
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Adaptive Multiscale
Function Approximation
I: General Discrete Bases

Gilcélia Regiâne de Souza Jorge Stolfi

Technical Report - IC-15-08 - Relatório Técnico

December - 2015 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.

Adaptive Multiscale Function Approximation

I: General Discrete Bases

Gilcélia Regiâne de Souza1

Jorge Stolfi2

1 Introduction

In this paper we describe efficient algorithms for adaptive multiscale approximation of func-
tions that are sampled with uneven density and/or have important small-scale detail limited
to small portions of their domain. Such functions and datasets are very common in natural
sciences and engineering, where different physical causes often give rise to effects with very
different scales. Our algorithms are very general, independent of domain shape, mesh, and
approximation basis.

We assume that the function to be approximated (the target function) is nominally
defined on some multi-dimensional domain, but is known only at a finite number of sampling
points in that domain. Every element of our approximation bases is assumed to be some
continuous function with relatively small support, sampled at the same points of the domain
as the target function itself. For the purpose of approximating the given samples function
values, only the sampled values of the elements are relevant. However, the analytic expression
of the elements is relevant if the approximation is to be interpolated at arbitrary points of
the domain.

A single-scale basis has linearly independent elements with supports of similar size, that
cover the domain. A full multiscale basis is a hierarchy of single-scale bases, whose elements
have progressively smaller supports and are arranged more densely over the domain.

An adaptive multiscale basis comprises a subset of a full one, that excludes elements
that are found to contribute very little to the approximation. The resulting basis has higher
flexibility in those parts of the domain where the target function has more small-scale detail
and/or is sampled more densely. In many problems, an adequate adaptive basis may be
orders of magnitude smaller than a full multiscale basis with the same accuracy.

In section 2 we define the basic approximation problem in a discrete setting, and related
concepts. In section 3 and 4 we describe our general algorithms for single-scale and multiscale
adaptive approximation.

An earlier version of this HApp algorithm was described in the Ph. D. Thesis of the first
author [1].

1UFSJ, Ouro Branco, Brazil gilcelia@ufsj.edu.br
2UNICAMP, Campinas, SP, Brazil stolfi@ic.unicamp.br

1

2 The discrete approximation problem

In principle, the target function and the approximations are real-valued functions defined
on some domain D ⊆ Rd, for some dimension d. However, in our approximation method
we only evaluate those functions at a fixed list of sampling points p = (p1, p2, · · · , pN) in
D. Therefore, we can regard any real-valued function F on D as a vector f of RN , whose
component fi is the value of the function at point pi.

With this premise, we define a discrete approximation problem on those sampling points
as consisting of:

• the target function space F , which is a linear subspace of RN ;

• the approximation function space S, another linear subspace of RN ;

• the approximation criterion, a predicate on F × S.

An instance of the problem is a vector f in F , a target vector, representing the target function
to be approximated. A solution for that instance is a vector s from S, such that the pair
(f, s) satisfies the approximation criterion. An approximation method for such a problem is
a numerical algorithm that yields a solution for any given instance.

Usually, the target space F is relevant only for analysis and empirical evaluations; it is
not used in the approximation algorithms themselves.

For a given target function f ∈ F and a candidate approximation s ∈ S, we define
the residual as the difference e = f − s, which is an element of the space of residuals
E = F + S ⊆ RN .

We will assume that the space S is defined by a basis matrix S, with N × n entries,
such that Sij is the value of the basis element with index j on the sampling point pi, for
i ∈ {1, · · · , N} and j ∈ {1, · · · , n}. Therefore, the approximation s can be written as

si =
n∑

j=1

αjSij (1)

for all i in 1, 2, · · · , N , where α = (α1, α2, · · · , αn) is a (column) vector of n real coefficients;
that is,

s =
n∑

j=1

αjσj (2)

where σj is column j of S; or simply as s = Sα. Note that the same approximation space S
has infinitely many basis matrices S.

The cost of computing the matrix S from the definition is proportional to nN , assuming
that each element can be evaluated in bounded time independent of n and N . However,
if each element j is know to be zero outside of some small region Rj ⊆ D, it needs to be
evaluated only at the points pi that lie inside Rj. Further savings in computation time may
be achievable by exploiting symmetries of the sampling point grid and of the basis elements.

Typically, the dimension n of S is much smaller than the dimension m of F and the
number N of sampling points.

2

The discrete approximation problem could be generalized by allowing the target function
values to be elements of some vector space V with finite dimension k, rather than real
numbers. However, approximating such a function f is often equivalent to solving k separate
approximation problems for k real-valued functions, all with the same space S of real-valued
approximation functions.

2.1 Norms

A norm ‖·‖V of some vector space V is said to be Hilbertian if it is derived from some

inner product 〈·|·〉V on V by the formula ‖f‖ =
√
〈f |f〉. Every inner product 〈·|·〉 on

RN (or a subspace thereof) can be described by a symmetric matrix E ∈ RN×N such that
〈f |g〉E = f>Eg for all f, g ∈ RN . In this work we will often use the Euclidean norm ‖·‖2
defined by

‖f‖2 =
√
f>f =

√√√√ N∑
i=1

f 2
i . (3)

associated to the ordinary inner product 〈f |g〉2 =
∑N

i=1 figi, whose matrix E is the
N ×N identity matrix IN . We will also use the root-mean-square norm (or RMS norm) ‖·‖2
defined by ‖g‖2 = ‖g‖2 /

√
N . This norm is associated to the inner product

〈f |g〉2 = 〈f |g〉2/N , whose E matrix is (1/N)IN . Compared to the Euclidean norm, the
RMS norm is less sensitive to the number N of sampling points.

2.2 Approximation and evaluation criteria

Approximation criteria usually involve some norm ‖·‖E for the space of residuals E . We will
define the error of an approximation s ∈ S for a target f ∈ F as being the norm of the
residual, ‖f − s‖E . A typical approximation criterion requires that the error be minimum
among all approximations s ∈ S. Alternatively, one may require only that the error ‖f − s‖E
be smaller than a given tolerance εmax > 0.

Another common approximation criterion (that does not directly involve the norm ‖·‖E)
is to require that s interpolates f at a certain subset Q = {pi1 , pi2 , . . . , pin} of the sampling
points, where n is the dimension of S and {i1, i2, · · · , in} is a subset of {1, 2, · · · , N} with n
elements. This criterion can be used only if the restriction of S to those sampling points has
the same dimension n as the full space S. It is actually a special case of the minimum-norm
criterion with the Hilbertian norm

‖f‖Q2 =

√√√√ n∑
k=1

(fik)2 (4)

where fik = f(pik).

2.3 Approximation operators

For a given choice of approximation space S, and for a given approximation criterion that
determines a unique approximation s in S for every target f in F , we can define the ap-

3

proximation operator O, that maps f to s. We can also define the residual operator R that
maps f to the residual f − s; that is, R = I − O, where I is the identity operator on F .

Finally, we define the analysis operator C that, given f and a basis S of S, returns the
coefficients of s = O(f) in that basis; namely, the vector α = (α1, α2, . . . , αn) of formula (1).
Note that the operators CO and R, depend only on the space S and on the approximation
criterion; whereas the operator C depends also on the basis S chosen for S.

The minimum error criterion with an Hilbertian norm (and, in particular, the interpola-
tion criterion) results in an approximation operator O that is linear ; that is, O(af + bg) =
aO(f) + bO(g) for any a, b ∈ R and f, g ∈ F . This is not true for non-Hilbertian norms like
‖·‖∞.

If O is linear, thenR and C are linear operators, too. In that case, the three operators can
be represented by matrices O, R, and C with sizes N ×N , N ×N , and N × n, respectively.
In this case, we can write

si =
N∑
k=1

Oikfk αj =
N∑
k=1

Ckjfk (5)

That is,

s =
N∑
k=1

fkωk α =
N∑
k=1

fkγk (6)

where ωk is column k of matrix O and γk is column of C. Note that ωk and γk describe the
influence of the function sample fk = f(pk) on the approximation s and on the coefficient
vector α, respectively.

We extend O and R to the residual space E = F + S by stating that, for any t ∈ S,
O(f + t) = O(f) + t and R(f + t) = R(f). With this convention, the operators O and R
are projections (idempotent operators) of E , that is, O(O(f)) = O(f) and R(R(f)) = R(f)
for any f ∈ E . Furthermore, O(R(f)) = R(O(f)) = 0N (the null vector of RN). Therefore,
O and R determine a decomposition of E into two disjoint orthogonal subspaces, namely
the space S and the complement of S in E that is orthogonal to S in the inner product
associated to the error norm that is to be minimized. Note also that C(O(f), S) = C(f, S)
for any f in E , and C(R(f), S) = 0n.

2.4 Least squares approximation

When the approximation criterion is to minimize some Hilbertian norm ‖·‖E , the optimum
coefficient vector α can be found by the least squares (LS) method [2], namely by solving
the linear system Mα = b, where the n×n matrix M and the n-element vector b are defined
by

M = S>ES b = S>Ef (7)

The matrix of the analysis operator C is therefore C = M−1S>E = (S>ES)−1S>E, and the
matrices of the operators O and R are

O = S(S>ES)−1S>E R = IN −O (8)

For the Euclidean norm ‖·‖2, where E = IN , these formulas simplify to

M = S>S b = S>f C = (S>S)−1S> O = S(S>S)−1S> (9)

4

For the RMS norm ‖·‖2, which has E = (1/N)IN , we have

M =
1

N
S>S b =

1

N
S>f (10)

and (as expected) the operators O, R, and C are the same as those of the Euclidean norm.
When using the interpolation criterion, on the subset Q = {p1, p2, · · · , pin}, the least

squares method can be simplified to solving Mα = b where

Mkj = Sikj bk = fik (11)

for all k and j in {1, . . . , n}.
If the matrix S is dense, the cost of computing α given S and f is proportional to n2N

for the computation of M and n3 for solving the system Mα = b or n2(N + n) total.
On the other hand, if the basis element have small support specifically, if each column of

S has only q � N nonzero elements, on average, the cost of computing M is only n2q but
the cost of solving the system will still be to close to n3; then the cost of the LS method will
be proportional to n2(N + n).

3 Basis reduction

As we observed in section 1, it may be possible to remove from the approximation formula (2)
any terms that make a negligible contribution to it. That is, we replace a generic prebasis
matrix S with columns σ1, σ2, · · · , σn, independent of the target function f , by a reduced
basis matrix Ŝ with columns σ̂1, σ̂2, . . . , σ̂n̂, specific to f ; so that the approximation becomes

ŝ =
n̂∑

k=1

α̂kσ̂k, (12)

where α̂ = (α̂1, α̂2, . . . , α̂n̂) is the reduced coefficient vector. The computational problem then
includes the choice of the reduced basis σ̂, as well as the corresponding coefficient vector α̂.

As we shall see in section 4, basis reduction is an essential step in the construction of
multiscale adaptive bases. In general, basis reduction is worth the cost only if both the
target function f and the basis elements have small support.

3.1 Reduction criterion

For basis reduction, the criterion of mimimum approximation error (as used in the LS

method) is no longer adequate, since in general it would be satisfied only when Ŝ = S.
Typically one seeks a tradeoff between minimizing some error norm ‖·‖∗ of the residual f− ŝ
and minimizing the size n of the reduced basis (the number of columns of Ŝ). For example,
one may require that n be as small as possible as long as ‖f − s‖∗ does not exceed a given
tolerance εmax.

When the norm ‖·‖∗ is Hilbertian, and the prebasis elements σj are orthonormal under
the associated inner product 〈·|·〉∗ (that is, S>ES = In, then every element σ̂j of the optimal

5

approximation with any sub-basis Ŝ of S has the same coefficient as the corresponding
element σk in the optimal approximation with the full prebasis S. In that case, the smallest
reduced basis Ŝ that satisfies ‖f − s‖E ≤ εmax can be obtained by eliminating columns σj
of S in increasing order of |αj|, while the Euclidean norm of the discarded coefficients αj is
less than εmax.

Unfortunately, many prebases that are useful in practice (including the ones used in this
article) are not orthogonal, so we cannot use the simple reduction algorithm above. This
algorithm also fails if the error norm ‖·‖∗ is not Hilbertian. Without those conditions, finding
the smallest reduced basis σ̂ that satisfies ‖f − s‖∗ ≤ εmax is a difficult problem, for which
no efficient algorithm is currently known.

It should be noted that any basis reduction method is inherently non-linear. Therefore,
the operations O, R and C are not linear in general adaptive approximation methods.

3.2 The sequential truncation heuristic

Since we cannot find the optimal solution, we use a heuristic method that is not overly
expensive and has been shown to produce reasonably small bases. We first compute an
approximation s =

∑n
j=1 αjσj by the least squares method, that is, one that minimizes

the Euclidean norm of the residual. Then we the apply the sequential truncation heuristic,
formalized by the procedure Reduce below, that discards terms of equation (1) while the
uniform norm ‖·‖∞ of the residual does not increase too much. The inputs of reduce are:

• the N × n prebasis matrix S with columns σ1, σ2, · · · , σn,

• the corresponding coefficient vector α = (α1, α2, . . . , αn),

• the residual e = f − s = f − Sα, also in discrete form (an N -vector).

• a tolerance εmax > 0.

The Reduce algorithm returns a reduced basis matrix Ŝ (whose columns σ̂1, σ̂2, . . . , σ̂n are
a subset of the columns of S); and a vector α̂ = (α̂1, α̂2, . . . , α̂n̂) of the corresponding
coefficients (which are a subset of the elements of α). The algorithm guarantees that the
residual ê = f − ŝ of the reduced approximation ŝ = f −

∑
k α̂kσ̂k satisfies the following

condition, for every sampling point pi:

• if |ei| ≤ εmax, then |êi| ≤ εmax;

• if |ei| > εmax, then |êi| ≤ |ei|.

In other words, Reduce may increase the error |ei| at each sampling point, as long as it does
not exceed εmax; but if some |ei| already exceeds εmax, then that value will not increase.

6

Algorithm 1. Reduce(S, α, e, εmax)

1. Compute the values δj = |αj| ‖σj‖∞ for j = 1, . . . , n.

2. For each index j in 1, . . . , n, in order of increasing δj, do:

3. If δj > 2εmax, go to step 6.

4. If, for all i, either |ei| ≤ εmax and |ei + αjσji| ≤ εmax, or |ei| > εmax and
|ei + αjσji| ≤ |ei|, then do:

5. e← e+ αjσj; αj ← 0.

6. Return the basis matrix Ŝ consisting of those n̂ columns σj with αj 6= 0, and the
corresponding vector of coefficients α̂.

It is easy to check that the output of the Reduce algorithm satisfies the criterion above.
The test δj > 2εmax in step 3 stops the algorithm when it is very unlikely that any of the
remaining elements will be eliminated.

The cost of Reduce is dominated by the computation of the values δj in step 1, by the test
of step 4, and by the update of the residual e in step 5. The cost of step 1 is proportional to
nN . Note that the sorting of δ1, δ2, . . . , δn in step 2 has cost proportional to n log n, which
is usually negligible. Each iteration of steps 4 and 5 has cost proportional to N ; since these
steps are executed at most n times, its total cost — and therefore the cost of Reduce — is
bounded by a constant times nN .

This heuristic may not find the optimal solution (the smallest possible basis), because
the elimination of an element σj may prevent the algoritm from eliminating two elements
later on. Moreover, the coefficients α̂ returned may not be optimal even by the LS criterion,
applied to the basis Ŝ.

7

4 Adaptive multiscale approximation

Our adaptive multiscale approximation method consists of the application of the Reduce
heuristic at multiple scales of detail, from coarsest to finest. At each scale, the target
function is the residual of the approximation at the previous level. At each scale, we use a
prebasis that is only large enough to cover the part of the domain where the current residual
is non negligible.

4.1 Hierarchical prebasis

We define a hierarchical prebasis as being a sequence of levels S(`min), S(`min+1), . . . S(`max).
Each level S(`) is a discrete approximation basis, defined over the domain of interest D. The
basis S(`) is such that the generated space S(`) allows the modeling of smaller details than
the space S(`−1).

In many multiscale approximation schemes [3], the spaces S(`) and S(k) of different levels
are required to be linearly independent, or even orthogonal. We do not make that assump-
tion, so that we have more freedom in the choice of the bases S(`) and in the approximation
operators.

4.2 Element cells and hierarchical meshes

For the algorithm, we assume that each element σ
(`)
j of each basis level S(`) has an associated

cell K(`)
j , a subset of the domain D where that element dominates in some sense. We will

denote by K(`) the set of all cells of level `. The algorithm does not impose any restriction
on these cells of any single level `, except that every sampling point must be contained in
exactly one cell. The integer j is the cell’s index. We define the support of an element σ

(`)
j as

being the set supp(σ
(`)
j) of cells of a given level ` where element σ

(`)
j is non-zero. We assume

that the cell K(`)
j , in particular, belongs to supp(σ

(`)
j).

In the discrete version, each cell K(`)
j is a set of row indices of the full pre-basis matrix

S(`), corresponding to the sampling points pi where column σj is assumed to predominate;

and all the sets K(`)
j with same ` form a partition of the set {1, 2, . . . , N}.

The algorithm assumes that the cells of successive levels are properly nested; that is, for
all r, j, and `, cell K(`+1)

r is either disjoint of cell K(`)
j , or is contained in it. The children of

a cell K(`)
j are all the cells K(`+1)

r of the next level that are contained in it. For any set X of

indices of cells of some level `, we will denote by K(`)
X the union of the cells of level ` with

those indices, that is, ∪j∈XK(`)
j .

4.3 Adaptive multiscale approximation

If all elements at all levels were linearly independent (that is, if S(`) ∩S(k) = {0N} whenever
k 6= `), one could consider creating a single prebasis matrix

S(∗) = S(`min) à S(`min+1) à · · · à S(`max),

8

where à denotes side-by-side concatenation of matrices; then compute a single coefficient
vector α(∗) by the least squares method, and then apply the Reduce heuristic to that approx-
imation. However, recall that we are not assuming that the bases S(`) of different levels are
linearly independent. Moreover, the size of that full multi-level prebasis matrix S(∗) would
be prohibitive for most applications.

For these reasons, our algorithm builds the approximation level by level, from coarsest
to finest; where the problem at each level is to find a parsimonious approximation s(`) to the
residual f (`) = e(`−1) = f (l−1)− s(`−1), the part of f that is left over from the approximations
at the coarser levels. Thus, the approximations s(`) obtained at all levels must be added
together to obtain the final approximation s.

Moreover, at each level, our algorithm uses as prebasis only a submatrix S̃(`) of the full
basis matrix S(`). The submatrix S̃(`) includes only the elements of S(`) that cover those
parts of the domain where the uniform norm of that residual f (`) is still too large. Indeed,
it is very important for the efficiency of the algorithm that the full basis matrix S(`) is never
computed.

4.4 The hierarchical approximation algorithm

Our hierarchical approximation algorithm is described more precisely by the procedure HApp
below. Its inputs are:

• the sampled target function f (a vector of RN),

• the indices `min, `max of the first and last levels, with 1 ≤ `min ≤ `max;

• a procedure GetAllCells(`) that returns the indices of all cells (that is, elements of the
full basis) of a given level `;

• a procedure GetChildrenCells(`, j) that returns a list of the indices r all children cells

K(`+1)
r of a given cell K(`)

j ;

• a procedure GetElement(`, j) that computes the element σ
(`)
j of the discrete basis S(`);

• a procedure GetSupportCells(`, j) that returns the support of element σ
(`)
j , that is, a

list of all indices r of all cells K(`)
r of level ` that contain at least one sampling point

where element σ
(`)
j is nonzero; and

• a tolerance εmax > 0.

The outputs are

• the side-by-side concatenation Ŝ(∗) = Ŝ(`min) à Ŝ(`min+1) à Ŝ(`max) of the reduced bases
Ŝ(`);

• the top to bottom concatenation α̂(∗) = α̂(`min) >⊥ α̂(`min+1) >⊥ · · · >⊥ α̂(`max) of the corre-
sponding coefficient vector; and

• the computed approximation ŝ(∗) =
∑

k α̂
(∗)
k σ̂

(∗)
k , where σ̂

(∗)
k is the column k of Ŝ(∗).

9

Algorithm 2. Procedure HApp(`min, `max, f,GetAllCells,GetChildrenCells,GetElement,
GetSupportCells, εmax)

1. R(`min−1) ← GetAllCells(`min − 1);

2. U(`min−1) ← R(`min−1);

3. Ŝ(∗)i← (); α̂(∗) ← (); ŝ(∗) ← ();

4. ê(`min−1) ← f ;

5. For ` = {`min, `min + 1, . . . , `max}, do:

6. f (`) ← ê(`−1);

7. C(`) ←
⋃

j∈R(`min−1) GetChildrenCells(`− 1, j);

8. Eliminate from C(`) the indices of all cells except those that have any points pi

where
∣∣∣f (`)

i

∣∣∣ > εmax.

9. If C(`) = {}, go to step 18.

10. R(`) ←
⋃

j∈C(`) GetSupportCells(`, j)

11. U(`) ←
⋃

j∈R(`) GetSupportCells(`, j).

12. Build the prebasis matrix S̃(`), by calling GetElement(`, j) for every index j ∈
C(`).

13. α̃(`) ← C(f (`), S̃(`)); s̃(`) ←
∑

j α̃jσ̃j.

14. ẽ(`) ← f (`) − s̃(`).
15. (Ŝ(`), α̂(`))← Reduce(S̃(`), α̃(`), ẽ(`), εmax);

16. ŝ(`) ←
∑

k α̂kσ̂k; ê(`) ← f (`) − ŝ(`).
17. Ŝ(∗) ← Ŝ(∗) à Ŝ(`); α̂(∗) ← α̂(∗) >⊥ α̂(`); ŝ(∗) ← ŝ(∗) + ŝ(`).

18. Return Ŝ(∗), α̂(∗), ŝ(∗).

In steps 7 and 8 of each iteration, this algorithm identifies the set C(`) of critical cells,
where the current residual f (`) exceeds the tolerance εmax. As we shall see, those cells must
be children of a certain set R(`−1) of relevant cells identified in the previous iteration. In
step 12, the algorithm builds a prebasis S̃(`) with the elements of the full basis S(`) associated
to each critical cell. Note that the support of each element may overlap other cells, but is
contained in KR(`) . In step 13, the least squares operator C is used to obtain the coefficients
α̃(`) of an approximation s̃(`) to the current residual f (`), in the prebasis S̃(`). The Reduce
heuristic is then used in step 15 to discard columns from S̃(`) with the constraints stated in
section 3, resulting in a submatrix Ŝ(`) of S̃(`) and the corresponding coefficient vector α̂(`).
In step 16, these are combined into the partial approximation ŝ(`) and the new residual ê(`),
which will be the target for the next iteration.

4.5 Correctness

Since it is based on the LS method and the Reduce heuristic, the procedure HApp is not
guaranteed to find an approximation with ‖f − s‖∞ less than εmax; unless the prebasis, S̃(`) of
the last level has enough elements to exactly match the final residual. If the sampling points

10

are evenly distributed over the domain, this condition will be satisfied when |C(`max)| ≥ N .
In many problems of practical interest, however, the tolerance may be satisfied well before
that level.

We can also state that the algorithm is correct in the following sense: at each level
` ≥ `min, for every sampling point pi,

• if pi /∈ K(`−1)
R(`−1) , then

∣∣∣e(`)i

∣∣∣ ≤ εmax;

• C(`) ⊆ R(`)

• K(`)

U(`) ⊆ K(`−1)
U(`−1) ;

• R(`) ⊆ U(`).

One can also verify that, if pi is not in any cells K(`)
r for r ∈ R(`), (that is pi /∈

⋃
R(`)), then

ŝ
(`)
i = 0.

These statements can be proved by induction on `. Note that, while the critical region
K(`)

C(`) and relevant region K(`)

R(`) may expand from one level to the next, the region K(`)

U(`) that

contains both may only shrink at each iteration. Moreover, K(`−1)
R(`−1) encloses all points where

the residual from the preceding levels still exceeds εmax. (Actually, the sets U(`) are not used
in the algorithm. They are defined only for the purpose of analysis of the algorithm, and
may be omitted from an actual implementation.)

Therefore, when looking for points where the error exceeds εmax, the algorithm needs
only look inside the cells of level ` that are contained in the cells of R(`−1). Moreover, if the
algorithm ends prematurely because the set of critical cells C(`) becomes empty (step 9), we
will have

∥∥f (`)
∥∥
∞ ≤ εmax, as desired.

Note also that the entries S̃
(`)
ij of the basis matrix for level ` must be computed in step 12

only for the elements a subset of the indices j, and only for those points pi that are inside
the cells with indices K(`−1)

R(`−1)

4.6 Computational Complexity

Note that the size of the support of the basis elements has a significant impact on the
efficiency of the adaptive approximations algorithm. As discussed in section 2.4 applying
the LS method to a full single scale basis, if the supports of the basis elements cover a large
fraction of the domain, the arrays S and M will be dense.

Significant savings in computing time are possible, however, if the sampling points form
a regular rectangular grid, and the basis elements of each level ` are copies of the same
“mother element” translated by multiples of the grid spacing. We will detail this special
case in a separate paper.

The total cost of happen will be dominated by the cost of the LS method in each level,
that is, to t̃(∗) =

∑`max

`=`min
t̃(`), where t̃(∗) = (ñ(`))2(q̃(`) + ñ(`)) and q̃(`) is the average number

of sampling points in the support of each element of the pre basis S̃(`).
In contrast, if we used the single-level basis of level S(`max) the cost would be t(`max) where

t(`) = (n(`))2(q(`) + n(`)) and q(`) is the average number of sampling points in the support of
an element of S(`max).

11

5 Tests

To illustrate and evaluate our method, we used it with the data sets — mesh, sampling points,
target vectors, basis elements, and other parameters — described in Sections
5.1 – 5.4. The results of these tests are summarized in Section 5.5.

5.1 Hierarchical mesh

In all our tests, the domain D is the a regular hexagon H of circumradius RH = 3.92 centered
at the point (4, 4). To define the full pre-basis S(`) of each level `, we considered a triangular
mesh covering the hexagon H. The hexagon was divided into 6 equilateral triangles, and
each triangle was further divided into 4` equilateral triangles with sides RH/2

`. Therefore
each cell of level ` is divided into 4 cells of level ` + 1, and has n(`) = 6 × 4` cells in total.
See Figure 1 .

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Figure 1: Level 0, 1, and 2 of the hierarchical mesh.

5.2 Sampling points

(that encloses the circle B of Section 5.2)
In all our tests, the list p of sampling points consists of N = 20 000 points randomly

chosen inside the circle B with center (4, 4) and radius RB = 0.95RI ≈ 3.2250786, where
RI is the inradius of the hexagon H, RI = RH

√
3/2. We used two probability distributions,

uniform DU and non-uniform DN. The latter is a uniform distribution mixed with two
Gaussian distributions, one concentrated and one spread out along a line. In each case,
the N points were initially drawn independently from the corresponding distribution, and
then iteratively adjusted to obtain a slightly more uniformly spacing. Namely, we built the
Delaunay triangulation of the points, and then replaced each internal vertex by the average
of its Delaunay neighbors. This smoothing was repeated 5 times. See figure 2.

12

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

(a) Uniform

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

(b) Non Uniform

Figure 2: A set of N = 2 000 sample points pi drawn from (a) the uniform distribution DU

and (b) the non uniform distribution DN , both after 5 smoothing iterations. The hexagon
is the outline of the mesh (see section 5.1).

13

5.3 Test functions

For our tests we used target vectors f obtained by sampling two continuous target functions
from D to R (FO and FM), described in Appendix 7. See figure 3. In each test, the discretized
target vector of RN (fO or fM), was obtained by evaluating the corresponding continuous
function at the sampling points.

For visualization purposes, each discretized target function f (as well as the approxi-
mations s(`) and, residuals e(`) were plotted as triangular terrain meshes. Namely, we con-
structed the Delaunay triangulation of the sampling points p1, . . . , pN , and then assigned to
each vertex pi a z coordinate equal to the corresponding function value fi. See Figure 4.

14

0

5

10

0

5

10

−0.5

0

0.5

0

5

10

0

5

10

0

0.5

1

Figure 3: The target functions FO (left) and FM (right) used in our tests, before sampling,
plotted on a regular square grid.

15

Figure 4: The target functions fO (left) and fM (right), used in our tests, sampled at
N = 20000 points with distribution DU of Figure 2, and visualized as terrains with the
Delaunay triangulations of the sampling points.

16

5.4 Basis elements

Each basis element σ
(`)
j was a C1 finite spline element consisting of 13 triangular Bézier

patches of degree 3, defined on the central cell and the surrounding 12 cells. See Figure 5.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Figure 5: At left, typical basis elements with mother function ΦS
2 at levels 1, 2, and 3 (from

top to bottom), sampled at N = 20 000 points with distribution DU. At right, the support
of each element (that is, the cells where the element is nonzero).

17

5.5 Results

For each target function f we computed a hierarchical adaptive approximation ŝ(∗) with the
HApp algorithm with the parameters `min = 3, `max = 8, and εmax = 1.0× 10−4.

The results of the tests are summarized in table 1. The table shows the number n̂(k)

elements on the reduced basis for each level ` ∈ {3, . . . , 8}, and the total number n̂(∗) of

elements in the final adaptive basis Ŝ(∗). Plots of the results of selected tests are shown in
sections 5.5.1.

For each test, we measured the efficiency of the final approximation by the ratio τ between
n̂(∗) and the number nmax = n

(`max)
of elements in the last level S(`max) of the full hierarchical

basis. The last column of table 1 shows the ratio λ between the total estimated running
time t̃(∗) of the LS method applied to all reduced bases S̃(`), and the estimated time t(`max)

of the LS method with the full basis S(`max).

Table 1: Summary of test results.
f D Φ n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(∗) nmax τ λ

fO DU ΦS
2 203 867 1539 1037 202 3 3851 393216 0.0098 1.3× 10−7

fO DN ΦS
2 204 898 1375 638 108 3 3226 393216 0.0082 8.8× 10−8

fM DU ΦS
2 276 1273 4934 8136 3367 440 18441 1572864 0.0117 2.1× 10−7

fM DN ΦS
2 271 1255 4525 6369 2388 370 15192 1572864 0.0097 1.1× 10−7

5.5.1 Test function fO with mother function ΦS
2 and smoothed uniform point

distribution

Figure 6: The final approximation s computed by our algorithm for target function
f = fO, N = 20000 points, mother function Φ = ΦS

2 with εmax = 1.0× 10−4, `min = 3,
`max = 9 (left) and the residual e = f − s (right) .

18

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

` = 3 ñ(`) = 204 n̂(`) = 204 ` = 4 ñ(`) = 1005 n̂(`) = 898

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

` = 5 ñ(`) = 1530 n̂(`) = 1375 ` = 6 ñ(`) = 695 n̂(`) = 638

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

` = 7 ñ(`) = 114 n̂(`) = 108 ` = 8 ñ(`) = 3 n̂(`) = 3

Figure 7: The cell sets C(`) (orange), R(`) (yellow), and U(`) (green) for each level ` in
{`min.. `max}, with the same parameters as in Figure 6. The final reduced basis has
n̂(∗) = 3226 elements.

19

6 Conclusions

We described a very general algorithm for adaptive multiscale approximation of discrete data
that can be used with arbitrary domains, sampling points, meshes, and basis elements. Tests
indicate that the algorithm can be very efficient in computational time and in the size of the
resulting basis.

In Table 1, we observe that, for the target function fO, the number n̂(∗) of elements in the
final base is much smaller than the number of sampling points (N = 20 000), and also much
smaller than the number nmaxof elements of the maximum level S(`) of the full basis (6×4`max

). Note that it would impractical to achieve this scale of resolution with a single-scale basis
S(`max) because that would imply solving a linear system of size nmax × nmax. The reduction
factor in basis size is the parameter τ in that table. The estimated savings in computing
time are expressed by the λ factor in the table.

20

7 Appendix A: Definition of the test functions

In each case, the function is defined on the natural domain U = [−1/2, 1/2] × [−1/2, 1/2]
which is then mapped to the domain D = [0, L]2 by the formulas X = x/L − 1/2 and
Y = y/L− 1/2, where (X, Y) are the natural arguments of the objective function and (x, y)
a point of D.

7.1 Test function FO

Function FO is a variant of Gabor’s element [?], that is, a two-dimensional sinusoidal wave
modulated by a Gaussian bell

FO(X, Y) = exp

(
− 1

2R2
(X2 + Y 2)

)
cos
(

(αxX + αyY)π
)
, (13)

where R = 0.087, αx = 10, and αy = 5.

7.2 Test function FM

Function FM is the sum of 15 bell-shaped humps with varying widths and amplitudes ar-
ranged in spiral around point (0.005, 0).

FM(X, Y) = ciΨ

(
‖(X, Y)− (Xi, Yi)‖

wi

)
(14)

where ci = 1
2−i/15 , wi = 0.40 ri and

Ψ(z) =

{
0 if z ≥ 1

(1− z2)2 if z ≤ 1

with ri = 0.086 × 2si , Xi = ri cos(2πsi) − 0.05, and Yi = ri sin(2πsi) where
si = (i− 1)/6.5.

21

References

[1] Gilcélia Regiane de Souza. Aproximação de Funções Irregularmente Amostradas com
Bases Hierárquicas Adaptativas de Elementos Tensoriais Compactos. PhD thesis, In-
stitute of Mathematics, Statistics and Scientific Computing, UNICAMP, October 2013.
Advisor: Jorge Stolfi.

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, 1996.

[3] S. Müller. Adaptive Multiscale Schemes for Conservation Laws, volume 27 of Lectures
Notes in Computational Science and Engineering. Springer, 2003.

22

