
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Mechanism for inconsistency

correction in the DBPedia

Live
Túlio Brandão Soares Martins Julio Cesar dos Reis

Technical Report - IC-19-08 - Relatório Técnico

September - 2019 - Setembro

The contents of this report are the sole responsibility of the authors.

O conteúdo deste relatório é de única responsabilidade dos autores.

Mechanism for inconsistency correction in the
DBPedia Live

Túlio Brandão Soares Martins
Julio Cesar dos Reis

Institute of Computing, University of Campinas, São Paulo, Brazil

2019

Abstract

DBpedia is a huge resource available in the Web of Data. It is relevant
to update this dataset based on new information appearing in the Wikipedia.
However, this operation can provide inconsistencies in the dataset for chap-
ters in different languages. Although existing literature has defined tools to
update DBpedia, there is a lack of studies related to understand and detect
multi-chapter inconsistencies in its evolution. In this work, we define a set of
inconsistency classes related to triple changes in the DBpedia to inform a soft-
ware tool suited to detect instances of these classes when new data is updated
for secondary languages, removed or inserted in the dataset. We conduct an
experimental evaluation to assess the types of inconsistencies in several versions
of the dataset. We demonstrate that the identified inconsistencies appear in
the evolution of DBpedia and propose a solution to correct these inconsisten-
cies. Our evaluation assessing the proposed technique reveled its usefulness.
Our results show that the proposed classes of inconsistencies combined with
the defined solution can turn the DBpedia more reliable overtime.

1 Introduction

The continuous growth of the Web raises several questions on how to handle big
chunks of information that are somewhat related. Questions of which the web of
Data seeks to answer by finding ways to link new information added constantly. In
an effort to centralize and structure data, the DBpedia project [1] was proposed to
take information from Wikipedia and turn it machine readable.

The DBpedia has become a relevant tool that uses the massive amounts of data
from Wikipedia, and can be very useful for other parties. Currently, projects use

1

2 Martins & Dos Reis

DBpedia to describe and relate objects, such as the DBpedia Mobile, that describes
locations and relates to other interesting information which can be very useful for
travelers and people in general learning about places and cultures.

The content of Wikipedia naturally grows overtime. Simultaneously, DBpedia
must keep reliable and up-to-date in multiple chapters described in different lan-
guages. Currently, DBpedia is updated in two ways: 1) through large dumps of data
from Wikipedia which are altered periodically - these reformulate the database in a
large scale, but are infrequent; 2) through DBpedia Live [8], as a software tool to
update DBpedia RDF triples in real time. It relies on an Extraction Framework that
collects content directly from Wikipedia in the moment a wiki page is altered.

Due to the key relevance of DBpedia, its RDF triple facts must provide reliable
information in distinct cross-language datasets. However, in the update procedure,
inconsistencies can be generated in the extraction process in other languages. For
instance, some triples that exist in a dataset are not consistent with the ontology in
place. In addition, many resources in other languages are too broadly defined and
are not properly checked for inconsistency. These inconsistencies can make DBpedia
unreliable for third parties to use.

The maintenance of the consistency in DBpedia plays a key role for sources posing
queries to it. The results of query processing can be affected by inconsistent triples.
Also cross-lingual information retrieval requires that information described in distinct
language is formally consistent to avoid inadequate results.

The research on how to make DBpedia a reliable knowledge base is extensive and
continuous. The current literature has approached inconsistency classification [5] [3]
[11] and data co-evolution [9] [7] [4]. Some investigations have approached language
specific inconsistencies [3]. However, to the best of our knowledge, it lacks studies
applied to the live extraction in a way to filter inconsistencies in real time updates
for distinct DBpedia language datasets.

In this investigation, we formally define a set of inconsistency classes that can
occur during the DBpedia Live extraction. Based on implemented procedures for
the inconsistency identification, we carry out an analysis to measure the frequency
in which they appear on the DBpedia of various languages other than English. We
argue why these inconsistencies are more frequent in other languages and demonstrate
the possibility of filtering them during the execution of the DBpedia Live extraction.
As a second contribution, we devise and implement a mechanism for inconsistency
correction in DBPedia Live. Our conducted evaluation of inconsistency correction
showed that the number of inconsistencies decreased via our mechanism and the
extraction process was improved.

This article is organized as follows: Section 2 presents the background work. Sec-
tion 3 defines the types of inconsistencies and conduct analyses in real update of DB-
Pedia datasets. Section 4 proposes a solution to correct the inconsistencies and avoid
their recurrence in addition to present the evaluation results. Afterwards, Section 5

Mechanism for inconsistency correction in the DBPedia Live 3

discusses our obtained findings. Finally, Section 6 presents the final considerations.

2 Background

Whereas subsection 2.1 presents studies concerned to the consistency of RDF triples
and in DBPedia triples, subsection 2.2 describes existing work addressing the evolu-
tion and update of RDF graphs.

2.1 Consistency of RDF data triples

Bizer & Heath [2] described the concepts of Linked Data and its principles. They
situated the relevance of Linked Data and indicated DBPedia as a key example high-
lighting the important of keeping such data consistent overtime. Pern et al. [11]
defined inconsistencies in RDF data and indicated ways of detecting such incon-
sistencies utilizing queries. Our investigation takes a similar approach in defining
inconsistencies in RDF and extend it to other types of inconsistencies. Our approach
employs a similar technique utilizing queries for the detection, but applied specifically
to the DBpedia Live [8].

Cabrio et al. [3] proposed the classification of inconsistencies regarding different
language databases. The authors defined the different types of the named “language
inconsistencies” and mapped ways of correcting such inconsistencies. Our work uses
that idea to find other types of inconsistencies in datasets described in different lan-
guage with multiple references of one resource to others.

Topper et al. [5] defined inconsistencies and proposed to increment the current
DBpedia ontology with the goal of improving the detection of inconsistencies. Their
method consisted of a thorough analysis of each property’s domain and range by
applying specific modifications for each property. We utilized that idea in the propo-
sition of updating specific definitions of the ontology, but most of the correction
techniques proposed in our work requires small alteration of the DBpedia ontology
structure. We utilized a similar method of detection through each individual property
implemented in an extraction tool of the DBpedia Live framework.

Paulheim & Gangemi [6] proposed ontology enhancement with the addition of an-
other ontology, DOLCE, to improve consistency in the DBpedia. On the contrary, our
proposition defines a solution requiring minimal alterations to the current ontology
to achieve a more consistent dataset overtime.

2.2 RDF graph updates

Literature has approached the problem of updating RDF graphs, addressing mostly
the precautions that should be made, how they must obey ontology axioms and

4 Martins & Dos Reis

possible inconsistencies that can be caused through these updates. Endris et al. [7]
explored how the local duplication of data can eventually cause inconsistencies in
RDF graphs such as DBpedia during it’s updates.

In addition, Konstandinidis et al. [4] approached the evolution of ontologies based
on new information to maintain consistent RDF datasets. Utilizing specific algorithms
to alter the rules of ontology for properties (such as domain and range), the authors
proposed an advanced improvement in consistency. In our work, instead of redefining
the properties we looked to better define the resources considering we were dealing
specifically with DBpedia.

In relation to the co-evolution of RDF data, Faisal & Endris et al. [9] addressed
the treatment of consistency issues given modifications such as updating and removal
affecting a triple subject. This approach is relevant because it treats the evolution of
a triple database.

Auer & Herre et al. [10] explored the evolution of RDF datasets and proposed
an ontology evolution based on atomic changes including additions or deletions of
information. By utilizing change operations and generating metainformation regard-
ing changes in the ontology, their work aimed to better treat the consistency of RDF
databases. Our investigation handles the consistency of triple adding specifically
applying it to the DBpedia Extraction Manager for the DBpedia Live.

In an overall, existing work in literature show that there is considerable study
to the detection of inconsistencies, their correction through ontology changes or ad-
dition of information to the RDF graphs. However, to the best of our knowledge,
implemented approaches require several ontology alterations, which is unfeasible for
a RDF dataset as large as DBpedia. Also, it is not sufficient to apply them directly
to the DBpedia Live and it’s extraction manager, which is performed in our work.

The platform DBpedia Live [8] aims to extract triples without requiring one single
dump. As long as the Live platform is running, every Wikipedia page update is queued
to later on be extracted into triples, which are inserted in the DBpedia dataset. This
investigation worked with the live mirror1, a local copy of the DBpedia Live, that is
open source that simulates the extraction and update of DBpedia.

Figure 1 presents the workflow the extraction process in the DBpedia Live. Every
update in a Wikipedia page is serialized in Wikimedia’s OAI-PMH, which is a protocol
for transmission of data and meta data in repositories. The DBpedia Live has access
to a channel with this protocol and thus receives every serialized page update. The
updated pages go into a queue to the API Source and are ready to be parsed. The
parser separates the information and organizes it accordingly. It compares every
update to the original page and verifies which information must be added. It then
transfers each new information to a different extractor, e.g., if a new geographic
location is added to a page, this added information is sent to the geographic location

1https://github.com/dbpedia/dbpedia-live-mirror

Mechanism for inconsistency correction in the DBPedia Live 5

extractor.
Our work focuses on the mapping extractor, which is the extractor utilized when

the added information of resource makes a reference to another resource, and both
are extracted to their equivalents in DBpedia. The extractor converts the information
into RDF triples. The output of all of the extractors (the triples) is then united and
arranged, and then serialized in the DBpedia dataset.

Figure 1: Workflow of the DBpedia Live Extraction.

Our investigation addresses inconsistency detection and classification in the con-
text of the DBpedia Live extraction manager. The goal is to automatically handle
and correct inconsistencies in the execution of the framework on-the-fly. Our contri-
bution treats inconsistencies in DBpedia overtime and helps making this RDF dataset
further reliable.

3 Identifying inconsistencies in DBPedia updates

Subsection 3.1 provides formal definitions related to the addressed types of inconsis-
tencies. Subsection 3.2 presents our empirical study in analyzing the classification of
the defined inconsistencies in the DBPedia update.

3.1 Formal definitions

RDF Triple - A RDF triple t = (s, p, o) consists of three elements in which s is the
subject of the triple, p is the predicate of the relation between s and o defined as a
property; and o is known as the object of the triple. We define a RDF dataset as a
set of triples, such that, R = {t1, t2, ..., tn}.

Ontology - Ontology refers to a collection of concepts and axioms that the triples
must obey. For every s subject, there are classes which they belong to. Given those
classes, the p properties establish which type of relationship s can relate to the objects
o. An ontology contains the vocabulary of all the classes and properties available for

6 Martins & Dos Reis

the relations. if the subject s belongs to a certain kind of class, then it can only have
certain kinds of relationships (defined by the relation properties) with objects. These
are also limited by their classes.

Range - For every property p the ontology defines a set of classes range(p). The
set range(p) is a set of classes that the property p is limited to have for an object o
- defined by the ontology. Given a triple (s, p, o) the ontology requires that o is of
the same class of at least one of the classes defined in range(p) for the triple to be
consistent.

Domain - For every property p the ontology defines a set of domain(p) classes.
The subjects s of every triple (s, p, o) must be of one of the classes defined in
domain(p) for the triple to be consistent.

Inconsistency - We characterize an inconsistency in a triplestore as a triple
that contains conflicting information with the underlying ontology used to define the
classes in which triples must respect. We define two types of inconsistencies organizing
the inconsistency classes in two main groups: range violation and domain violation.

• Range violation Inconsistency - A triple is deemed inconsistent in its range
if, given a triple t = (s, p, o), o for the given p is such that o 6∈ range(p), such
that range(p) the values accepted by p for a relation. Therefore, the triple is
range inconsistent when the value of the triple is not part of the range of the
predicate.

Example: Consider the following triple (Lincoln, dbo:birthPlace, University
of Alabama). This RDF triple indicates that the birth place of Lincoln is the
University of Alabama. However, the property “dbo:birthPlace” has a defined
range that contains only the ontology class “dbo:Place”. Therefore, for this
property, the object must be of the type “Place”, which is not the case. The
resource “University of Alabama” is of the type ”dbo:University” and none of
it’s super classes are subclasses of “dbo:Place”, turning this triple inconsistent
with the ontology.

• Domain violation Inconsistency - A triple is deemed inconsistent in its
domain if, given (s, p, o), s for the given p is such that o 6∈ domain(p), such
that domain(p) defines the required subjects for the property p according to
the underlying ontology. In this sense, the triple is domain inconsistent when
the subject s is not part of the possible values that the predicate allows in its
ontology.

Example: Given the triple (Spock, dbo:birthPlace, California). The property
“dbo:birthPlace”contains as domain only the type “dbo:Person”. Since the re-
source ”Spock” is of the type ”dbo:FictionalCharacter”, which is not the type
required of the property’s domain set, the given triple is considered inconsistent.

Mechanism for inconsistency correction in the DBPedia Live 7

3.2 Analysis of inconsistencies in the DBpedia update

Based on the defined inconsistency classes, this analysis aimed to measure to which
extent the extracted triples in the DBpedia Live were inconsistent as inserted in the
DBpedia dataset of non-english languages.

The dataset analyzed was the spanish RDF triple dump of ”20190401” that cor-
responds to april first’s dump. We analyzed the first 40000 triples of that dump. We
utilized the DBpedia Extraction Framework, which is the same utilized in the DBpedia
Live extraction, openly available2. We also utilized SPARQL queries via SPARQL-
Wrapper in python to consult the DBpedia full database on information about the
resources and properties in the RDF triple dump analyzed.

For detecting range inconsistency, the procedure was as follows: given a triple
(s, p, o), we first consult the range definition of the property p. The property in the
Spanish dataset only makes reference to its English equivalent, as the Figure 2 shows.
In this sense, we consulted their equivalent in the English DBpedia to gather the
range sets of the properties. Afterwards, we consult the classes of the object o in the
Spanish DBpedia. If none of the classes of o was contained in the set defined in range,
then the triple is inconsistent.

Figure 2: Property definitions of range and domain for the English DBpedia.

The same procedure was applied to domain inconsistencies, with the difference
that we consult the property’s domain instead of range. In this procedure, the type
of the subject s is analyzed instead of the object o. This process is presented in the
Algorithm 1.

2https://github.com/dbpedia/extraction-framework

8 Martins & Dos Reis

Algorithm 1: Inconsistency Detection algorithm in DBpedia live extraction.

Require: s, o, p
1: range(p)← queryPropertyInEnglsihDBpedia(p, range)
2: if range(p) 6⊂ types(o) then
3: (s, p, o) is range inconsistent
4: end if
5: domain(p)← queryPropertyInEnglsihDBpedia(p, domain)
6: if domain(p) 6⊂ types(s) then
7: (s, p, o) is domain inconsistent
8: end if

The inconsistency detection algorithm was applied after the first extraction in
the ”mapping based extractor”. Therefore, the detection was applied as soon as the
triples were formed by the extractor. We then detected for each triple whether it was
inconsistent in range, domain or both. The obtained results were organized, separated
by each property present in the dataset. We analyzed the frequency in which each
property p present in the dataset was consistent and the volume of how many triples
were inconsistent overall.

Figure 3 presents the results of range inconsistency, whereas Figure 4 shows the
results for the domain class inconsistency. Both figures represent each property de-
tected as a dot mapped in the x axis in the amount of inconsistent triples; and in the
y axis, the percentage of inconsistent triples for that property.

Figure 3: Analysis of property’s range inconsistencies

Mechanism for inconsistency correction in the DBPedia Live 9

Figure 4: Analysis of property’s domain inconsistencies.

Figure 3 and Figure 4 reveal that from all the properties present in the dataset,
many of them contain a very high rate of inconsistency. The whole dataset contains
33,58% of triples range inconsistent and 13,38% of domain inconsistent.

In an overall, we observe that most of the detected inconsistencies came from
properties with a very high rate of inconsistency. Most of the problems with ex-
tractions appear with only a few properties with range and domain definitions not
consistent with the property’s true lexical meaning or a not good enough mapping of
the Wikipedia information into properties.

One glaring example is the property ”dbo:class” which has a 100% rate of domain
inconsistency. The domain set defined for this property is ”dbo:meansOfTransportation”,
but the property is repeatedly used to refer to biological classes. The triples and the
mappings make complete sense, but the ontological definition doesn’t.

Another example of a different mistake causing inconsistency is the property
”dbo:capital” with 100% range inconsistency. The range set is correctly defined as
”dbo:city”, but none of the object resources were of that type. This highlights an-
other problem with DBpedia in secondary languages: not good enough definition of
the resources types.

10 Martins & Dos Reis

4 Solving the inconsistencies in DBPedia updates

We present our proposed mechanism for inconsistency correction in DBPedia Live
(Subsection 4.1) followed by the evaluation conducted to assess the rate of inconsis-
tencies appearing when applying our mechanisms (Subsection 4.2).

4.1 Mechanism for inconsistency correction in DBPedia Live

Our analysis confirmed that the key problems detected in the Spanish DBpedia refer
to two aspects: 1) resources which were not properly defined because many of them
did not have an specific enough class attribution for the RDF triples to be consistent;
and 2) the detection of direct consistency was not possible given that the set and
domain definitions for the properties were only present in the English database.

We proposed an algorithm to automate the correction process in the insertion
of triple in the extractor’s workflow. The algorithm works as a second extraction
method operating in the resulting triples from the first extraction. The result is then
added with the others as the illustrated in Figure 5.

Figure 5: Workflow of the Extraction with our algorithm taking part of the process.

Figure 5 presents that the triples come from the previous extractors and the query
functions in our algorithm explores information from the DBpedia dump (both the
English version and the language under analysis).

The Algorithm 2 presents the implemented procedure for inconsistency detection
and correction. The entries of the algorithm are: the triple (containing the subject
s, the property p and the object o); α as a threshold of the ratio of inconsistency for
a property; β the number of triples that confirms a resource’s class/type; γ as a min-
imum of triples to consider a property relevant for proposing ontological alteration.

Our first approach was to get the resources the most fitting definition from the
most updated DBpedia. Therefore, for each resource, we found the equivalent resource
on the English DBpedia (if there was one). If the type of the resource was expected
(lines 2 and 10 of algorithm 2), then the algorithm transfers that definition to the
Spanish DBpedia. In this sense, the algorithm adds the triple “(s, rdf:type, domain)”

Mechanism for inconsistency correction in the DBPedia Live 11

or “(o, rdf:type, range)” (depending on which resource correction), and then, the
triple analyzed would be consistent. If the resource was of some other disjoint type,
with the one analyzed, we would consider the triple to be inconsistent.

In the case the algorithm cannot find an equivalent resource, or the equivalent
resource did not have any relevant types, it looks into other triples that had referenced
the resource in question (lines 4 and 12 in the Algorithm 2). It must find enough
triples that assumed the resource was of the type required for the domain/range set.
If it does, it confirms that the resource is of that type and adds the triple ”(s, rdf:type,
domain/range)”, maintaining its consistency.

The number of triples that confirms a resource of a certain type must be studied
because a too small number and we could risk adding inconsistent types to resources
because of random human mistakes. If a high number is considered, then we would
not resolve enough systematic inconsistencies with the properties. We call the number
of triples necessary to confirm a resource of a given type as β. For our application
evaluation, the best value empirically found while still maintaining consistency was
β = 3.

At this point, considering we analyzed all possibilities to correct the triple, by
properly defining the resources types, the only analysis left was of poorly defined
ontology. If a given triple at this point is still considered inconsistent, and the property
has a very high rate of inconsistency in an overall, the algorithm raises a flag that
the property should be properly looked at and possibly redefined as almost none of
the triples containing it are consistent (lines 6 and 14 in the Algorithm 2).

One example of the application of this flag would be to the earlier approached
property definition of ”dbo:class”, which defined its domain as of the type
”dbo:meansOfTransportation”. As every triple containing this property (in the ana-
lyzed dataset) would be considered inconsistent, the algorithm must notice this and
raise a flag proposing an alteration to the property’s definition in the ontology.

We declared a γ variable in the algorithm to have a standard minimum number
of triples before declaring a change in definition of ontology. This variable indicates
how many triples are necessary for the algorithm to have previously analyzed before
deciding it can declare an ontology change. In our experiments, the obtained value
of γ was 15.

As for the definition of a ”very high rate”, it has to be made empirically. On our
first analysis, we could observe that the considered poorly defined properties had a
rate of 100% inconsistency either in range or domain. Considering the corrections
provided and that there is a natural number of inconsistencies in a very large sample
size of triples, we assumed safe to consider the “very high rate” as being higher than
90%. In the algorithm, we refer to it as the cutting rate of ontology flag and named it
α. Therefore, if a triple is considered inconsistent of some kind, and in that kind, the
property has an inconsistency rate higher than α, then the flag is lifted for a human
to check.

12 Martins & Dos Reis

Algorithm 2: Language Extractor algorithm for non-english extraction.

Require: s, o, p, α, β, γ
{Range Inconsistency detection}

1: if range(p) 6⊂ types(o) then
2: if ∃(o, rdfs : sameAs, range(p)) then
3: return← add triple (o, rdf : type, range(p))
4: else if N > β| N is number of (x, y, o)|range(y) = range(p) then
5: return← add triple (o, rdf : type, range(p))
6: else if inconsistency rate(p) > α & number of triples with p > γ then
7: raise flag for ontology update for p
8: end if
9: end if
{Domain Inconsistency detection}

10: if domain(p) 6⊂ types(s) then
11: if ∃(s, rdfs : sameAs, domain(p)) then
12: return← add triple (s, rdf : type, domain(p))
13: else if N > β| N is number of (s, y, x)|domain(y) = domain(p) then
14: return← add triple (s, rdf : type, domain(p))
15: else if inconsistency rate(p) > α & number of triples with p > γ then
16: raise flag for ontology update for p
17: end if
18: end if

4.2 Evaluation of inconsistency correction in DBPedia

Our second analysis applies the same consistency check previously defined to the
results of the same dataset after it has been treated by our algorithm. We explored the
same datasets as in the first analysis. The objective is to understand how inconsistent
the resulting dataset remains and compare it to the one generated without the solution
algorithm.

Table 1 presents the results of our evaluation.
Our second analysis shows that the final triple set represented considerable im-

provement. Each of the types of inconsistencies detected before has considerably
decreased. Range inconsistency, from 33,58% to 17,35%, showed a 50,62% reduction
of inconsistencies. Domain inconsistencies dropped from 13,38% to 7,62%, with a
reduction of 56,85%.

We tackled the most inconsistent properties with each of the two steps of our al-
gorithm. If we look at the inconsistency rate for each property, we observe a decrease
of high rate of inconsistency properties in Figure 6 and Figure 7. Although a per-
centage of inconsistencies remain, the solution showed to be useful to make DBpedia
significantly more consistent.

Mechanism for inconsistency correction in the DBPedia Live 13

Original DBpedia Live Extraction
Type of inconsistency Quantity of triples Inconsistency Rate
Range Inconsistency 13434 33.58%

Domain Inconsistency 5355 13.38%

Extraction With our proposed Algorithm
Type of inconsistency Quantity of triples Inconsistency Rate
Range Inconsistency 6941 17.35%

Domain Inconsistency 3046 7.62%

Table 1: Results of the datasets with 40000 triples.

Figure 6: Property’s range inconsistency rate and number of inconsistent triples after
applying the algorithm.

The properties that mostly contributed to the previous dataset’s inconsistencies
were handled. The percentage of the most of the properties dropped. Even though
some still have a high percentage rate of inconsistency per property, they are less
expressive in volume.

.

14 Martins & Dos Reis

Figure 7: Property’s domain inconsistency rate and number of inconsistent triples
after applying the algorithm.

5 Discussion

This work showed results of improving consistency in the evolution of multi-chapters
of the DBpedia. The proposal is to help making all DBPedia language chapters more
trustworthy.

The two types of addressed inconsistencies are the two most present in the DBpe-
dia. In an overall, there are other inconsistency definitions such as class disjointedness,
language, etc. However, our exploratory analysis showed that they represented a very
small percentage of all inconsistencies.

Some inconsistencies still remain open given the difficulties involved in their de-
tection. Most of the solution relies on researching a resource in the English DBpedia.
When the foreign language version of that resource does not have a mention to it’s
English equivalent, the solution cannot track the properties, limiting the algorithm’s
effectiveness

Based on the results obtained in our experiments, we indicate that DBpedia in
other languages different than English is still very inconsistent. The idea of incon-
sistency is not used effectively and allows any triple to be inserted. Our findings
signalized that for the DBpedia to be usable in every language, it requires further
attention to the resource types and tools to turn DBpedia overall more inclusive in

Mechanism for inconsistency correction in the DBPedia Live 15

it’s consistency.
We offered a solution to keep other language DBpedia datasets as consistent as

the English one, by applying their same methods of inconsistency checking. The
proposed method was effective by reducing on average 50% of all the inconsistencies
of a given dataset. Most importantly, the solution requires minimum human work
and can be easily scalable.

The human work needed is periodic and simple. The algorithm indicates prop-
erties requiring attention to update their definition. Naturally, as more triples go
through the extractor, the work is reduced to a minimum, where the tool becomes
nearly fully automated.

In addition, the solution investigated can be applied to a larger number of RDF
datasets in addition to the DBpedia, such as Wikidata. As the tool identifies and
proposes a solution for any RDF dataset that has a defined ontology and a well
established amount of data present. It only needs to be applied to an extractor.
There are no specific limitations to the tool that are specific to DBpedia.

The tool also, if utilized in the English version of DBpedia could improve their
consistency ratio. Although the core of the work was based on the difference between
the secondary languages and the main DBpedia, our algorithm of detecting resources’
types through other triples could be used on the English version.

In future work, we plan to explore the correction of other types of inconsistencies,
such as, inconsistencies caused by update of previous data and resources unlinked
to their other language counterparts - that can be applied to the extractor on every
language (including english).

6 Conclusion

This work showed that DBpedia in languages other than English is not treated with
the same attention, leading to an inconsistent RDF dataset. It is important that
DBpedia remains consistent over time so it can be effectively used. Its use in other
languages can only be enforced if such dataset is consistent. This work offered a
solution to decrease the number of inconsistencies. Our evaluation showed the effec-
tiveness in greatly reducing the inconsistencies. Future work aims to address other
types of inconsistencies using our solution as a basis.

Acknowledgements

This work was financially supported by the São Paulo Research Foundation (FAPESP)
(grants #2017/02325-5 and #2018/06444-1)3.

3The opinions expressed in here are not necessarily shared by the financial support agency.

16 Martins & Dos Reis

References

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In Karl
Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, pages 722–
735, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[2] Tim Berners-Lee Christian Bizer, Tom Heath. Linked data-the story so far.
International Journal on Semantic Web and Information Systems, 5:1–22, 2009.

[3] Fabien Gandon Elena Cabrio, Serena Villata. Classifying inconsistencies in db-
pedia language specific chapters. 9th International Conference on Language Re-
sources and Evaluation, pages 1443–1450, 2014.

[4] Grigoris Antoniou-Vassilis Christophides George Konstantinidis, Giorgos Flouris.
A formal approach for rdf/s ontology evolution. 18th European Conference on
Artificial Intelligence (ECAI 2008), pages 70–74, 2008.

[5] Harald Sack Gerald Topper, Magnus Knuth. Dbpedia ontology enrichment for
inconsistency detection. In Proceedings of the 8th International Conference on
Semantic Systems (I-SEMANTICS’ 12), pages 33–40. I-SEMANTICS, 2012.

[6] Aldo Gangemi Heiko Paulheim. Serving dbpedia with dolce - more than just
adding a cherry on top. 14th International Semantic Web Conference (ISWC
2015), pages 180–196, 2015.

[7] Fabrizio Orlandi Sören Auer Simon Scerri Kemele M. Endris, Sidra Faisal.
Interest-based rdf update propagation. 14th International Semantic Web Con-
ference (ISWC 2015), pages 513–529, 2015.

[8] Jens Lehmann Soren Auer Sebastian Hellmann, Claus Stadler. Dbpedia live
extraction. Meersman R., Dillon T., Herrero P. (eds) On the Move to Meaningful
Internet Systems: OTM 2009. Lecture Notes in Computer Science, 5871:1209–
1233, 2009.

[9] Saeedeh Shekarpour Sören Auer Maria-Esther Vidal Sidra Faisal, Kemele M. En-
dris. Co-evolution of rdf datasets. Lecture Notes in Computer Science, 9671.

[10] Heinrich Herre Soren Auer. A versioning and evolution framework for rdf knowl-
edge bases. Lecture Notes in Computer Science, pages 55–69, 2006.

Mechanism for inconsistency correction in the DBPedia Live 17

[11] Gildas Ménier Pierre-François Marteau Youen Perón, Frederic Raimbault. On
the detection of inconsistencies in rdf data sets and their correction at ontological
level. pages 1–11, 2011.

