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Abstract

Entanglement has a dual role in quantum computation and information. It is an
important resource in protocols such as quantum teleportation and superdense coding.
On the other hand, it can potentially reduce the soundness in quantum Multi-prover
Merlin-Arthur proof systems. Thus, understanding and controlling entanglement is of
primary importance. To achieve this goal a super-operator capable of breaking entan-
glement, called a disentangler, has been proposed, together with a variety of quantum
de Finetti Theorems. In this work, we study some limits of these approaches using
computational hardness notions. We rule out the existence of some disentanglers and
de Finetti Theorems based on some plausible hardness assumptions.

1 Introduction

Entanglement is an important resource in quantum information processing. It is a funda-
mental ingredient in protocols such as teleportation and superdense coding [1]. Nonetheless,
there are situations in which the lack of entanglement may lead to better resource usage.
This duality becomes evident in the context of Multi-prover Merlin-Arthur complexity com-
plexity classes, denoted by QMA(k) where k is the number of unentangled provers [2]. We
know that there are a variety of protocols in QMA(2) for treating NP-complete problems,
and that use only a logarithmic number of qubits with respect to the input size [3] [4] [5]
[6]. But unentanglement promises seem hard to enforce both quantumly and classically.
For instance, the expressive power of QMA(2) is not yet well understood, as it ranges from
QMA [7] to the powerful NEXP class [8]. In this work, we investigate the potential limits of
approaches for breaking and controlling entanglement. We do that by making use of some
computational hardness results.

A quantum state that is not entangled is said to be separable. In the case of a mixed state
σAB for two subsystems A and B, it is separable if it can be written as σAB =

∑
piσ

A
i ⊗σBi ,

where pi is a probability distribution [9]. Even though the set of separable states forms a
convex set, finding the state that maximizes the Hilbert-Schmidt inner product of a positive
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semi-definite matrix M and separable state σAB is NP-hard when the error is an inverse
polynomial in the input [10]. This is known as the Best Separable State (BSS) problem, and
it is closely related to the Weak Membership Problem for a set of separable states [11]. Since
quantum states with polynomially many qubits are objects of Hilbert spaces of exponential
size, optimizing the classical description of separable quantum states may easily become a
NEXP-hard problem.

Instead of dealing with the classical description of quantum states, an alternative ap-
proach would be to explore quantum ways of breaking entanglement. Aaronson et al. were
the first to propose a disentangler which is a quantum channel capable of approximating any
separable state within an error δ in trace norm, and with output guaranteed to be always
ε-close to a separable state, also in the trace norm [12]. They proved that there is no perfect
disentangler when the errors δ and ε are set to zero. We extend their disentangler definition
by considering the computational complexity of the quantum channel as well as the rela-
tionship of the input and output dimensions. This will allow us to associate computational
hardness results to the existence of some disentanglers.

Computational hardness results are useful to unveil how hard it is to solve a certain
problem by implying that its solution would also solve problems known or believed to be
hard. The NP-hardness is perhaps the most important example, and problems in this
class are widely believed to be intractable [13]. Another classical hardness class stems
from the hypothesis that 3SAT has no sub-exponential time algorithm, also known as the
Exponential Time Hypothesis (ETH) [14]. Here, we explore two quantum hardness notions:
the hypothesis that 3SAT can not be solved in quantum polynomial time (the BQP class)
and the belief that the best quantum algorithm for this problem requires Ω(2

√
n) time.

A different way to understand and control entanglement is through quantum de Finetti
Theorems. Given a permutation invariant state ρA1...An on n subsystems of dimension |A|,
a generic de Finetti Theorem bounds the distance of a reduced state ρA1...Ak

on k (k ≤ n)
subsystems and a separable state. This distance is usually a function of k, n and |A|.
Moreover, this distance can be measured using different norms such as the standard trace
norm, the SEP norm and the fully one-way LOCC norm [15] [16]. Using the connection
of disentanglers with de Finetti Theorems, it is possible to establish a hardness result on
how the error scales with the number n in the SEP norm. Given the hardness assumption
that 3SAT requires Ω(2

√
n) quantum time, this distance decreases at best as an inverse

polynomial in n.

2 Preliminaries

A disentangler is a quantum channel capable of breaking entanglement. It has numerous
applications in quantum information, quantum computing and quantum complexity. For
instance, the existence of a certain efficient disentangler can be used to show the collapse
QMA(2) = QMA. We extend the disentangler definition of Aaronson et al., to take into
account the input and output dimensions, as shown next.

Definition 2.1 (Adapted from [12]). Let H and K be two finite-dimensional Hilbert spaces.
Then given a super-operator Φ : H → K⊗K, we say Φ is an (ε, δ, f)-disentangler if
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(i) Φ(ρ) is ε-close to a separable state for every ρ,

(ii) for every separable state σ, there exists a ρ ∈ H such that Φ(ρ) is δ-close to σ, and

(iii) log(dim(H)) = f(log(dim(K))), where f : R+ → R+.

In the previous definition, closeness is measured with respect to the trace distance.
However, it is also possible to use distances based on other norms such as SEP and the fully
one-way LOCC. We denote by ΦM , the restriction of Φ when the distance is measured
according to the measurement class M .

We briefly describe three measurement classes: parallel one-way LOCC (LOCC‖1),
LOCC and SEP as defined in [15]. They described the allowed measurement operators
that are sometimes operationally motivated such as LOCC‖1 and LOCC. The LOCC‖1
class comprises all measurements that can be performed first on a subsystem A, and ac-
cording to its outcome, an appropriate measurement Mi is used on a subsystem B. Such an
operator can be written as:

M =
∑
i

αi ⊗Mi,

where {αi} forms a positive operator-valued measure (POVM) and 0 ≤ Mi ≤ I for each
i. The more general class LOCC comprises measurements on subsystems that can be
implemented using a finite number of local measurements and classical communication. In
terms of operators, it can be inductively described as

M =
∑
i

(
√
Ei ⊗ I)Mi(

√
Ei ⊗ I), or

M =
∑
i

(I ⊗
√
Ei)Mi(I ⊗

√
Ei),

where {Ei} satisfies
∑

iEi ≤ I and {Mi} ∈ LOCC. The SEP operator is even more
expressive. It can be defined as

M =
∑
i

MA
i ⊗MB

i

for positive semi-definite rank one matrices MA
i and MB

i . We have the following inclusion
of measurement classes

LOCC‖1 ⊆ LOCC ⊆ SEP.

As in [16], it is possible to associate with every POVM {Mx} and state ρ the new state
M(ρ) =

∑
x Tr(Mxρ)|x〉〈x|. Using this definition, it is possible to write the norm of a class

of operator M as

‖ρ− σ‖M = max
M∈M

‖M(ρ)−M(σ)‖1 .
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Note this norm has the operational interpretation as the optimum bias that can be
achieved by an operator of the class M when distinguishing ρ and σ, given one of them with
uniform probability. This is the same operational interpretation of the trace norm [17].

The action of a quantum channel Φ on a state ρA can be described by a unitary operator
UAE acting on it and the environment which is initialized with |0〉〈0|E followed by tracing
out all subsystems in AE but for a subset B. This action is described as

σB = Φ(ρA) = Tr\B(UAEρA ⊗ |0〉〈0|EUAE†).

One important observation is that the environment can always be modeled with quadrat-
ically many qubits as in system A [17].

We measure the time complexity of a channel Φ using the implementation of UAE , in the
same way that we measure the complexity of quantum circuits by the number of elementary
gate operations it uses, taken from a fixed universal set such as {H,T,CNOT} [18].

It is possible to restrict item (ii) of Definition 2.1 to apply only to states σ with certain
properties, instead of to arbitrary separable states. One important class of separable states
is given by

σ =

∫
ψ ⊗ ψdµ(ψ),

where µ is a probability measure over density matrices of a given size. Note that this
type of state arises in several quantum de Finetti Theorems [19] [20]. The restriction of a
disentangler Φ to require only approximation to states of this form in item (ii) is denoted
Φ=.

We make use of the following amplification Theorem of Watrous and Marriott in which
QMA with an inverse polynomial completeness soundness gap can be amplified to an expo-
nential small error using the same witness.

Theorem 2.2 ([21]). Let c, s : N→ [0, 1], and g ∈ poly with

c(n)− b(n) ≥ 1

g(n)

for all n ∈ N. Then QMA(1, c(n), s(n))m ⊆ QMA(1, 1 − 2−r(n), 2−r(n))m for every m and
r ∈ poly. Moreover, the proof size m remains unchanged in the amplification.

Harrow and Montanaro showed that QMA(k) collapses to QMA(2).

Lemma 2.3 (From [15]). For any m, k ∈ N and 0 ≤ s < c ≤ 1,

QMA(k, c, s)m ⊆ QMAkm(2, c′, s′)SEP

where c′ = 1+c
2 and s′ = 1 − (1−s)2

100 . Further, for any language L in QMAkm(2, c′, s′)SEP

and any input x ∈ L, the two witness may be considered equal without loss of generality.
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3 Disentanglers

We know that there is no disentangler in which ε = δ = 0 from [12]. In this section we
study the computational hardness when ε, δ > 0, and show that, under certain hardness
assumptions, even allowing an exponential time channel with respect to the number of
output qubits nout, there is no disentangler that acts on poly(nout) input qubits and has
error ε = δ < k

2nout , for some constant k.
The next lemma shows how to use a (ε, δ, f)-disentangler with certain properties to

guarantee QMA(2) ⊆ QMA(1)m. Note that m suffers an increase that depends on f .

Lemma 3.1. For functions f, l : N → N and c, s : N → [0, 1] satisfying c(n) − s(n) ≥ 1
g(n)

where g is a polynomial, we have

QMA(2, c(n), s(n))l(n) ⊆ QMA(1)f(l(n)),

assuming there is a polynomial time (ε, δ, f)-disentangler Φ with ε = δ ≤ 1
4g(n) .

Proof. We show how to transform a QMA(2, c(n), s(n))l(n) verifier into a QMA(1)f(l(n)).
Let L ∈ QMA(2, c(n), s(n))l(n) verifier. If x ∈ L, there is a witness |ψ〉 = |ψ1〉 ⊗ |ψ2〉 and
a state ρ such that Φ(ρ) = ψ′ is δ-close to this witness. In the QMA(1)f(l(n)) protocol, the
prover sends this state ρ with f(l(n)) qubits. The verifier applies the disentangler obtaining
the approximation ψ′ with which the original QMA(2) protocol is executed. It is clear that
the completeness is at least c(n) − δ since Φ(ρ) is δ-close to |ψ〉. Otherwise, if x /∈ L, no
matter the state ρ sent by the prover, it will be ε-close to a separable state making the final
soundness at most s(n) + ε. The completeness soundness gap becomes

c(n)− s(n)− δ − ε ≥ 1

g(n)
− 1

2g(n)
=

1

2g(n)
,

that is still inversely polynomial, completing the proof.

A QMA(1)m protocol can be simulated in time O(poly(n)22m) where n is the input size.
This result, adapted from Watrous and Marriott [21], plays a crucial role in our hardness
results for some disentanglers. It is stated as

Lemma 3.2. Let L ∈ QMA(1)m, and x ∈ {0, 1}n. Deciding if x ∈ L can be done in
O(poly(n)22m) quantum time.

Proof. We explore the proof QMAO(log(n)) ⊆ BQP [21]. Firstly, some notation. Let L be
a language in QMAm where m denotes the witness size. Let x be an input string and Ax
be the associated verifier circuit acting on k + m qubits, where k is the number of ancilla
qubits, a polynomial in the size of the input. The amplification procedure of Theorem 2.2
allows us to assume, without loss of generality, that if x ∈ L then there is witness |ψ〉 that
satisfies

Pr[Ax accepts |ψ〉] ≥ 1− 2−m−2,

and if x 6∈ L, for all states |ψ〉 we have
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Pr[Ax accepts |ψ〉] ≤ 2−m−2.

We associate to every x a 2m × 2m matrix Qx as follows

Qx = (Im ⊗ 〈0k|)A†xΠ1Ax(Im ⊗ |0k〉),

where Π1 is the projector on the subspace that has the accepting qubit of Ax equal to 1.
Note that Qx corresponds to a positive semidefinite matrix of an efficient implementable
measurement, as Ax is a polynomial time circuit.

The eigenvalues of Qx are the associated acceptance probability of their respective eigen-
vectors. Therefore, if x ∈ L, then Tr(Qx) ≥ 1− 2−m−2 ≥ 3

4 as there exist at least one state
(eigenvector) that accepts with probability at least 1 − 2−m−2. Otherwise, all eigenvalues
are at most 2−m−2, resulting in Tr(Qx) ≤ 2m2−m−2 ≤ 1

4 . It is possible to build a BQP
circuit B that decides if L ∈ QMAm by applying the measurement Qx to the totally mixed
state on m qubits. In this case, the acceptance probability of B is

Pr[B accepts] = Tr(Qx2−mIm) = 2−m Tr(Qx).

The completeness soundness gap g(n) is 2−m−1. We can repeat B a certain number of
times, say N , in order to amplify this gap. Using the Chernoff bound to achieve a constant
error probability εc, the value N must satisfy

N ≥ 1

g2
ln(

1
√
εc

),

resulting in a time complexity O(poly(n)22m), given that the QMAm verifier runs in time
poly(n).

The QMA(2)log(n) protocol for 3SAT that has the largest completeness soundness gap
is due to Le Gall et al., it is our starting point to show the hardness of some disentanglers.

Theorem 3.3 (GNN [6]).

3SAT ∈ QMA(2, 1, 1− Ω(
1

npolylog(n)
))O(log(n))

Let 1
g(n) denote the completeness soundness gap. The proof size l(n) satisfies

log(tg(n)) ≤ l(n) ≤ t′ log(n)

for constants t, t′ and n > 1.

For a (ε, δ, f)-disentangler Φ, if the errors ε and δ are sufficiently small and f does not
require the input size to be much larger than the output, it will be possible to use the two
previous lemmas to show that 3SAT can be decided faster than it is currently know. This
is our approach to show the hardness of some disentanglers. The following three Theorems
make precise the conditions under which Φ promotes such speedups.

The next theorem treats the case in which the input and output of Φ are linearly related.
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Theorem 3.4. If 3SAT 6∈ BQP, then there is no O(poly(dim(K))) time (ε, δ, f)-disentangler
Φ with f(x) = cx and ε, δ ≤ k

dim(K) , for any constant c ≥ 1 and any fixed constant k.

Proof. This proof follows from the GNN protocol for 3SAT in Theorem 3.8, and using
Lemmas 3.1 and 3.2, as we elaborate next. We show the contrapositive, that is, if a
O(poly(dim(K))) time (ε, δ, f)-disentangler Φ exists with f(x) = cx and ε, δ ≤ k

dim(K) for
any c ≥ 1 and a constant k that we specify latter, then 3SAT is in BQP.

Let g(n) = c(n) − s(n) be the completeness soundness gap in the GNN protocol where
n denotes the input size. In this protocol, the proof size l(n) is greater than log(tg(n)) for
some constant t. Thus, the dimension dim(K) of the output space is at least tg(n). Since
the errors ε and δ of Φ are bounded above by k

dim(K) , we can choose a constant k such that
k

tg(n) ≤
1

4g(n) .
Combining the existence of Φ and Lemma 3.1, we conclude that the GNN protocol is

in QMAct′ log(n) for some constant t′, and where t′ log(n) is an upper bound on the witness
size in this protocol. Now, using Lemma 3.2 this protocol can be solved in polynomial
O(poly(n)22ct′ log(n)) quantum time, implying that 3SAT is in BQP.

The previous result can be improved under the assumption that there is no quasi-
polynomial quantum time (O(2polylog(n))) algorithm for 3SAT. The best quantum algorithm
to this date is the Grover unstructured search, with complexity O(2

√
n).

Theorem 3.5. If there is no quantum algorithm for 3SAT which runs in O(2polylog(n))
time, then there is no O(poly(dim(K))) time (ε, δ, f)-disentangler Φ with f ∈ poly and
ε, δ ≤ k

dim(K) , where k is a constant.

Proof. Similar to the proof of Theorem 3.4. But now the simulation of the GNN protocol
occurs in QMApolylog(n), as the number of input qubits and output qubits of Φ are related by
a polynomial. Since the output dimension Φ remains the same as in the previous Theorem,
the the same choice of k allows us to use Lemma 3.1 and claim that 3SAT is in QMApolylog(n).
Using Lemma 3.2, we conclude that 3SAT that can be solved in O(poly(n)2polylog(n)) time.

We can also conjecture that every quantum algorithm to solve any NP-complete problem
requires Ω(2

√
n) time. In this case, the function f in Theorem 3.5 can be improved again as

shown by the next theorem.

Theorem 3.6. If there is no quantum algorithm for 3SAT which runs in o(2
√
n) time, then

there is no O(poly(dim(K))) time (ε, δ, f)-disentangler Φ with f(x) = 2
x
c and ε, δ ≤ k

dim(K) ,
for some constants c and k.

Proof. Same reasoning as in the last two results. Let the proof size in the GNN protocol
be bounded by t′ log(n) for a constant t′. It suffices to choose a constant c such that

2
t′ log(n)

c <
√
n

2 for every n > 1.

The previous theorem is a step towards proving the following conjecture.
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Conjecture 3.7 (Watrous (from [12])). For any constants ε, δ < 1, a (ε, δ)-disentangler will
require dim(H) = 2Ω(dim(K)).

It would be interesting if the previous theorem could be scaled down. That is, instead of a
dim(K) dependence, it would show a polylog(dim(K)) dependence for both the disentangler
complexity and the errors ε and δ.

It is possible to use the result QMA(k) = QMA(2), given by Lemma 2.3, to show that
the GNN protocol can be transformed into a SEP protocol by doubling the message size
and squaring the completeness soundness gap.

Theorem 3.8 (SEP GNN (variation of [6])). We have

3SAT ∈ QMA(2, 1, 1− Ω(
1

n2polylog(n)
))SEP
O(log(n)).

If g(n) ∈ Ω( 1
n2polylog(n)

) is the completeness soundness gap, then the proof size l(n) satisfies

log(t
√
g(n)) ≤ l(n) ≤ t′ log(n)

for constants t, t′ and n > 1.

In Theorems 3.4, 3.5 and 3.6, the norm used to measure distances was the general trace
norm. By making ε = δ ≤ k

dim(K)2
, for a suitable constant k, and using the SEP version

of the GNN protocol in Theorem 3.8, we can see that the same results hold for the more
restricted ΦSEP disentangler.

4 Connection to the de Finetti Theorems

Quantum de Finetti Theorems provide sufficient conditions that limit the maximum corre-
lations that quantum states on n subsystems may exhibit when considering only k (k ≤ n)
of them. They are important tools to limit the entanglement among these subsystems.

Brandão et al. established the connection of a version of the de Finetti Theorem for
parallel LOCC to (ε, 0, f(x) = tx

ε2
)-disentanglers in this norm, where t is a constant [11]

[22]. We define a generic de Finetti Theorem based on [16], and observe that it leads to a
generic disentangler.

Theorem 4.1 (Generic de Finetti Theorem). Let ρA1...An be a permutation invariant state
on H⊗nA . Then, for integers 0 ≤ k ≤ n, there exists a probability measure µ on density
matrices on HA, and a function g such that∥∥∥∥ρA1...Ak

−
∫
σ⊗kdµ(σ)

∥∥∥∥
M

≤ g(|A|, k, n).

This generic theorem implies the existence of the following generic disentangler.

Lemma 4.2. A de Finetti theorem, in the generic form of Theorem 4.1, implies the existence
of a (ε, 0, f)-disentangler ΦM

= , and where the error ε is given by g(|A|, k, n) with function f
satisfying f(x) = nx.
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Proof. Let ρA1...An be a state in H⊗nA , and let k = 2. The disentangler ΦM
= selects uniformly

at random one permutation τ in the symmetric group Sn, and permute the systems A1 . . . An
according to it. Then, it traces out all of them, except the first two subsystems which we
denote by A′1 and A′2. This action can be described as

ΦM
= (ρA1...An) = Tr\A′1A′2(

∑
τ∈Sn

1

n!
τρA1...Anτ

†).

After a random permutation, the state becomes permutation invariant. Hence, the generic
de Finetti Theorem 4.1 applies [23]. Let ρ′A′1A′2 denote the output state. The de Finetti
Theorem guarantees that it is ε-close where ε is given by

ε ≤ g(|A|, 2, n).

Conversely, any separable state σ =
∫
ψ ⊗ ψdµ′(ψ), where µ′ is a measure on density

matrices, can be extended to n subsystems σn =
∫
ψ⊗ndµ′(ψ). This new state is permutation

invariant, and its reduced state in A′1 and A′2 is equal to σ. Therefore, the error δ is zero.
The input space is H = H⊗nA , and the output space is K⊗2 = H⊗2

a . Thus f(x) = nx.

Theorem 4.3. For any constant p > p0, unless there is a o(2
√
n) time quantum algorithm

for 3SAT , the following quantum de Finetti Theorem is impossible.
Let ρA1...An be a permutation invariant state on H⊗nA . Then, for integers 0 ≤ k ≤ n

there exists a probability measure µ on density matrices on HA such that∥∥∥∥ρA1...Ak
−
∫
σ⊗kdµ(σ)

∥∥∥∥
SEP

≤ poly(k)poly(|A|)
np

.

Proof. We show that if the stated de Finetti theorem is possible, then there is (ε, δ, f)-
disentangler ΦSEP

= with f(x) = 2
x
c and ε, δ ≤ k′

dim(K)2
, for some constants c and k′. Com-

bining this result with the extension of Theorem 3.6 in the SEP norm implies that 3SAT
has a o(2

√
n) time quantum algorithm.

Let the number of output systems k be 2. Let x = log(dim(HA)) and let n = 2
x
c

x . Now,
using the de Finetti Theorem we have:∥∥∥∥ρA1A2 −

∫
σ⊗2dµ(σ)

∥∥∥∥
SEP

≤ poly(2)poly(|A|)
np

= O(
|A|a

2
p
c
x−p log(x)

)

= O(
2ax

2
p
c
x−p log(x)

)

= O(
1

2
p
c
x−ax−p log(x)

),

where a is the maximum degree of poly(|A|).
For any p > p0 = c(a+ 2), we have the following upper bound
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O(
1

dim(HA)2+ε
).

for any ε > 0 which is asymptotically smaller than O( k′

dim(HA)2
). Note that the random

permutation takes time at most O(poly(2x)) since the disentangler input size is O(2
x
c ). This

leads to a disentangler that contradicts our hardness assumption.

Note 4.4. Given the hardness assumption of the previous Theorem, even for the restricted
SEP norm the distance error from a separable state in the de Finetti Theorem does not de-
crease faster than an inverse polynomial in the number of subsystems n. But this dependence
is 1

n for the more general trace norm version of the de Finetti Theorem [19] [20].

Note 4.5. The previous Theorem holds for a different constant p0, even if the dependence
on the dimension subsystem A is polylogarithmic.

Note 4.6. Any proof that QMA(2) ⊆ QMA that relies only on a de Finetti of the same
form as Theorem 4.1 must have a polylogarithmic dependence on A, since the dependence
on n in the best case is an inverse polynomial, assuming the hardness assumption.

5 Conclusion

The starting point of our hardness results for disentanglers and the generic quantum de
Finetti Theorem is a protocol for 3SAT in QMA(2)O(log(n)) which has completeness sound-
ness gap Ω( 1

npolylog(n)). One way to strengthen these hardness results would be to devise
protocols with larger gaps. For an (ε, δ, f)-disentangler, the errors ε and δ are directly related
to this gap. Therefore, an interesting research direction is to improve this gap, or otherwise
show that it is optimum.
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