
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Neighbour-distinguishing

edge-labellings of Powers of

Paths
L. G. S. Gonzaga C. N. Campos

Technical Report - IC-25-06 - Relatório Técnico

December - 2025 - Dezembro

The contents of this report are the sole responsibility of the authors.

O conteúdo deste relatório é de única responsabilidade dos autores.



Neighbour-distinguishing edge-labellings of Powers of Paths

L. G. S. Gonzaga * C. N. Campos �

Abstract

Given a graph G, the pair (π, cπ) is a neighbour-distinguishing k-edge-labelling if π : E(G) →
{1, . . . , k} such that, for every v ∈ V (G), cπ(v) =

∑
u∈N(v) π(uv) and cπ(x) ̸= cπ(y) for every

edge xy ∈ E(G). The least k for which it has been shown that every graph admits a neighbour-
distinguishing k-edge-labelling is three. The 1, 2, 3-Conjecture, proposed in 2004 by Karoński et
al., states that every graph has a neighbour-distinguishing 3-edge-labelling. This conjecture has
been recently proved by Keusch and published May 2024. In 2017, Luiz and Campos verified
the 1, 2, 3-Conjecture for powers of paths and conjectured that a neighbour-distinguishing 2-
edge-labelling could be built for powers of paths not isomorphic to complete graphs. In this
work, we prove this conjecture.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). As usual, we denote an edge e ∈ E(G)
by uv, with u and v its endpoints. The degree of a vertex v ∈ V (G) is denoted by d(v). If
d(u) ̸= d(v) for every pair u, v ∈ V (G), then G is said to be irregular. The neighbourhood of v is
N(v) = {u : uv ∈ E(G)}. Given a simple graph G and two vertices u and v of V (G), the distance
distG(u, v) between these vertices is the size of a shortest path between them. If no such a path
exists, distG(u, v) = ∞.

A vertex colouring of G is a mapping c : V (G) → C, with C a set of colours. If c(u) ̸= c(v) for
every pair u, v of adjacent vertices, then c is said to be proper. If G has a proper vertex-colouring
with |C| = k, then G is k-colourable.

For a set L of labels and C a set of colours, a pair (π, cπ) for which π : E(G) → L and
cπ : V (G) → C, with cπ(v) =

∑
u∈N(v) π(uv), is an edge-labelling. If L = {1, . . . , k}, we say that

(π, cπ) is a k-edge-labelling. Moreover, if cπ is proper, then (π, cπ) is called a neighbour-distinguishing
edge-labelling (ndel) or neighbour-distinguishing k-edge-labelling (k-ndel). The least k for which
G has a k-edge-labelling is denoted χe

Σ
(G). Note that no simple graph with isolated edges has an

ndel since vertices incident with an isolated edge always have the same colour for any (π, cπ). A
simple graph with no isolated edges is called a nice graph.

Neighbour-distinguishing edge-labellings were introduced in 2004 by M. Karoński et al. [1] as
a variation of the problem of finding the least number of non-loop edges that could be added to
a graph so as to make it irregular. In the same article it is shown that there exist neighbour-
distinguishing 3-edge-labellings for complete graphs and for 3-colourable graphs. Based on these
results, the authors posed the 1, 2, 3-Conjecture that states that every nice graph G has a 3-ndel.

Since it was posed, the 1, 2, 3-Conjecture has drawn significant attention from researchers, re-
sulting in numerous published works, many of them focusing on boundary cases for the conjec-
ture [2, 3, 4, 5, 6]. In 2024, R. Keusch proved the 1,2,3-Conjecture [7]. The proof, however, does
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not provide a polynomial-time algorithm for constructing a 3-ndel. Additionally, several com-
pelling questions about ndels remain open for further investigation. One of them, investigated in
this paper, is finding graphs that have a 2-ndel.

It is straightforward to determine whether a graph has a 1-ndel, as these are precisely graphs
in which d(u) ̸= d(v), for uv ∈ E(G). However, determining which graphs have a 2-ndel is more
challenging. Dudek and Wajc [8] proved that deciding whether a given graph has a 2-ndel is
NP-complete. This result opens a new research approach: investigating this problem for specific
classes of graphs. For instance, Thomassen et al.[9] characterized all bipartite graphs that have
neighbour-distinguishing 2-edge-labellings. Escuadro et al. [10] proved that for 2 ≤ k < 7, Ck

n has
2-ndels if and only if it is not isomorphic to Kn. Moreover, in the same paper, the authors showed
that powers of paths also have 2-ndels when k ≥ 2 and n ≥ k(k + 1).

The kth power of a graph G is a graph Gk with vertex set V (Gk) = V (G) and two vertices
being adjacent if and only if distG(u, v) ≤ k. We denote by Pn the path graph of order n. A power
Gk of a path graph G ∼= Pn is a power of paths and is denoted P k

n . The linear ordering of V (P k
n )

is (v0, v1, . . . , vn−1), such that vivi+1 ∈ E(Pn) for 0 ≤ i ≤ n− 2. The reach between vertices u and
v in V (P k

n ) is distPn(u, v). Observe that P 1
n is isomorphic to graph Pn. On the other hand, if we

have that k ≥ n − 1, then P k
n is isomorphic to a complete graph. Similarly to powers of paths, a

power Gk of a cycle G ∼= Cn is a power of cycle and is denoted Ck
n. Observe that C1

n is isomorphic
to graph Cn and, when k ≥

⌊
n
2

⌋
, Ck

n is isomorphic to Kn.

Since powers of cycles are regular graphs, they do not admit 1-ndels. It was proven by Luiz
et al. [11] that every power of cycles has a 3-ndel. The only power of a path that admits a 1-ndel
is P3, as every other power of a path contains at least two adjacent vertices with the same degree.
Furthermore, no complete graph admits a 2-ndel, as this would require a partition into two simple
irregular subgraphs, which is impossible. Thus, the only power of paths that can admit 2-ndels has
k < n−1. Luiz et al. [11] also proved that every power of paths has a 3-ndel. The authors further
conjectured that every power of a path not isomorphic to a complete graph admits a 2-ndel. In
this work, we prove this conjecture, formally stated as Theorem 1.

Theorem 1. [11] Let G be a power of paths such that G ≁= Kn. Then, χe
Σ

(G) ≤ 2.

1.1 Preliminaries

In order to prove our main result, we define a family of edge-labellings for complete graphs, with
L = {1, 2}, which we call type-l edge-labelling, l ∈ N∗. Let V (Kn) = {v0, . . . , vn−1}. A type-l
edge-labelling (π, cπ) is defined as follows: π(vivj) = 2 if j > n − (l + i); π(vivj) = 1 otherwise;
and cπ(vj) =

∑
u∈N(v) π(uvj). Fig. 1 shows examples of type-l edge-labellings for K5. Blue dashed

edges are labelled 2 and the remaining 1. Type-l labellings are used to build a 2-ndel for power of
paths in the proof of Theorem 4.

4 5 6 6 7

(a) Type-1.

5 6 6 7 8

(b) Type-2.

Figure 1: Edge-labellings for K5. Vertex labels are their colours.
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It is not difficult to see that complete graphs do not have 2-ndels. Therefore, type-l edge-
labellings are not neighbour-distinguishing. However, they present an interesting, and useful, prop-
erty: following the linear ordering of the vertex indices, the colours appear in non-decreasing order
with exactly one block of consecutive vertices with the same colour. Proposition 1.3 and Corollary
1.4 establish these results.

Proposition 2. Let G ∼= Kn endowed with a type-l edge-labelling. Then:

cπ(vi) =

{
d(vi) + i + (l − 1) if i ≤

⌊
n−l
2

⌋
;

d(vi) + i + (l − 2) otherwise.

Corollary 3. Let G ∼= Kn endowed with a type-l edge-labelling, l ≤ 2. Then, every vertex has a
distinct colour except for v⌊n−l

2 ⌋ and v⌊n−l
2 ⌋+1.

2 Main results

In this section, we provide a proof for Theorem 1. In order to show that χe
Σ

(P k
n ) ≤ 2, we partition

V (P k
n ) into blocks and use type-l labellings for these blocks. Then, we adjust the labelling so as to

obtain a 2-ndel for P k
n .

Theorem 4. Let G be a power of paths such that G ̸∼= Kn. Then, χe
Σ

(G) ≤ 2.

Proof. Let G ∼= P k
n for n ≥ 3. Since G ≁= Kn, we conclude that k ≤ n− 2. Consider the canonical

ordering of its vertices (v0, v1, v2, . . . , vn−1). We construct a 2-ndel for G dividing the construction
into two cases: n ≥ 3k + 1; and n < 3k + 1.

Case 1. n ≥ 3k + 1

Let B = {B0, B1, . . . , Bq+2} be a partition of V (P k
n ) into blocks such that: two blocks have

size k; q of them have size k + 1; and one has size k + 1 + r, in which q =
⌊
n−(3k+1)

k+1

⌋
and

r = (n − (3k + 1)) mod (k + 1). Each block Bi comprises a set of consecutive vertices in the
following way:

(i) block B0 is comprised of vertices v0, v1, . . . , vk−1, representing the first k vertices of the
ordering;

(ii) block Bi, for 1 ≤ i ≤ q, consists of vertices vki, vki+1, . . . , vki+k−1;

(iii) block Bq+1 is formed by k + 1 + r vertices with indices from (k + 1)(q + 1)− 1 to [(k + 1)(q +
1) − 1] + (k + r);

(iv) finally, block Bq+2 has vertices vn−k, vn−k+1, . . . , vn−1.

Denote by vji the ith vertex of block Bj . Fig. 2 exemplifies this block partition on P 3
15. Note that

every vertex in Bi, for 1 ≤ i ≤ q + 1, has degree 2k, while vertices in B0 and Bq+2 have degree at
most 2k − 1.
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v00 v01 v02 v10 v11 v12 v13 v20 v21 v22 v23 v24 v30 v31 v32
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

B0 B1 B2 B3

Figure 2: Graph P 3
15 with a block partition.

The set of edges of G is partitioned into two parts: edges whose endpoints are in the same block
and edges whose endpoints are in consecutive blocks. We call the latter linking edges. Note that,
by construction, there are no edges that link nonconsecutive blocks. Block Bq+1 has at least k + 1
vertices. Due to its size, block Bq+1 is decomposed into two sub-blocks, Bpre and Bsuf , ensuring
that Bpre contains the first k + 1 vertices of Bq+1, while Bsuf contains the remaining r vertices.
The vertices in Bpre are assigned indices from (k + 1)(q + 1)− 1 to [(k + 1)(q + 1)− 1] + k, and the
vertices in Bsuf have indices ranging from [(k+1)(q+1)−1]+(k+1) to [(k+1)(q+1)−1]+(k+r).
For example, in Fig. 2, Bpre = {v20, v21, v22, v23} and Bsuf = {v24}. To facilitate subsequent references
within each sub-block, we relabel the vertices of Bpre using the superscript p and those of Bsuf

using the superscript s. In the case of the previous example, Bpre = v20, v
2
1, v

2
2, v

2
3 is relabeled as

Bpre = vp0 , v
p
1 , v

p
2 , v

p
3 , and Bsuf = v24 becomes Bsuf = vs0.

Now, we are ready to build a 2-ndel (π, cπ) for G. First, suppose there is a (π, cπ) satisfying
the following properties.

(i) For vji in B1, . . . , Bq+1:

cπ(vji ) =


2k + 1 + i if 1 ≤ j ≤ q and 0 ≤ i ≤ k;

2k + 1 + i if j = q + 1 and vji ∈ Bpre;

k + i if j = q + 1 and vji ∈ Bsuf .

(ii) for vji ∈ {B0, Bq+2}, cπ(vji ) ∈ {d(vji ), d(vji ) + 1}; also, cπ(v0i−1) < cπ(v0i ) < cπ(v0i+1) and

cπ(vq+2
i−1 ) > cπ(vq+2

i ) > cπ(vq+2
i+1 ), whenever v0i−1, v

0
i+1, v

q+2
i−1 , and vq+2

i+1 exist.

Now, we show that such cπ is a proper colouring. Let vji and vtl be two adjacent vertices of

G. First note that if j = t = 0 or j = t = q + 2, cπ(vji ) ̸= cπ(vtl ) by definition. Now, suppose

j = 0 and t = 1 or j = q + 2 and t = q + 1. Then, d(vji ) < 2k and cπ(vtl ) ≥ 2k + 1. Thus,

cπ(vji ) ≤ d(vji ) + 1 < 2k + 1 ≤ cπ(vtl ). We conclude that cπ(vji ) ̸= cπ(vtl ) in this case.

It remains to analyse the cases in which vji and vtl belong to blocks B1, . . . ,

Bq+1. We first approach the case in which 1 ≤ j, t ≤ q. If j = t, then cπ(vji ) ̸= cπ(vtl ), as the
colours depend on the distinct values of i and l within the same block. Suppose j ̸= t. Without
loss of generality, we can assume t = j + 1. In this case, cπ(vji ) = cπ(vtl ) only when i = l. This

implies that the reach between vji and vtl is k + 1, meaning that there are k vertices between them
in the same block. Consequently, these vertices are non-adjacent.

At last, consider the case in which either vji or vtl belongs to Bq+1. If vji , v
t
l ∈ Bpre or vji , v

t
l ∈

Bsuf or, even, vji ∈ Bq and vtl ∈ Bpre, the result follows by the same argument of the previous

case. Suppose, then, that vji ∈ Bpre and vtl ∈ Bsuf , and that vji and vtl are adjacent. Note that

cπ(vji ) = 2k+1+ i and cπ(vtl ) = k+ l. Suppose that 2k+1+ i = k+ l. Then, l− i = k+1. However,

this assumption leads to a contradiction, as vji and vtl are adjacent, implying that l − i ≤ k.
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To complete the proof of this case, we show that there exists (π,cπ) satisfying (i) and (ii).
Initially, we label the subgraph induced by each block of B \ {Bq+1} with a type-2 labelling. For
block Bq+1, its sub-blocks Bpre and Bsuf also each receive a type-2 labelling individually. Finally,
we need to assign labels to the linking edges. We choose a matching M contained in this set of
edges to receive label 2, while the remaining linking edges receive label 1.

Suppose that the subgraphs induced by the blocks of B are endowed with a type-2 labelling as

indicated above. Let α =
⌊
(k+1)

2

⌋
and β =

⌊
(|Bsuf |)

2

⌋
. Consider, for one moment, that all linking

edges have label 1. It remains to define M , the subset of linking edges that receive label 2. Let
M = M ′ ∪M ′′, such that M ′ contains edges with at least one endpoint in Bi, 0 ≤ i ≤ q, and M ′′

contains edges with both endpoints in Bq+1 ∪Bq+2.

In each block Bj , 1 ≤ j ≤ q, there are edges in M ′. One endpoint of these edges is incident
with vertices from vjα to vjk−1, the other may be in Bj−1 or Bj+1, depending on the parity of j.

The edges of M ′ may be defined as: M ′ = {v0k−1v
1
α} ∪ {v2j−1

i+1 v2ji : 1 ≤ j ≤ ⌊ q+1
2 ⌋ and α ≤ i ≤

k − 1} ∪ {v2jk v2j+1
α : 1 ≤ j ≤ ⌈ q−1

2 ⌉}. Fig. 3 illustrates set M ′.

vi0 vi1 vi2 vi3 vi4 vi5
α

Bi

vi0 vi1 vi2 vi3 vi4 vi5
α

Bi

Figure 3: Illustration of the edges M ′, green and solid lines, in the graph P k
n : block Bj , with odd

j (left); block Bj with even j (right).

In order to define M ′′ – edges with endpoints in Bpre, Bsuf , and possibly Bq+2 – we consider
the parity of q + 1 and the value of β. In the case that q + 1 is even, there are r − β edges in M ′′.
These edges are vpkv

s
β and edges vsβ+1+iv

q+2
i , with 0 ≤ i ≤ r − β − 2. Edge vpkv

s
β has reach β + 1.

The remaining edges have reach r − β − 1. Fig. 4 illustrates this case.

vp0 vp1 vp2 vp3 vp4 vp5 vs0 vs1 vs2 vs3 vs4
α β

Bpre Bsuf

Figure 4: Illustration of block Bq+1 in P 5
n , q + 1 even, with solid green edges belonging to M ′′.

If q + 1 is odd, there are k−α edges in M ′′, each with a reach of k−α+ β. Suppose vsβ denote
the vertex with index x in the canonical ordering of G, that is vsβ = vx. The edges of M ′′ are

vpi , vx+i−(α+1), with α + 1 ≤ i ≤ k. The reason for employing the general canonical ordering with
vertex vx instead of vsβ is that, depending on the number of vertices in Bsuf , the endpoint of the

edges may lie in either Bsuf or Bq+2 if, at any point, β + i− (α+ 1) > r− 1. Fig. 5 illustrates this
case. Note that the first edge has endpoint in a vertex of Bsuf and the second in Bq+2.



6 Gonzaga and Campos

vp0 vp1 vp2 vp3 vp4 vp5 vs0
α β

Bpre Bsuf

Figure 5: Block Bq+1 with odd q + 1 in P 5
n , green solid edges represent linking edges belonging to

set M ′′.

Additionally, when k is odd and r = k, vsr−1v
q+2
0 ∈ M ′′. Fig. 6 shows an example of M ′′ with

the additional edge.

vp0 vp1 vp2 vp3 vp4 vp5 vs0 vs1 vs2 vs3 vs4
α β

Bpre Bsuf

Figure 6: Block Bq+1 in P 5
n for the case in which r = k; green edges belong to M ′′.

In summary, the edges of M ′′ are:

M ′′ =


{vpkv

suf
β } ∪ {vs(β+1)+iv

q+2
i : 0 ≤ i ≤ r − (β + 1)} if q + 1 is even;

{vp(α+1)+iv
s
β+i : 0 ≤ i ≤ r − (β + 1)}∪

{vp(α+r−β)+iv
q+2
i : 0 ≤ i ≤ k − (α + r − β)} if q + 1 is odd, and either k is even or r < k;

{vp(α+1)+iv
s
β+i : 0 ≤ i ≤ r − (β + 2)} ∪ {vsufr−1v

q+2
0 } if q + 1 is odd, k is odd and r = k.

Finally, it remains to show that cπ from the labelling (π, cπ) satisfies the properties (i) and (ii)
defined previously. Recall that the colour of a vertex in a 2-ndel is its degree added to the number
of edges incident with it labelled 2. Thus, for a given v ∈ V (G), we count the number of edges
labelled 2 incident with v.

First, consider the vertices in blocks Bj , 1 ≤ j ≤ q. Each of these blocks receives a type-2

labelling. So, by Proposition 2, the vertices vji with i ≤
⌊
|Bj |−2

2

⌋
are incident with i + 1 edges

labelled 2; and when i >
⌊
|Bj |−2

2

⌋
they are incident with i edges labelled 2. Since |Bj | = k + 1, we

have that
⌊
|Bj |−2

2

⌋
=

⌊
k−1
2

⌋
= α − 1. Thus, vertices vji , with i < α, are incident with i + 1 edges

labelled 2, and vertices vji , with i ≥ α, are incident with i edges labelled 2. For these blocks, it
remains to consider vertices that are incident with edges of matching M . In this case, those are
only edges of M ′. By the definition of M ′, each vertex vji with i < α is not incident with any edge

of M , and every vertex vji with i ≥ α is incident with one edge of M ′. Therefore, the colour of vji
is d(vji ) + i + 1 = 2k + i + 1 when i < α. If i ≥ α, the colour of vji is d(vji ) + i + 1 = 2k + i + 1.

Therefore, cπ(vji ) = 2k + i + 1, 0 ≤ i ≤ k, satisfying the properties (i) and (ii).
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Now, consider the block Bpre. This block always receives a type-2 labelling. Since |Bpre| = |Bj |,
1 ≤ j ≤ q, then, by Proposition 2, vertices vpi , with i < α, are incident with i + 1 edges labelled 2;
and vertices vpi , with i ≥ α, are incident with i edges labelled 2. Additionally, vertices in this block
are incident with edges of matching M . When q+ 1 is even, vertices vpi , α ≤ i ≤ k− 1, are incident
with edges of M and vpk is incident with one edge of M ′′. When q + 1 is odd, vertex vpα is incident
with one edge of M ′, and vpi , α + 1 ≤ i ≤ k, is incident with one edge of M ′′. Thus, the colour of
vpi is d(vpi ) + i + 1 = 2k + i + 1 when i < α. If i ≥ α, the colour of vpi is d(vpi ) + i + 1 = 2k + i + 1.

Therefore, cπ(vpi ) = 2k + i + 1, and since vpi = vq+1
i , we have that cπ(vq+1

i ) = 2k + i + 1, for

vq+1
i ∈ Bpre. This way, properties (i) and (ii) are satisfied.

The block Bsuf also receives a type-2 labelling. Thus, by Proposition 2, vertices vsi , with

i ≤
⌊
|Bsuf |−2

2

⌋
, are incident with i + 1 edges labelled 2; and vertices vsi , with i >

⌊
|Bsuf |−2

2

⌋
, are

incident with i edges labelled 2. Since |Bsuf | = r, we have that
⌊
|Bsuf |−2

2

⌋
=

⌊
r−2
2

⌋
= β − 1. Thus,

vertices vsi , with i < β, are incident with i + 1 edges labelled 2; and vertices vsi , with i ≥ β, are
incident with i edges labelled 2. Additionally, the vertices of this block are also incident with edges
of matching M , more precisely, with edges of M ′′. By the definition of M ′′, each vertex vsi with
i < β is not incident with edges of M , and every vertex vsi with i ≥ β is incident with one edge of
M ′′. Thus, the colour of vsi is d(vsi ) + i + 1 = 2k + i + 1 when i < β. If i ≥ β, the colour of vsi
is d(vsi ) + i + 1 = 2k + i + 1. Thus, cπ(vsi ) = 2k + i + 1. Since there was a relabelling of vertices
in Bsuf , then vsi = vq+1

i+k+1. Therefore, we have that cπ(vq+1
i ) = k + i when vq+1

i ∈ Bsuf , satisfying
properties (i) and (ii).

Blocks B0 and Bq+2 have not been labelled with a type-2 labelling. So, if vertices of these
blocks are incident with an edge labelled 2, those edges are from M . This implies that each of these
vertices is incident with at most one edge labelled 2.

In the case of block B0, the only vertex incident with an edge of M is v0k−1, which is incident
with an edge of M ′; every other vertex in it is not incident with any edge labelled 2. So, cπ(v0k−1) =
d(v0k−1) + 1, and every other vertex v0i , with i < k − 1, has colour d(v0i ). Moreover, we know that
the degrees of those vertices are in increasing order. Thus, their colours are also increasing. With
that, the colour of all vertices in this block satisfies (i) and (ii).

Finally, for the block Bq+2, we have that its degrees are in decreasing order. However, the
number of vertices incident with edges of M can change from 0 to α − 1. Yet, we know that
all those edges belong to M ′′. Let t be the number of edges of M ′′ incident with vertices of
Bq+2. By the definition of M ′′, these edges are incident with vertices of block Bq+1, following the
canonical ordering and starting at vertex vq+2

0 . We conclude that only vertices from vq+2
0 to vq+2

t−1

have (exactly) one edge incident with it labelled 2. The remaining vertices have no incident edge
labelled 2. Therefore, cπ(vq+2

i ) = d(vq+2
i ) + 1 when 0 ≤ i ≤ t − 1, and cπ(vq+2

i ) = d(vq+2
i ) when

i > t− 1. Since the degrees of vertices of this block are in decreasing order, their colours are also
in decreasing order, satisfying properties (i) and (ii). Thus, the result follows.

Case 2. n < 3k + 1

In this case, we partition V (P k
n ) into three blocks: B1, B2 and B3. Blocks B1 and B3 both have

the same size, |B1| = |B3| = n−|B2|
2 . Block B2 has size k or k+1, and its vertices induce a complete

subgraph in P k
n . If n ≡ k (mod 2), then |B2| = k; otherwise, |B2| = k + 1. Note that n− |B2| ≡ 0

(mod 2) to allow for B1 and B3 to have the same size. Each block Bi is a set of consecutive
vertices, following the canonical ordering. Block B1 is composed by vertices v0, . . . , v|B1|−1. Block
B2 is composed by vertices v|B1|, . . . , vn−|B3|. The remaining vertices belong to B3. Denote by vqi
the ith vertex of block Bq, with q ∈ {1, 3} following the non-decreasing order of its degrees. For
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block B2, denote its ith vertex by v2j , with j following the ordering (0, 2, 4, . . . , |B2|, . . . , 5, 3, 1).

That is, the first half of the vertices v2j are indexed by even numbers in increasing order, while
the second half are indexed by odd numbers in decreasing order. This ensures that the vertex
degrees, when arranged in the order of their indices, form a non-decreasing sequence. Moreover,

by construction, d(v22x) = d(v22x+1), with 0 ≤ x <
⌊
|B2|
2

⌋
. Note that, in B1, vertices are ordered

in the canonical order; in B3, vertices are ordered in the inverse of the canonical order; and, in
B2, vertices do not have a specific ordering related to the canonical ordering, alternating inside the
block. Fig. 7 exemplifies this notation in P 3

8 .

v10 v11 v20 v22 v23 v21 v31 v30
v0 v1 v2 v3 v4 v5 v6 v7

B1 B2 B3

Figure 7: Graph P 3
8 with a block partition.

There are only two graphs for which |B2| = 2. Since k > 1, this only occurs when k = 2,
as |B2| = k or |B2| = k + 1. Besides that, since |B2| is even, n must also be even due to the
construction of B2. Finally, n < 3k + 1 = 7 by the restriction of the case, and n > 2 by the
definition of power of paths. So, the only valid values of n for this case are n = 4 and n = 6.
Therefore, |B2| = 2 only for P 2

4 or P 2
6 . Fig. 8 shows a 2-ndel for both cases. Consider, from this

moment forwards, that |B2| ≥ 3.

2 3 5 6 4 3

v0 v1 v2 v3 v4 v5

B1 B2 B3

(a) Labelling for P 2
6 .

2 4 5 3

v0 v1 v2 v3

B1 B2 B3

(b) Labelling for P 2
4 .

Figure 8: Graphs with |B2| = 2 endowed with a 2-ndel; only coloured edges have label 2.

Let α =
⌊
|B2|−1

2

⌋
. Suppose, initially, that there is a 2-ndel (π, cπ) for G satisfying the following

properties.

(i) For vji belonging to B2:

cπ(v2i ) =


d(vji ) + i + 1 if i ∈ {0, 1} and |B2| = k + 1;

d(vji ) + i if either 2 ≤ i < α− 1, or i ∈ {0, 1} and |B2| = k;

d(vji ) + (i + 1) if i ≥ α− 1.

(ii) For vji belonging to B1 or B3:

cπ(vji ) =


d(v2α−1) − 1 + α if i = |B1| − 1 = |B3| − 1;

d(vji ) + 1 if |B1| − (d(v2α−1) − d(v1|B1|−1) − (|B2| − k)) ≤ i < |B1| − 1;

d(vji ) otherwise.
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We prove, as follows, that cπ is a proper vertex colouring. Initially, note that vertices in B1 and
B3 have increasing degrees in relation to their indices inside the block. By construction, the colour
of vertices v1|B1|−1 and v3|B3|−1 is greater then the colour of the remaining vertices in B1 ∪B3, since

d(v2α−1) > d(vji ) + 1, for i < |Bj | − 1, with j ∈ {1, 3}, and the value of α is at least 1. The colours
of the remaining vertices of B1 and B3 are increasing in relation to their indices by definition. So,
adjacent vertices in B1 (in B3) have distinct colours. Moreover, by construction, two vertices in
distinct blocks, one in B1 and the other in B3, are not adjacent. We conclude that B1 ∪ B3 does
not have adjacent vertices with the same colour.

The colour of vertices v1|B1|−1 and v3|B3|−1 is d(v2α−1) − 1 + α. Since the degrees of vertices in

B2 are in non-decreasing order of their indices, we have d(v2i ) ≤ d(v2j ), with i < j, which implies,

d(v2i ) + i < d(v2j ) + j. Thus, we have that cπ(v2i ) = d(v2i ) + i < d(v2α−1) − 1 + α when i < α − 1.

Moreover, d(v2α−1)+α−1 < d(v2i )+(i+1) = cπ(v2i ), when i ≥ α−1. So, the colour of vertices v1|B1|−1

and v3|B3|−1 is greater than the colour of vertex v2i when i < α − 1 and lower when i ≥ α − 1. For

v ∈ B2 and u ∈ (B1 ∪B3) \ {v1|B1|−1, v
3
|B3|−1}, since the degree of vertices in B1 (B3) is increasing,

we have that d(v) > d(v1|B1|−1) = d(v3|B3|−1) ≥ d(u) + 1. So, cπ(v) ≥ d(v) > d(u) + 1 ≥ cπ(u). Thus,

every pair of adjacent vertices, one in B1 ∪B3 and the other in B2, have distinct colours. Finally,
when |B2| = k, since the colour of vertex v2i in B2 is d(v2i )+i, with i < α−1, or d(v2i )+(i+1), with
i ≥ α − 1, and the degree of the vertices is non-decreasing, we have that the colour of vertices in
B2 increases with each vertex. When |B2| = k+ 1, the only difference is on vertices v20 and v21, that
have colour d(v2i )+ i+1. Since |B2| = k+1, then |B1| = |B3| < k, as n ≤ 3k. Vertex v20 is adjacent
to every vertex in |B1| ∪ |B2| but to no vertex in |B3|, since there are k vertices between v20 and the
first vertex of B3. Recall that, by construction, d(v20) = d(v21). Vertex v22 is adjacent to every vertex
in B1 and, to at least one vertex in B3. Thus, d(v22) > d(v20). Therefore, d(v20) = d(v21) < d(v2i ) and
cπ(v20) < cπ(v21) = d(v21) + 2 < d(v2i ) + i = cπ(v2i ), for every 2 ≤ i ≤ |B2| − 1, and we have that the
colour of vertices in B2 still increases. We deduce that no pair of adjacent vertices in G has the
same colour in cπ.

To conclude the proof, we construct (π, cπ) to satisfy (i) and (ii). Initially, we label the subgraph
induced by block B2 with a modified type-1 labelling. This modified labelling has an additional
edge labelled 2 when |B2| is odd and two additional edges labelled 2 when |B2| is even. Following
this, we select a set of 2α linking edges to receive label 2, in which α of those edges have exactly
one endpoint in v1|B1|−1 and α have exactly one endpoint in v3|B3|−1. The remaining linking edges

receive label 1. If d(v2α−1) − d(vj|Bj |−1
) − (|B2| − k) ≥ 2, j ∈ {1, 3}, we assign label 2 to edges

with one endpoint in v1|B1|−1 (in v3|B3|−1) and the other in the remaining vertices of B1 (of B3) in

decreasing order of its indices, until the colour of v1|B1|−1 (v3|B3|−1) is equal to d(v2α−1) − 1 + α. In

other words, we assign label 2 to d(v2α−1) − d(v1|B1|) − 1 edges with both ends in B1 and incident

with v1|B1|−1 and the same number of edges with both ends in B3 and incident with v3|B3|−1. Finally,

we show that the 2-edge labelling built satisfies properties (i) and (ii) and, therefore, is a 2-ndel.

Consider a type-1 edge labelling of B2. Recall that α =
⌊
|B2|−1

2

⌋
. Adjust the labelling as

follows: π(v2α−1v
2
α+1) = 2 if |B2| ≡ 1 (mod 2); π(v2αv

2
α+1) = π(v2α−1v

2
α+2) = 2 if |B2| ≡ 0 (mod 2);

π(v1|B1|−1v
2
0) = π(v3|B3|−1v

2
1) = 2 if |B2| = k+1. These edges are called adjusted and are exemplified

in Fig. 9.
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v20 v22 v23 v21

B2

Figure 9: Block B2 of a P 3
8 with an adjusted type-1 labelling. Continuous edges have label 2; edges

with reach 2 are adjusted.

To conclude the labelling, it is necessary to assign labels to linking edges, as well as to edges
from E(G[B1]) and E(G[B3]). Except by edges listed below, all remaining edges receive label 1.
For j ∈ {1, 3},

(a) vj|Bj |−1
v2|B2|−α+i, 1 ≤ i ≤ α− 1;

(b) vj|Bj |−1
vj|Bj |−i

, 2 ≤ i ≤ t and t = d(v2α−1) − d(vj|Bj |−1
) − (|B2| − k);

(c) v1|B1|−1v
2
|B2|−α;

(d) v3|B3|−1v
2
|B2|−α−1.

We finish the proof by showing that cπ of the constructed labelling satisfies (i) and (ii) as defined
previously. Recall that the colour of a vertex in a 2-ndel is its degree added to the number of its
incident edges labelled 2. Thus, given v ∈ V (G), we count the number of edges labelled 2 incident
with v.

First, consider the block B2. This block receives a type-1 labelling with some adjusted edges

labelled 2. By Proposition 2, every vertex v2i , with i ≤
⌊
|B2|−1

2

⌋
, is incident with i edges labelled 2;

and with i >
⌊
|B2|−1

2

⌋
, is incident with i − 1 edges labelled 2. By definition, α =

⌊
|B2|−1

2

⌋
. Thus,

every vertex v2i , with i ≤ α, is incident with i edges labelled 2; and with i > α is incident with
i − 1 edges labelled 2, just by the type-1 labelling. For these vertices, it remains to consider the
adjusted labels and linking edges labelled 2.

Consider the vertex v2i , with i < α − 1. Note that |B2| − α − 1 = α when |B2| is even, and
|B2|−α−1 = α+ 1 when |B2| is odd. So, |B2|−α−1 + l > α−1, for 0 ≤ l ≤ α. Thus, this vertex
is not incident with linking edges labelled 2. Moreover, this vertex is also not an endpoint of any
adjusted edge, except for v20 and v21 when |B2| = k + 1. Therefore, this vertex has colour d(v2i ) + i
or d(v2i ) + i + 1 when i ∈ {0, 1} and |B2| = k + 1. When i = α − 1, this vertex is incident with i
edges labelled 2 by the type-1 edge labelling and to an adjusted edge: v2α−1v

2
α+2 when |B2| is even;

or v2α−1v
2
α+1 when |B2| is odd. Therefore, its colour is d(v2i ) + i + 1. When i = α, v2i is incident

with i edges labelled 2 by the type-1 labelling and one adjusted edge: v2αv
2
α+1 if |B2| is even; or

with a linking edge with endpoint in v3|B3|−1 if |B2| is odd. Therefore, its colour is d(v2i ) + i + 1.

When i = α + 1, v2i is incident with i− 1 edges labelled 2 by the type-1 labelling and one adjusted
edge: v2αv

2
α+1 if |B2| is even; or v2α−1v

2
α+1 if |B2| is odd. Moreover, v2i is also incident with one

linking edge with endpoint in: v3|B3|−1 if |B2| is even; or v1|B1|−1 if |B2| is odd. Therefore, its colour

is d(v2i ) + i + 1. When i = α + 2, v2i is incident with i− 1 edges labelled 2 by the type-1 labelling.
Additionally, v2i is incident with: an adjusted edge v2α−1v

2
α+2 and a linking edge with endpoint in

v1|B1|−1 if |B2| is even; or two linking edges if |B2| is odd. Therefore, its colour is d(v2i ) + i + 1.
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When i > α+ 2, this vertex is incident with i− 1 edges labelled 2 by the type-1 labelling, and with
two linking edges v2i v

1
|B1|−1 and v2i v

3
|B3|−1. Therefore, its colour is d(v2i ) + i + 1. We conclude that

cπ(v2i ) = d(v2i ) + i when i < α− 1, and cπ(v2i ) = d(v2i ) + i+ 1 when i ≥ α− 1, satisfying properties
(i) and (ii).

Except for the edges indicated in (a), (b), (c) and (d), edges incident with vertices in B1 and B3

receive label 1. The vertices v1|B1|−1 and v3|B3|−1 are incident with α linking edges labelled 2 each,

as mentioned in item (a). Additionally, these vertices are incident with t − 1 edges labelled 2, for
t = d(v2α−1)−d(v1|B1|−1)−(|B2|−k), as stated in item (b) and to one adjusted edge when |B2| = k+1.

Therefore, the colour of v1|B1|−1 is d(v1|B1|−1)+α+d(v2α−1)−d(v1|B3|−1)−1 = d(v2α−1)−1+α. Similarly,

the colour of v3|B3|−1 is d(v3|B3|−1) + α + d(v2α−1) − d(v3|B3|−1) − 1 = d(v2α−1) − 1 + α. The vertex vji ,

for j ∈ {1, 3} and |Bj | − t ≤ i < |Bj | − 1, is incident with exactly one edge labelled 2 and endpoint
in vj|Bj |−1

. Thus, for this vertex, cπ(vji ) = d(vji ) + 1. Finally, the remaining vertices of B1 ∪B3 do

not have any edge labelled 2 incident with them and, therefore, have colour d(vji ). We conclude
that the vertices of B1 and B3 satisfy properties (i) and (ii), and the result follows.
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