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Neighbour-distinguishing edge-labellings of Powers of Paths

L. G. S. Gonzaga * C. N. Campos T

Abstract

Given a graph G, the pair (7, ¢, ) is a neighbour-distinguishing k-edge-labelling if 7 : E(G) —
{1,...,k} such that, for every v € V(G), cx(v) = X, en() T(wv) and cx(x) # cx(y) for every
edge xy € E(G). The least k for which it has been shown that every graph admits a neighbour-
distinguishing k-edge-labelling is three. The 1,2, 3-Conjecture, proposed in 2004 by Karonski et
al., states that every graph has a neighbour-distinguishing 3-edge-labelling. This conjecture has
been recently proved by Keusch and published May 2024. In 2017, Luiz and Campos verified
the 1,2, 3-Conjecture for powers of paths and conjectured that a neighbour-distinguishing 2-
edge-labelling could be built for powers of paths not isomorphic to complete graphs. In this
work, we prove this conjecture.

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). As usual, we denote an edge e € E(G)
by wv, with u and v its endpoints. The degree of a vertex v € V(G) is denoted by d(v). If
d(u) # d(v) for every pair u,v € V(G), then G is said to be irregular. The neighbourhood of v is
N(v) ={u:uv € E(G)}. Given a simple graph G and two vertices v and v of V(G), the distance
distg(u,v) between these vertices is the size of a shortest path between them. If no such a path
exists, distg(u,v) = 00.

A wvertex colouring of G is a mapping ¢ : V(G) — C, with C a set of colours. If c¢(u) # ¢(v) for
every pair u, v of adjacent vertices, then c is said to be proper. If G has a proper vertex-colouring
with |C| = k, then G is k-colourable.

For a set £ of labels and C a set of colours, a pair (m,¢;) for which 7 : E(G) — L and
cr : V(G) = C, with cr(v) = X ,en() T(uv), is an edge-labelling. If £ = {1,...,k}, we say that
(7, cx) is a k-edge-labelling. Moreover, if ¢, is proper, then (7, ¢;) is called a neighbour-distinguishing
edge-labelling (NDEL) or neighbour-distinguishing k-edge-labelling (k-NDEL). The least k for which
G has a k-edge-labelling is denoted x¢(G). Note that no simple graph with isolated edges has an
NDEL since vertices incident with an isolated edge always have the same colour for any (7, ¢;). A
simple graph with no isolated edges is called a nice graph.

Neighbour-distinguishing edge-labellings were introduced in 2004 by M. Karoniski et al. [1] as
a variation of the problem of finding the least number of non-loop edges that could be added to
a graph so as to make it irregular. In the same article it is shown that there exist neighbour-
distinguishing 3-edge-labellings for complete graphs and for 3-colourable graphs. Based on these
results, the authors posed the 1,2, 3-Conjecture that states that every nice graph G has a 3-NDEL.

Since it was posed, the 1,2, 3-Conjecture has drawn significant attention from researchers, re-
sulting in numerous published works, many of them focusing on boundary cases for the conjec-
ture [2, 3, 4, 5, 6]. In 2024, R. Keusch proved the 1,2,3-Conjecture [7]. The proof, however, does
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not provide a polynomial-time algorithm for constructing a 3-NDEL. Additionally, several com-
pelling questions about NDELs remain open for further investigation. One of them, investigated in
this paper, is finding graphs that have a 2-NDEL.

It is straightforward to determine whether a graph has a 1-NDEL, as these are precisely graphs
in which d(u) # d(v), for wv € E(G). However, determining which graphs have a 2-NDEL is more
challenging. Dudek and Wajc [8] proved that deciding whether a given graph has a 2-NDEL is
NP-complete. This result opens a new research approach: investigating this problem for specific
classes of graphs. For instance, Thomassen et al.[9] characterized all bipartite graphs that have
neighbour-distinguishing 2-edge-labellings. Escuadro et al. [10] proved that for 2 < k < 7, C¥ has
2-NDELSs if and only if it is not isomorphic to K,,. Moreover, in the same paper, the authors showed
that powers of paths also have 2-NDELs when k& > 2 and n > k(k + 1).

The k" power of a graph G is a graph G* with vertex set V(G*) = V(G) and two vertices
being adjacent if and only if distg(u,v) < k. We denote by P, the path graph of order n. A power
GF of a path graph G = P, is a power of paths and is denoted Pf. The linear ordering of V (PF)
is (vo,v1,...,Un—1), such that vyv;y; € E(P,) for 0 <i < n — 2. The reach between vertices u and
vin V(PF) is distp, (u,v). Observe that P} is isomorphic to graph P,. On the other hand, if we
have that £k > n — 1, then Pf is isomorphic to a complete graph. Similarly to powers of paths, a
power G* of a cycle G = C), is a power of cycle and is denoted C¥. Observe that C! is isomorphic
to graph C), and, when k > L%J, C* is isomorphic to K.

Since powers of cycles are regular graphs, they do not admit 1-NDELs. It was proven by Luiz
et al. [11] that every power of cycles has a 3-NDEL. The only power of a path that admits a 1-NDEL
is P3, as every other power of a path contains at least two adjacent vertices with the same degree.
Furthermore, no complete graph admits a 2-NDEL, as this would require a partition into two simple
irregular subgraphs, which is impossible. Thus, the only power of paths that can admit 2-NDELs has
k < n—1. Luiz et al. [11] also proved that every power of paths has a 3-NDEL. The authors further
conjectured that every power of a path not isomorphic to a complete graph admits a 2-NDEL. In
this work, we prove this conjecture, formally stated as Theorem 1.

Theorem 1. [11] Let G be a power of paths such that G % K. Then, x%(G) < 2.

1.1 Preliminaries

In order to prove our main result, we define a family of edge-labellings for complete graphs, with
L = {1,2}, which we call type-l edge-labelling, | € N*. Let V(K,) = {vo,...,vn—1}. A type-l
edge-labelling (m,cy) is defined as follows: w(v;v;) = 2 if j > n — (I + i); m(vvj) = 1 otherwise;
and ¢x(vj) = >, () T(uvj). Fig. 1 shows examples of type-l edge-labellings for K. Blue dashed
edges are labelled 2 and the remaining 1. Type-[ labellings are used to build a 2-NDEL for power of
paths in the proof of Theorem 4.
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Figure 1: Edge-labellings for K5. Vertex labels are their colours.
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It is not difficult to see that complete graphs do not have 2-NDELs. Therefore, type-l edge-
labellings are not neighbour-distinguishing. However, they present an interesting, and useful, prop-
erty: following the linear ordering of the vertex indices, the colours appear in non-decreasing order
with exactly one block of consecutive vertices with the same colour. Proposition 1.3 and Corollary
1.4 establish these results.

Proposition 2. Let G = K,, endowed with a type-l edge-labelling. Then:

o (00) = d(vi) +i+(1—1) ifi<|%5);
e d(vi)+i+ (Il —2) otherwise.

O

Corollary 3. Let G = K, endowed with a type-l edge-labelling, | < 2. Then, every vertex has a
distinct colour except for U not | and U net | 41 O
2 2

2 Main results

In this section, we provide a proof for Theorem 1. In order to show that x& (P¥) < 2, we partition
V (PF) into blocks and use type-I labellings for these blocks. Then, we adjust the labelling so as to
obtain a 2-NDEL for PF.

Theorem 4. Let G be a power of paths such that G % K,,. Then, x%(G) < 2.

Proof. Let G = P¥ for n > 3. Since G % K,,, we conclude that & < n — 2. Consider the canonical
ordering of its vertices (v, v1,v2,...,Uy—1). We construct a 2-NDEL for G dividing the construction
into two cases: n > 3k + 1; and n < 3k + 1.

Case 1. n >3k +1

Let B = {B° B',..., B9*2} be a partition of V(PF) into blocks such that: two blocks have

size k; g of them have size k + 1; and one has size k + 1 + r, in which ¢ = L%J and

r = (n — (3k + 1)) mod (k + 1). Each block B’ comprises a set of consecutive vertices in the
following way:

(i) block B is comprised of vertices vg,v1,...,v,x_1, representing the first k vertices of the
ordering;
(ii) block B?, for 1 < i < g, consists of vertices Vi, Ukit1, - - - » Ukith—1;

(iii) block B*! is formed by k4 1+ r vertices with indices from (k+1)(g+1) —1to [(k+1)(¢+
) =1+ (k+r);

(iv) finally, block B%t2 has vertices vy, _k, Un—kt1s - - Un_1-

Denote by vg the it" vertex of block B7. Fig. 2 exemplifies this block partition on P135. Note that
every vertex in B?, for 1 <i < ¢ + 1, has degree 2k, while vertices in B and B2 have degree at
most 2k — 1.
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Figure 2: Graph P} with a block partition.

The set of edges of G is partitioned into two parts: edges whose endpoints are in the same block
and edges whose endpoints are in consecutive blocks. We call the latter linking edges. Note that,
by construction, there are no edges that link nonconsecutive blocks. Block B9*! has at least k + 1
vertices. Due to its size, block BIT! is decomposed into two sub-blocks, Byre and By, f, ensuring
that Bp,. contains the first £ + 1 vertices of Bl while By, ¢ contains the remaining r vertices.
The vertices in By, are assigned indices from (k+1)(¢+1) —1 to [(k+1)(¢+ 1) — 1] + k, and the
vertices in By, s have indices ranging from [(k+1)(¢+1) —1]+(k+1) to [(k+1)(g+1) — 1]+ (k+7).
For example, in Fig. 2, Byre = {v3,v},v3,v3} and By, s = {v3}. To facilitate subsequent references
within each sub-block, we relabel the vertices of By, using the superscript p and those of By,
using the superscript s. In the case of the previous example, By, = fug, v%,v%,v% is relabeled as
Bpre = v‘g,vf,vg,vg, and By, 5 = vi becomes By, = v§.

Now, we are ready to build a 2-NDEL (m, ¢;) for G. First, suppose there is a (m, ¢;) satisfying
the following properties.

(i) For v/ in B,..., BI*1;

2k+1+1 ifl1<j<qgand0<1i<kEk;
cr(v])=q2k+ 1+ ifj:q+1ande€Bpre;
k+i if j = ¢+ 1 and v] € Bgyy.

(i) for v} € {B% B2}, ¢ (v]) € {d(v]),d(v]) + 1}; also, ez (1) ;) < er(0?) < ex(vf;) and

) % %
q+2 q+2 q+2 0 0 q+2 q+2 -
cr(vil]) > en(vfT7) > cx(vi]), whenever vy, vi, 1, vi77, and v} [ exist.

Now, we show that such ¢, is a proper colouring. Let vf and vlt be two adjacent vertices of
G. First note that if j = ¢t =0o0r j =t = ¢ + 2, cw(vlj) # cr(vf) by definition. Now, suppose
j=0andt=1orj=qg+2andt =g+ 1. Then, dv}) < 2k and c,(v}) > 2k 4+ 1. Thus,
er(v]) < d(!) 41 < 2k 4+ 1 < ex(vf). We conclude that ¢, (v]) # cx(v}) in this case.

It remains to analyse the cases in which vf and v} belong to blocks B', ...,
B9t We first approach the case in which 1 < j,t < ¢q. If j = t, then c,,(vg) # cx(v}), as the
colours depend on the distinct values of ¢ and [ within the same block. Suppose j # t. Without
loss of generality, we can assume ¢t = j 4+ 1. In this case, cﬂ(vf ) = ¢x(v}) only when ¢ = . This
implies that the reach between vf and v is k + 1, meaning that there are k vertices between them
in the same block. Consequently, these vertices are non-adjacent.

At last, consider the case in which either vzj or v} belongs to BIt1. If vzj , 0 € Bpre or vzj b e

B,y or, even, vf € B9 and vf € Bpre, the result follows by the same argument of the previous
case. Suppose, then, that v] € By, and v} € Bg,y, and that v/ and v} are adjacent. Note that
cx(v]) = 2k+1+i and ¢ (v]) = k+1. Suppose that 2k+1+414 = k+1. Then, [—i = k+1. However,

this assumption leads to a contradiction, as v} and v} are adjacent, implying that [ —i < k.
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To complete the proof of this case, we show that there exists (m,c,) satisfying (i) and (ii).
Initially, we label the subgraph induced by each block of B\ {B%*!} with a type-2 labelling. For
block B9t its sub-blocks Bpre and By, also each receive a type-2 labelling individually. Finally,
we need to assign labels to the linking edges. We choose a matching M contained in this set of
edges to receive label 2, while the remaining linking edges receive label 1.

Suppose that the subgraphs induced by the blocks of B are endowed with a type-2 labelling as
indicated above. Let o = (ki and 8 = ‘Bs“f D . Consider, for one moment, that all linking
edges have label 1. It remains to define M, the subset of linking edges that receive label 2. Let
M = M'U M", such that M’ contains edges with at least one endpoint in B?, 0 < i < ¢, and M”
contains edges with both endpoints in BI+! U B2,

In each block BY , 1 < j < g, there are edges in M’. One endpoint of these edges is incident
with vertices from v} to v]_,, the other may be in B/~! or Bi*!, depending on the parity of j.
The edges of M’ may be defined as: M’ = {v9_,vl} U {v?illvzj 1 <j< |4 anda <i<

— 1} U {o70d T 11 < j < [%1]}. Fig. 3 illustrates set M.

VoM

<

ZONINA
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Figure 3: Illustration of the edges M’, green and solid lines, in the graph P*: block B/, with odd
4 (left); block B’ with even j (right).

In order to define M"” — edges with endpoints in Bpye, Bgys, and possibly B2 — we consider
the parity of ¢ + 1 and the value of 8. In the case that g + 1 is even, there are r — 3 edges in M".
These edges are vkvﬁ and edges v5+1+z q+2, with 0 < ¢ <r— 8 —2. Edge Uzvg has reach 6 + 1.
The remaining edges have reach r — 8 — 1. Fig. 4 illustrates this case.
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\ PSRN Y o \/<x
SNRERIZ2N\ 7 \\\ 72N\ 772N\ \\\

ﬂ\@\ﬂ\@»\“@»\“

St
Y, NN

Figure 4: Illustration of block B4t in P2, ¢ + 1 even, with solid green edges belonging to M".

If g+ 1 is odd, there are k — o edges in M"”, each with a reach of k — a + 3. Suppose v% denote
the vertex with index x in the canonical ordering of G, that is vj = v,. The edges of M" are
ot Upgi—(a+1), With a+1 <@ < k. The reason for employing the general canonical ordering with
vertex v, instead of vg is that, depending on the number of vertices in By, s, the endpoint of the
edges may lie in either By, or BI*2 if, at any point, 3+i— (a+1) > r — 1. Fig. 5 illustrates this
case. Note that the first edge has endpoint in a vertex of By, and the second in B2,
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Figure 5: Block B! with odd ¢+ 1 in P2, green solid edges represent linking edges belonging to
set M".

Additionally, when k is odd and r = k, v} 1U8+2 € M". Fig. 6 shows an example of M" with
the additional edge.

Byre

T T t=T T s<=<T T >=T To~=~T =7 " ==7"1
<2 <2 <z ~Z <z <2 -
- P N T N
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= LU NTLU T T T
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Figure 6: Block B?*! in P? for the case in which r = k; green edges belong to M".

In summary, the edges of M" are:

{vkvsuf}u{vﬁﬂﬂ :1+2 0<i<r—(B+1)}if ¢+ 1 is even;

{v(aﬂ)ﬂn)BJrZ 0<i<r—(f+1)}U

{vpaJrr 8)4i? vt 0<i<k—(a+r—p)}if ¢+1is odd, and either k is even or r < k;
{0 )iV 10 < i <= (B+2)} U0y of ™} if g + 145 odd, k is odd and 7 = k.

M// —

Finally, it remains to show that ¢, from the labelling (7, c;) satisfies the properties (i) and (ii)
defined previously. Recall that the colour of a vertex in a 2-NDEL is its degree added to the number

of edges incident with it labelled 2. Thus, for a given v € V(G), we count the number of edges
labelled 2 incident with v.

First, consider the vertices in blocks B, 1 < j < g. Each of these blocks receives a type-2
labelling. So, by Proposition 2, the vertices v} with ¢ < {%J are incident with ¢ + 1 edges

|Bi|—2

labelled 2; and when ¢ > { 3 J they are incident with i edges labelled 2. Since |B’| = k + 1, we

have that LwJ = L%J = «a — 1. Thus, vertices vj with ¢ < a, are incident with ¢ + 1 edges
labelled 2, and vertices v/, with ¢ > «, are incident with ¢ edges labelled 2. For these blocks, it
remains to consider Vertlces that are incident with edges of matching M. In this case, those are
only edges of M’. By the deﬁnition of M, each vertex v] with ¢ < « is not incident with any edge
of M, and every vertex v] with i > a is 1n(:1dent with one edge of M Therefore, the colour of v

is d(v )+z+1—2k—|—z+lwhenz < a. If i > «, the colour of v! is d(v N+i4+1=2k+i+1.

Therefore, cr(v]) = 2k + i+ 1, 0 <14 < k, satisfying the properties (i ( ) and ( i).
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Now, consider the block B,,.. This block always receives a type-2 labelling. Since |By,| = | B/,

1 < j < g, then, by Proposition 2, vertices v”, with i < a, are incident with ¢ + 1 edges labelled 2;
and vertices v¥, with i > «, are incident Wlth 1 edges labelled 2. Addl‘monally7 vertices in this block
are incident vvlth edges of matching M. When ¢+ 1 is even, vertices v¥, & <14 < k — 1, are incident
with edges of M and UZ is incident with one edge of M”. When g + 1 is odd, vertex v} is incident
With one edge of M’, and v”, a +1 <14 <k, is incident with one edge of M”. Thus, the colour of
P is d (vl )+z+1—2k—|—2—|—lwhenz<a If i > «, the colour of v! is d(vf) +i+1 =2k 44+ 1.
Therefore cx(vf) = 2k + i+ 1, and since vf = vq+1, we have that c (v q+1) =2k+i+1, for
qH € Bpre. ThlS way, properties (i) and (ii) are satisfied.

The block By, also receives a type-2 labelling. Thus, by Proposition 2, vertices v}, with

1 < {%J, are incident with 7 4+ 1 edges labelled 2; and vertices v}, with 7 > {%J, are

2

vertices v}, with ¢ < 3, are incident with ¢ 4+ 1 edges labelled 2; and vertices v], with ¢ > (3, are
incident Wlth 1 edges labelled 2. Additionally, the vertices of this block are also 1n01dent with edges
of matching M, more precisely, with edges of M”. By the definition of M”, each vertex vf with
1 < 3 is not incident with edges of M, and every vertex vj with ¢ > 3 is incident with one edge of
M". Thus, the colour of v§ is d(vf) + i+ 1 =2k +i+ 1 when ¢ < 3. If i > 3, the colour of v{
isd(vy) +i+1=2k+i+1. Thus, cx(v]) =2k +i+ 1. Since there was a relabelling of vertices
in Bsuf7 then v} = vfj:klﬂ Therefore, we have that c;(v qH) =k + 1 when U le By, ¢, satisfying
properties (i) and (ii).

Blocks BY and B?t? have not been labelled with a type-2 labelling. So, if vertices of these
blocks are incident with an edge labelled 2, those edges are from M. This implies that each of these
vertices is incident with at most one edge labelled 2.

incident with i edges labelled 2. Since |Bg,f| = 7, we have that [MJ = |%2]| = B—1. Thus,

In the case of block B, the only vertex incident with an edge of M is ”2—17 which is incident
with an edge of M’; every other vertex in it is not incident with any edge labelled 2. So, ¢ (v)_;) =
d(v)_,) + 1, and every other vertex v?, with i < k — 1, has colour d(v?). Moreover, we know that
the degrees of those vertices are in 1noreas1ng order. Thus7 their colours are also increasing. With
that, the colour of all vertices in this block satisfies (i) and (ii).

Finally, for the block B972, we have that its degrees are in decreasing order. However, the
number of vertices incident with edges of M can change from 0 to o — 1. Yet, we know that
all those edges belong to M”. Let t be the number of edges of M” incident with vertices of
B2, By the definition of M”, these edges are incident with vertices of block B¢t!, following the
canonical ordering and starting at vertex Uo . We conclude that only vertices from vq+2 q+2
have (exactly) one edge incident with it labelled 2. The remaining vertices have no 1nc1dent edge
labelled 2. Therefore, ¢x(v77?) = d(v?™®) +1 when 0 < i < ¢ — 1, and ¢;(077?) = d(v?*?) when
1 >t — 1. Since the degrees of vertices of this block are in decreasing order, their colours are also
in decreasing order, satisfying properties (i) and (ii). Thus, the result follows.

to vy

Case 2. n< 3k +1

In this case, we partition V' (PF¥) into three blocks: B!, B2 and B?. Blocks B! and B? both have
the same size, |B!| = |B3| = %BQl. Block B? has size k or k+1, and its vertices induce a complete
subgraph in P*. If n = k (mod 2), then |B?| = k; otherwise, | B| = k + 1. Note that n — |B?| =0
(mod 2) to allow for B! and B3 to have the same size. Each block B’ is a set of consecutive
vertices, following the canonical ordering. Block B! is composed by vertices vy, . . . ,U|B,|-1- Block
B? is composed by vertices U|B1|s - - - s Up—|p3|- The remaining vertices belong to B3. Denote by vf
the i*" vertex of block B?, with ¢ € {1,3} following the non-decreasing order of its degrees. For



8 Gonzaga and Campos

block B?, denote its it" vertex by sz, with j following the ordering (0,2,4,...,|B?,...,5,3,1).
That is, the first half of the vertices sz are indexed by even numbers in increasing order, while
the second half are indexed by odd numbers in decreasing order. This ensures that the vertex
degrees, when arranged in the order of their indices, form a non-decreasing sequence. Moreover,
by construction, d(v3,) = d(v%xﬂ), with 0 < z < UBT2|J Note that, in B!, vertices are ordered
in the canonical order; in B?, vertices are ordered in the inverse of the canonical order; and, in
B2, vertices do not have a specific ordering related to the canonical ordering, alternating inside the
block. Fig. 7 exemplifies this notation in P3.

B! B? B3

@tﬁ’ 2 2 2 2 3 3

™ UO U2 U3 Ul ™ Ul UO
Vo U1 V2 U3 V4 Vs Ve U7

Figure 7: Graph Pg’ with a block partition.

There are only two graphs for which |B?| = 2. Since k > 1, this only occurs when k = 2,
as |B?| = k or |B?| = k4 1. Besides that, since |B?| is even, n must also be even due to the
construction of B2. Finally, n < 3k + 1 = 7 by the restriction of the case, and n > 2 by the
definition of power of paths. So, the only valid values of n for this case are n = 4 and n = 6.
Therefore, |B?| = 2 only for P? or PZ. Fig. 8 shows a 2-NDEL for both cases. Consider, from this
moment forwards, that |B2| > 3.

B! B? B3 Bl | B? B3

o¥olicfoficRe @ 0-0-0

v2 U3 V4 Us Vo U1 U2 U3

(a) Labelling for PZ2. (b) Labelling for P}.

Figure 8: Graphs with |B?| = 2 endowed with a 2-NDEL; only coloured edges have label 2.

Let a = {%J . Suppose, initially, that there is a 2-NDEL (7, ¢;) for G satisfying the following
properties.

(i) For ’U{ belonging to B%:

dwl)+i+1  ifie{0,1} and |B? =k +1;
cr(vd) = S d(v]) +i if either 2<i < a—1,orie {0,1} and |B2| = k;

dw)+(i+1) ifi>a—1.

(ii) For vf belonging to B! or B3:

dw: ) —1+4+a ifi=|B|—-1=|B%—1;
cr(v]) = d(vg) +1 if |BY — (d(v3_;) — d(UﬁBl\q) —(|B?*| - k) <i<|B-1;

i a—1
d(v]) otherwise.
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We prove, as follows, that ¢ is a proper vertex colouring. Initially, note that vertices in B! and
B? have increasing degrees in relation to their indices inside the block. By construction, the colour

of vertices UﬁBl‘_l and Uing‘_l is greater then the colour of the remaining vertices in B! U B3, since

d(v2_y) > d(v!) +1, for i < |B/| — 1, with j € {1,3}, and the value of « is at least 1. The colours
of the remaining vertices of B! and B? are increasing in relation to their indices by definition. So,
adjacent vertices in B! (in B3) have distinct colours. Moreover, by construction, two vertices in
distinct blocks, one in B! and the other in B3, are not adjacent. We conclude that B! U B3 does
not have adjacent vertices with the same colour.

1 3
|B-1 |B3|—1

B? are in non-decreasing order of their indices, we have d(v?) < d(vjz), with 7 < j, which implies,
d(v?) +i < d(vjz) + j. Thus, we have that c,(v?) = d(v?) +i < d(v2_;) — 1+ « when i < a — 1.
Moreover, d(v2_;)+a—1 < d(v)+(i+1) = ¢z (v?), when i > a—1. So, the colour of vertices ”\131|71

3
|B3|-1

veE B?and u € (B*UB?)\ {U‘IB1|_1,U|333|_1}, since the degree of vertices in B* (B?) is increasing,
we have that d(v) > d(vﬁBl‘_l) = d(vf’Bg‘_l) > d(u)+1. So, cx(v) > d(v) > d(u)+1 > cr(u). Thus,
every pair of adjacent vertices, one in B' U B3 and the other in B2, have distinct colours. Finally,
when |B?| = k, since the colour of vertex v? in B? is d(v})+1i, with i < a—1, or d(v?)+ (i+1), with
i > a — 1, and the degree of the vertices is non-decreasing, we have that the colour of vertices in
B? increases with each vertex. When |B?| = k + 1, the only difference is on vertices vZ and v, that
have colour d(v?)+i+1. Since |B?| = k+1, then |B!| = | B3| < k, as n < 3k. Vertex v3 is adjacent
to every vertex in | BY|U|B?| but to no vertex in | B3|, since there are k vertices between v3 and the
first vertex of B3. Recall that, by construction, d(v3) = d(v?). Vertex v3 is adjacent to every vertex
in B! and, to at least one vertex in B3. Thus, d(v3) > d(v3). Therefore, d(v}) = d(v}) < d(v?) and
cx(V3) < cr(v}) = d(v3) +2 < d(v?) + i = cx(v}), for every 2 < i < |B?| — 1, and we have that the
colour of vertices in B? still increases. We deduce that no pair of adjacent vertices in G has the
same colour in ¢;.

The colour of vertices v and v is d(v2_;) — 1+ . Since the degrees of vertices in

and v is greater than the colour of vertex viz when i < a — 1 and lower when ¢ > o — 1. For

To conclude the proof, we construct (7, ¢;r) to satisfy (i) and (ii). Initially, we label the subgraph
induced by block B? with a modified type-1 labelling. This modified labelling has an additional
edge labelled 2 when |B?| is odd and two additional edges labelled 2 when |B?| is even. Following
this, we select a set of 2« linking edges to receive label 2, in which « of those edges have exactly
one endpoint in U|131\—1 and « haye exactly one endpoint in U\:;B3|—1' The remaining linking edges
receive label 1. If d(v2_;) — d(vlij‘_l) — (|B% — k) > 2, j € {1,3}, we assign label 2 to edges
with one endpoint in U\IB1|—1 |333\—1

decreasing order of its indices, until the colour of v

) and the other in the remaining vertices of B! (of B3) in

1
|Bt—1

other words, we assign label 2 to d(v2_,) — d(v|131|) — 1 edges with both ends in B! and incident

a—1

(in v

(UfBg,‘il) is equal to d(v2_;) — 1+ . In

with U|lBl|71 and the same number of edges with both ends in B? and incident with U|333\71' Finally,
we show that the 2-edge labelling built satisfies properties (i) and (ii) and, therefore, is a 2-NDEL.

Consider a type-1 edge labelling of B2. Recall that o = ngz# . Adjust the labelling as

follows: w(v2_qv2,,) =2 if |B*| =1 (mod 2); m(viv?, ;) = m(v2_jv2,,) = 2if [B} =0 (mod 2);
77(1])531‘711)8) = W(UFBP,'AU%) = 2if |B?| = k+1. These edges are called adjusted and are exemplified
in Fig. 9.
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Figure 9: Block B? of a Pg’ with an adjusted type-1 labelling. Continuous edges have label 2; edges
with reach 2 are adjusted.

To conclude the labelling, it is necessary to assign labels to linking edges, as well as to edges
from E(G[B']) and E(G[B?]). Except by edges listed below, all remaining edges receive label 1.
For j € {1, 3},

J 2 ; .
(a) Ui 1VB2—ar L ST S =1

(b) /U‘ij|_1/U‘|ij|_i7 2<i<tandt= d(vifl) - d(v‘ij|_1) — (1B?| — k);

() ”\131|—1”|232|—a3
3 2
(d) Y p3|-1Y|B2|—a-1-

We finish the proof by showing that ¢, of the constructed labelling satisfies (i) and (ii) as defined
previously. Recall that the colour of a vertex in a 2-NDEL is its degree added to the number of its
incident edges labelled 2. Thus, given v € V(G), we count the number of edges labelled 2 incident
with v.

First, consider the block B2?. This block receives a type-1 labelling with some adjusted edges

labelled 2. By Proposition 2, every vertex v?, with ¢ < L‘BQJ_IJ , is incident with ¢ edges labelled 2;

and with ¢ > LlBZ‘_IJ, is incident with ¢ — 1 edges labelled 2. By definition, o = L'W#J Thus,

2

every vertex vy, with i < «, is incident with ¢ edges labelled 2; and with ¢ > « is incident with
i — 1 edges labelled 2, just by the type-1 labelling. For these vertices, it remains to consider the
adjusted labels and linking edges labelled 2.

Consider the vertex vZ, with i < a — 1. Note that |B%| — a — 1 = o when |B?| is even, and
|B?| —a—1 = a+1 when |B?|is odd. So, |B?|—a—1+1>a—1, for 0 <1 < a. Thus, this vertex
is not incident with linking edges labelled 2. Moreover, this vertex is also not an endpoint of any
adjusted edge, except for vZ and v} when |B?| = k + 1. Therefore, this vertex has colour d(v?) + i
or d(v?) +1i+ 1 when i € {0,1} and |B?| = k + 1. When i = o — 1, this vertex is incident with i
edges labelled 2 by the type-1 edge labelling and to an adjusted edge: v2_;v2 49 When |B?| is even;
or v2_,v2,; when |B?| is odd. Therefore, its colour is d(v?) + i+ 1. When i = «, v? is incident
with i edges labelled 2 by the type-1 labelling and one adjusted edge: v2v? 4 if |B2| is even; or
with a linking edge with endpoint in vf’Bg‘_l if |B?| is odd. Therefore, its colour is d(v?) + i + 1.
When i = a+1, U? is incident with ¢ — 1 edges labelled 2 by the type-1 labelling and one adjusted
edge: v2v2,, if |B?| is even; or v2_jv2, if |B?| is odd. Moreover, v} is also incident with one
linking edge with endpoint in: v‘333|_1 if | B?| is even; or U|lBl\—1 if |B?| is odd. Therefore, its colour
is d(v?) +i+ 1. When i = o + 2, v? is incident with i — 1 edges labelled 2 by the type-1 labelling.
Additionally, vl-g is incident with: an adjusted edge v2_;v2 1o and a linking edge with endpoint in
v|131|_1 if |B?| is even; or two linking edges if |B?| is odd. Therefore, its colour is d(v?) + i + 1.
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When ¢ > a+ 2, this vertex is incident with ¢ — 1 edges labelled 2 by the type-1 labelling, and with
two linking edges v? v, B1| , and v? v| B3|—1° Therefore, its colour is d(v?) + i + 1. We conclude that
cx(v?) = d(v?) +i when i < o — 1, and ¢ (v?) = d(v?) + i+ 1 when i > a — 1, satisfying properties
(1) and (ii).

Except for the edges indicated in (a), (b), (c) and (d), edges incident with vertices in B! and B3

receive label 1. The vertices U\1B’1|—1 and U|333\—1 are incident with « linking edges labelled 2 each,

as mentioned in item (a). Additionally, these vertices are incident with ¢ — 1 edges labelled 2, for
t= d(vg_l)—d(vﬂBll_l)—(]BQI—k), as stated in item (b) and to one adjusted edge when |B?| = k+1.
Therefore, the colour ofv|1Bl|_1 is d(v‘lBl|_1)+a+d(vi_1)—d(v|133‘_1)—1 =d(v?_|)—1+a. Similarly,
the colour of vf’Bgl | is d(v ‘333| DHa+dwi_g)—d |3B3\ ) —1=d(w?_;)— 14 a. The vertex v},
for j € {1,3} and |B’| —t < i < |BJ| — 1, is incident with exactly one edge labelled 2 and endpoint

in U|B]‘71 Thus, for this vertex, ¢ (v] ) = d(v ) + 1. Finally, the remaining vertices of B! U B3 do
not have any edge labelled 2 incident with them and, therefore, have colour d(vi ). We conclude
that the vertices of B! and B3 satisfy properties (i) and (ii), and the result follows. O
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