0.09
0.18
0.09
0.00
0.00
0.18
0.00
0.18
-0.18
-0.20
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Figure 4: Workflow of the project

permutation, and generate the resulting permutations 7™, with 1 < m < 210. Then, for
each one of those, we calculate the feature vector f. All these vectors are fed to the classifier,
which chooses the one it considers best: the one it is most confident decreases the distance
to the identity.

Let us say, for example, it chooses operation p;(2,5,7), generating p;(2,5,7) - m =
(10 98 345 6 7 1 2) and increasing the round counter by one. The algorithm checks
if the permutation is sorted: as it clearly is not, it follows the same procedures on this new
permutation as it did on the last (generate every possible result, their feature vectors and
choose the best).

This time, it chooses operation p,(1,10), reversing the whole permutation and gen-
erating (21765438910). Next, it chooses operation p.(3,7), in which point we have
permutation (2 1 34567 8 9 10). Finally, it chooses operation p;(1,2), returning the
identity and finishing the sorting process after four rounds.

3.4 Evaluation

A set T of test permutations was created with permutations of size n, where n are all
multiples of 10 between 10 and 100, inclusive. For each n where 10 < n < 50, 10,000
permutations were generated; for n > 50, we have 1,000 different permutations for each
n, for performance reasons. Also, every item in 7T consists of a permutation of ¢, where

1p reversals and 1 transpositions were randomly applied. This way, we know that every

permutation can be sorted with at most %‘ operations (upper bound).
For each n, we compare our algorithm to six others in literature, regarding three different

metrics:

1. Average Distance: the average number of operations necessary to sort the permuta-
tions.

2. Champion Percentage: percentage of permutations in which this algorithm returns
the best result when compared to the other six algorithms.
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3. Maximum Approximation Factor: the lower bound on the distance for unsigned per-
mutations is [, = 2umber of ;reakpomts, as a transposition may remove up to 3 break-
points. The Approximation Factor of an algorithm over a permutation is defined as
the distance returned by the algorithm, divided by [;. The Maximum Approximation

Factor is the maximum among those values, for a fixed n.

The other six sorting algorithms considered for this study are some of the most popular
in literature, with many different approaches and approximation factors.

The first is the greedy Breakpoints Removal approach, denoted BP [17]. This algorithm
usually returns good results, and consists of greedily removing the greatest number of
breakpoints possible each iteration, without generating new ones, increasing the length of
some strip in the permutation. This heuristic has been proved to be a 3-approximation, at
most.

Another approach was proposed by Dias et al. [12], from now on denoted Dias, which
uses the cycle graph of the permutation. It first tries to increase the number of odd cycles,
then the number of even ones, and when that cannot be done anymore with just one
operation, it uses a bucket of configurations to decide which path to follow. It is a robust
3-approximation for unsigned permutations that rarely returns results that high.

The third algorithm we use for comparisons was designed by Rahman et al. [18] (denoted
Rahman from now on), which also uses the cycle decomposition of the permutation. It has
a 2k-approximation factor for unsigned permutations, where k is the approximation factor
for the algorithm used to generate the cycle graph.

Other important algorithm in literature is the one designed by Tesler [20], who created
the program GRIMM to sort signed permutations by reversals (as we use both reversals
and transpositions, an algorithm that uses only reversals creates valid solutions). As we
are working with unsigned permutations only, we use Lin and Jiang’s [16] solution for cycle
decomposition to generate the equivalent signed permutations to be fed to GRIMM.

As GRIMM sorts by reversals, it would be fair to also test an algorithm that sorts
exclusively by transpositions. The chosen algorithm is the 1.5-approximation (to the optimal
solution that uses only transpositions) designed by Bafna and Pevzner [3], from here on
denoted TRANS, presented in Section 1.

The last algorithm considered for comparisons also sorts by both reversals and trans-
positions, and is the one designed by Walter, Dias and Meidanis [21]: a 3-approximation
for unsigned permutations that focuses on removing breakpoints. This algorithm will be
denoted as Walter.

4 Results

While training the classifier with the data described in Section 3.1, it was observed that the
algorithm reaches convergence relatively fast: just three or four iterations are sufficient for
it to reach an F-Score = 0.82 4+ 0.02.

The following subsections elaborate on the results for the metrics described in Sec-
tion 3.4. When comparing the machine learning approach described in this document to
other algorithms, we address it as the ML approach.
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4.1 Average Distance

The resulting average distance can be observed in Figure 5. As we increase the size of the
permutations, it is clear that three algorithms (TRANS, Walter and GRIMM) do not
scale well and get separated from the others (not surprisingly, as TRANS and GRIMM
are limited to using just one kind of operation, they do not perform as well as the others).

The proposed ML algorithm shows to be competitive on smaller permutations, as it is
the closest to the upper bound value of 4 when n = 20: ML shows an Average Distance of
4.005, while Dias in second place produces 4.039.

As n grows bigger, though, Dias and BP algorithms outperform ML. We believe this
performance may be related to the fact that our classifier was trained on small permutations,
and some of the features it considered relevant do not scale well. Still, it is a competitive
algorithm: when n = 100 (and the upper bound distance is 20), Dias shows an Average
Distance of 20.72, BP 21.86 and ML comes third with 23.11.

40 —e— BP

Dias
—ea— Rahman
—a— GRIMM
—e— TRANS
—e— \Walter

ML
== |Jpper Bound

30

stance

c

20

10

Average Di

20 40 B0 80 100

Size of Permutations

Figure 5: Average Distance returned by each algorithm for different permutations sizes. An
extra “Upper Bound” line was added in gray, denoting the upper bound %‘ on the distance.

4.2 Champion Percentage

The Champion Percentage results can be seen in Figure 6. Again, algorithms TRANS
and GRIMM are quickly outperformed by the others (probably due to their operations
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limitations). Walter shows promise for small permutations, but is also quickly subdued by
the others.

As for Average Distance, ML shows the best performance among all when n = 20, being
the best sorting algorithm for 83.85% of the permutations (Dias comes in second place with
81.18%).

As n grows, however, Dias completely outperforms the others. This shows that, for a
fixed n, Dias is the most robust algorithm for every kind of permutation, while the others
may be good at some specific types. ML algorithm finishes up in third again, being the
best sorting algorithm for 13% of the permutations when n = 100.

100 —— BP

© \ +— Dias
;_’,.: a0 X —&— Rahman
o —e— GRIMM
) —e— TRANS
i 60 —e— Walter
gz ML

- 40

-]

-~

=

= 20

[S)

20 40 60 80 100

Size of Permutations

Figure 6: Champion Percentage values for each algorithm for different permutation sizes.
When two algorithms reach the same best result, they both count as champions (for that
reason, the Champion Percentage may sum up to more than 100% for some permutation
sizes).

4.3 Maximum Approximation Factor

The Maximum Approximation Factor line chart can be seen in Figure 7. It is clear that
the TRANS algorithm has problems with some specific permutations, which make its
Maximum Approximation Factor explode to values as high as 9 when n = 20. That makes
the visualization of other algorithms harder; for that reason, another plot omitting the
TRANS algorithm can be seen in Figure 8.
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Figure 7: Maximum Approximation Factor for each algorithm for different permutations
sizes.

In this metric TRANS, Walter and GRIMM also show the worst performances.
While Dias shows the best performance overall, ML actually ties up with it when n = 40,
with a Maximum Approximation of 2.25.

In this metric ML performs well, being comparable to BP on most permutation sizes.
This shows that while ML may not be the best sorting algorithm when analyzing Champion
Percentage, it is still competitive on Maximum Approximation, i.e., it appears to be a
versatile algorithm, which performs well for all permutations of a fixed n size, and is not
easier to be tricked by specific permutations than any other algorithm.

5 Conclusions

In this study we propose a machine learning approach to sorting permutations using rever-
sals and transpositions. We train a classifier with 30 different features extracted from small
permutations and extrapolate the algorithm to sort bigger permutations, and compare the
results with many different algorithms in literature.

Our algorithm shows good results for small permutations, but is outperformed by others
when considering bigger permutations. We believe this behavior is due to the classifier’s
training: it was trained with small permutations’ features, hoping they would scale well for
bigger permutations, but apparently the model gets confused at some point.
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Figure 8: Maximum Approximation Factor for each algorithm for different permutations
sizes, with TRANS algorithm result removed for better visualization

Future work may be focused on trying to use some bigger permutations to train the
classifier, and observe if that shows better results when scaling.
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