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(2,1)-total number of complete equipartite graphs

M. M. Omai ∗ C. N. Campos † At́ılio G. Luiz‡

Abstract

We investigate the (2, 1)-total labelling for complete equipartite graphs Kr×n. Motivated by
the conjecture of Havet and Yu, which states that every graph G satisfies λt

2(G) ≤ ∆(G) + 3,
we provide constructive labellings that support this conjecture for almost all cases of Kr×n with
r ≥ 3 and n ≥ 2. The only exception is when r is even and n is odd, for which we establish a
new upper bound of ∆(G) + r + 2.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The vertices and the edges of
G are called elements of G. The degree of a vertex v ∈ V (G) is denoted d(v). We call v a k-vertex
when d(v) = k. The maximum degree of G is denoted by ∆(G).

In the Frequency Channel Assignment Problem [8], one must assign integers, representing fre-
quency channels, to transmitters geographically spread. In order to avoid interference, transmitters
that are very close must be assigned channels at least two units apart, whilst transmitters that
are close but not adjacent must be assigned distinct channels. The main goal is to minimize the
number of distinct channels required. Although this classical problem was introduced in 1980, it
remains relevant today, particularly in the context of modern mobile networks [2].

Motivated by this problem, Griggs and Yeh [9] introduced L(2, 1)-labellings in which adjacent
vertices must receive integers that differ by at least two and vertices at distance two receive distinct
integers. In 2008, Havet and Yu [1] proposed a variant of this problem, known as (2, 1)-total labelling
in which labels are assigned to both vertices and edges.

A k-(2, 1)-total labelling of a simple graph G is a function π : V (G) ∪ E(G) → {0, 1, . . . , k} for
which the following properties hold: |π(uv) − π(u)| ≥ 2 and |π(uv) − π(v)| ≥ 2 for uv ∈ E(G);
π(uv) ̸= π(uw) for uv, uw ∈ E(G); and π(u) ̸= π(v) for uv ∈ E(G). If a labelling π does not satisfy
any of these properties, then we say that there is a conflict in π. The least integer k for which G
admits a k-(2, 1)-total labelling is denoted by λt

2(G) and called (2, 1)-total number.
The problem of determining the (2, 1)-total number of a graph is, in general, computationally

hard. In fact, the problem is NP-hard even when ∆(G) = 3. For non-bipartite k-regular graphs the
complexity remains an open question, with polynomial-time results known only for specific classes,
such as 2-regular graphs. For bipartite graphs G, Havet and Thomassé [3] showed that deciding
whether λt

2(G) = ∆(G)+1 is NP-complete for almost all values of ∆(G), except for some restricted
cases, as in ∆(G) = 3, for which a polynomial-time algorithm is given. Despite this difficulty, the
(2, 1)-total number has been determined for some classes of graphs such as complete graphs [1, 5],
near-ladder graphs [15], generalized Petersen graphs [14], among others [11, 12, 13, 15].
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In their seminal work, Havet and Yu [1] proved that λt
2(G) ≤ 6 holds for graphs G with

∆(G) ≤ 3, also showing that λt
2(K4) = 6. Additionally, the authors proved that, for graphs with

∆(G) ≥ 2, λt
2(G) ≤ 2∆ and proposed the following conjecture for graphs with ∆(G) > 3.

Conjecture 1. (Havet and Yu [1]) Let G be a graph with ∆(G) > 3. Then, λt
2(G) ≤ ∆(G) + 3.

Furthermore, Havet and Yu [1] proved that there exists a constant ∆0 such that for every graph
G with ∆(G) ≥ ∆0, λ

T
2 (G) ≤ ∆(G) + 2 log10∆(G) + 4, which provides support for Conjecture 1.

Motivated by Conjecture 1, we investigate (2, 1)-total labellings on complete equipartite graphs
Kr×n, a class that generalizes complete bipartite graphs by allowing r parts of n vertices each
instead of just two. It is noteworthy that when r ≥ 3, these graphs are regular non-bipartite
graphs for which the complexity remains open, as discussed earlier.

For a complete equipartite graph Kr×n, if r = 1, then λt
2(K1×n) = 0 since E(K1×n) = ∅.

Moreover, if r = 2, K2×n is a complete bipartite graph, for which λt
2(K2×n) = ∆(K2×n)+2 [1]. On

the other hand, if n = 1, Kr×1 is isomorphic to the complete graph Kr for which the (2, 1)-total
number is also known [1, 5]. Therefore, we focus on complete equipartite graphs Kr×n with r ≥ 3
and n ≥ 2, showing that the Conjecture 1 holds for most cases of Kr×n with r ≥ 3 and n ≥ 2. We
also establish a new upper bound of ∆(Kr×n) + r+ 2 for the specific case where r is even and n is
odd.

2 Preliminaries

Let G = Kr×n with r ≥ 3 parts V0, . . . , Vr−1, each of size n ≥ 2, with Vℓ = {uiℓ : 0 ≤ i < n}, 0 ≤
ℓ < r. Define subgraphs Ki = G[{ui0, . . . , uir−1}] , 0 ≤ i < n, which are isomorphic to the complete
graph Kr. Thus, Kr×n contains n disjoint copies of Kr as induced subgraphs. In this work, we
frequently refer to elements that play the same role in each copy of Kr. Therefore, we define two
vertices uiℓ and ujℓ , i ̸= j as corresponding vertices – note that corresponding vertices belong to
different copies of Kr whilst belonging to the same part of Kr×n. Analogously, two edges uiℓu

i
p and

ujsu
j
t ∈ Kr×n are called corresponding edges if {ℓ, p} = {s, t} and i ̸= j. Figure 1 illustrates these

concepts; observe, in Figure 1(a), that u00 and u10 are corresponding vertices and u00u
0
1 and u10u

1
1 are

corresponding edges of K4×3.
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Figure 1: Graph K4×3 with (a) vertex notation, (b) subgraphs K0,K1 and K2 highlighted, and (c)
the subgraphs displayed separately.

Let Bij ⊆ Kr×n be the maximal bipartite graph with bipartition {V (Ki), V (Kj)}, 0 ≤ i < j <
n. By construction, each Bij is a (r−1)-regular graph since there is no edge between corresponding
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vertices since these vertices belong to the same part of Kr×n. Figure 2 shows B01, B02 and B12

for K4×3. Note that E(Kr×n) =
n−1⋃
i=0

[(
n−1⋃

j=i+1
E(Bij)) ∪ E(Ki)], that is, every edge of Kr×n either

belongs to some E(Ki) or to some E(Bij).

u00 u01 u02 u03V (K0)

u10 u11 u12 u13
V (K1)

(a) Graph B01.
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(b) Graphs B01 (left), B02 (center) and B12 (right) marked.

Figure 2: Bipartite subgraphs B01, B02 and B12 highlighted.

We define a canonical decomposition [K,B] of Kr×n as the union of two families K and B of
subgraphs of Kr×n. The family K contains subgraphs Ki, 0 ≤ i < n, and B consists of the (r− 1)-
regular bipartite subgraphs Bij , 0 ≤ i < j < n. Considering the previous examples, for K4×3, K is
shown in Figure 1(b), also in 1(c), and B is shown in Figure 2(b). Let GR be the underlying simple
graph obtained from K ∪ B by contracting all the vertices of Ki into a single vertex vi. Graph
GR is called the representative graph of Kr×n. Observe that each vertex vi ∈ V (GR) represents
a component Ki ⊆ K, and each edge vivj ∈ E(GR) represents a bipartite graph Bij ∈ B. The
representative graph GR of K4,3 is depicted in Figure 3.

K0 K1 K2B01

B02

B12

Figure 3: Representative graph of K4×3.

Since a complete equipartite graph can be decomposed into complete graphs and regular bipar-
tite graphs, it is important to describe (2, 1)-total labellings of complete graphs, which we refer to
as standard labellings. For n ∈ 4, 6, 8, these standard labellings are (n + 2)-(2, 1)-total labellings,
which are intentionally non-optimal, as illustrated in Figure 4.
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(a) 6-(2, 1)-total labelling of K4
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(b) 8-(2, 1)-total labelling of K6
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(c) 10-(2, 1)-total labelling of K8.

Figure 4: Standard labellings for Kn, n ∈ {4, 6, 8}.
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For n even and n ≥ 10, the standard labelling defined in Figure 5(a) is exactly the (n + 2)-
(2, 1)-total labelling given by Havet and Yu [1] and it is illustrated in Figure 5(b).

• For each vertex vi, i ∈ [0, n− 1]:

τ(vi) = i

• For each edge vivj , i, j ∈ [0, n− 1]:

τ(vivj) = (τ(vi) + τ(vj) + 2) mod (n+ 3)
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Figure 5: (a) Definition of the standard labelling for even n ≥ 10; (b) standard labelling of K10.

Now, we consider n odd. For n = 3: τ(v0) = 4, τ(v1) = 2, τ(v2) = 0, τ(v0v1) = 0, τ(v1v2) = 4,
and τ(v2v0) = 2. For n ≥ 5, the standard labelling τ is exactly the (n + 1)-(2, 1)-total labelling
defined by Chia et al. [5]. The vertex labels are: τ(v0) = 0 and τ(vi) = i+ 2 for i > 0. In order to
define the edge labels of Kn, let E

′
i = {v(i+j+1) mod nv(i−j−1) mod n : j ∈ [1, n−3

2 ]} and

Ei =



(E′
0 ∪ {v0vn−2}) \ {v2vn−2}, if i = 0;

E′
1 ∪ {v0v2}, if i = 1;

E′
i, if i ∈ [2, n− 1];

{v(4j−2) mod n v(4j) mod n : j ∈ [1, n−1
2 ]}, if i = n;

({v(4j) mod n v(4j+2) mod n : j ∈ [1, n−1
2 ]} ∪ {v2vn−2}) \ {v0vn−2}, if i = n+ 1.

Finally, for each edge e ∈ E(Kn), let τ(e) be defined as follows:

τ(e) =



3, if e ∈ E0;

2, if e ∈ E1;

i+ 2, if e ∈ Ei, i ∈ [2, n− 1];

0, if e ∈ En;

1, if e ∈ En+1.

Figure 6 illustrates the standard labellings of K5 and K7.

Since complete equipartite graphs admit a canonical decomposition, our approach is to label
each component of the decomposition separately. The complete subgraphs of K receive standard
labellings, whereas the edges of the regular bipartite subgraphs are coloured in accordance with
classical colouring results, applied both to the bipartite graphs individually and to the associated
representative graph.
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(a) 6-(2, 1)-total labelling of K5.
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(b) 8-(2, 1)-total labelling of K7.

Figure 6: Standard labellings of Kn, n ∈ {5, 7}.

A k-total colouring c of a graph G is an assignment of k distinct colours to each vertex and each
edge of G such that no pair of adjacent or incident elements receive the same colour. The total
chromatic number of G, denoted by χ′′(G), is the smallest integer k for which G admits a k-total
colouring. If the colours are assigned just to the edges of G, then c is a k-edge colouring, and the
smallest integer k for which G admits a k-edge colouring is called chromatic index of G, denoted
by χ′(G). Given a colouring, a colour class is the set of elements assigned the same colour. When
restricted to the edges of G, each colour class forms an independent set of edges, also known as a
matching.

Several classical results concerning edge and total colourings are repeatedly used throughout this
work. For bipartite graphs G, König shows that χ′(G) = ∆(G) [4]. For complete graphs, Vizing [6]
establishes that the chromatic index equals n− 1 when n is even and n when n is odd. Regarding
total colourings, Behzad et al.[7] determine that the total chromatic number of a complete graph
is n when n is even, and n+ 1 when n is odd.

3 Main Result

In Theorem 3, we show that λt
2(Kr×n) ≤ ∆(Kr×n) + 3 for the complete equipartite graphs Kr×n

with r ≥ 3 and n ≥ 2, except when r is even and n is odd. In this case, we establish a different
upper bound of ∆(Kr×n) + r + 2. In order to prove this result, we first present Proposition 2.

Proposition 2. Let Kn be a complete graph. If n is odd, then Kn has a (n+2)-(2, 1)-total labelling,
such that the labels 3 and 4 do not occur in any vertex.

Proof. Let Kn be the complete graph with odd n. In order to prove the statement, we construct a
labelling π that is a (n+2)-(2, 1)-total labelling, such that the set of vertex labels is [0, n+1]\{3, 4}.
For n = 3 and n = 5, labelling π is given in Figure 7.

For n ≥ 7, labelling π is constructed based on the standard labelling τ of Kn, which is a (n+1)-
(2, 1)-total labelling. Initially, assign π(x) = τ(x) for all x ∈ V (Kn) ∪ E(Kn). Observe that, by
the definition of τ , π(v) ∈ {0, 3, 4, . . . , n + 1} for all v ∈ V (Kn). In particular, it is known that
π(v1) = 3 and π(v2) = 4. Therefore, to conclude the proof, we redefine the labels of v1 and v2 and,
next, adjust the labels of certain edges to avoid conflicts.

First, consider v1 and its incident edges. By the definition of τ , τ(v1) = 3, τ(v1v3) ∈ {0, 1}, and
τ(v1vn−1) ∈ {0, 1}, with τ(v1v3) ̸= τ(v1vn−1). Also, there does not exist v1vj , 0 ≤ j < n, assigned
label 2. Thus, assign π(v1) = 1, observing that no other vertex has been assigned this label. Now,
we modify the labels of v1v3 and v1vn−1 so as to guarantee the properties of a (2, 1)-total labelling.
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(a) 5-(2, 1)-total labelling π for K3.
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(b) 7-(2, 1)-total labelling π for K5.

Figure 7: Labelling π for K3 and K5; labels 3 and 4 do not appear as vertex labels.

In order to solve the conflicts between edges v1v3, v1vn−1 and vertex v1, we redefine the labels
of v1v3 and v1vn−1. First, assign v1v3 a new label n + 2. Note that this label differs by at least
two from π(v1) = 1 and π(v3) = 5. Now, assign v1vn−1 label 3. By construction, π(vn−1) = n+ 1.
Therefore, since n ≥ 7, we have |(n+ 1)− 3| ≥ 2.

By construction, the only edges that received label 3 in τ belong to E0. Therefore, it suffices to
show that vn−1 is not an endpoint of any edge in E0. By definition, E0 = {(v(j+1) mod nv(−j−1) mod n :

j ∈ [1, n−3
2 ]}∪{v0vn−2})\{v2vn−2}. Note that (j+1) mod n is n−1 only if j = (n−2)+ tn, for an

integer t. Also, (n−3)/2 < n−2 and −2 < 1. On the other hand, note that (n−1) = (−j−1) mod n
only when j = tn for an integer t. Since j ∈ [1, n−3

2 ], n > n−3
2 and 0 < 1, it follows that no such j

exists. Therefore, we conclude that vjvn−1, 0 ≤ j < n does not belong to E0, and the result follows.

Now, we adjust the label of v2. Assign label 2 to v2 since no vertex has been assigned this label
yet. By the definition of τ , τ(v0v2) = 2 and τ(v2vn−2) = 1. Moreover, τ(v2vj) ̸= 3, 0 ≤ j < n, since
τ(v2) = 4. Therefore, we adjust the labels of three edges, v0v2, v0v4 and v2vn−2, so as to guarantee
that π is a (2, 1)-total labelling.

First, assign label n+ 2 to v0v4 and v2vn−2. Label n+ 2 has only been assigned to edge v1v3,
after adjusting the label of vertex v1. Therefore, the set of edges with label n + 2 is v0v4, v2vn−2

and v1v3. Observe that these edges do not have endpoints in common. Moreover, by the definition
of π, we have π(v0) = 0, π(v4) = 6, π(v2) = 2 and π(vn−2) = n. Therefore, the difference between
the label assigned to edges v2vn−2 and v0v4 and the labels assigned to their endpoints is at least 2.

Finally, assign v0v2 label 4. Note that, by construction, the only edges that received label 4 in
τ belong to E2 = {v(j+3) mod nv(1−j) mod n : j ∈ [1, n−3

2 ]}. Therefore, the only edge whose ends are
v0 or v2 is v0v4, which is obtained when j = 1 in v(j+3) mod nv(1−j) mod n. The label of this edge has
just been redefined to n+ 2. Thus, there is no conflict and the result follows.

Figure 8 illustrates K7 endowed with the labelling established in the preceding proposition.
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(a) Standard (2, 1)-total labelling τ for K7.
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(b) 9-(2, 1)-total labelling π for K7.

Figure 8: Labelling π for K7. The labels of the elements in bold were modified.
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Theorem 3. Let Kr×n be a complete equipartite graph with r ≥ 3 and n ≥ 2. Then, λt
2(Kr×n) ≤

∆(Kr×n) + 3 except when n is odd and r is even, in which case λt
2(Kr×n) ≤ ∆(Kr×n) + r + 2.

Proof. Let G = Kr×n be a complete equipartite graph with r ≥ 3 and n ≥ 2 and consider its
canonical decomposition [K,B], recalling that ∆(Kr×n) = n(r − 1). In order to prove our result,
we construct a (2, 1)-total labelling π for Kr×n by labelling K and B separately. We construct four
distinct labellings, each corresponding to one of the cases defined by the parity of r and n.

Case 1. r ≡ 0 (mod 2) and n ≡ 0 (mod 2)

We first label K. Since each Ki ⊆ K is an even complete graph of order r, let τ i be the standard
(r + 2)-(2, 1)-total labelling of Ki, 0 ≤ i < n. Define π as the union of all τ i, 0 ≤ i < n. As the
subgraphs Ki are pairwise disjoint, it follows that π restricted to K preserves the properties of a
(2, 1)-total labelling. Since K is a spanning subgraph of G, every vertex of G is assigned a label.
Moreover, each vertex v ∈ V (G) has π(v) ∈ {0, . . . , r − 1}.

It remains to label the edge set of B. Each Bij ⊆ B is an (r − 1)-regular bipartite graph and,
consequently, admits an (r− 1)-edge colouring. Observe that whenever {i, j} ∩ {k, ℓ} = ∅, Bij and
Bkℓ are disjoint, allowing the use of the same label set on both. By identifying each Bij with an
edge of the representative graph GR, we conclude that χ′(GR) = n− 1 corresponds to the number
of distinct label sets required. Thus, consider an (n − 1)-edge colouring of GR and associate each
colour class with a distinct label set of size r − 1, chosen as an interval of consecutive integers.

In order to avoid conflicts with labels already used in K, we start the label sets of B at r + 3.
Recall that the maximum label of a vertex in K is r − 1 and of an edge is r + 2. Therefore,
this choice guarantees that the difference between the label of an edge in B and the label of its
endpoints is at least two and that adjacent edges from K and B receive distinct labels. Also note
that whenever Bij and Bik share a vertex, their representative edges in GR are adjacent and, thus,
lie in different colour classes, with disjoint label sets. Therefore, adjacent edges in B always receive
distinct labels. We conclude that (n − 1)(r − 1) new labels are used for B, ranging from r + 3 to
(r + 3) + (n− 1)(r − 1)− 1. Therefore, π is a (∆(G) + 3)-(2, 1)-total labelling of G.

Figure 9 illustrates the construction of π for graph K4×4.

Case 2. r ≡ 1 (mod 2) and n ≡ 0 (mod 2)

In this case, the construction of π follows the same steps as in Case 1. Since r is odd, the standard
labelling τ i used on each Ki, 0 ≤ i < n, is an (r + 1)-(2, 1)-total labelling. By construction, label
r + 1 is always assigned to a vertex of Ki. The labelling of B proceeds as in Case 1 starting from
r+3, which ensures the properties of a (2, 1)-total labelling. Therefore, the edges of B receive new
labels from r + 3 to n(r − 1) + 3, and we conclude that π is a (∆(Kr×n) + 3)-(2, 1)-total labelling.

Figure 10 illustrates the construction of π for graph K3×4.

Case 3. r ≡ 1 (mod 2) and n ≡ 1 (mod 2)

First, we label K. Let τ i be the (r + 2)-(2, 1)-total labelling of Ki given by Proposition 2. For
each element x ∈ V (Ki) ∪ E(Ki), if τ i(x) ∈ {4, 5, . . . , r + 2} define π(x) = τ i(x) + i(r − 1), refer
to these as variable labels; otherwise, if τ i(x) ∈ {0, 1, 2, 3}, let π(x) = τ i(x), these are called fixed
labels.

Observe that π is a total labelling of K since the shift of the original labels of some elements
yields new values still not used. Also, by construction, there exists an edge x in K such that
τn−1(x) = r + 2. Therefore, π uses labels ranging from 0 to r + 2 + (n− 1)(r − 1) = n(r − 1) + 3.

Now, we label the edges of B. Observe that all fixed labels appear in every Ki. Denote Li the
set of variable labels that occur in Ki. Note that Li ∩ Lj = ∅ for all i ̸= j since the sets Li are
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(d) Labelling π restricted to E(B). Edges of B01 and B23 receive the labels 7, 8, 9; Edges of B02 and B13

receive the labels 10, 11, 12; and of B03 and B12 receive the labels 13, 14, 15.

Figure 9: Illustration of labelling π for graph K4×4.

obtained by distinct shifts of size r − 1. Then, the values in set Li are assigned to selected edges
of B, 0 ≤ i ≤ n − 1, following a total colouring of GR as a guide. In Case 1, an edge colouring of
GR was sufficient as a guide. However, in this case, since certain labels from π are reused in the
edges of some Bij , we needed to analyze both the adjacencies and the incidences between elements.
Therefore, the total colouring turned out to be a more suitable framework.

Let φ be an n-total colouring of GR. Let S be a colour class of φ and vk ∈ S. Since GR is
isomorphic to a complete graph, the other elements of S are edges. Then, associate Lk to each Bij

such that vivj ∈ S. Considering |Li| = r− 1, this assignment is performed as in the previous cases,
using an (r − 1)-edge colouring of the bipartite graphs as guide.

Recall that each Bij is incident with both Ki and Kj . By construction, the label set used in
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(d) Labelling π restricted to E(B). Edges of B01 and B23 receive the labels 6, 7; Edges of B02 and B13

receive the labels 8, 9; and of B03 and B12 receive the labels 10, 11.

Figure 10: Illustration of labelling π for graph K3×4.

Bij is disjoint from those assigned to Ki and Kj . Therefore, there does not exist conflict between
the label of e ∈ E(Bij) and the label of the elements of Ki or Kj .

Considering the fixed labels that occurs only in K, there is no conflict with the labels assigned
to the edges of B since the smallest label assigned to an edge of B is 4 and, by construction, label
3 is not used for any vertex. Thus, we conclude that the difference between the smallest label
assigned to an edge in B and any fixed label assigned to a vertex in K is at least 2. Now, for the
variable label sets, recall that by construction each pair Ki and Kj with i ̸= j has variable label
sets Li and Lj that differ by at least r − 1. Since r ≥ 3, it follows that r − 1 ≥ 2 and, therefore,
the label of every edge of B differs by at least 2 from the other labels that occur in K. Therefore,
we conclude that π is a (2, 1)-total labelling, and the result follows.

Figure 11 illustrates the construction of π for graph K5×3.

Case 4. r ≡ 0 (mod 2) and n ≡ 1 (mod 2).

In this case, the construction of π follows the same steps as in Case 1. Since r is even, the
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(d) Labelling π restricted to E(B). Edges of B01 receive the labels 12, 13, 14, 15; Edges of B02 receive the
labels 8, 9, 10, 11; and of B12 receive the labels 4, 5, 6, 7.

Figure 11: Illustration of labelling π for graph K5,3.

standard labelling τ i used on each Ki, 0 ≤ i < n, is an (r+2)-(2, 1)-total labelling. By construction,
r+1 and r+2 are not assigned to any vertex. The labelling of B proceeds as in Case 1 starting from
r+3, which ensures the properties of (2, 1)-total labelling. Moreover, as n is odd, the representative
graph GR has odd order and χ′(GR) = n. Consequently, the edges of B receive new labels from
r + 3 to n(r − 1) + r + 2. Therefore, π is a (∆(Kr×n) + r + 2)-(2, 1)-total labelling.

Figure 12 illustrates the construction of π for graph K4×3.
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(b) Labelling π restricted to K
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(d) Labelling π restricted to E(B). Edges of B01 receive the labels 7, 8, 9; Edges of B02 receive the labels
10, 11, 12; and of B12 receive the labels 13, 14, 15.

Figure 12: Illustration of labelling π for graph K4×3.

4 Concluding Remarks

In this work, we studied (2, 1)-total labellings of complete equipartite graphs Kr×n. Based on their
canonical decomposition into complete and bipartite subgraphs, we presented (2, 1)-total labellings
for these graphs that provide upper bounds for the (2, 1)-total number of this class. Our main
contribution was to show that Havet and Yu’s conjecture holds for almost all complete equipartite
graphs with r ≥ 3 and n ≥ 2, with the exception of the case where r is even and n is odd, for
which we established a different upper bound of ∆(G) + r + 2. Although upper bounds have been
theoretically established, our experimental results – obtained via an ILP implementation – did not
reveal any instance requiring a span grater than ∆(Kr×n) + 2. Since the equipartite complete
graphs are regular graphs, it is known that λt

2(Kr×n) ≥ ∆(Kr×n)+ 2 [1]. These observations, both
empirical and theoretical, provide strong motivation for the following conjecture.

Conjecture 4. For every complete equipartite graph Kr×n with r ≥ 3 and n ≥ 2, λt
2(Kr×n) =

∆(Kr×n) + 2.
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