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Improper colourings of outerplanar graphs

L. G. S. Gonzaga * C. N. Campos �

Abstract

A (k, d)-colouring of a graph G is a vertex colouring with at most k colours such that
every monochromatic connected component has maximum degree at most d. Thus, a (k, 0)-
colouring corresponds to a proper k-colouring. It is well known that every planar graph admits
(3, 2)-colourings, but there is no d for which every planar graph admits (1, d)-colourings or (2, d)-
colourings. Moreover, deciding whether a planar graph admits a (2, 1)-colouring is NP-complete.
It is also known that every outerplanar graph admits (3, 0) and (2, 2)-colourings, although some
outerplanar graphs do not admit (2, 1)-colourings, with triangles playing an important role.
In this work, we prove that deciding the existence of (2, 1)-colourings of apart-plane graphs
– in which every pair of triangles is disjoint – is also NP-complete. Moreover, we present a
polynomial-time algorithm for deciding whether an outerpath graph – an outerplane graph for
which the weak dual is isomorphic to a path – admits (2, 1)-colourings. This fully characterises
the (2, 1)-colourability of outerpath graphs and provides new insights into the structural role of
triangles in defective colouring problems.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). We denote e = uv an edge
whose endpoints are u and v and denote d(v) the degree of v. The neighbourhood of v is N(v) =
{u ∈ V (G) : uv ∈ E(G)} and its elements are the neighbours of v.

A vertex colouring of a graph G is an assignment of colours from a colour set C to the vertices
of G. Given a vertex colouring π, a monochromatic subgraph is a maximal subgraph of G induced
by the vertices of a single colour. A connected component of a monochromatic subgraph is a
monochromatic component. A (k, d)-colouring is a vertex colouring using at most k colours so
that the maximum degree of any monochromatic component is at most d. In particular, a (k, 0)-
colouring corresponds to a proper k-colouring – that is, it is a colouring in which every pair of
adjacent vertices are assigned a different colour.

Defective colourings were introduced independently by Andrews and Jacobson [1], Harary and
Jones [2], and Cowen et al. [3] around 1985. Cowen et al. [3] proved that every planar graph
has (3, 2)-colourings – note that the Four Colour Theorem implies that every planar graph has a
(4, 0)-colouring. Nevertheless, the authors proved that there is no d for which every planar graph
admits (1, d)- or (2, d)-colourings and that some planar graphs do not admit (3, 1)-colourings. They
also showed that every outerplanar graph admits (2, 2)-colourings, and that there exist outerplanar
graphs that do not admit (2, 1)-colourings.

Cowen et. al. [3] provide a linear time algorithm that finds a (3, 2)-colouring for planar graphs.
However, deciding whether a planar graph has (3, 1)-colourings, or even (2, k)-colourings, for any
k > 0, is NP-complete [4]. Jonck Jr. [5] showed that every outerplanar graph with at most three

*Inst. de Computação, UNICAMP, 13083-852 Campinas, SP. luis.gonzaga@ic.unicamp.br
�Inst. de Computação, UNICAMP, 13083-852 Campinas, SP. cnc@ic.unicamp.br.

1



2 Gonzaga and Campos

f1 f2 f3 f4

(a) Faces f1 and f4 are end faces.

f1 f2 f3 f4

(b) Weak dual of the graph in Fig. 1a.

Figure 1: An outerpath graph (left) and its weak dual (right).

triangular faces admits (2, 1)-colourings, also showing that there exist outerplanar graphs with more
than three triangles that do not admit (2, 1)-colourings. Furthermore, Jonck Jr. and Campos [5, 6]
characterised maximal outerplanar graphs that admit (2, 1)-colourings: these graphs comprise a
subclass of maximal outerplanar graphs whose weak dual is a path. These results propelled us to
investigate whether the adjacency of triangles is related to the (2, 1)-colourability of planar and
outerplanar graphs.

In this work, we prove that deciding whether a planar graph has (2, 1)-colourings is still NP-
complete even for a subclass of outerplanar graphs in which all triangles are (vertex) disjoint. We
also provide a polynomial time algorithm to decide whether any outerplanar graph whose weak
dual is a path admits (2, 1)-colourings, expanding the results of Jonck Jr. and Campos [5, 6].

2 Preliminaries

Let G be a plane graph and G′ be its dual. Denote fy the face of G that corresponds to vertex
y of G∗, and denote ∂(fy) the boundary of fy. If ∂(fy) ∼= K3 for a face fy, then fy is called
a triangle or triangular face. We also denote fy by abc, meaning that V (∂(fy)) = {a, b, c} and
E(∂(fy)) = {ab, bc, ca}. Similarly, if ∂(fy) ∼= C4, then fy = abcd is called a square or square
face, with V (∂(fy)) = {a, b, c, d} and E(∂(fy)) = {ab, bc, cd, da}. Two faces are adjacent if their
boundaries have an edge in common, and are apart if their boundaries are vertex disjoint.

An outerplane graph G is a simple plane graph in which all vertices lie on the boundary of
its outer face. If every pair of two distinct triangles of G is vertex-disjoint, G is called an apart-
outerplane graph. Let G′ be the dual of G. Suppose that u is the universal vertex corresponding to
the outer face of G. Graph G∗ = G′ − u is called weak dual. For outerplane graphs, its weak dual
is isomorphic to a forest [7]. In particular, when G∗ is isomorphic to a path, then G is called an
outerpath graph and the faces of G corresponding to the leaves of this path are called end faces.
Fig. 1 illustrates these concepts.

Let G be a graph endowed with a (k, d)-colouring π. The defect ξπ(v) of a vertex v ∈ V (G) is the
number of its neighbours that share the same colour of v, that is, |{x : x ∈ N(v) and π(x) = π(v)}|.
If G is a subgraph of G′, then, π is called a partial colouring of G′ and the vertices in V (G′) \V (G)
are uncoloured vertices of G′. Moreover, the partial defect of a vertex v ∈ V (G′) in π is the number
of its neighbours in G that are coloured and have the same colour of v.

3 Main results

First, we prove that the (2, 1)-colouring problem remains NP-complete even when restricted to
apart-planar graphs – this result is established in Theorem 4. Next, we present and prove the
correctness of the algorithm that decides whether an outerpath graph admits a (2, 1)-colouring.

Definition 1. Let ϕ be a boolean formula in 3-CNF. The associated graph G(ϕ) has one vertex
vx for each variable x of ϕ and one vertex vc for each clause c of ϕ. There is an edge between vx
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Figure 2: The literal gadget: labelled vertices play special role in the gadget.

and vc if and only if x or ¬x appears in c. The boolean formula ϕ is called planar if its associated
graph G(ϕ) is planar.

Definition 2. [8] In the Positive Planar 1-in-3-SAT Problem (PP-1-in-3-SAT), we are given
a collection ϕ of clauses containing exactly three variables together with a planar embedding of its
associated graph G(ϕ). The problem is to decide whether there exists an assignment of truth values
to the variables of ϕ such that exactly one variable in each clause is true.

Definition 3. In the Apart-Planar (2, 1)-colouring Problem ((2, 1)-COL-AP), we are given
a apart-planar graph G and have to decide whether G has a (2, 1)-colouring.

Theorem 4. The apart-planar (2, 1)-colouring problem is NP-complete.

Proof. First, note that the problem belongs to NP. Given a colouring π of a given graph G, we
can verify whether π is a (2, 1)-colouring by checking, for each vertex, how many of its neighbours
share the same colour. This verification can be done in O(|V (G)| · |E(G)|) time.

In order to prove our result, we reduce an instance of PP-1-in-3-SAT to an instance of (2, 1)-
COL-AP. Given a formula ϕ and its associated graph G(ϕ), we build an apart-planar graph G, by
replacing each element of G(ϕ) with a gadget. We start by describing the gadgets.

The literal gadget replaces each variable vertex of G(ϕ) and it is illustrated in Fig. 2. We
distinguish some vertices of the literal gadget, partitioning them into three groups: core vertices
(c11, . . . , c33) – the subgraph induced by these vertices is called the core of the gadget ; link vertices
(l1, l2); and repeater vertices (r1, r2).

We first show that there exist only two distinct (2, 1)-colourings of the core of the gadget. First
observe that, in any (2, 1)-colouring π of the gadget, the endpoints of the edge c24c33 receive different
colours – it happens because of the unlabelled vertices of the gadget. Since π(c24) ̸= π(c33), we
conclude that either π(c23) = π(c33) or π(c23) = π(c24). Each of these two options corresponds
to a distinct colouring of the core and, in each case, the colours of the remaining core vertices are
uniquely determined, up to flipping all colours, as we show in the following.

Let πT be a (2, 1)-colouring of the gadget such that πT(c23) = πT(c33) = 1. This implies that
πT(c22) = πT(c32) = 2 and, therefore, πT(c21) = πT(c31) = 1. All remaining vertices of the
core, except for c14, are adjacent to at least one of the vertices whose colours have already been
determined, all with defect 1. Consequently, each of them must receive the opposite colour of their
already coloured neighbour. Finally, vertex c14 is adjacent to c24 and c13, both of which with colour
2; so it must be assigned colour 1, completing the colouring of the core. Additionally, the colours
of the link and repeater vertices are uniquely determined by this partial colouring.

Now, let πF be the second (2, 1)-colouring of the literal gadget. In this case, πF(c23) = πF(c24) =
1. Thus, πF(c14) = πF(c13) = 2 and πF(c11) = πF(c12) = 1. Finally, all the remaining vertices
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Figure 3: The two possible (2, 1)-colourings.
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Figure 4: Example of chaining two literal gadgets.

of the core are incident with a vertex with defect 1 and must have the other only possible colour.
Again, the colours of the link and repeater vertices are uniquely determined. Fig. 3 shows πT and
πF .

Now, we analyse the repeater and link vertices. Recall that the colours of these vertices are
already determined in πT and πF . Call the logical value of an edge true if its endpoints have the
same colour and false otherwise. Observe that the logical value of c23c33 is true in πT and false
in πF , which explains the subscript of the colouring names. Also, if a core of a literal gadget is
endowed with a (2, 1)-colouring πT or πF , we say that their logical value is true or false accordingly.
Finally, note that link edge l1l2 always has the same logical value c23c33 whilst repeater edge r1r2
has the opposite.

This structure allows us to chain gadgets together. The colours of vertices c13 and c14 in the
core are forced to match the colours of the repeater vertices. Therefore, by identifying the repeater
vertices of one gadget with c13 and c14 vertices of the second gadget, we ensure that the cores of
both gadgets receive the same colouring and, thus, the same truth value. This process, illustrated
in Fig. 4, can be repeated to construct a gadget with different link edges all with the same logical
value. We call a gadget constructed from x such copies a degree x literal gadget. We replace each
variable vertex vx in the graph G(ϕ) with a degree d(vx) literal gadget.
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We now describe the two remaining gadgets: one for clause vertices and one for the edges that
link clause vertices to literal vertices. The clause gadget is a triangle, and there is one such gadget
for each clause vertex of the input graph G(ϕ). The edge gadget is a ladder P3□P2

1. The new
graph G is constructed by replacing: the clause vertices by clause gadgets; the literal vertices vx
by degree d(vx) literal gadgets; and each edge vcixxj by an edge gadget, identifying two degree
2 adjacent vertices to two vertices of the clause gadget and the remaining two degree 2 adjacent
vertices to two adjacent link vertices of the degree d(vxj ) literal gadget. Note that, in order to the
resulting graph to be planar, the identification between link vertices and gadget vertices must be
performed following the cyclic order induced by the planar embedding of graph G.

Since each element of G(ϕ) is replaced by a gadget with a constant number of vertices and
edges, the total size of G is a linear function of the size of G(ϕ). Thus, the entire construction is
computable in polynomial time.

In order to conclude the proof, we now show that ϕ is satisfiable if and only if G has a (2, 1)-
colouring.

First, assume ϕ is satisfiable. Let x1, . . . , xs be the set of variables assigned the value true.
Each of these variables corresponds to a literal gadget in G. We colour the graph based on this
assignment. For each literal gadget corresponding to variables x1, . . . , xs with value true, we choose
πT . For all other literal gadgets (those corresponding to false variables), we choose πF . The colouring
of the literal gadgets determines the truth values of the link edges, which, forces the colouring of
the ladder and triangle gadgets. By definition, each clause has precisely one true literal. Thus,
each clause gadget (a triangle) is connected to exactly one literal gadget with a true link edge. This
ensures that each clause gadget has exactly one edge whose vertices share the same colour; and
the defect of each vertex in G is at most one. This satisfies the (2, 1)-colouring constraints for the
entire graph G. Therefore, a satisfying assignment for ϕ directly yields a (2, 1)-colouring for G.

Conversely, let π be a (2, 1)-colouring of G. We define a truth assignment for the variables of
ϕ. A variable xi is assigned true if the truth value of its corresponding literal gadget in G is true;
otherwise, it is false. Now, we show this is a satisfying assignment for ϕ. By construction, each
clause gadget (a triangle) has exactly one edge whose vertices share the same colour, giving that
edge a truth value of true, which is propagated to the edge gadget and, then, to exactly one of the
link edges of the clause gadgets (recall that this implies all link vertices have the same truth value
in the same gadget). Therefore, every clause is satisfied, concluding the proof.

4 Algorithm for outerpath graphs

Next, we establish our results about deciding whether an outerpath graph admits a (2, 1)-colouring:
Lemma 5, Theorem 10 and Corollary 11. First, we present Lemma 5, that shows that large faces do
not play a role in deciding the existence of (2, 1)-colourings of outerpath graphs. Then, we present
Algorithm 1, that decides, in polynomial time, whether an outerpath graph G, whose maximum
induced cycle has size at most six, has (2, 1)-colourings. Theorem 10 proves the linear time on
|V (G∗)| complexity and correctness of Algorithm 1. Finally, Corollary 11 sums up all these ideas.
We conclude this article with Corollary 12, which establishes that Lemmas 5 through 9 can be used
to prove that all apart outerpath graphs admit (2, 1)-colourings.

Let G be an outerpath graph. For the remaining of this text all faces considered are internal
faces, i.e., faces different from the unlimited face of G. Let f be a (internal) face of G. We say
that f is a large face if |E(∂(f))| ≥ 7. Let VL = {v ∈ V (G) : v incides only in large faces}. We call

1Graph P3□P2 denotes the Cartesian product of paths P3 and P2.
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H ⊆ G an L-reduced graph if H = G− VL; that is, H is obtained by removing the vertices of VL.
Note that H may not be connected.

Lemma 5. Let G be an outerpath graph and H be its L-reduced subgraph. Then, G has a (2, 1)-
colouring if and only if H has a (2, 1)-colouring.

Proof. Let G and H be as stated in the hypothesis. If G = H the result follows. Suppose G ̸= H.
First, note that if G admits a (2, 1)-colouring π, then the restriction of π to H is also a (2, 1)-
colouring of H. Now, suppose π is a (2, 1)-colouring of H. Then, π is a partial (2, 1)-colouring of
G. Let G0 = H and π0 = π. We construct pairs (G0, π0), (G1, π1), . . . , (Gk, πk) such that: at each
step, Gi+1 is obtained from Gi by colouring the uncoloured vertices of a large face of Gi; πi+1 is a
(2, 1)- colouring of Gi+1; Gk

∼= G.

Suppose i > 0 and Gi
∼= G. Let f be any large face with some uncoloured vertices. Note

that, since G is an outerpath graph, at most two edges of ∂(f) are incident with other faces.
Therefore, there exist at least three uncoloured vertices of πi and at most two pairs of adjacent
vertices coloured: u and v; and x and y. If no such coloured pairs exists, choose any pair of adjacent
uncoloured vertices of V (∂(f)) for that purpose and colour its vertices arbitrarily, keeping πi as a
partial (2, 1)-colouring.

Adjust notation so that Pux and Pyv are paths of ∂(f) with internal vertices uncoloured. Sup-
pose, without loss of generality, that |E(Pux)| ≤ |E(Pyv)|. If |E(Pux)| ≥ 2, then uv and xy lie in
different connected components of Gi. If πi(u) ̸= πi(x), swap all colours of the component that
includes xy. Therefore, if |E(Pux)| ≥ 2, we can assume that πi(u) = πi(x). Let x′ ∈ V (Pux) and
y′ ∈ V (Pyv) such that xx′, yy′ ∈ E(G). Assign to x′ (resp. y′) a colour distinct from that of x
(resp. y). For the remaining vertices, starting from the other ends of Pux and Pyv, proceed along
each path in linear order, colouring the vertices, alternating the colours. Thus, vertices u, v, x,
and y and their adjacent vertices in Pux and Pyv have distinct colours. Moreover, by construction,
every vertex in Pux and Pyv has defect at most 1. Therefore, (Gi+1, πi+1) satisfies all requirements.
At the end of the process, πk is a (2, 1)-colouring of Gk

∼= G and the result follows.

Let H be the L-reduced graph of G and let H ′ be one of its connected components. Note that
H ′ is not necessarily 2-connected. Moreover, since H ′ is obtained from an outerpath graph G, its
faces and blocks have an order inherited from the canonical order of the faces of G. A canonical
block ordering for the blocks of H ′ is B1, B2, . . . , Bk, following the canonical order of the faces of
G, such that V (Bi) ∩ V (Bi+1) ̸= ∅, 0 ≤ i < k. By construction, each of its blocks is an outerpath
graph. Observe that the canonical ordering of the faces ensures that the last face of Bi is adjacent
to the first face of Bi+1.

In order to present Algorithm 1, we first introduce some additional notation. Let G be an
outerpath graph and π be a (2, 1)-colouring of G. For an edge uv ∈ E(G), we define Pπ(uv) =
(α, β), with α ∈ {S,D}, β ∈ {00, 01, 10, 11} such that α = S (“same”) if π(u) = π(v), and
α = D (“distinct”) otherwise; and β = ij if ξ(u) = i and ξ(v) = j. Define P(uv) = {Pπ(uv) :
π is a (2, 1)-colouring of G} as the possibilities of uv.

Since G∗ is isomorphic to a path, let this path be v1v2 . . . vk. Define the canonical ordering
of the faces of G as f1, f2, . . . , fk, in which fi of G corresponds to vi of G∗. For 1 < i < k, let
uivi = E(fi−1)∩E(fi) and xiyi = E(fi)∩E(fi+1) be the entry edge and exit edge of fi, respectively.
For i = 1, the exit edge is E(f1) ∩ E(f2) and the entry edge can be any edge incident with the
outer face; for i = k, define the entry edge and exit edge symmetrically. The ith edge of the face
f is the edge at distance i from its entry edge when traversing ∂(f) in clockwise order, and β is
obtained also considering the clockwise order.
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Let f be a face of an outerpath graph G whose longest induced cycle is at most 6 and let
e be its entry edge. We show that P(e) uniquely determines P(e′), for all e′ ∈ E(∂(f)). This
correspondence is established in Lemmas 6 through 9.

Lemma 6. Let G be an outerpath graph endowed with a partial (2, 1)-colouring π and e be an entry
edge of a triangular face f . Suppose the endpoints of e are the only coloured vertices of f . Then,
Table 1 establishes the correspondence between Pπ(e) and P(e′), e′ ∈ E(∂(f)), e′ ̸= e.

Table 1: Possibilities for the ith edge of a triangular face.

Pπ(e)
e′ ∈ E(∂(f))

1st edge 2nd edge

S-11 D-10 D-01

D-00
S-11
D-01

D-10
S-11

D-01 D-11 S-11

D-10 S-11 D-11

D-11 ∅ ∅

Proof. Let G, e and f be as defined. Suppose π is a partial (2, 1)-colouring of G. First, note that,
in any coloured triangular face of G, exactly one edge must have both endpoints assigned the same
colour.

Suppose Pπ(e) = S-11. Since the endpoints of e have the same colour and defect 1, we con-
clude that the third vertex has the other colour and defect 0. In clockwise order, we have that
Pπ(1

st edge) = D-10 and Pπ(2
nd edge) = D-01.

Now, suppose Pπ(e) = D-00. Then, either the 1st edge or the 2nd edge must have its endpoints
with the same colour. Thus, we have that either Pπ(1

st edge) = S-11 and Pπ(2
nd edge) = D-10

or Pπ(1
st edge) = D-01 and Pπ(2

nd edge) = S-11. Therefore, P(1st edge) = {S-11,D-01} and
P(2nd edge) = {D-10,S-11}.

Next, suppose Pπ(e) = D − 01. Again, one of the 1st edge or 2nd edge has its endpoints with
the same colour. However, in this case, this edge must be the one that shares the endpoint with
defect 0. We conclude that Pπ(2

nd edge) = S-11, which completely determines the possibility for
the 1st edge, establishing Pπ(1

st edge) = D-11. The case in which Pπ(e) = D-10 is symmetric.

Finally, suppose Pπ(e) = D-11. In this case, it is not possible to assign a colour to the remaining
vertex of ∂(f) so as to extend π; every possible assignment would result in a vertex with defect 2.
These cases are illustrated in Fig. 5, in which the entry edge is indicated by an arrow.

1

1

2

2

2

(a)

1

2

1

2

1

(b)

1

2

1

2

2

(c)

2

1

2

1

(d)

Figure 5: Possibilities for the edges of a triangular face.
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Lemma 7. Let G be an outerpath graph endowed with a partial (2, 1)-colouring π and e be an
entry edge of a square face f . Suppose the endpoints of e are the only coloured vertices of f . Then,
Table 2 establishes the correspondence between Pπ(e) and P(e′), e′ ∈ E(∂(f)), e′ ̸= e.

Table 2: Possibilities for the ith edge of a square face.

Pπ(e)
e′ ∈ E(∂(f))

1st edge 2nd edge 3rd edge

S-11 D-11 S-11 D-11

D-00
D-00
S-11

D-00
D-11

D-00
S-11

D-01 D-10 D-00 D-00

D-10 D-00 D-00 D-01

D-11 D-10 D-00 D-01

Proof. The proof is analogous to the proof of Lemma 6.

Lemma 8. Let G be an outerpath graph endowed with a partial (2, 1)-colouring π and e be an entry
edge of a pentagonal face f . Suppose the endpoints of e are the only coloured vertices of f . Then,
Table 3 establishes the correspondence between Pπ(e) and P(e′), e′ ∈ E(∂(f)), e′ ̸= e.

Table 3: Possibilities for the ith edge of a pentagonal face. Line D-10 is symmetric to D-01, like is
shown in table 2.

Pπ(e)
e′ ∈ E(∂(f))

1st edge 2nd edge 3rd edge 4th edge

S-11 D-10 D-00 D-00 D-01

D-00
S-11
D-01
D-00

S-11
D-00
D-01
D-10

D-00
D-10
D-01
S-11

D-00
D-10
S-11

D-01
D-10
D-11

S-11
D-00
D-01

D-10
D-01
S-11

D-00
S-11
D-10

D-11
D-11
D-10

S-11
D-01

D-10
S-11

D-01
D-11

Proof. The proof is analogous to the proof of Lemma 6.

Lemma 9. Let G be an outerpath graph endowed with a partial (2, 1)-colouring π and e be an entry
edge of a hexagonal face f . Suppose the endpoints of e are the only coloured vertices of f . Then,
Table 4 establishes the correspondence between Pπ(e) and P(e′), e′ ∈ E(∂(f)), e′ ̸= e.
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Table 4: Possibilities for the ith edge of a hexagonal face. Line D-10 is symmetric to D-01, like is
shown in table 2.

Pπ(e)
e′ ∈ E(∂(f))

1st edge 2nd edge 3rd edge 4th edge 5th edge

S-11
D-10
D-11

D-01
S-11
D-00

S-11
D-10
D-01

D-10
D-00
S-11

D-01
D-11

D-00
D-00
S-11
D-01

D-00
D-10
D-01
S-11
D-11

D-00
D-01
S-11
D-10
D-11

D-00
S-11
D-11
D-10
D-01

D-00
D-10
S-11

D-01
D-10
D-11

D-00
S-11
D-01

D-00
D-11
S-11
D-10

D-00
S-11
D-01
D-11

D-00
D-10
S-11

D-11
D-10
D-11

D-00
S-11

D-00
D-11

D-00
S-11

D-01
D-11

Proof. The proof is analogous to the proof of Lemma 6.

Algorithm 1 takes as input an outerpath graph G and determines whether G admits a (2, 1)-
colouring. It consists of three nested loops. The third loop runs inside of function isColourable,
called in the first line of the second loop. The algorithm starts by getting the L-reduced subgraph
H of G. Each loop targets different structures of the graph: the outer loop iterates over each
component; the second, over blocks within each component; and finally, the innermost loop iterates
over each face. Faces are visited according to the canonical ordering of G. For each face and
entry edge e, given P(e), the algorithm computes the possibilities of the exit edge, considering all
possible colourings of the subgraph of H induced by the faces visited until that moment. For each
connected component, since no face has been visited at the beginning of the algorithm, the initial
possibilities set is {S-11,D-00,D-01,D-10,D-11}, that is, its vertices may assume any colour and
any defect. At each iteration, to obtain the possibilities of the exit edge, function Restriction
takes the possibilities of the entry edge and computes the union of the table rows associated with
its entries.

isColourable (G, ein, elast, pin)

1: f1, f2, . . . , fk ← canonical order of the faces of G
2: for i = 1 to k − 1 do
3: eout ← E(fi) ∩ E(fi+1)
4: pout ← Restriction(fi, ein, eout, pin)
5: if (pout = {D-11}) ∧ (fi+1 is a triangular face) then
6: return {}
7: end if
8: ein ← eout
9: pin ← pout

10: end for
11: return Restriction(fk, ein, elast, pin)
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Algorithm 1

Input: an outerpath graph G
Output: true if there is a (2, 1)-colouring of G; and false otherwise.

1: H ← L-reduced graph from G
2: for each connected component H ′ of H do
3: B ← canonical ordering of H ′ into blocks B1, B2, . . . , Bk

4: pini ← {S-11,D-00,D-01,D-10,D-11}
5: vcut ← V (B1) ∩ V (B2)
6: eini ← e ∈ E(G) incident with the outer face and first face of B1

7: elast ← e ∈ E(G) in the boundary of last face of B1 and incident with vcut
8: for i = 1 to k do
9: pout ← isColourable(Bi, eini, elast, pini)

10: if (pout = {}) then
11: return false
12: end if
13: if vcut has defect 0 in any Pπ(elast) ∈ pout then
14: pini ← {S-11,D-00,D-01,D-10,D-11}
15: else
16: pini ← {D-10,D-11} ▷ Assuming vcut is always the first vertex in eini
17: end if
18: if i < k then
19: eini ← e ∈ E(G) incident with vcut and e ∈ ∂(outer face) ∩ ∂(first face of Bi+1)
20: if i < k − 1 then
21: vcut ← V (Bi+1) ∩ V (Bi+2) and also in V (Bi+2)
22: else
23: vcut ← v ∈ V (G) in the last face of V (Bi+1)
24: end if
25: elast ← e ∈ E(G) incident with the last face of Bi+1, the outer face,

and vcut
26: end if
27: end for
28: end for
29: return true

Theorem 10. Let function isColourable from Algorithm 1 be executed on an outerpath graph
G with circumference at most 6 and let elast be an edge of the last face of the canonical order of G.
Then, the algorithm returns the set of possibilities for elast. Moreover, it runs in linear time.

Proof. Let G be an outerpath graph with circumference at most 6 and f1, . . . , fl be the canonical
order of the faces of G. At iteration i of the main loop, let Hi denote the subgraph of G induced by
∂(f1), . . . , ∂(fi), following the canonical order. We first prove that, at iteration i of the algorithm,
set pout, computed by function Restriction in line 4 is the set possibilities of the exit edge eout
of fi. The proof proceeds by induction on the number k of iterations.

For the base case (k = 1), subgraph H1 contains only face f1. Thus, the result follows from
Lemmas 6, 7, 8, and 9 since function Restriction consults their tables directly. Now, assume the
claim holds for iteration k and consider iteration k + 1. In line 9, set pin receives set pout that has
been just calculated at iteration k. By the induction hypothesis, in any (2, 1)-colouring of Hk, the
exit edge of face fk has possibilities P(ein) as set pin. Thus, for each element of pin, Lemmas 6
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to 9 provide the corresponding possibilities set, and their union is pout, for the exit edge of fk+1.
Therefore, for any (2, 1)-colouring of Hk+1, set pout of edge eout respects the union of all possibilities
derived from the tables in these lemmas, that is, it is equal to the set P(eout).

Hence, if the algorithm reaches the final face without being interrupted by the conditional in
line 5, it returns P(eout). In this case, there exists at least one valid (2, 1)-colouring of G, by the
definition, since at each iteration the set of possibilities is nonempty. On the other hand, suppose
the conditional in line 5 is true at iteration i. Then, for every (2, 1)-colouring of Hi, the exit edge
eout has endpoints with distinct colours, each with defect 1, i.e. P(eout) = {(D, 11)}. Moreover,
this edge is also in ∂(fi+1) that includes an uncoloured vertex v. By Lemma 6, for any exit edge of
fi+1, its possibilities set is empty. Therefore, no (2, 1)-colouring is possible for G and P(eout) = {}.

We now analyse the time complexity of function isColourable when executed on an outerpath
graph G with n vertices. The dual of G can be constructed in linear time. Thus, the canonical
order for the faces of G can be obtained in linear time (line 1). In the main loop (lines 2 to 10),
each vertex is visited at most four times since the boundary of each face is visited once when it is
the next face (fi+1) and again when it is the current one (fi).

Function Restriction first uses the degree of fi to select the appropriate table and determines
the column to consult based on the position of the exit edge relative to the entry edge. Then, for
each element of pin, it outputs the union of the possibilities sets contained in the corresponding
cells. Since there are at most five elements, the union can be computed in constant time using an
indexed list.

The remaining operations in the loop, including table lookups and possibilities set updates, are
performed in constant time per iteration. Since the loop iterates once per face, and the number of
faces in a planar embedding of an outerpath graph is linear in the number of vertices, the entire
algorithm runs in linear time.

Corollary 11. Let Algorithm 1 be executed on an outerpath graph G. Then, the algorithm returns
true if and only if G admits a (2, 1)-colouring. Moreover, it runs in polynomial time.

Corollary 12. Every apart outerpath graph admits (2, 1)-colourings.
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